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“[Riemann...bound by Dirichlet...] would give acute, logical analyses of foundational questions, and
would avoid long computations as much as possible.”

—Felix Klein

Abstract

The RT-equations are a novel system of elliptic partial differential equations foundational for ge-
ometric analysis in General Relativity and Mathematical Physics: Solutions of the RT-equations
furnish coordinate transformations which give an arbitrary non-optimal affine connection a gain
of one derivative over its own Riemann curvature tensor, (i.e., to optimal regularity), and the
equations are elliptic regardless of metric or metric signature. The elliptic RT-equations thus
regularize singularities in the hyperbolic Einstein equations. As corollaries we establish that
singularities at GR shock waves are always removable, implying geodesic curves, locally iner-
tial coordinates and the Newtonian limit all exist; and we extend Uhlenbeck compactness from
Riemannian to Lorentzian geometry. Uhlenbeck compactness is based on the curvature alone,
making it intrinsic for nonlinear problems in General Relativity and Mathematical Physics. We
note that removable Black Hole singularities, like the singularity at the Schwarzschild radius, are
non-optimal solutions to which the RT-equations formally apply, but such singularities lie below
the threshold L∞ regularity associated with GR shock wave singularities, the threshold of our
current existence theory.

Introduction: In his celebrated habilitation of 1864, “On the hypotheses which lie at the founda-
tions of geometry”, Bernhard Riemann explained how to solve the longstanding problem proposed
to him by Gauss, the problem of defining curvature in spaces of dimension larger than two. His idea
was to discover an essential mathematical construct formed from second derivatives of a metric,
such that it transformed under coordinate change like a first derivative object–what we now call a
tensor. Thus began one of the greatest efforts of modern mathematics, to set Riemann’s ideas upon
a solid mathematical framework, and extend them to Physics. It was Levi-Civita who explained
curvature in terms of the covariant derivative which is defined in terms of a connection, and by
this the connection replaced the metric as the starting point of Riemann’s theory of curvature.
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Riemann’s theory of curvature applies to any affine connection defined on the tangent bundle of
an arbitrary differentiable manifold. In 1915 Albert Einstein introduced General Relativity (GR),
and based his equations on Riemann’s theory of curvature in Lorentzian geometry. In Einstein’s
theory, the connection defines the “parallel translation” of non-rotating frames described physically
by gyroscopic translation. But a fundamental consequence of the tensorial nature of Riemann’s
curvature is that it implies the existence of low regularity coordinate transformations which leave
the regularity of the curvature unchanged, but lower the regularity of the connection to that of the
curvature, thus making the connection “singular.” This produces an enormous redundancy in the
coordinate expressions for connection and curvature. When presented with a non-optimal connec-
tion, no regularizing coordinate transformation is given, and it has been long unknown whether
all such singularities are removable by coordinate transformation, or whether classes of them exist
which are “geometric”. This is fundamental, for example, because one needs the regularity of the
connection to be one order above its curvature to conclude the convergence of approximation se-
quences; and the extra derivative is required to evolve solutions within the framework of nonlinear
wave equations. At the low regularity of GR shock waves, the singularities are so severe that they
call into question the physical significance of the solutions themselves.

Our work introduces a new set of partial differential equations for geometry, the RT-equations,
which are elliptic regardless of metric or metric signature. We use the RT-equations to establish the
regularity and compactness of general affine connections. (In GR, these elliptic equations determine
the optimal regularity of solutions of the hyperbolic Einstein equations.) We establish that any affine
connection, that is, any connection on the tangent bundle of a differentiable manifold, which satisfies
the condition that its components together with the components of its Riemann curvature tensor
are functions bounded in L∞ in some coordinate system, can be smoothed by a (low regularity)
coordinate transformation to lift the regularity of the connection by one order of differentiability. In
seminal work, Kazdan and DeTurck [3] resolved the problem of optimal regularity for Riemannian
(positive definite) metric geometries. Our theory of the RT-equations extends Kazdan and DeTurck
to Lorentzian geometry and affine connections, it resolves the long-standing open problem of the
essential regularity of GR shock waves, and it establishes Uhlenbeck compactness [19] in General
Relativity, that any uniformly bounded sequence of L∞ connections with L∞ curvature has a
convergent subsequence. Uhlenbeck compactness is a new starting point for analyzing the Einstein
equations at low regularity, establishing that L∞ bounds on the curvature alone are sufficient to
imply weak-W 1,p and strong Lp compactness for affine connections, including General Relativity.

As discussed further below, the existence of non-optimal metrics is a direct consequence of Rie-
mann’s original idea to construct a first derivative tensorial measure of curvature out of second
derivatives of the metric, so the problem of optimal regularity has been an issue since Riemann
introduced the Riemann curvature tensor in his famous lecture of 1864. In General Relativity, the
RT-equations reinforce Einstein’s viewpoint of spacetime as a four dimensional geometry, in con-
trast to the 3+1 approach required to apply classical methods of analysis in the study of the Cauchy
problem. The theory of the Regularity Transformation (RT) equations reached a culmination in
our paper “On the regularity implied by the assumptions of geometry”, [17], a title which we chose
to conjure up Riemann’s original habilitation. An exposition of the theory of the RT-equations,
including a summary of our results, is now published in the Proceedings of the Royal Society-A,
[16].

Singularities of spacetime: It has been a central problem since Schwarzschild discovered his
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solution in 1915, whether a spacetime singularity in General Relativity is geometric, or whether
it is removable by a regularizing coordinate transformation. It took several years until Eddington
proved that the apparent singularity at the Schwarzschild radius in Schwarzschild’s solution, what
we now call the event horizon of a black hole, was only a coordinate singularity. At the time
this question as to the nature of a spacetime singularity was essential in determining whether the
equations of General Relativity, G = 8πT , were to be taken seriously as a physically meaningful
theory. The celebrated Hawking-Penrose singularity theorems1 address the opposite side of this
issue, providing conditions under which a spacetime singularity is non-removable.2 Our new theory
of the RT-equations in [17], a theory unrestricted by dimension or symmetry assumptions, resolves
in the affirmative the open problem as to whether the spacetime singularities at GR shock waves
are removable.

Singularities at GR shock waves: In the year 1965 Glimm introduced the celebrated Glimm
scheme of shock wave theory3, and a year later Israel introduced the theory of Junction Conditions,
the conditions under which two smooth gravitational metrics match continuously across an interface
to form a general relativistic shock wave. To solve the Einstein equations G = 8πT at a shock wave,
the Einstein curvature tensor G will inherit the regularity of the fluid which comprises the energy
momentum tensor T , so since the density, pressure and velocity are discontinuous at shock waves,
this places a discontinuity in the curvature of spacetime at the shock, as well. The discontinuity
in curvature is not a problem, but in Israel’s theory, the regularity of the gravitational metric
was only one order above the curvature at shock surfaces constructed by the Junction Conditions,
and this left open the possibility of so called “delta function sources” in the second derivatives of
the metric at the shock. Israel showed that ruling out the delta function sources in the Riemann
curvature tensor at the shock was sufficient to imply the Rankine-Hugoniot jump conditions which
enforce conservation at the shock, and under this assumption he proved that a low regularity
transformation to Gaussian normal coordinates would regularize the apparent singularity in the
metric and its connection at smooth shock surfaces. Israel’s ideas were clarified and generalized
in [18]. But the map to Gaussian normal coordinates is ill-defined as a continuous transformation
when the shock surface is not smooth, i.e., when the normal vector is discontinuous, [10]. Israel’s
theory left open the problem of whether such singularities could be regularized at more complicated
regions of “interacting” shock waves. If not, then shock waves could create a new kind of singularity
in GR, and the authors named such potential singularities Regularity Singularities, c.f. [12].

But after Israel there were no examples of such interacting shock waves in GR until 2005 when Groah
and Temple [6] proved that the Glimm scheme could be extended to General Relativity in spherically
symmetric spacetimes. This introduced into GR the first rigorous existence theory for shock waves
admitting interactions of arbitrary complexity. The validity of Glimm’s method in GR re-introduced
into General Relativity Israel’s original problem with the Junction Conditions: The gravitational
metric appeared to be singular at shock waves in the coordinate systems in which convergence of the
Glimm scheme could be proven. That is, at the shock waves, the gravitational metric was singular

1Including the work for which Roger Penrose was awarded the 2020 Nobel prize in Physics, c.f. [9].
2Interestingly, Penrose’s proof in [9] of the existence of a geodesic singularity requires the apriori assumption that

the metric remain in C1,1, which places the curvature in L∞, c.f. [5]. Thus our theorems on optimal regularity would
apply if the singularity formation actually involved a loss of optimal regularity, e.g., metric regularity falls to C0,1 at
the singularity, with curvature still in L∞.

3Glimm’s method was off-the-wall original and in stark contrast to the established method of analyzing hyperbolic
PDE’s at that time, energy methods, and even up until now, no one has succeeded in establishing Glimm’s theorem
by energy methods in one space dimension.
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in the sense that the connection, defined in GR by the Christoffel symbols of the metric, degenerated
to the level of regularity of its own Riemann curvature tensor, (which is discontinuous at shocks
according to G = 8πT ), making the gravitational metric only one derivative more regular than its
curvature–a level of regularity so low at shock waves that the existence of locally inertial frames,
geodesic curves and the Newtonian limit, were at issue. So as with Schwarzschild’s original work,
this raised the question as to whether these new shock wave solutions constructed by the Glimm
scheme were physical. It is well known that shock waves form generically when a fluid is sufficiently
compressive, so the physical interpretation of these solutions addressed the basic physical status of
the Einstein-Euler system of equations. This singular structure at shock waves either required a
new physical interpretation for the Einstein-Euler equations, or else there was a missing theory of
regularizing coordinate transformations in General Relativity–some generalization of Israel’s result
to the case of shock wave interactions of arbitrary complexity.4

The fundamental question was then: Could these solutions constructed by the Glimm scheme be
regularized by coordinate transformation at points of shock wave interaction? I.e., did there exist
some unknown theory of low regularity coordinate transformations sufficient to regularize these
singularities? To begin, Reintjes proved in [10] that metrics could always be smoothed to optimal
regularity at points of regular shock interaction in spherically symmetric spacetimes. This was a
complicated technical argument based on a non-local PDE, in which the Rankine-Hugoniot jump
conditions came in again and again to make a system of seemingly over-determined PDE’s, just
barely solvable. But the argument was highly tuned to the structure of the particular interaction,
and gave no hints as to what, if any, was the general principle working behind the scenes [10, 11].

Discovery of the RT-equations: After entertaining the possibility that there was some sort of
new physics involved, (c.f. [12]), Reintjes and Temple became convinced that there must exist a
fundamental, unknown theory of regularizing coordinate transformations, and they changed direc-
tions, and set out to find it. Thus we began a decade long journey to discover the theory of the
missing regularizing coordinate transformations.

To keep the history straight, we record that it was difficult to pursue this program because panels
of experts in GR who served as referees at NSF Applied Mathematics unanimously declared the
program “not feasible”, and denied NSF funding for this research several years straight. But fair
enough. After all, we were proposing something completely new to General Relativity and Geome-
try: The possibility that there might exist an as yet undiscovered elliptic system of equations which
regularized the singularities in solutions of the hyperbolic Einstein-Euler equations. We have now
discovered these elliptic equations, and named them the “Regularity Transformation equations”,

4In fact, solutions of the Einstein equations constructed in Standard Schwarzschild Coordinates (SSC), the spher-
ically symmetric coordinate system used to construct the Glimm scheme solutions in [6], are non-optimal at every
order of regularity. Non-optimality is built into SSC at the start by the choice of radial coordinate, i.e., chosen
to be proportional to the area of the sphere of symmetry. Interestingly, the non-optimality of the SSC coordinate
system has the effect of converting second order Einstein equations into first order equations. So on the one hand
SSC is a degenerate non-optimal coordinate system, but intriguingly, it is precisely this degeneracy that makes it
feasible to implement the first order Glimm scheme in SSC. The SSC coordinate system has played an important
role in the history of GR, starting with Schwarzschild and Birkhoff. Our theorem clarifies the logical status of the
SSC coordinate system within GR by demonstrating that non-optimal metrics in SSC can be converted to optimal
regularity by coordinate transformation at all levels of regularity, L∞ and above. Interestingly, no one knows how to
implement Glimm’s method, or any other method for constructing shock wave solutions of the Einstein equations, in
a coordinate system in which the shock waves exhibit optimal regularity.
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or RT-equations.5 The challenge was to obtain existence of solutions to the RT-equations for the
low regularity of shock waves, and the important space was the space of connections in L∞ with
L∞ Riemann curvature tensor. This space automatically extends Israel’s condition that there be
“no delta functions sources” at shocks to the case of general interacting shock waves. Indeed,
since Einstein built his equations to satisfy Div T = 0 by the Bianchi identities of geometry, the
condition that the curvature be locally bounded in L∞ naturally replaces the Rankine-Hugoniot
jump conditions and the extension of this by the weak formulation of solutions in terms of test
functions, as the condition on weak solutions which imposes conservation at shock waves in General
Relativity, (see [18]).

Our program to address optimal regularity in our current general setting began with the insight
that the existence of the apparent singularities at GR shock waves might be due simply to the fact
that the Riemann curvature tensor is formed from second derivatives of the metric tensor, but be-
ing a tensor, transforms like a first derivative object. In fact, the problem lies more fundamentally
at the level of an affine connection, the fundamental object more general than a metric, to which
Riemann’s theory of curvature applies. The problem is this: because the transformation law for
connections involves second derivatives, a transformation whose Jacobian has the same regularity
as the connection, will in general transform a connection of optimal regularity, (one which has a
level of regularity one derivative above its curvature tensor), to a connection at the same regularity
as its curvature, because the curvature maintains its regularity under tensor transformation.6 In
fact, every singularity that arises from the application of a low regularity coordinate transforma-
tion to a metric of optimal regularity, will (generically) be of this non-optimal character.7 Our
conjecture, then, was that this was the only way non-optimal connections came into existence in
geometry.8 That is, we conjectured that this process could always be reversed. But to prove the
reverse direction, that non-optimal connections could always be smoothed to optimal regularity by
coordinate transformation, one needs to undo the above process, and this requires constructing a
suitable low regularity, (singular if you will), coordinate transformation, given only the information
about the non-optimal connection and its curvature. For example, at the level of L∞ connections
associated with shock waves, such a coordinate transformation must be singular in the sense that
jumps in derivatives of the Jacobian must be tuned to precisely cancel out the discontinuities in the
given non-optimal connection in the transformation law for connections. But what sort of equation
would the Jacobians of such regularizing transformations satisfy? And how would one find such an
equation? And what theory of mathematics would be available to solve such an equation?

5In choosing this name, we were fully aware of both the originality, and the fundamental nature of these new
equations.

6Note that the essential regularity of a connection, including whether it is optimal or non-optimal, is a geometric,
coordinate independent notion when the manifold is restricted to the atlas of smooth coordinate transformations,
but optimal regularity becomes coordinate dependent when the smooth atlas is extended to include low regularity
coordinate transformations, c.f. [16].

7 The black hole singularities at the Schwarzschild radius are examples of non-optimal metrics by this principle,
but the regularity of the connection at such singularities is below the L∞ level of our current existence theory, [17].

8We record here that earlier investigations starting with Anderson [1], and more recently [2], made inroads into
the problem of optimal regularity in GR from a 3 + 1 point of view, based on using Kazdan and DeTurck [3] to
regularize initial data on spacelike hypersurfaces where the gravitational metric restricts to positive definite, and
then obtaining conditions (like the “geodesic ball condition”) which control the regularity under time evolution. Our
work does not build on this. Based on our stated conjecture here regarding the source of optimal regularity, our view
from the start was that to get a theorem general enough to prove the optimal regularity of GR shock waves, we would
have to build a new framework in which the connection and Riemann curvature tensor were treated fundamentally
as 4-dimensional geometrical objects.
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Our first breakthrough for the general problem came in [13], where we obtained a condition on
a non-optimal connection equivalent to the existence of a regularizing coordinate transformation.
We named this the Riemann-flat condition. The Riemann-flat condition states that a regularizing
coordinate transformation exists for a given non-optimal connection if and only if there exists a
(1,2)-tensor Γ̃, one order more regular than the given non-optimal connection Γ, such that the
connection Γ − Γ̃ is Riemann-flat, i.e., Riem(Γ − Γ̃) = 0. Since this new Riemann flat connection
had the same shock structure as the original connection, we wondered for a while whether we might
obtain optimal regularity by some sort of Nash embedding theorem. The breakthrough came after
we decided to try to construct an elliptic system of equations by coupling equations for the unknown
Jacobians J , to equations for the above mentioned unknown (1,2)-tensor Γ̃, via the Riemann flat
condition and the coordinate Laplacian. This opened the door to the discovery of the Regularity
Transformation equations.

The new idea required to derive the RT-equations was to use the coordinate Laplacian instead
of an invariant metric9 to define a co-derivative, the idea being that the leading order part dΓ
of the Riemann curvature tensor in terms of a connection Γ, can be converted into an elliptic
operator via ∆ = dδ+δd. We then employ two equivalent forms of the Riemann-flat condition, one
involving dΓ̃ and one involving dJ, where Γ̃ is the unknown (1,2)-tensor which completes a non-
optimal connection to Riemann flat, and J is the unknown Jacobian of the sought after regularizing
coordinate transformation. That is, by manipulating the Riemann-flat condition, we are able to
show that equations for both Γ̃ and J can be completed to form a pair of coupled nonlinear Poisson
equations with left hand sides given by ∆Γ̃ and ∆J, where ∆ is the coordinate Laplacian constructed
using the coordinate co-derivative δ. The RT-equations consist of these coupled Poisson equations,
together with Cauchy-Riemann type equations which guarantee the integrability of J .

Our existence theory for the RT-equations is a new application of the celebrated Lp theory of elliptic
regularity, a theory set out by the great analysts of the 1950’s and 60’s, including Agmon, Nirenberg,
Lax, Milgram and others, [4]. The extra derivative on the connection and metric implied by our
proof of optimal regularity directly implies Uhlenbeck compactness for Lorentzian metrics. The
result applies to solutions of the Einstein equation at every order of regularity, for it tells us that
bounding a connection and its curvature in the same Sobolev space in a sequence of approximate
solutions, implies the existence of a convergent subsequence with convergence regular enough for
its limit to be a solution.

The formulation of the RT-equations, expressed within the language of matrix valued differential
forms, was directed toward making them amenable to the classical methods of elliptic regularity
theory at the low regularity of Lp spaces, a regularity low enough to include the L∞ GR shock
waves constructed by Glimm’s method [6]. Our publication in [14] is devoted to a careful derivation
of the RT-equations, and in [15] we established their viability by proving the first existence theory
for the RT-equations applicable to non-optimal connections in Wm,p, m ≥ 1, p > n, a level of
regularity one order above the regularity of GR shock waves. We then identify the role played by
a new type of gauge transformation in the equations, and by employing gauge freedom, we were
able to de-couple the equations from a subsystem which we call the reduced RT-equations, a system
of elliptic PDE’s amenable to an existence theory at a level of regularity one order below what

9The method of Kazden and DeTurck [3] is based applying elliptic regularity to the operator which appears in the
leading order part of the Ricci tensor as a consequence of the existence of an underlying invariant positive definite
metric. For non-Riemannian metrics this method leads to a wave type (hyperbolic) operator, and for general affine
connections, there would be no associated invariant metric or elliptic operator.
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we could achieve with the original RT-equations, and by this we were able to extend the theory
to L∞ connections with L∞ curvature. This level of regularity is low enough to include both GR
shock waves constructed by the Glimm scheme, as well as shock solutions constructed in multi-d
by Israel’s theory of junction conditions, i.e., all of the known examples of GR shock waves [16].

Optimal Regularity in the context of the Cauchy Problem in GR: Current methods of the
Cauchy problem are inadequate regarding how non-optimal solutions fit into the general picture.
For example, referees have brought up the celebrated reference Klainerman-Rodnianski-Szeftel, [8].
Reference [8] only applies to vacuum solutions of the Einstein equations, (a setting which excludes
shock waves, the setting of our papers), but what is interesting in light of our new result, is that
the KRS theorem does not apply unless the second fundamental form, and hence the connection,
is one derivative more regular than the curvature on a Cauchy Surface, i.e, the KRS theory only
applies to solutions in vacuum which can be shown to exhibit optimal regularity at the start. The
referees of our papers from the field of GR seem to think that non-optimal solutions can eventually
be ruled out by well-posedness considerations, or that the initial value problem will automatically
regularize all non-optimal solutions, or that non-optimal solutions are just an anomaly of spherical
symmetry. Our opinion is that these statements are not correct, (c.f. our discussions in [15, 16]).

Non-optimal solutions exist in spherically symmetric spacetimes for precisely the same reason they
exist in general spacetimes–the 4-dimensional Riemann curvature tensor is a second derivative
construct which transforms like a tensor.

To clarify this point, start with the fact that non-optimal initial data and non-optimal solutions
exist in every coordinate system due to the tensorial nature of Riemann’s curvature tensor. Then
it is easy to conjecture that all optimal solutions do not “fit” within any “one” coordinate system,
in the sense that there is no single coordinate ansatz which simultaneously lifts all non-optimal
solutions to optimal regularity at once. That is, you have to solve the RT-equations, an essentially
4-dimensional, not 3 + 1 dimensional system. Without the RT-equations, the Cauchy problem in
GR is thus faced with the problem as to what to do with non-optimal solutions: I.e., they aren’t
regular enough to evolve in time, but if they are “physical”, you can’t throw them out either. Now
at higher levels of regularity, say connection and curvature of regularity above W 1,p, one can simply
accept estimating non-optimal solutions as one order less regular than they really are, but at the
lowest level of regularity, there is no room left, in the sense that Lp connections with Lp curvature
are not regular enough to evolve in any regularity class.

Now if one did not know, as our new theorem demonstrates for p =∞, that all of these non-optimal
solutions are perfectly “good” optimal solutions written in a “bad” coordinate system, then it might
make sense to rule out the bad one’s by “well-posedness” considerations. After all, if the connection
essentially lacks that extra derivative of regularity, it won’t be stable in derivative norms at that
level. The hope, then, would be the idea that some one gauge for the initial value problem would
somehow make “good” solutions optimal, and rule out “bad” ones by “well-posedness”.

Unfortunately for this idea our new theorem tells us that all of the non-optimal solutions are actually
“good” in some other coordinate system, but the coordinate transformation which regularizes a
given non-optimal solution, is highly tuned to that particular solution, (you have to solve the RT-
equations), so there won’t be any one ansatz that regularizes them “all at once”. On the other
hand, by properties of the regularizing coordinate transformations obtained by solving the elliptic
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RT-equations, one should expect two non-optimal L∞ solutions with connection and curvature
“close to each other” in Lp, will be mapped to two solutions close in W 1,p. So if one didn’t know
about the RT-equations, one might well be puzzling for a long time over ruling out solutions by
“well-posedness” considerations, when the issue is basically a problem of optimal regularity instead.

Our conclusion, based on our new point of view, is that what the theory of the Cauchy problem
lacks, besides theorems which extend to low regularity beyond the vacuum, is exactly what we have
provided–a proof that non-optimal solutions can always be regularized by low regularity coordinate
transformations.

Numerical Relativity: The Reintjes-Temple result gives an L∞ based answer to the question as
to whether loss of optimal regularity under time evolution in numerical or theoretical approxima-
tions, (one example being the formation of shock waves), represents the formation of real spacetime
singularities, or simply a loss of regularity of the coordinate system employed. By this new result,
solutions can always be regularized to optimal regularity by coordinate transformation in neigh-
borhoods where the components of the connection and curvature are locally L∞ functions. The
iteration scheme in our existence theory, based on solving linearized Poisson equations, provides an
explicit numerical algorithm for constructing the Jacobians J of the regularizing transformation,
and the optimal connection is then given by an exact formula in terms of J, Γ̃,Γ. We would be
excited to see applications of this algorithm in Numerical Relativity.

Uhlenbeck compactness: As a serendipitous corollary, our result on optimal regularity estab-
lishes the first extension of Karen Uhlenbeck’s compactness theorem to General Relativity and affine
connections in general.10 The Reintjes-Temple work here extends Uhlenbeck compactness from the
setting of connections on vector bundles over Riemannian manifolds, to (affine) connections on
the tangent bundle of Lorentzian manifolds, the setting of Relativistic Physics. As a first exam-
ple for how one might apply Uhlenbeck compactness in General Relativity, we give in [17] a new
compactness theorem for approximate solutions of the Einstein equations in vacuum spacetimes.
The new result establishes compactness of solutions under the simple assumption that connection
and curvature be bounded in L∞. Essentially, the weak W 1,p convergence together with strong
Lp convergence of the connection, i.e. what we get from our Uhlenbeck compactness in general,
is sufficient to pass limits through nonlinear functions in Einstein equations, and in [17] we give a
proof of this in the setting of vacuum spacetimes. We expect that this principle can be extended
to non-vacuum solutions when combined with further analysis of the matter field equations. For
example, we expect Uhlenbeck compactness to be applicable to zero viscosity limits of the coupled
Einstein-Euler equations for self-gravitating relativistic fluids when combined with the method of
compensated compactness.

Uhlenbeck’s results in the Riemannian case are much more general regarding the bundle structure,
as her main interest was gauge theory and the Yang-Mills equations, while our main concern
is General Relativity. Our current methods, based on the elliptic RT-equations, apply to affine
connections, but still hold the promise of further extending Uhlenbeck compactness to general vector
bundles and general Lp connections over Lorentzian manifolds, p ≥ 2. Uhlenbeck compactness is
ideal for application to geometric PDE’s, including the relativistic Einstein equations and Yang-
Mills equations, because compactness follows from estimates based on the curvature alone, the

10Uhlenbeck’s work on compactness for L∞ and Lp connections in Riemannian (positive definite metric) geometry
[19], was highly celebrated, including the 2019 Abel Prize and 2007 Steele Prize.
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observable in the theory, without having to deal with the other potentially uncontrolled derivatives
of the connection; and the regularity of convergence obtained is precisely what is needed to pass
limits through nonlinear products. Compactness is the starting point of analysis, and there are
scant few fundamental compactness theorems applicable to hyperbolic PDE’s.

The new Uhlenbeck compactness result of Reintjes and Temple provides a new starting point for
geometrical analysis in Mathematics and Physics.
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