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1. Background

In 1998 supernova observations by astronomers led to the discovery
of the Anomalous Acceleration (AA) of nearby galaxies. A best fit of
the data to the two parameter family of Friedmann Spacetimes with
curvature k and cosmological constant Λ led to the best fit model be-
ing a critical k = 0 Friedmann space-time with ΩΛ ≈ .7. Cosmologists
have thus hypothesized a repulsive anti-gravitational force coming from
a cosmic vacuum energy, Dark Energy, accounting for approximately
seventy percent of the energy density of the universe. By this inter-
pretation, Dark Energy is represented by the addition of an extra term
in the form of the cosmological constant to the right hand side of Ein-
stein’s equations of General Relativity (GR). This is the only way to
preserve the uniform Friedmann space-time in the presence of the ob-
served accelerated expansion, and hence the only way to preserve the
Cosmological Principle, that the earth is not in a special place in the
universe. Dark Energy has never been observed.

2. Alternative Explanation for the Anomalous
Acceleration

The authors looked for an alternative explanation of the AA wholly
within Einstein’s original equations and without the cosmological con-
stant, and without Dark Energy, (c.f. [23]).

Our Proposal: The AA is due to a local under-density on the scale of
the supernova data, created by a self-similar wave from the radiation
epoch that triggers an instability in the SM when the pressure drops
to zero.

The instability is characterized by a new (closed) asymptotic ansatz
which we introduce for spherical under-dense perturbations of the SM
when p = 0, [20, 22, 23]. We show that the resolution of the insta-
bility, described to leading order by the phase portrait in Figure 1,
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is to create a large region of accelerated uniform expansion on the
scale of the supernova data, (one order of magnitude larger in extent
than expected), that expands outward from the center of the pertur-
bation.1 Local under-densities induce local velocity increases and the
Cosmological Principle can only hold approximately on the scale of
the perturbations. The discovery of these instabilities resulted from a
self-contained line of reasoning stemming from questions that naturally
arose from authors’ earlier investigations on incorporating a shock wave
into the SM of cosmology, [19, 20, 21].2

Our project began with the idea from shock wave theory that the
enormous pressure p = ρc2/3, one third of the total energy density, and
consequent strong nonlinearities present in the Einstein equations dur-
ing the radiation epoch of the Big Bang would lead one to conjecture
that perturbations from the SM during the radiation epoch should
decay into simple wave forms by the end of radiation, [26, 20, 21].
Since simple waves are typically “noninteracting” solutions on which
the equations reduce from PDE’s to ODE’s, (c.f.[7, 24]), we set out
to find spherical solutions which perturb the SM during the radia-
tion epoch and on which the Einstein equations reduce to ODE’s. In
[20, 21] we identified a unique one parameter family of self-similar solu-
tions that meet these requirements, which we call a-waves3, depending
on the acceleration parameter a [21], and normalized so that a = 1
is the SM, (the critical k = 0 Friedmann space-time with ΩΛ = 0).
Parameter values a < 1 produce under-dense perturbations of SM near
the center. The a-waves exist during the radiation epoch, which lasts
from microseconds after the Big Bang until some tens of thousands
of years after the Big Bang when the pressure drops precipitously to

1In the forthcoming published version of [23] we show that all solutions smooth
at r = 0 in Standard Schwarzschild Coordinates (SSC) are gauge equivalent to
solutions described (at the appropriate orders) by equations (3.8)-(3.11) below.
Since all spherically symmetric solutions can (generically) be transformed to SSC,
(c.f. [28, 18]), the phase portrait in Figure 1 is universal in the sense that it describes
the leading order behavior of all spherically symmetric solutions smooth in SSC.

2See [4, 5, 11] and [37]-[65] of [27] for under-density theories of the anomalous
acceleration based on Lemaitre-Tolman-Bondi spacetimes.

3These self-similar solutions were first discovered, (from a different point of view),
in [1], and further studies, including a discussion of these solutions as a possible
mechanism for creating voids between galaxies, are recorded in the survey [2]. Au-
thors were unaware of these connections in [26, 20, 21]. Our proposal here is the
first attempt to connect these waves with the AA.
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zero.4 Our proposal is that a-waves are the prime candidates for the
local time-asymptotic behavior of perturbations of SM near the center
of perturbation, by the end of the radiation epoch.

The self-similar a-waves that exist when p = ρc2/3 do not persist to
p = 0, [2, 22]. Thus our problem since [20, 21] has been to continue
these a-waves into the p = 0 epoch. We accomplish this by showing
that initial data corresponding to small perturbations a < 1 of SM at
the end of the radiation epoch, trigger our identified instability in the
SM when the pressure drops to p = 0. Surprisingly, perturbations of
the SM by a-waves do not evolve trivially to the later observation, as
we originally conjectured in [20, 21], but rather, it is the non-trivial
phase portrait of the instability they trigger when the pressure drops
to zero, that determines the evolution of a-waves and the anomalous
accelerations they induce in the central region. According to the phase
portrait, the SM is a classic unstable saddle rest point, and under-
dense perturbations near SM evolve to a nearby stable rest point M
corresponding to flat Minkowski space. Evolution toward the stable
rest point M creates a large flat region of accelerated uniform expansion
one order of magnitude larger in extent than expected. Moreover,
we discover that exactly the same range of quadratic corrections Q
to redshift vs luminosity are produced during the evolution from the
SM at the end of radiation, to the stable rest point M after p = 0, as
are produced in Dark Energy theory as ΩΛ ranges from zero to one. By
numerical simulation we determine the unique wave in the family that
accounts for the same present value H0 of the Hubble constant, and
the same quadratic correction Q as Dark Energy theory with ΩΛ = .7.
The third order correction C is a prediction that distinguishes our
wave theory from Dark Energy theory. Determining the consistency of
this wave theory with other measurements in cosmology would require
further assumptions about the space-time far from the center of the
perturbation. At this stage we make no such assumptions.

3. The Perturbation Equations

We begin by considering metrics in (t, r)=Standard Schwarzschild
Coordinate (SSC) where the gravitational metric takes the usual form

ds2 = −B(t, r)dt2 +
1

A(t, r)
dr2 + r2dΩ2. (3.1)

4The pressure drops to p ≈ 0 about one order of magnitude before the time
of uncoupling of matter and radiation at about 300, 000 years after the Big Bang,
[13, 14].
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Our results however will be given in different coordinates, namely, (t, ξ)
where ξ = r/t, so that (our convention is to let c = 1 when convenient),

ξ =
r

ct
=

arclength distance at fixed t

distance of light travel since Big Bang
.

Thus we interpret ξ as fractional distance to the Hubble length c/H ≈
1010 lightyears, a measure of the distance across the visible universe.
For example, when we neglect terms on the order of ξ4 below, we incur
errors on the order of ξ4 ≈ .0001 at a tenth of the way across the
visible universe. We consider ourselves as observers at present time t0
positioned at the center r = ξ = 0, and our results will be given in
terms of small ξ.

Putting the ansatz (3.1) into the Einstein equations G = κT for a
perfect fluid

Tij = (ρ+ p)uiuj + pgij,

assuming spherical symmetry and setting p = 0, (c.f. [28]), leads to
the following equations in (t, ξ) coordinates which are equivalent to the
Einstein equations:

tzt + ξ {(−1 +Dw)z}ξ = −Dwz,

twt + ξ (−1 +Dw)wξ = w −D
{
w2 + 1−ξ2w2

2A

[
1−A
ξ2

]}
ξAξ = (A− 1)− z
ξDξ
D

= (A− 1)− (1−ξ2w2)
2

z.

Here D =
√
AB, z is a dimensionless density and w is a dimensionless

velocity,

z = κρr2

1−( vc )
2 ,

w = v/ξ,

where v is the fluid velocity, and κ/c2 = 8πG/c4 is Einstein’s gravita-
tional constant, [8].

Our new ansatz for corrections to SM closes within even powers of
ξ, and is given by, [21, 22]:

z(t, ξ) = zSM(ξ) + ∆z(t, ξ) ∆z = z2(t)ξ2 + z4(t)ξ4 (3.2)

w(t, ξ) = wSM(ξ) + ∆w(t, ξ) ∆w = w0(t) + w2(t)ξ2 (3.3)

A(t, ξ) = ASM(ξ) + ∆A(t, ξ) ∆A = A2(t)ξ2 + A4(t)ξ4 (3.4)

D(t, ξ) = DSM(ξ) + ∆D(t, ξ) ∆D = D2(t)ξ2 (3.5)
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where zSM , wSM , ASM , DSM are the expressions for the unique self-
similar representation of the SM when p = 0, given by, [22],

zSM(ξ) = 4
3
ξ2 + 40

27
ξ4 +O(ξ6), wSM(ξ) = 2

3
+ 2

9
ξ2 +O(ξ4), (3.6)

ASM(ξ) = 1− 4
9
ξ2 − 8

27
ξ4 +O(ξ6), DSM(ξ) = 1− 1

9
ξ2 +O(ξ4). (3.7)

This gives

z(t, ξ) =

(
4

3
+ z2(t)

)
ξ2 +

{
40

27
+ z4(t)

}
ξ4 +O(ξ6),

w(t, ξ) =

(
2

3
+ w0(t)

)
+

{
2

9
+ w2(t)

}
ξ2 +O(ξ4).

We prove the equations close asymptotically within the unknowns z2, z4, w0, w2, A2, A4, D2.
The asymptotic equations for these unknowns are given by the follow-
ing autonomous equations:5

z′2 = −3w0

(
4

3
+ z2

)
, (3.8)

w′0 = −1

6
z2 −

1

3
w0 − w2

0, (3.9)

z′4 = 5

{
2

27
z2 +

4

3
w2 −

1

18
z2

2 + z2w2

}
(3.10)

+5w0

{
4

3
− 2

9
z2 + z4 −

1

12
z2

2

}
,

w′2 = − 1

10
z4 −

4

9
w0 +

1

3
w2 −

1

24
z2

2 +
1

3
z2w0 (3.11)

+
1

3
w2

0 − 4w0w2 +
1

4
w2

0z2,

with

A2 = −1

3
z2, A4 = −1

5
z4, D2 = − 1

12
z2. (3.12)

In particular, (3.8)-(3.11) closes within the w’s and z’s, and we prove
that if the constraints (3.12) hold initially, then they are maintained by
the equations for all time. Conditions (3.12) are not invariant under
time transformations, even though the SSC metric form is invariant
under arbitrary time transformations, so we can interpret (3.12), and
hence the ansatz (3.2)-(3.5), as fixing the time coordinate gauge of the
SSC metric. This gauge agrees with FRW co-moving time up to errors
of order O(ξ2).

5These asymptotic equations are written as functions of τ , where τ = ln t, 0 <
τ < 11, and prime denotes d/dτ . Introducing τ in place of t solves the long time
simulation problem.
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The importance of this ansatz is that, neglecting errors of order
O(ξ4), corrections satisfying the ansatz describe an (approximate) uni-
formly expanding spacetime of density ρ(t), constant at each time t,
and it looks very similar to a “speeded up” Friedmann space-time.
That is, since the ansatz is,

z(ξ, t) = κρ(t, ξ)r2 +O(ξ4) =

(
4

3
+ z2(t)

)
ξ2 +O(ξ4), (3.13)

neglecting the O(ξ4) error gives κρ = (4/3 + z2(t))/t2, a function of
time alone. For the SM, z2 ≡ 0 and this gives κρ(t) = (4/3) t−2, which
is the exact evolution of the density for the SM Friedmann spacetime
with p = 0 in co-moving coordinates, [18]. For the evolution of our
specific under-densities in the wave theory, we show z2(t) → −4/3 as
the solution tends to the stable rest point M along the eigen-direction
which is the vertical w0-axis, implying that the instability creates an
accelerated drop in the density in a large uniform spacetime expanding
outward from the center, (c.f. Figure 1). Specifically, we prove that

ρ(t) =
k

t3(1 + ω)
,

where k = k(t) and ω = ω(t) change exponentially slowly during the
convergence to M .

4. Analysis of the Perturbation Equations

The autonomous system (3.8)-(3.11) contains within it the the closed
subsystem (3.8), (3.9),

z′2 = −3w0

(
4

3
+ z2

)
, (4.14)

w′0 = −1

6
z2 −

1

3
w0 − w2

0. (4.15)

Remarkably, this subsystem alone determines the corrections to the
SM at the order of the observed AA, accurate when errors O(ξ4) in z
and O(ξ3) in v = wξ are neglected.

The phase portrait for the system (4.14)-(4.15) can easily be deter-
mined, (see Figure 1.): The unstable rest point at (z2, w0) = (0, 0)
corresponds to the SM at the order of the observed AA within the
central region, and clearly displays the instability of the SM. A cal-
culation shows that the initial data from a-waves, projected into the
(z2, w0)-plane and parameterized by a , cuts between the stable and
unstable manifold of (0, 0), as plotted by the dotted line in the phase
portrait depicted in Figure 1. This implies that a small under-density
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Figure 1. Phase Portrait for Central Region
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corresponding to a < 1 will evolve away from SM, following (ap-
proximately) the unstable manifold of SM to the stable rest point
M = (z2, w0) = (−4/3, 1/3), (c.f. Figure 1). Moreover, using (3.12))
we see that the metric components A and B are both of order 1+O(ξ4).
This shows that at the stable rest point, the metric is Minkowski up
to errors O(ξ4). We conclude that a small under-density created by an
a-wave at the end of the radiation era causes the formation of a large
under-dense region of accelerated uniform expansion moving outward
from the center, in which the metric tends to flat Minkowski space.

5. Numerical Results

Within the framework of the Einstein equations with cosmological
constant, the best fit to the supernova data among Friedmann space-
times with curvature parameter k and cosmological constant Λ leads
to k = 0 and

ΩΛ ≈ .7,

which leads to the conclusion that the universe consists of seventy per-
cent Dark Energy, [15, 16]. Now the Hubble constant H at a given
time in a given model is defined via the redshift vs luminosity relation

Hd` = z +O(z2). (5.16)

We let H0 denote the current measured value of the Hubble constant
at present time, H0 = 100h0

km
smpc

, with h0 ≈ .68. The redshift vs
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luminosity in the Dark Energy model is

H0d` = z +
1

4
(1 + ΩΛ)2 z2 − 1

8

(
1 +

2

3
ΩΛ + Ω2

Λ

)
z3 +O(z4). (5.17)

Here the quadratic correction to the SM with Dark Energy is

Q = .25(1 + ΩΛ)2. (5.18)

As ΩΛ increases from 0 to 1, Q increases through

.25 ≤ Q ≤ .5. (5.19)

At the present time value ΩΛ = .7, (5.18) gives the value

Q = .425,

and (5.17) gives the coefficient C of z3 when ΩΛ = .7 as

C = −0.1804.

On the other hand, a calculation shows that in our wave theory model,

H0d` = z +Q(z2, w0)z2 + C(z2, z4, w0, w2)z3 +O(z4),

where

Q2(z2, w0) =
1

4
+

24w0 + 45w2
0 + 3z2

4(2 + 3w0)2
, (5.20)

but C is more complicated, (details omitted). From (5.20) we see di-
rectly that again, as the orbit of (4.14), (4.15) evolves from the unstable
rest point SM = (0, 0), to the stable rest point M = (−4/3, 1/3), Q
increases from Q(0, 0) = .25 to Q(−4/3, 1/3) = .5, precisely the same
range (5.19) that DE theory produces. A numerical simulation of so-
lutions up to present time t0, the time when the Hubble constant takes
its present value H0, determines the unique value

a = a = 0.999999973 ≈ 1− 2.8× 10−8,

corresponding to an a-wave that creates an under-density relative to
the SM at the end for the radiation epoch, such that the subsequent
p = 0 evolution starting from this initial data evolves to time t = t0
with H = H0 and Q = .425 in agreement with the values of H and Q
at present time tDE in the DE model ΩΛ = .7.

Now comparing the initial density ρwave(t∗) at the center of the wave
a = a to the corresponding initial density ρsm(t∗) at the same time t∗
at the end of radiation, gives

ρwave(t∗)

ρsm(t∗)
= 1− (7.45) 10−6 ≈ 1. (5.21)
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During the p = 0 evolution up to present time t0, this density ratio
evolves to

ρwave(t0)

ρsm(t0)
= 0.145, (5.22)

a seven-fold under-density. We conclude that the wave a = a, which
accounts for the correct value of the Hubble constant and the quadratic
correction to redshift vs luminosity at the center of wave, also quantifies
the severity of the instability in the SM triggered by the perturbations
(3.2)-(3.5).

6. Initial Data from the Radiation Epoch

After the radiation epoch, the pressure drops precipitously to zero,
[13, 14]. This happens not on a constant time surface t = t∗, but on
a constant temperature surface T = T∗. Thus the initial data for the
equations (3.8)-(3.11) must be computed from the restriction of our
self-similar waves at the end of radiation, to the constant temperature
surface T = T∗. We must then convert this data to a constant time
surface t = t∗. This step is achieved by first using the Stefan-Boltzmann
law

ρ∗c
2 =

aSB
4
cT 4
∗ ,

(aSB=Stefan-Boltzmann constant), to relate the temperature T∗ to the
constant density surface ρ = ρ∗, and then pulling this back to the
constant time surface t = t∗. Since we are working with asymptotic
solutions, the pullback to t = t∗ is accomplished by use of the equations
together with Taylor’s Theorem. Finally, we must address the issue
that the initial data from the end of radiation is given in a different
gauge from the gauge determined by our ansatz for the p = 0 evolution.
This stems from the fact that time since the Big Bang is different
for each of the different a-waves. To address this, we define a gauge
transformation to post-process the data by converting it into the gauge
to which our asymptotic evolution applies.

For each value of (a,T∗), we compute the value Q and C at the
time t = t0 when H = H0, where Q and C are the quadratic and
cubic corrections to redshift vs luminosity at that time, computed from
our derived formulas for Q(z2, w0) and C(z2, w0, w2). Our numerics
show that the dependence on the starting temperature is negligible
for T∗ in the range 3000oK ≤ T∗ ≤ 9000oK, the range relevant to
cosmology, [13]. Thus for the temperatures appropriate for Cosmology,
t0, Q and C are determined by a alone. The value a = a is then
uniquely determined by the condition that a < 1 and Q = .425 when



10

H = H0. A simulation of the p = 0 evolution starting from initial data
corresponding to a-waves shows that, assuming a = a, the time when
H = H0 gives Q = .425 and C = 0.3580, while Dark Energy theory
gives C = −0.1804 when H = H0 and Q = .425. The times are related
by t0 = .95tDE. The difference in sign of C then provides a testable
prediction of the wave theory which distinguishes it from the theory of
Dark Energy.
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