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This paper develops two causal four-field theories of relativistic fluid dynamics, one
for viscous fluids that are barotropic and the other for viscous heat-conductive fluids
that are “thermo-barotropic,” a property that is newly defined here. While similar
to the deduction of a five-field theory in the authors’ article Causal dissipation for
the relativistic dynamics of ideal gases [Freistühler, H. and Temple, B., Proc. R.
Soc. A 473, 20160729 (2017)], the argumentation is consistently carried out in a
way that stays closer to Eckart’s flow frame (than to Landau’s), and the result is
directly compared with the four-field theories resulting from early proposals made
by Eckart, Lichnerowicz, and Choquet-Bruhat. The key idea is to impose second-
order symmetric hyperbolicity in the sense of Hughes, Kato, and Marsden [Arch.
Rational Mech. Anal. 63, 273–294 (1976)], in the natural Godunov variables that make
the corresponding system of perfect-fluid conservation laws symmetric hyperbolic in
the first order sense. The new theory for viscous heat-conductive thermo-barotropic
fluids belongs to the Hughes-Kato-Marsden class; the new theory for viscous general
barotropic fluids lies on the boundary of that class. As in the five-field theory, the
coefficients of bulk viscosity ⇣ , shear viscosity ⌘, and, in the case of thermo-barotropic
fluids, that of heat conductivity � are free parameters, and in terms of these, the
relativistic dissipation tensor is uniquely determined under three conditions which the
authors propose as definitive: symmetric hyperbolicity, sharp causality, and first-order
equivalence with Eckart—the requirement that the resulting equations be equivalent
to the Eckart equations to leading order in ⇣ , ⌘, and �. The new theory for general
viscous barotropic fluids complements the one given in the abovementioned paper for
massive ideal gases. The new theory for viscous heat-conductive thermo-barotropic
fluids notably includes the case of pure radiation, providing as one application a
quantitative correction to the authors’ previous proposal in Causal dissipation and
shock profiles in the relativistic fluid dynamics of pure radiation [Freistühler, H. and
Temple, B., Proc. R. Soc. A 470, 20140055 (2014)]. Published by AIP Publishing.
https://doi.org/10.1063/1.5007831

I. INTRODUCTION

In the special theory of relativity, the local state of a perfect barotropic fluid at a space-time point
x↵ in R4 is described by the values of its internal energy ⇢ and its 4-velocity U↵ at that point, and
the fluid as such is described by means of its pressure p as a function of its internal energy ⇢,

p= p̂(⇢). (1.1)

The dynamics of such a fluid are governed by the Euler equations

@

@x�
⇣
T↵�

⌘
= 0, (1.2)

which, referring to the fluid’s energy-momentum tensor

T↵� = (⇢ + p)U↵U� + p g↵� , (1.3)
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determine flows for positive times, x0 > 0, from their initial data at x0 = 0. As U↵ is constrained by
unitarity, U↵U↵ = 1, one speaks of a four-field theory. Besides general barotropic fluids, this paper
also specifically studies the subclass of “thermo-barotropic” fluids; by this, we mean fluids for which
also the temperature depends only on the internal energy,

✓ = ✓̂(⇢).

With internal energy given as a function ⇢ = ⇢(n, s) of particle number density n and specific entropy
s, for example both massless ideal gases

⇢(n, s)= kn� exp(s/cv), 1< � < 2, (1.4)

and “double �-law” fluids
⇢(n, s)= kn�s�, 1< � < 2, (1.5)

are barotropic, but of the two only the latter is thermo-barotropic. To see this, recall that the first law,

de= ✓ds � pd(1/n) with e= ⇢/n,

implies
✓ = es(n, s).

Note that (1.5) with � = 4/3 is pure radiation, and (1.4) is also used for not exactly massless gases
in regimes of extremely high temperature, where the contribution of the particle mass to the internal
energy is negligible (Ref. 15, p. 51). Throughout the paper, we will assume that the square of the
sound speed,

c2
s =

dp
d⇢
= p̂0(⇢),

lies strictly between 0 and 1; this makes (1.2) hyperbolic and causal.
The question that this paper is devoted to is whether small dissipative effects can be modeled

appropriately through augmenting the Euler equations as

@

@x�
⇣
T↵� + �T↵�

⌘
= 0 (1.6)

by an energy-momentum dissipation tensor �T↵� which is linear in the gradients of the state
variables and causal. Or, to express the same differently, is there a causal four-field theory for the
dynamics of dissipative barotropic fluids? We will answer this question in the affirmative.

In 1940, Eckart had proposed equations for dissipative relativistic fluid dynamics.2 For viscous
barotropic fluids, the Eckart theory reads

@

@x�
⇣
T↵� + �T↵�

E0

⌘
= 0, (1.7)

with

��T↵�
E0 = ⌘⇧

↵�⇧��

"
@U�

@x�
+
@U�

@x�
� 2

3
g��
@U✏

@x✏

#
+ ⇣⇧↵� @U�

@x�
, (1.8)

where
⌘ > 0 and ⇣ � 0

denote the fluid’s coefficients of shear and bulk viscosity. (Corresponding to the Minkowski metric
g↵� with signature + + +, we use the standard projection ⇧↵� = g↵� + U↵U� .) The Eckart
equations (1.7), together with their related formulation by Landau, are the historically first relativistic
counterparts of the classical Navier-Stokes equations, representing the starting point for theories of
relativistic dissipation. These equations are fundamental in the sense that they provide the simplest
covariant extension of classical Navier-Stokes which, like the classical equations, is consistent with
an equilibrium version of the second law of thermodynamics. However, like their classical analog,
they do not have the property of finite speed of propagation. This violates causality, i.e., the principle
that speeds of propagation must not be larger than that of light.

The causal viscosity tensor we propose in this paper for general barotropic fluids has the
form
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��T↵�
⇤0 = ⌘⇧

↵�⇧��

"
@U�

@x�
+
@U�

@x�
� 2

3
g��
@U✏

@x✏

#
+ ⇣̃⇧↵� @U�

@x�
(1.9)

+�
"
U↵U� @U�

@x�
�

⇣
⇧↵�U� + ⇧��U↵

⌘
U� @U�

@x�

#

with certain coefficients ⇣̃ , ⇣ and � , 0. We obtain this new theory by considering the class of all
dissipation tensors ��T↵�

0 that are linear in the gradients of the velocity and properly equivariant (in
the sense of respecting the natural isotropy of the physics) as well as make

@

@x�
⇣
T↵� + �T↵�

0

⌘
= 0, (1.10)

written in Godunov variables, second-order symmetric hyperbolic in the sense of Hughes-Kato-
Marsden.8 Our ��T↵�

⇤0 is the unique operator in the closure of this class which has its signal
speeds bounded sharply by that of light and is first-order equivalent, in a sense that will be made
precise below, to the Eckart viscosity tensor ��T↵�

E0 . Concretely, ��T↵�
⇤0 is determined as (1.9)

with
� = ((4/3)⌘ + ⇣)/(1 � c2

s ) and ⇣̃ = ⇣ + c2
s�. (1.11)

Besides the viscosity tensor ��T↵�
E0 , the energy-momentum dissipation tensor ��T↵�

E that Eckart
proposed in Ref. 2 actually contains another, thermal, part

��T↵�
E =��T↵�

E0 + ⇥↵�
E , ⇥

↵�
E = �

⇣
⇧↵�U� + ⇧��U↵

⌘ @✓
@x�

,

in which
� > 0

is a coefficient of heat conductivity. Obviously, the corresponding equations

@

@x�
⇣
T↵� + �T↵�

E

⌘
= 0 (1.12)

are not closed for general barotropic fluids. But they do provide a closed four-field theory for viscous
heat-conductive thermo-barotropic fluids. This theory, which is again not causal, can also be made
causal. The viscosity-and-heat-conduction tensor we propose here for general thermo-barotropic
fluids has the form

��T↵�
⇤ =��T↵�

⇤� + ⇥↵�
⇤ (1.13)

with

⇥
↵�
⇤ = �

✓
U↵ @✓

@x�
+ U� @✓

@x↵

◆
� g↵�U� @✓

@x�

�
. (1.14)

This time, we consider the class of all dissipation tensors �T↵� that are linear in the gradients of the
velocity and the temperature and properly equivariant as well as make (1.6), written in Godunov vari-
ables, second-order symmetric hyperbolic in the sense of Hughes-Kato-Marsden. Now, our ��T↵�

⇤
is the unique operator in this class which has its signal speeds bounded sharply by that of light and
is first-order equivalent, in a sense that will be made precise below, to the Eckart viscosity-and-
heat-conduction tensor ��T↵�

E . It is determined through (1.13) and (1.14) with ��T↵�
⇤� equal to the

right-hand side of (1.9) with now

� = ((4/3)⌘ + ⇣)/(1 � c2
s ) � c2

s �✓ and ⇣̃ = ⇣ + c2
s� � c2

s (1 � c2
s )�✓ (1.15)

in (1.9).
We thus construct two new theories,

@

@x�
⇣
T↵� + �T↵�

⇤0

⌘
= 0 (1.16)

for general barotropic fluids with viscosity and

@

@x�
⇣
T↵� + �T↵�

⇤

⌘
= 0 (1.17)
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for thermo-barotropic fluids with viscosity and heat conduction.
We will subsume the two theories, (1.16) with (1.11) and (1.17) with (1.15), under the form (1.17),

(1.15) in the sense that specializing to � > 0 is good for thermo-barotropic fluids and specializing
to � = 0 is appropriate for general barotropic fluids. This is consistent as (1.15) reduces to (1.11)
for � = 0. Note that the rest-frame matrix representations of the tensors ��T↵�

E ,��T↵�
⇤ are given

by

��TE |0 = *,
0 0

0 ⌘Su + ⇣r · u I

+
- + *

,
0 �(r✓ + ✓u̇>)

�((r✓)> + ✓u̇) 0
+
- (1.18)

(cf. Ref. 15, p. 54) and

��T⇤ |0 = *,
�r · u ��u̇

>

��u̇ ⌘Su + ⇣̃r · u I

+
- + *

,
��✓̇ �r✓
�(r✓)> ��✓̇ I

+
-, (1.19)

where u denotes 3-velocity. ḣ= (@/@x0), r= ((@/@x1), (@/@x2), (@/@x3)), and Su is twice the trace-
free symmetric part of the velocity gradient,

Su=Du + (Du)T � 2
3
r · u I.

Since Eckart’s pioneering contribution,2 the formulation of causal relativistic theories of dissipation
has been the topic of many proposals and debates. From the rich history, here we point to two
prominent pieces: (i) The problem of finite, notably subluminal, speed of propagation has motivated
the development of rational thermodynamics from its beginning11 and led to the creation of extended
thermodynamics, in particular, relativistic extended thermodynamics.12 (ii) The problem has just in
recent years again become an area of lively efforts in the physics community; cf. Refs. 13 and 14 and
the many references therein.

The authors of the present paper have [not aware of (ii) until very recently; cf. Ref. 4] made
two previous contributions to this area. In Ref. 5, we have studied the causal-dissipation problem
for the specific case of the pure-radiation fluid; in Ref. 4, we have proposed a new five-field the-
ory of dissipation for general fluids. From this point of view, the questions of the present paper
can be viewed as special cases of those considered in Ref. 4 and have thus partly been answered
there. However the consistency of viscous barotropic fluids and viscous heat-conductive thermo-
barotropic fluids at the simpler level of four-field theories makes them deserving of a self-consistent
treatment in their own right. As well as simplifying the arguments in Ref. 4 and clarifying the
connection with earlier proposals, the special four-field context also allows us to answer ques-
tions that remained unresolved in Ref. 4 at the five-field level of generality; this applies notably
to the issue of subluminality and dissipativity of the Fourier-Laplace modes, which we can nicely
resolve here completely. Finally, we record that the integrated treatment of pure radiation as a
thermo-barotropic fluid reveals a natural slight correction to the theory given in Ref. 5. We refer
to Refs. 4 and 5 for further general information and more references regarding the history of the
topic.

The plan of this paper is as follows. In Sec. II, we characterize the general form of equations of
state for barotropic and for thermo-barotropic fluids. The abovementioned assertions are proved in
Secs. III and IV: In Sec. III, we construct the Hughes-Kato-Marsden class and in Sec. IV we show
the connection with the theory of Eckart. Section V serves to demonstrate that our Eqs. (1.16) and
(1.17), which combine first- and second-order terms, are causal and dissipative. In Sec. VI, we show
compatibility of our theory for thermo-barotropic fluids with the second law of thermodynamics by
proving that entropy production is non-negative to leading order in the small dissipation coefficients.
Section VII is devoted to a comparison of our theory with four-field theories of dissipation proposed
by Lichnerowicz10 and Choquet-Bruhat.1

II. BAROTROPIC AND THERMO-BAROTROPIC FLUIDS

This section serves to characterize the possible equations of state of barotropic fluids and those
of thermo-barotropic fluids. The result is as follows.



063101-5 H. Freistühler and B. Temple J. Math. Phys. 59, 063101 (2018)

Theorem 1. (i) A fluid is barotropic if and only if there exist functions ⌃ and r with ⌃, r, r 0 > 0
such that

⇢= r(n⌃(s)) and ⇢ + p= r 0(n⌃(s))n⌃(s). (2.1)

(ii) A fluid is thermo-barotropic if and only if there exists a function r with r, r 0 > 0 such that

⇢= r(ns), ⇢ + p= r 0(ns)ns, and ✓ = r 0(ns). (2.2)

Proof. (i) A barotropic fluid ⇢ = ⇢(n, s) satisfies

p̂(⇢)
⇢
=

n2 @e(n, s)
@n

ne(n, s)
=

@(ne(n, s))
@n

e(n, s)
� 1=

@ ⇢̃(ñ, s)
@ñ
⇢̃(ñ, s)

� 1,

where we have used
ñ⌘ log n and ⇢̃(ñ, s)⌘ ⇢(n, s).

This yields
@ ⇢̃

@ñ
= ⇢̃ + p̂( ⇢̃)

and thus
F̃(⇢)= ñ + ⌃̃(s),

where

F̃( ⇢̃)=
⌅

1

d ⇢̃
⇢̃ + p̂( ⇢̃)

and ⌃̃ is an arbitrary function. With F = exp F̃, ⌃ = exp ⌃̃, we find

F(⇢)= n⌃(s),

which is (2.1)1 with r ⌘ F 1. Now, (2.1)1 implies

e(n, s)=
r(n⌃(s))

n
and thus

p(n, s)= n2 @e(n, s)
@n

=�r(n⌃(s)) + nr 0(n⌃(s))⌃(s),

which gives (2.1)2.
Conversely, if (2.1) holds with a strictly monotone function r, then

p= r 0(r�1(⇢))r�1(⇢) � ⇢,
a function of ⇢.
(ii) A barotropic fluid (1.4) has the temperature

✓ =
@e(n, s)
@s

=
1
n
@⇢(n, s)
@s

= r 0(r�1(⇢))⌃0(s), (2.3)

which is a function of ⇢ alone if and only if ⌃0(s) is constant. By a trivial redefinition of r, one achieves
⌃(s) = s. [Here we assume that r 0(0+) = 0 and, as an abstraction of Nernst’s 3rd law, s ! 0 in the
limit ✓ ! 0.] Then, (2.3) implies (2.2)3. ú

Considerations on physical dimensions restrict r further. While a purely mathematical point of
view would notably allow sums of powers, pure powers

r(y)= ky�

are the most natural candidates, as indeed realized in cases (1.4) and (1.5). In particular, the “double
�-law” in (1.5) appears almost as a mathematical necessity for a fluid to be thermo-barotropic. Note
also the side-detail that in view of (2.1), � > 1 is needed to have p > 0.

We now equivalently re-express (1.1) as

⇢= ⇢̂(p) (2.4)

and note the following property for later use.
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Lemma 1. For a thermo-barotropic fluid (2.4), the Lichnerowicz index10

exp
 ⌅

1

dp
⇢̂(p) + p

!
(2.5)

can be chosen as identical with the temperature.

Proof.

exp
 ⌅

1

dp
⇢̂(p) + p

!
= exp

 ⌅

1

r 00(ns)d(ns)
r 0(ns)

!
= exp

 ⌅

1
(logr 0)0(ns)d(ns)

!
= r 0(ns).

ú

We will also need the following.

Lemma 2. When expressed in the rest frame of their pointwise reference state, gradients of
solutions to the Euler equations (1.2) for thermo-barotropic fluids satisfy

u̇=�✓�1r✓, ✓̇ =�c2
s ✓r · u. (2.6)

Proof. Such gradients satisfy

⇢̇ + (⇢ + p)r · u= 0,

(⇢ + p)u̇ + rp= 0.

Using (2.2), this yields

(ns)· + nsr · u= 0,

r 0(ns)u̇ + r 00(ns)r(ns)= 0.

Relations (2.6) now follow using relations (2.2) as well as their consequences

d✓ = r 00(ns)d(ns)

and

c2
s =

dp
d⇢
=

r 00(ns)ns
r 0(ns)

. ú

III. SYMMETRIC HYPERBOLICITY

Beginning with Friedrichs’ paper6 on first-order systems of partial differential equations,
symmetric hyperbolicity has been identified as a basic requirement of fundamental equations in
finite-speed-of-propagation continuum mechanics. Godunov showed that the symmetry of coeffi-
cient matrices in first-order systems arises naturally when one uses a particular choice of variables
that is deeply motivated from physical considerations.7 Later, Hughes, Kato, and Marsden intro-
duced a notion of symmetric hyperbolicity for second-order equations, providing at the same time
important applications in physics.8 This background situation is what motivated us to think that a
four-field theory (1.6) of dissipative relativistic fluid dynamics should be a second, or mixed, order
symmetric hyperbolic system in the same Godunov variables that symmetrize the first-order Euler
equations (1.2). In this section, we establish a mathematical class of four-field theories which have this
property.

In analogy to our approach in Refs. 4 and 5, we start from the general equivariant form of a
tensor �T↵� that is linear in the gradients of the state variables. This form is

��T↵� ⌘U↵U�P + (⇧↵�U� + ⇧��U↵)Q� + ⇧↵�R + ⇧↵�⇧��S�� (3.1)

with

P= ⌧U� @f
@x�

+ �
@U✏

@x✏
, Q� ⌘ ⌫

@f
@x�

+ µU� @U�

@x�
, R=!U� @f

@x�
+ ⇣̂
@U✏

@x✏
, (3.2)
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S�� ⌘ ⌘
 
@U�

@x�
+
@U�

@x�
� 2

3
g��
@U✏

@x✏

!
, (3.3)

where the scalar f could be taken to be any strictly monotone function of p. Given this, we ask for
which choices of the parameters ⌧,�, ⌫, µ,!, ⇣̂ , ⌘ the resulting tensor has the property that, when
written in the Godunov variables associated with (1.2), the operator

� @
@x�

⇣
�T↵�

⌘
(3.4)

is symmetric hyperbolic in the sense of Ref. 8. For ease of notation, we choose f as the Lichnerowicz
index (2.5),

f = exp
 ⌅

1

dp
⇢̂(p) + p

!
,

so that the Godunov variables read (see Ref. 3)

⌥↵ =
U↵

f
.

The Hughes-Kato-Marsden class is characterized by properties that the coefficient fields of the second-
order derivatives must satisfy. Certain matrices composed from these fields must be symmetric and
positive, respectively, negative and definite.8 Correspondingly, we write the second-order part of (3.4)
as

B↵��� @
2⌥�

@x�@x�

and study properties of the ��-symmetrized coefficients

B̃↵��� ⌘ 1
2

(B↵��� + B↵���).

The central result of this section is the following theorem.

Theorem 2. (i) Under the assumption

(� + µ)= (! + ⌫) f , (3.5)

the coefficients B̃↵��� are symmetric in ↵, � and for V� with V�U� = 0, V�V� = 1, the temporal,
and spatial, coefficient tensors

B↵���U�U� , B↵���V�V�

have the rest-frame matrix representations

*
,
⌧f 2 0

0 µ f �ij
+
-, *

,
⌫f 2 0

0 ⌘ f �ij+( 1
3⌘ + ⇣̂)f V iV j

+
-. (3.6)

(ii) If moreover

µ, ⌧ < 0 and ⌘, ⌫ > 0, ⇣̂ � �4
3
⌘, (3.7)

then system (1.6) with (3.1)–(3.3) is symmetric hyperbolic in the sense of Hughes, Kato, Marsden,8

pointwise with respect to the fluid’s rest frame.
(iii) Choosing, in particular,

⌫ =�⌧ =�! = �
and

µ=��, ⇣̂ = ⇣̃ ,

the dissipation tensor assumes the form
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��T↵� =U↵� + F↵�

=

(
⌘⇧↵�⇧��

"
@U�

@x�
+
@U�

@x�
� 2

3
g��
@U✏

@x✏

#
+ ⇣̂⇧↵� @U�

@x�

+�
"
U↵U� @U�

@x�
�

⇣
⇧↵�U� + ⇧��U↵

⌘
U� @U�

@x�

#)
(3.8)

+�
✓

U↵ @ f
@x�

+U� @ f
@x↵

◆
�g↵�U� @ f

@x�

�

with ⇣̂ = ⇣̃ .

Proof. (i) This assertion and its proof are analogous to those of Lemmas 1 and 2 in Ref. 4, the
only difference being that f assumes the role that the temperature ✓ played in Ref. 4. (ii) The assertion
follows as these conditions make the first matrix in (3.6) negative definite and the second one positive
definite. (iii) Follows by direct insertion. ú

Note that the property in assertion (ii) does not imply that the expressions of the same system in
all other Lorentz frames were also HKM symmetric-hyperbolic (cf. second paragraph in Sec. IV of
Ref. 4). But, being an open property, it does imply HKM symmetric hyperbolicity in nearby frames,
and this is sufficient to obtain wellposedness through localization.

Note also that the last summand, F↵� , can be adapted to the case of thermo-barotropic fluids on
the one hand or to that of other barotropic fluids on the other.

For thermo-barotropic fluids, we see from Lemma 1 that

F↵� =⇥
↵�
⇤

from (1.14).
For other barotropic fluids, we set � = 0. Note that in the latter case, we can alternatively still

interpret F↵� with � > 0 as turning (3.8) into an artificial regularization. While in general f , ✓ for
non-thermo-barotropic fluids, this might be called “artificial heat conduction” in analogy to “artificial
viscosity.” Also, the limit �&0 confirms that�T↵�

⇤0 lies on the boundary of the Hughes-Kato-Marsden
class.

IV. CONNECTION WITH THE ECKART THEORY

The purpose of this section is to prove the following.

Theorem 3. The Navier-Stokes system (1.6) with �T↵� =�T↵�
⇤ and (1.15) is first-order

equivalent to the Eckart system (1.12).
Before showing this, we first have to define what we mean by first-order equivalence. The follow-

ing discussion parallels, but is simpler than the five-field argument in Ref. 4. We study transformations
between different four-field theories (1.6) of dissipative barotropic fluid dynamics. Consider the space
F4 of all linear gradient forms

�T↵� =T↵���
U

@U�

@x�
+ T↵�

n
@n
@x�

(4.1)

and express the smallness of dissipation by giving them a common small factor ✏ > 0; i.e., view
�T↵� 2F4 as representing the four-field theory

@

@x�
(T↵� + ✏�T↵�)= 0. (4.2)

We characterize a group of transformations that establishes formal equivalences between different
elements of F4 up to O (✏2).

The idea of the transformations is that instead of working with the quantities U↵, n which appear
in the evolution equations (4.2), one might alternatively base one’s considerations on certain local
spatiotemporally anisotropic averages Ũ↵, ñ. This is expressed through an ansatz
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U↵ = Ũ↵ + ✏�Ũ↵ + O(✏2),

n = ñ + ✏�ñ + O(✏2),
(4.3)

in which

�Ũ↵ = Ũ↵��
U

@Ũ�

@x�
+ Ũ↵�

n
@ñ
@x�

,

�ñ = ñ��U

@Ũ�

@x�
+ ñ�

n
@ñ
@x�

(4.4)

are further linear gradient forms whose coefficients Ũ↵��
U , . . . , ñ�

n depend on Ũ↵, ñ.
For any fixed element (4.1) of F4, substituting (4.3) and (4.4) in (4.2) and writing

T̃↵� = ( ⇢̃ + p̃)Ũ↵Ũ� + p̃g↵� with ⇢̃= ⇢(ñ), p̃= p(ñ)

and analogously �T̃↵� will result in a modification ��T̃↵� in the equations of motion

@

@x�
⇣
T̃↵� + ✏

⇣
�T̃↵� + ��T̃↵�

⌘⌘
= 0 (4.5)

for Ũ↵, ñ. The new ingredients will be of the form

��T̃↵� = �̃T̃↵� + O(✏)

with a unique element �̃T̃↵� of F4.

Definition 1. We call the assignment

F4!F4, �T↵� 7!�T̃↵� + �̃T̃↵�

the first-order equivalence generated by the gradient transformation (4.3) and (4.4).
We consider first-order equivalences of three kinds, the first of which corresponds to changes of

what is often referred to as “flow frames.”
1. Velocity shifts. Only the velocity transforms, while �ñ = 0. One finds that

��T̃↵� = ( ⇢̃ + p̃)(Ũ↵(�Ũ�) + (�Ũ↵)Ũ�)
�

+ O(✏) (4.6)

with
Ũ↵(�Ũ↵)= 0. (4.7)

2. Thermodynamic shifts. Only n transforms, while �U↵ = 0. One finds that

��T̃↵� = (� ⇢̃)Ũ↵Ũ� + (�p̃)⇧̃↵� + O(✏) (4.8)

with
�p̃= c2

s (p̃)� ⇢̃. (4.9)

The constraints (4.7) and (4.9) reflect the fact that the transformations respect, to leading order, the
unitarity of the 4-velocity and the equations of state.
3. Eulerian gradient re-expressions. These are modifications of �T↵� which do not change the fields,
but simply replace gradients by other gradients which differ only by O("). We call any covariant
linear gradient expression

W↵� =W↵��� @⌥
�

@x�

for which
@

@x�
T↵� = 0 =) W↵� = 0

holds as an implication for arbitrary ⌥↵, an Eulerian constraint. For any Eulerian constraint W↵� ,
arbitrary solutions of (4.2) satisfy (4.5) with T̃↵� =T↵� ,�T̃↵� =�T↵� , and

��T̃↵� =W↵� + O(").
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It is obvious that velocity shifts, thermodynamic shifts, and Eulerian gradient re-expressions form a
group of first-order equivalences on F4.

While we have intentionally carried out the above considerations in the covariant form, the
practical use of such transformations is more nicely handled in a rest-frame notation. For this purpose,
we represent dissipation tensors �T↵� in the form

*
,
��T00 |0, ��T0 j |0
��Ti0 |0, ��Ti j |0

+
- 2

*
,
⇤ ⇤1⇥3

⇤3⇥1 ⇤3⇥3
+
-,

where ⇤ denotes any real-valued linear form in the gradients of the state variables u and n and ⇤l⇥m

is an l ⇥ m-matrix of such objects.
In this notation, a velocity shift is any assignment

 ⇤ ⇤
⇤ ⇤

!
! *

,
⇤ ⇤ + �u

>

⇤ + �u ⇤
+
-

with some �u 2 ⇤3⇥1, and a thermodynamic shift is any assignment
 ⇤ ⇤
⇤ ⇤

!
! *

,
⇤ + �⇢ ⇤
⇤ ⇤ + �p I

+
-

with some pair (�⇢, �p) 2 ⇤2 that satisfies (4.9), and an Eulerian gradient re-expression is any
assignment  ⇤ ⇤

⇤ ⇤

!
!

 ⇤̃ ⇤̃
⇤̃ ⇤̃

!

for which each respective entrywise transition

˜: ⇤ 7! ⇤̃
replaces, if anything, one gradient form ⇤ by another gradient form ⇤̃ with the property that the
values of ⇤ and ⇤̃ agree on arbitrary Eulerian gradients, i.e., gradients that can be realized as those
of solutions to the Euler equations (1.2).

Proof of Theorem 3. Starting from the Eckart tensor (1.18), we first perform a velocity shift

*
,

0 �(r✓ + ✓u̇>)

�((r✓)> + ✓u̇) ⌘Su + ⇣r · u I

+
-!

*
,

0 �r✓ � �u̇

>

�(r✓)>� �u̇ ⌘Su + ⇣r · u I

+
-

corresponding to a shift vector
�u=�(�✓ + �)u̇,

tentative inasmuch as � is to be determined later. Then we carry out a first thermodynamic shift

*
,

0 �r✓ � �u̇

>

�(r✓)>� �u̇ ⌘Su + ⇣r · u I

+
-!

*
,
�r · u �r✓ � �u̇

>

�(r✓)>� �u̇ ⌘Su + (⇣ + c2
s�)r · u I

+
-

with
�⇢=�r · u, �p= c2

s�r · u
and a second thermodynamic shift

*
,
�r · u �r✓ � �u̇

>

�(r✓)>� �u̇ ⌘Su + (⇣ + c2
s�)r · u I

+
-!

*
,
�r · u � �✓̇ �r✓ � �u̇

>

�(r✓)>� �u̇ ⌘Su + ((⇣ + c2
s�)r · u � c2

s �✓̇) I

+
-

with
�⇢=��✓̇, �p=�c2

s �✓̇.

Lemma 2 shows that
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�c2
s �✓̇ =��✓̇ � c2

s (1 � c2
s )�✓r · u

is an Eulerian constraint. Using it and (1.15)2 takes us to

*
,
�r · u � �✓̇ �r✓ � �u̇

>

�(r✓)>� �u̇ ⌘Su + (⇣̃r · u � �✓̇) I

+
-,

which is (1.19). ú

So far, we have not used (1.15)1. We will explain and use it in Sec. V.

V. CAUSALITY AND DISSIPATIVITY

Theorem 4. Whenever

c2
s (1 � c2

s )�✓  1 + c2
s

3
⌘ + ⇣ , (5.1)

our theory (1.17), (1.15) is causal in the sense that its rest-frame Fourier-Laplace modes are
subluminal or luminal and dissipative in the sense that they are decaying or neutral.

We show the following more general fact.

Lemma 3. For any values

⌘ > 0, ⇣̂ � �1
3
⌘, � =

4
3
⌘ + ⇣̂ , � � 0, (5.2)

the Navier-Stokes system (1.6) with �T↵� as in (3.8) is causal in the sense that its rest-frame Fourier-
Laplace modes are subluminal or luminal and dissipative in the sense that they are decaying or
neutral.

Proof. As in Ref. 5, we consider the linearized equations of motion in the rest frame, here

⇢ + p
f

(
c�2

s
@ f
@t

+ fr · u
)

+
(
�

 
@2 f
@t2
� �f

!)
= 0,

⇢ + p
f

(
f
@u

@t
+ r f

)
+

(
�
@2

u

@t2
� (⌘ r · Su + ⇣̂ r(r · u))

)
= 0.

The existence of Fourier-Laplace modes

*
,

f̂

û

+
- e�t+i⇠ ·x = *,

f̂

û

+
- eRe{�}tei(Im{�}t+⇠ ·x), (�, ⇠) 2C ⇥ R3 (5.3)

is controlled by the associated dispersion relation

det M̃(�, ⇠)= 0 (5.4)

with

M̃(�, ⇠)=
⇢ + p

f
*
,

c�2
s � if ⇠>

i⇠ f �I
+
- + *

,
�(�2 + |⇠ |2) 0

0 N(�, ⇠)
+
-,

where

N(�, ⇠)=
⇣
��2 + ⌘ |⇠ |2

⌘
I +

 
⇣̂ +

1
3
⌘

!
⇠⇠>.

We call a mode (5.3) corresponding to any solution (�, ⇠) 2C ⇥ R3 of (5.4) (a) decaying, neutral,
or growing if Re{�} < 0, = 0, or >0, respectively, and (b) subluminal, luminal, or superluminal if
|Im{�}|/|⇠ | < 1, = 1, or >1, respectively.

By rescaling � and ⇠ in obvious ways, we equivalently consider

0=⇧(�, ⇠)⌘ det M(�, ⇠)

instead of (5.4), with
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M(�, ⇠)= *,
c�2

s � i⇠>

i⇠ �I
+
- + *

,
�f (�2 + |⇠ |2) 0

0 N(�, ⇠)
+
-.

For any given wave vector ⇠ , 0, M(�, ⇠) has the two invariant subspaces

V L
⇠ =C ⇥ C⇠ and VT

⇠ = {0} ⇥ {⇠ }?,

and the dispersion relation correspondingly factors as

0=⇧L(�, ⇠)⇧T (�, ⇠), with ⇠ = |⇠ |.
Consider now first briefly the infinite wave number/infinite frequency limit, where

0=⇧L
1(�, ⇠)= �f (�2 + ⇠2)

 
��2 +

 
4
3
⌘ + ⇣̂

!
⇠2

!

and
0=⇧T

1(�, ⇠)=��2 + ⌘⇠2.

In this limit, the squared wave speeds are

1,
 

4
3
⌘ + ⇣̂

!
/� (longitudinal) and ⌘/� transversal,

and here is where we motivate our choices

� =
4
3
⌘ + ⇣̂ and ⇣̂ � �1

3
⌘. (5.5)

Choice (5.5)1 makes the longitudinal wave speeds bounded sharply by the speed of light, and then
condition (5.5)2 is the requirement for the transverse wave speeds to be subluminal.

We turn to finite wave numbers/frequencies. As

M(�, ⇠)*,
0

⇠?
+
-=

*
,

0

(� +
⇣
��2 + ⌘ |⇠ |2

⌘
)⇠?

+
- for any ⇠? ? ⇠ ,

the transverse part is
0=⇧T (�, ⇠)= � + ��2 + ⌘⇠2,

which means

� =
1

2�
(�1 ±

q
1 � 4�⌘⇠2).

Since this implies
Re{�} < 0 and |Im{�}|/⇠ < ⌘/�  1,

the transverse modes are indeed all decaying and subluminal.
As for the longitudinal modes, M(�, ⇠) is represented on V L

⇠ by

ML(�, ⇠)= *,
c�2

s � i⇠

i⇠ �
+
- + *

,
�f (�2 + ⇠2) 0

0 �
⇣
�2 + ⇠2

⌘ +
-.

By simple scaling and introducing �̂ ⌘ c2
s �f /� � 0, we may write

⇧L(�, ⇠)= {� + �̂(�2 + ⇠2)}{� +
⇣
�2 + ⇠2

⌘
} + c2

s ⇠
2.

We first show that any neutral mode would be superluminal. To see this, consider a pair (�, ⇠) 2
R ⇥ (0,1). As

⇧L(i�, ⇠)= {i� + �̂z}{i� + z} + c2
s (z + �2)

= ( �̂z2 + c2
s (z + �2) � �2) + i�z( �̂ + 1)

with z = ⇠2 �2, the assumption ⇧L(i�, ⇠) = 0 readily implies � = 0 and z < 0, i. e., superluminality.
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Next we show that no mode can be luminal. Assume to the contrary that there existed some
(↵, ⇠) 2R ⇥ (0,1) with

0=⇧L(↵ ± i⇠, ⇠)= {↵ ± i⇠ + �̂(↵2 ± 2i↵⇠)}{↵ ± i⇠ + (↵2 ± 2i↵⇠)} + c2
s ⇠

2. (5.6)

As
Re ⇧L(↵ ± i⇠, ⇠)= (↵/2)2⇡1(↵) � ⇡2(↵)⇠2

and
Im ⇧L(↵ ± i⇠, ⇠)=±↵⇠⇡3(↵)

with

⇡1(↵)= 4 �̂↵2 + 4(1 + �̂)↵ + 4,

⇡2(↵)= 4 �̂↵2 + 2(1 + �̂)↵ + (1 � c2
s ),

⇡3(↵)= 4 �̂↵2 + 3(1 + �̂)↵ + 2,

assumption (5.6) gives
⇡3(↵)= 0 and ⇡1(↵)⇡2(↵)> 0. (5.7)

But ⇡3(↵) = 0 implies

⇡1(↵)= (1 + �̂)↵ + 2 and ⇡2(↵)=�(1 + �̂)↵ � (1 + c2
s ),

and then ⇡1(↵)⇡2(↵) > 0 entails

↵ 2 IB (� 2
1 + �̂

,�1 + c2
s

1 + �̂
).

However, as

(1 + �̂)2⇡3

✓ �2
1 + �̂

◆
= 16 �̂ � 4(1 + �̂)2 =�4(1 � �̂)2

and

(1 + �̂)2⇡3

✓ �1
1 + �̂

◆
= 4 �̂ � (1 + �̂)2 =�(1 � �̂)2,

we find
⇡3(↵)< 0, for all ↵ 2 I .

This shows that (5.7) cannot hold.
By continuity, the assertion of Lemma 3 will be proved once we know that for some �̂ > 0 there

exist ⇠ > 0 such that all associated modes are subluminal and decaying. We show this for �̂ = 1. In
this case, we have

⇧L(�, ⇠)= {� + (�2 + ⇠2)}2 + c2
s ⇠

2

so that ⇧L(�, ⇠) = 0 implies

� = �±� (⇠)=
1
2
� � 1 ±

q
1 � 4(⇠2 + i�cs⇠)

�
, � 2 {�1, 1}.

As

�±� (⇠)=�1
2
±

 
1
2
� i�cs⇠ + (c2

s � 1)⇠2
!

+ O(⇠3),

we have indeed Re{�} < 0 and |Im{�}|/⇠ < 1 for small ⇠ > 0. ú

Proof of Theorem 4. While we chose (1.15)2 to enable Theorem 3, our motivation for (1.15)1
was that together with (1.15)2, it implies

� =
4
3
⌘ + ⇣̃ . (5.8)

In view of (5.8), the assertion follows from Lemma 3 once we show that inequality (5.1) implies



063101-14 H. Freistühler and B. Temple J. Math. Phys. 59, 063101 (2018)

⇣̃ � �1
3
⌘. (5.9)

However, as (1.15) yields

1
3
⌘ + ⇣̃ =

1 + c2
s

3
⌘ + ⇣ � c2

s (1 � c2
s )�✓,

condition (5.1) is equivalent to (5.9). ú

Remark 1. The question of subluminality and decay of Fourier-Laplace modes with respect to
Lorentz frames that differ from the fluid’s rest frame will be covered in a different paper.

VI. ENTROPY PRODUCTION IN THERMO-BAROTROPIC FLUIDS

For general barotropic fluids, the entropy production is, just as for general fluids at all, not
determined by the conservation laws (1.6) of energy-momentum alone, but depends also on a particle
number balance law, i.e., @(nU�)/@x� = 0 or a variant thereof. As we have chosen (1.6) as the natural
frame of this paper, we do not address this interesting topic here, but refer to Refs. 4 and 3. However,
remarkably, in the case of thermo-barotropic fluids, it is possible to determine the entropy production
exclusively from (1.6). This is what we study in the rest of this section.

Theorem 5. For thermo-barotropic fluids (2.2), the conservation laws (1.6) of energy-
momentum imply that

@

@x�
⇣
nsU�

⌘
=

U↵

✓

@

@x�
�T↵� . (6.1)

Proof. Using (2.2), we compute

U↵

✓

@

@x�
�T↵� =

U↵

✓

@

@x�
⇣
r 0(ns)nsU↵U� + (r 0(ns)ns � r(ns))g↵�

⌘

=�1
✓

@

@x�
⇣
r 0(ns)nsU�

⌘
+

U�

✓

@

@x�
(r 0(ns)ns � r(ns))

=� r 0(ns)
✓

 
ns
@U�

@x�
+ U� @(ns)

@x�

!

=� @
@x�

⇣
nsU�

⌘
,

and (1.6) implies (6.1). ú
As in Refs. 5 and 4, we define the entropy current for (1.17) as

S� ⌘ nsU� � U↵

✓
�T↵�
⇤

and consider the net entropy production

Q⌘ @S�

@x�
=
@

@x�

 
U↵

✓

! ⇣
��T↵�

⇤

⌘
.

Theorem 6. The net entropy production on Eulerian gradients is

Q= ⌘
2✓
kSuk2 +

⇣

✓
(r · u)2.

Proof. From (1.19), we compute
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Q=� 1
✓2

@✓

@t
�T00
⇤ |0 �

1
✓2

 
@✓

@xi
+ ✓
@ui

@t

!
�Ti0
⇤ |0 �

1
✓

@ui

@xj
�Tij
⇤ |0

=
1
✓2

@✓

@t

 
�� @✓
@t

+ �
@ul

@xl

!
+

1
✓2

 
@✓

@xi
+ ✓
@ui

@t

!  
�
@n
@xi
� �@ui

@t

!

+
1
✓

@ui

@xj
⌘

 
@ui

@xj
+
@uj

@xi
� 2

3
@ul

@xl
�ij

!
+

1
✓

@ui

@xj

 
⇣̃
@ul

@xl
� � @✓
@t

!
�ij

⌘Q1 + Q2 + Q3 + Q4.

While obviously
Q2 = 0,

Q3 =
⌘

2✓
kSuk2,

we use (1.15) and Lemma 2 to conclude that

Q1 + Q4 =
1
✓2

(��✓̇2 + �✓̇r · u) +
1
✓

(⇣̃(r · u)2 � �✓̇r · u)

= (r · u)2
(
⇣

✓
+
��c4

s ✓
2 � �c2

s ✓

✓2
+

(⇣̃ � ⇣) + �c2
s ✓

✓

)

= (r · u)2
(
⇣

✓
+
��c4

s ✓ � �c2
s

✓
+

c2
s� � c2

s (1 � c2
s )�✓ + �c2

s ✓

✓

)

=
⇣

✓
(r · u)2.

ú
To appropriately express the meaning of Theorem 6 for general solutions of (1.17), we also consider,
as in Sec. IV and Ref. 4,

@

@x�
(T↵� + ✏�T↵�

⇤ )= 0 (6.2)

and state:

Corollary 1. For general solutions to (6.2), the entropy production is

Q= ✏
 
⌘

2✓
| |Su| |2 +

⇣

✓
(r · u)2

!
+ O(✏2).

As in the non-barotropic case,4 Q is not necessarily non-negative on arbitrary solutions of (6.2).
Note, however, that we are using the equilibrium definition of entropy, and there should exist choices
of entropy and entropy current which are more appropriate in this non-equilibrium situation. As it
stands, Corollary 1 does say that the entropy production on arbitrary solutions is non-negative to
leading order in the small dissipation coefficients.

For further interpretation and the connection with the vanishing viscosity limit, cf. a remark at
the end of Sec. VI in Ref. 4.

We also wish to draw the reader’s attention to the following.

Remark 2. In our previous paper5 on pure radiation, we had, instead of ��T↵�
⇤ , considered the

tensor (3.8) with
� = (4/3)⌘ + ⇣ and ⇣̂ = ⇣ .

Our new different choice of (1.13) with (1.15) corrects the results of Ref. 5. It not only reconciles
our ansatz with the Eckart theory but also leads to a clearer picture of entropy production. In
particular, Theorem 6 and Corollary 1 show that heat conduction does, at least to leading order,
not produce entropy for thermo-barotropic fluids, including pure radiation. The only restriction
on the dissipation coefficients besides ⌘ > 0, ⇣ � 0, � � 0 is the natural causality requirement
(5.1).
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VII. COMPARISON WITH THE PROPOSALS BY LICHNEROWICZ
AND CHOQUET-BRUHAT

We conclude by comparing our energy-momentum dissipation tensor with those proposed by
Lichnerowicz and Choquet-Bruhat.

Choquet-Bruhat has proposed dissipation tensors of the form

�↵� ⌘ �
✓ @C↵

@x�
+
@C�

@x↵

◆
+ &g↵�

@C�

@x�
(7.1)

with
C� = f U�

being the “dynamic velocity”;1 Lichnerowicz10 suggested

⇤↵� =⇧↵����⇧
�� .

We use the letters C and L to denote the class of all such tensors �↵� and⇤↵� , respectively, and write
D for the class of all tensors �T↵� of the form (3.8) with

� =
4
3
⌘ + ⇣̂ ,

which we have considered in Secs. III and V. We show the following.

Theorem 7. (i) The intersection C \D consists precisely of those elements of D for which

� = ⌘/f and ⇣̂ =�1
3
⌘. (7.2)

(ii) The intersection L \D is empty.

Proof. (i) On the one hand, any element of C reads

�↵� = f

�
✓ @U↵

@x�
+
@U�

@x↵

◆
+ &g↵�

@U�

@x�

�
+

�
✓
U� @ f
@x↵

+ U↵ @ f
@x�

◆
+ &g↵�U� @ f

@x�

�
. (7.3)

Consider on the other hand for each element of D its decomposition (3.8). If

⇣̂ =�1
3
⌘

holds, the velocity-gradient part reads

U↵� = ⌘
✓ @U↵

@x�
+
@U�

@x↵

◆
� g↵�

@U�

@x�

�
.

It is only in this case and for
� = ⌘/f and & =��

that the velocity-gradient part agrees with the first summand in (7.3). Assuming these conditions, the
gradient f part

F↵� = �
✓

U↵ @ f
@x�

+ U� @ f
@x↵

◆
� g↵�U� @ f

@x�

�

agrees with the second summand if and only if

� = � = ⌘/f .

(ii) Assume ⇤↵� = �T↵� is an element of D\L. As an element of L, this tensor obviously has the
property U↵U�⇤

↵� = 0. As an element of D, it satisfies

U↵U�

⇣
��T↵�

⌘
=�
@U�

@x�
� �U� @ f

@x�
,
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which will not generally vanish. ú
We now comment briefly on the unique dissipation tensor

�
↵�
⇤ ⌘

⌘

f

✓ @( f U↵)
@x�

+
@( f U�)
@x↵

� g↵�
@( f U�)
@x�

◆
(7.4)

that lies in both C and D. Due to (7.2)2, an attempt to interpret ⇣̂ as ⇣̃ and combine this with our
choice (1.15) leads to the negative bulk viscosity

⇣ =�1
3

((1 � c2
s )2 + 2c4

s )⌘,

which shows that �↵�⇤ is not an instance of our proposed tensor ��T↵�
⇤ . But our considerations in

Sec. III have a nice implication.
As Choquet-Bruhat has pointed out,1 Eqs. (1.6) with ��T↵� 2 C are causal and hyperbolic in

the sense of Leray and Ohya.9 By Theorem 2, Eqs. (1.6), in the special case of the Choquet-Bruhat
dissipation tensor ��T↵� = �

↵�
⇤ , also are a second-order symmetric hyperbolic system in the sense

of Hughes, Kato, and Marsden8 and thus well-posed in L2-based Sobolev spaces.
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11 Müller, I., “Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien,” Doctoral dissertation (TH
Aachen, 1966)

12 Müller, I. and Ruggeri, T., Rational Extended Thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy Vol. 37
(Springer-Verlag, New York, 1998); Hydrodynamics (University Press, Oxford, 2013).

13 Romatschke, P., “New developments in relativistic viscous hydrodynamics,” Int. J. Mod. Phys. E 19, 1–53 (2010).
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