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Abstract. We resolve the problem of optimal regularity and Uhlen-

beck compactness for affine connections in General Relativity and Math-
ematical Physics. First, we prove that any connection Γ defined on the
tangent bundle of an arbitrary differentiable manifold, satisfying the
condition that the components of Γ together with the components of
its Riemann curvature tensor are bounded in L∞ in a given coordinate
system, can be smoothed by coordinate transformation to optimal reg-
ularity, Γ ∈ W 1,p (one derivative smoother than the curvature), any
p < ∞. For Lorentzian metrics in General Relativity this implies that
shock wave solutions of the Einstein-Euler equations are non-singular—
geodesic curves, locally inertial coordinates and the Newtonian limit, all
exist in a classical sense. The proof is based on extending authors’ exis-
tence theory for the RT-equations by one order, to the level of L∞ con-
nections, and to accomplish this we introduce the reduced RT-equations,
a system of elliptic partial differential equations for the Jacobians of the
regularizing coordinate transformations. Secondly, we prove that this
existence theory suffices to extend Uhlenbeck compactness from the case
of connections on vector bundles over Riemannian manifolds, to the case
of (affine) connections on the tangent bundle of arbitrary manifolds, in-
cluding Lorentzian manifolds of relativistic Physics. By this, Uhlenbeck
compactness and optimal regularity are pure logical consequences of the
rule which defines how connections transform from one coordinate sys-
tem to another—the starting assumption of geometry.
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1. Introduction

In this paper we resolve two problems in Mathematical Physics by ex-
tending the multi-dimensional existence theory for the RT-equations1 intro-
duced in [21] to affine connections at the low level of L∞ regularity, with
L∞ curvature tensor. First, this existence theory establishes that such con-
nections can always be smoothed to optimal regularity W 1,p by coordinate
transformation, any p ∈ (n,∞), settling in the affirmative that spacetime
singularities associated with GR shock waves are always removable.2 In par-
ticular, this establishes for the first time that (weak) shock wave solutions
of the Einstein-Euler equations constructed by the Glimm scheme are one
order more regular than previously known [13], and that multi-dimensional
shock wave solutions are always non-singular in the sense that the associ-
ated gravitational metric always solves the Einstein equations G = κT in
the strong Lp-sense; and geodesic curves,3 locally inertial coordinates and
the Newtonian limit all exist in a classical sense. Secondly, in the case of
affine connections, our L∞ existence theory for the RT-equations suffices to
extend, Uhlenbeck compactness4 from Riemannian to Lorentzian geometry.
That is, we extend Uhlenbeck compactness from the case of W 1,p connec-
tions with uniform Lp curvature bounds for connections defined on vector
bundles over Riemannian manifolds (with positive definite metrics) [29], to
the case of affine connections uniformly bounded in L∞ with L∞ curvature
bounds, defined on the tangent bundle of arbitrary differentiable manifolds,
including Lorentzian manifolds of relativistic Physics. Karen Uhlenbeck’s
compactness theorem in [29] for Riemannian geometry was a topic of the

1The Regularity Transformation equations or the Reintjes-Temple equations.
2Because we work on bounded domains, establishing optimal regularity in Lp, p > n,

directly implies it for Lp′ , 1 ≤ p′ ≤ p.
3For L∞ connections the basic existence theorem for ODE’s at low regularities (Peano’s

Theorem) does not apply to construct geodesic curves or particle trajectories.
4By Uhlenbeck compactness we mean compactness of a sequence of connections Γi de-

rived from a uniform bound on the un-differentiated connection and curvature components
alone.
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2019 Abel Prize and 2007 Steele Prize and was central to prove fundamen-
tal results in geometry, notably Donaldson’s work in [9], see also [28, 32].
The importance of Uhlenbeck compactness is to provide a convergent subse-
quence of connections from uniform bounds on the curvature alone, without
the need to bound all connection derivatives, with a convergence strong
enough to pass limits through non-linear products.

The RT-equations are a system of nonlinear elliptic partial differential
equations in matrix valued differential forms (Γ̃, J,A). These equations de-
termine the Jacobians J of coordinate transformations which transforms a
given connection Γ to optimal regularity. The unknown Γ̃ represents the
regularized connection components, A is an auxiliary variable introduced to
impose the integrability condition dJ = 0, and Γ, the connection compo-
nents of an arbitrary given connection, appears as a source term on the right
hand side of the RT-equations, along with a vector valued 0-form v free to
be chosen. Our theory starts with no more than the component functions
Γ ≡ (Γkij) defined on some open set Ω ⊂ R

n, and we view Γ as the compo-
nents of a connection in some given but arbitrary coordinate system x on
Ω. The RT-equations, derived in [21] from the connection transformation
law and first analyzed in [22], are given by

∆Γ̃ = δd
(

Γ− J−1dJ
)

+ d(J−1A), (1.1)

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A, (1.2)

d ~A =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

, (1.3)

δ ~A = v, (1.4)

with boundary data

d ~J = 0 on ∂Ω. (1.5)

The unknowns (Γ̃, J,A) in the RT-equations, together with the given con-
nection components Γ, are defined by their components in x-coordinates
on Ω.5 The operations on the right hand side are defined in Section 3 in
terms of the Cartan Algebra of differential forms in x-coordinates, and the
RT-equations are reintroduced in Section 4.

The RT-equations are elliptic regardless of metric signature, because ∆
is the Laplacian of the Euclidean metric in x-coordinates, and determine
the Jacobians of coordinate transformations to optimal regularity. Thus the
problem of optimal regularity and Uhlenbeck compactness is reduced to an
existence theory for the RT-equations, c.f. [21, 23]. The RT-equations, and
hence both Uhlenbeck compactness and optimal regularity, are mathemati-
cal consequences of only the rule which defines how connections transform

5Here Γ ≡ Γµ
νidx

i and Γ̃ ≡ Γ̃µ
νidx

i are matrix valued 1-forms, J ≡ Jµ
ν and A ≡ Aµ

ν are

matrix valued 0-forms, and ~A ≡ ~A
µ
i dx

i is a vector valued 1-form, the vectorization of A,
c.f. Sections 3 and 4 for details.
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from one coordinate system to another, logically independent of any addi-
tional structure on the geometry, like positive definiteness of the metric or
the Einstein equations.

In order to extend the existence theory for the RT-equations to the level
of L∞ connections, we introduce the reduced RT-equations, (system (1.6) -
(1.8) below), an elliptic system of equations equivalent to the original RT-
equations (1.1) - (1.4) as a consequence of the gauge freedom v inherent in
those equations. The reduced RT-equations simplify the nonlinearities in the
problem of optimal regularity to a degree sufficient to extend our analysis
of the RT-equations by one order, from the level of connection components
Γ ∈ W 1,p achieved in [22], to Γ ∈ L∞, the level of GR shock waves. Our
first main result, which follows from this existence theory, establishes that if
the components of Γ and Riem(Γ) are in L∞ in a given coordinate system,
then in a neighborhood of every point there exists a W 2,2p coordinate trans-
formation, such that in the transformed coordinates the components of Γ
exhibit optimal regularity, Γ ∈ W 1,p, any p ∈ (n,∞), (i.e., the components
of Γ are one derivative more regular than the components of its curvature
tensor Riem(Γ)), c.f. Theorem 2.1 below.6 This new existence theory for the
reduced RT-equations provides uniform W 1,p estimates for the connection
in the transformed coordinates, and this directly implies the new Uhlenbeck
compactness theorem, stated in Theorem 2.3 below, which does not rely on
any underlying Riemannian or Lorentzian metric. Although the derivation
of the reduced RT-equations begins with the original RT-equations, the re-
duced RT-equations introduced in this paper represent a new starting point,
and the subsequent proofs are self-contained and stand logically independent
of the original RT-system.

1.1. The problem of optimal regularity. The existence of coordinates
in which connections are non-optimal is a fundamental feature of Riemann’s
curvature tensor, following directly from the fact that the Riemann curva-
ture transforms as a tensor by contraction with undifferentiated Jacobians,
while the transformation of a connection involves derivatives of the Jaco-
bian. So any transformation by a Jacobian which has the same regularity as
a given connection, will lower the regularity of a connection of optimal reg-
ularity (one derivative more regular than its curvature) by one order due to
the terms containing derivatives of the Jacobian in the transformation law

6With slight abuse of terminology we call this optimal regularity, because it is the
extra derivative we are most concerned with, not the level of p, as the extra derivative
alone suffices to imply Uhlenbeck compactness and the existence of locally inertial frames
and geodesic curves. The highest possible regularity for Γ would be one full derivative
above the curvature, c.f. [23]. One full derivative above L∞ is C0,1 =W 1,∞, and one full
derivative above Lp is W 1,p, and note that on bounded domains W 1,p contains W 1,∞ as a
subspace [11]. Filling in the gap between them is a topic for future research, but currently
of secondary importance.
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for connections.7 The result is a transformed connection with components
one order less regular, and in the same regularity class as the curvature,
because the Riemann curvature tensor would preserve its regularity under
tensor transformation. This holds for classical spaces of regularity like Ck, as
well as weak regularity measured by Sobolev spaces Wm,p, and Hölder reg-
ularity Cm,α. To prove the reverse direction, that non-optimal connections
can always be smoothed to optimal regularity by coordinate transforma-
tion, one needs to undo the above process, and this requires constructing a
singular transformation given only the information about the non-optimal
connection and its curvature. For example, at the level of L∞ connections,
such a coordinate transformation must be singular in the sense that jumps
in derivatives of the Jacobian must be tuned to precisely cancel out the dis-
continuities in the given non-optimal connection in the transformation law
for connections.

The existence of coordinate transformations which smooth connections
to optimal regularity, one derivative more regular than the curvature, is
surprising in light of the fact that the curvature, being a “curl” plus a
“commutator”, does not directly control every derivative of Γ, only dΓ ≡
Curl(Γ). That is, the complementary derivatives, δΓ ≡ div(Γ), are not
controlled directly by assuming a given regularity of the curvature. Since
the basic compactness theorems for Sobolev spaces are based on controlling
every derivative, it follows that optimal regularity is intimately connected to
compactness. This principle, as expressed through the exterior derivative d
and the co-derivative δ of the Cartan algebra of differential forms associated
with an assumed positive definite metric, underlies Uhlenbeck’s celebrated
compactness result.

We note that the regularity of metric, connection and curvature is not
altered by sufficiently smooth coordinate transformations, so in this sense
regularity is a geometric property of the manifold when one takes the smooth
atlas. Thus one can view the RT-equations as providing a low regularity
transformation which lifts regularity, but that regularity then becomes a
geometric property of the resulting manifold when again the atlas of smooth
coordinate transformations is taken, c.f. the discussion in [23].

1.2. Uhlenbeck compactness. Uhlenbeck’s compactness theorem, The-
orem 1.5 of [29], applies to Riemannian metrics, and is based on estab-
lishing a uniform bound on the components of a connection in Coulomb
gauge, the Coulomb gauge providing a coordinate system arranged to sat-
isfy δΓ = 0 to bound the derivatives uncontrolled by the curvature through
dΓ. Compactness in Coulomb gauge then follows from a uniform bound
on the curvature. To illustrate the heart of the issue in [29], taking δ of
Riem(Γ) = dΓ + Γ ∧ Γ, when δΓ = 0, results in an equation of (essen-
tially) the form ∆Γ = δRiem(Γ), where ∆ = dδ + δd is the Laplacian of

7Note, this principle directly carries over to metric tensors which, by Christoffel’s for-
mula, are always exactly one derivative more regular than their connections.
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the underlying Riemannian metric; so by elliptic regularity, a sequence of
connections Γi ∈W

1,p with Riem(Γi) uniformly bounded in Lp, will be uni-
formly bounded inW 1,p in Coulomb gauge, for p <∞. Sobolev compactness
then implies a subsequence converges weakly in W 1,p and strongly in Lp in
Coulomb gauge.

In the case of Lorentzian metrics, dδ + δd is the hyperbolic D’Alembert
(wave) operator, and since hyperbolic operators propagate irregularities
from initial data surfaces along characteristics, deducing optimal regular-
ity for Lorentzian metrics in Coulomb gauge is at best problematic, c.f. [23,
Ch. 9]. Our incoming point of view is that the Coulomb gauge condition
δΓ = 0 is too restrictive for general connections, and instead of trying to
eliminate the uncontrolled δ derivatives of Γ altogether, our idea is to bound
them in the right space by the RT-equations, elliptic equations in Γ̃ and J .
Different from Uhlenbeck’s argument, the RT-equations are formulated in
terms of the Cartan algebra of differential forms associated with the Eu-
clidean metric of an arbitrary coordinate system x in which the components
Γkij of Γ are given, not the invariant Cartan algebra of any underlying met-
ric. Because they are based on the auxiliary Riemannian structure provided
by the coordinate Euclidean metric, the RT-equations are elliptic regardless
of any invariant metric structure for Γ. This allows us to obtain optimal
regularity and Uhlenbeck compactness for arbitrary connections on the tan-
gent bundle of arbitrary manifolds, without recourse to metric signature or
even any underlying metric structure. Note that the RT-equations are not
invariant in a tensorial sense, but a different version of them is given in
each coordinate system. As a consequence the RT-equations have the same
simple elliptic structure in every coordinate system, and this makes them
inherently useful for analysis.8

We now compare our compactness theorem to Uhlenbeck’s result in [29].
Theorem 1.5 of [29] assumes a sequence of connections Γi ∈W

1,p, with cur-
vature Riem(Γi) uniformly bounded in Lp, and from this concludes that in
Coulomb gauge, the connection coefficients are uniformly bounded in W 1,p,
with uniform bound provided by the original bound on the curvature in Lp.
The uniform bound on the extra derivative in W 1,p then implies Uhlenbeck
compactness, i.e., the convergence of a subsequence of Γi weakly in W 1,p,
and hence strongly in Lp, in Coulomb gauge. In contrast, our Theorem 2.3
stated below, assumes a sequence of connections Γi ∈ L

∞, which need not lie
in W 1,p at the start, but assumes uniform bounds on both Γi and Riem(Γi)
in L∞, (or equivalently on Γi, dΓi in L∞). From this, Theorem 2.3 con-
cludes the existence of coordinate transformations x → yi(x), (which play
the role of Coulomb gauge), with Jacobians uniformly bounded in W 1,2p,
such that in the new coordinates, the sequence of connection components
Γyi are uniformly bounded in W 1,p, with bound given by our original L∞

8In contrast, the Einstein equations only take simpler forms in canonical coordinates
like Standard Schwarzschild Coordinates [13] or wave coordinates [5].
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bounds on Γi and dΓi. From this we again conclude Uhlenbeck compactness,
i.e., strong convergence of a subsequence of Γyi in L

p, with yi converging in
W 1,2p. Thus our theorem replaces the assumption Γi ∈W

1,p, (which for us
is the assumption of optimal regularity at the start), with the assumption
that the components of Γi are uniformly bounded in L∞. In any event, our
assumption of a uniform bound on both Γi and dΓi is a small concession
considering that it just assumes the two terms Γi and dΓi which appear at
different orders in the Riemann curvature tensor, are bounded separately,
uniformly, in the same space as the curvature. Our assumption of a local
L∞ bound instead of a local Lp bound on the curvatures of a sequence of
connections Γi is a bit stronger, but at this stage we are interested in L∞

regularity as it includes the case of GR shock waves.

1.3. GR shock waves. The authors’ present multi-dimensional theory of
optimal regularity began with the special case of shock wave solutions of the
Einstein-Euler equations constructed by Glimm’s random choice method in
[13], (see also [3]). The Lorentzian metrics associated with these shock wave
solutions are only Lipschitz continuous (C0,1), a regularity too low to con-
struct geodesic curves and locally inertial coordinates directly by classical
ODE methods. This motivated the question as to whether one can raise
the metric regularity by coordinate transformation, to recover these basic
objects of geometry, or whether the Lorentzian metrics of GR shock waves
are exhibiting essential non-removable spacetime singularities. A coordi-
nate transformation to optimal regularity would remove these singularities.9

Thus, since shock waves form generically in the compressible Euler equations
and correctly model gas dynamics, resolving the question whether these sin-
gularities can be removed, directly addresses the basic consistency of the
Einstein-Euler system.10

In his classic 1966 paper [15] Israel introduced the multi-dimensional the-
ory of junction conditions and used it to prove that a metric C0,1 across a
single smooth shock surface can be locally smoothed to optimal regularity
C1,1 by coordinate transformation to Gaussian normal coordinates. But the
optimal regularity results in [15] do not apply to shock wave interactions,
and thus not to the C0,1 metrics in [13], because the underlying Gaussian
normal coordinate construction cannot be associated to intersecting shock
surfaces. The only extension of Israel’s result to shock wave interactions
(before this paper) was accomplished for the special case of spherically sym-
metric shock wave interactions in [17, 18]. But it remained out of reach how
to address these apparent singularities in shock wave solutions constructed in

9This is a perspicatious warm-up problem for the multi-dimensional theory of GR
shock waves because the role played by non-optimal coordinates in spherically symmetric
spacetimes is no different than the role they play in general multi-dimensional spacetimes:
They exist simply because the Riemann curvature tensor involves second derivatives of
the metric, but transforms as a tensor by first derivative Jacobians.

10Interestingly, metrics of a similar low regularity arise in the recent study of “wild”
solutions of the non-relativistic Euler equations in [2].
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[13], (or constructed in multi-dimensions by the junction conditions), when
they contain more complex shock wave interactions.

Authors’ paper [20] was a first step for the general problem of smoothing
metrics and connections. In [20], we introduced a necessary and sufficient
condition for the general problem of smoothing metrics with connection
and Riemann curvature tensor in L∞, the so-called Riemann-flat condition,
which is the condition that there should exist a tensor Γ̃ ∈ C0,1 such that
Riem(Γ− Γ̃) = 0. Our main theorem in [20] then states that there exists a
C1,1 coordinate transformation which smooths an L∞ connection Γ by one
order to Lipschitz continuous C0,1 =W 1,∞ (hence optimal) if and only if the

Riemann-flat condition holds.11 The tensor Γ̃ gives rise to a coordinate sys-
tem y in which Γ exhibits optimal regularity, and the components of Γ̃ and
Γ agree in y-coordinates. However, even though the Riemann-flat condition
gives a new geometric point of view on the problem of optimal regularity,
it was entirely unclear how to construct such a tensor Γ̃, or whether this is
always possible. The breakthrough in our research program came about in
[21], when we derived, from two equivalent forms of the Riemann-flat con-
dition, the RT-equations (1.1) - (1.4), a system of solvable elliptic equations

in the sought after tensor Γ̃ and Jacobian J .
In this paper we extend our current existence theory for the RT-equations

in [22] by one order of regularity to Γ,Riem(Γ) ∈ L∞, (or equivalently
Γ, dΓ ∈ L∞), and prove that any such connection can be locally smoothed to
optimal regularity Γ ∈W 1,p. This resolves the problem of optimal regularity
at GR shock waves by establishing that for any weak solution of the Einstein
equations satisfying Γ, dΓ ∈ L∞ in x-coordinates, there always exist local
coordinate transformations x → y with Jacobian J ∈ W 1,2p, such that
Γ ∈W 1,p in y coordinates. Here p > n can be taken to be arbitrarily large,
but not yet p = ∞. So we do not obtain Γ ∈ C0,1, g ∈ C1,1 as Israel did
for smooth shock surfaces, but we are arbitrarily close in the sense that p
can be arbitrarily large. For p > n, any Γ ∈ W 1,p is Hölder continuous by
Morrey’s inequality, a regularity sufficient for geodesic curves to exist (by
Peano’s Theorem), for spacetime to admit locally inertial frames, and for
the correct Newtonian limit to exist at each point in spacetime. An explicit
construction of locally inertial frames is given in Corollary 6.3 below.

1.4. The reduced RT-equations. The key idea and innovation in the
present paper is to introduce what we call the reduced RT-equations, a sim-
plified elliptic system required to extend our previous existence theory for
the RT-equations in [22] to L∞ connections. The derivation of the reduced
RT-equations is based on using the gauge freedom v in the original RT-
equations (1.1) -(1.4) to uncouple the system of PDE’s for the unknown
Jacobian J of the smoothing transformation from the PDE (1.1) for the

sought after connection components Γ̃ of optimal regularity. This isolates

11This equivalence extends easily to Γ ∈ L∞ and Γ̃ ∈ W 1,p, the case address in this
paper.
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the nonlinearities in the Γ̃ system, and thereby eliminates them from the
iteration scheme for J which is the basis of our existence theory. The gauge
freedom v in the RT-equations reflects the multiplicity of coordinate maps
which can smooth a connection to optimal regularity. In summary, the un-
knowns J and Γ̃ are coupled together in the original RT-equations, and the
reduced RT-equations consist of the resulting uncoupled system of equations
(1.6) - (1.8) in J alone. To finish the proof we use the Γ̃ equation to show di-
rectly that the coordinate system determined by a solution J of the reduced
RT-equations, does indeed lift the original connection Γ to optimal regu-
larity Γ ∈ W 1,p. To complete the picture, Theorem 4.1 below establishes
that a solution J of the reduced RT-equation determines a Γ̃ which meets
the Riemann-flat condition, and J together with this Γ̃ solve the original
RT-equations. This again demonstrates that J is indeed a Jacobian which
takes Γ to optimal regularity.

The reduced RT-equations are given by the following system,

∆J = δ(J ·Γ) −B, (1.6)

d ~B =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

, (1.7)

δ ~B = w, (1.8)

where J is the Jacobian of the transformation to optimal regularity, B is
an auxiliary matrix valued differential form introduced to impose the inte-
grability of J to coordinates, and the new gauge freedom is the freedom to
choose the vector valued function w. The operations on the right hand side
of (1.6) - (1.8) are defined in Section 3 in terms of the Euclidean Cartan
algebra of matrix valued differential forms. Equation (1.6) requires J to be
viewed as a matrix valued differential form, but the integrability condition
is expressed in terms the vector valued differential form ~J = Jµi dx

i through

d ~J = 0, and one challenge is to incorporate both matrix valued differential
forms and their vectorization within a single framework. The reduced RT-
equations are derived from the original RT-equations in Section 4. Although
the reduced RT-equations are independent of Γ̃, we do not have a derivation
of them independent of Γ̃ and the original (coupled) RT-system.

1.5. Prior results. It was shown by DeTurck and Kazdan in [8] that for
(positive definite) Riemannian metrics, optimal regularity can always be
achieved in harmonic coordinates. The first optimal regularity result in
Lorentzian geometry is due to Anderson [1]. Anderson’s results are based on
using harmonic coordinates on the Riemannian hypersurfaces of a given fo-
liation of spacetime, and establish curvature bounds for vacuum spacetimes
and certain matter fields when the Riemann curvature is in L∞, under some
technical assumptions. A similar result for vacuum spacetimes was proven in
[4]. As far as we can tell, these results do not apply to GR shock waves, and
our result cannot be obtained from these prior methods, free of additional
assumptions, even in the special case of vacuum spacetimes. (Keep in mind
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that the setting of vacuum excludes fluid dynamical shock waves, and so is a
warm-up problem from the point of view of shock wave theory. Historically
shock waves are one of the main motivations for the study of low regularity
solutions.) The results in [1, 4] require applying sophisticated analytical and
geometric machinery on top of the classical harmonic coordinate construc-
tion in [8], and suggest strongly that metric signature is a central issue. Our
results show that optimal regularity is entirely independent of metric and
metric signature.12

1.6. Outline of the paper. In Section 2 we state our main results, Theo-
rems 2.1 and 2.3. In Section 3 we introduce the Cartan calculus for matrix
and vector valued differential forms required in this paper. In Section 4
we prove that solutions of the reduced RT-equations determine solutions of
the full RT-equations, c.f. Theorem 4.1, and our main existence theorem
for the reduced RT-equations is given in Theorem 4.3. The proofs of our
main Theorems 2.1 and 2.3 are given in Section 5, assuming Theorems 4.1
and 4.3 are true. In Section 6 we give three applications of Theorems 2.1
and 2.3: A new compactness result for the vacuum Einstein equations in
GR at low regularities as an application of Uhlenbeck compactness, a proof
of optimal regularity for GR shock waves constructed by Glimm’s theorem,
and a construction of locally inertial frames for general L∞ connections. In
particular, the existence of locally inertial frames rules out regularity singu-
larities at GR shock waves by establishing that shock wave solutions of the
Einstein-Euler equations are locally inertial.

Sections 7 -11 are devoted to the proofs of Theorems 4.1 and 4.3. In
these sections we have given a careful development of the weak formulation
of the RT-equations, and we present the existence theory for weak solutions
of the reduced RT-equations starting with two basic theorems from linear
elliptic PDE theory, Theorems B.1 and C.2 recorded in the appendix. In
order to develop a rigorous existence theory for Γ, dΓ ∈ L∞ we introduce a
calculus of L2 adjoints for the differential operators on vector and matrix
valued differential forms appearing in the RT-equations, required to make
sense of the equations at the level of weak (distributional) solutions. The
theory in Sections 7 - 11 is self-contained, and written to be accessible to
mathematicians and physicists who need not be experts in PDE theory.
An exposition of the development of the RT-equations in [23] summarizes
the results and methods in [21, 22], and provides an outlook on the results
established in this paper, stating without proof Theorems 2.1 and 2.3, as
well as Corollaries 6.1 and 6.2.

12We note that the recent resolution of the bounded L2 curvature conjecture for vacuum
spacetimes, (c.f. Theorem 1.6 of [16]), does not address the issue of optimal regularity,
essentially because initial data taken from non-optimal connections is one order less regular
than the data assumed in [16], see the discussion in [23].
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2. Statement of our Uhlenbeck compactness and Optimal

Regularity Theorems for L∞ connections

Let Γ denote a connection on the tangent bundle TM of an arbitrary n-
dimensional differentiable manifoldM, n ≥ 2. Since the problem of optimal
regularity is local, we assume at the start a given coordinate system x defined
on an open set Ω ⊂M, such that Ωx ≡ x(Ω) ⊂ R

n is bounded. That is, we
work in a fixed chart (x,Ω) onM. Without loss of generality we assume Ωx
has a smooth boundary. We use the notation Γx to denote the components of
Γ in x-coordinates, Γx ≡ Γkij(x). We say Γx, dΓx ∈ L

∞(Ωx) if all component

functions are in L∞(Ωx) in x-coordinates. Here dΓx denotes the exterior
derivative of Γx viewed as a matrix valued 1-form in x-coordinates, a non-
invariant object in the sense that it transforms neither as a tensor nor as a
connection. Since the Riemann curvature tensor can be expressed as

Riem(Γx) = dΓx + Γx ∧ Γx, (2.1)

(c.f. (3.5) below), assuming Γx, dΓx ∈ L∞(Ωx) is equivalent to assuming
Γx,Riem(Γx) ∈ L

∞(Ωx). Given a coordinate transformation x → y, we let
Γy ≡ Γγαβ(y) denote the connection components in y-coordinates defined on

Ωy ≡ y(Ω). For coordinate transformations with Jacobians J ∈ W 1,p(Ωx),
p > n, (always assumed here), the assumption Γx, dΓx ∈ L∞(Ωx) is an
invariant statement,13 so we write Γ, dΓ ∈ L∞(Ω). Note, the statement
that Γx is in W 1,p, (i.e., Γx has optimal regularity), is not an invariant
statement for Jacobians at the low regularity J ∈ W 1,p(Ωx). We introduce
the coordinate dependent norm

‖(Γ, dΓ)‖L∞(Ωx) ≡ ‖Γx‖L∞(Ωx) + ‖dΓx‖L∞(Ωx), (2.2)

which is central to our estimates. The norms we use in this paper are
recorded carefully in Appendix A. Note that, for the purpose of this paper,
we replace ‖dΓ‖L∞ by ‖Riem(Γ)‖L∞ on the right hand side of (2.2), because
(2.1) implies

‖dΓ‖L∞ ≤ ‖Riem(Γ)‖L∞ + 2‖Γ‖2L∞ ≤ ‖dΓ‖L∞ + 4‖Γ‖2L∞ . (2.3)

We use the notation that subscript x on Γx can be dropped when it is clear
from the context that we address only the x-components of Γ. Since all our
analysis is done in fixed x-coordinates there should be no confusion.

Our main theorem regarding optimal regularity is the following:

Theorem 2.1′ Assume Γ, dΓ ∈ L∞(Ω) in x-coordinates and let M > 0 be
a constant such that

‖(Γ, dΓ)‖L∞(Ωx) ≡ ‖Γx‖L∞(Ωx) + ‖dΓx‖L∞(Ωx) ≤ M. (2.4)

13This holds since for such coordinate transformations Riem(Γ) transforms as a tensor,
and contraction by Hölder continuous Jacobians does not lower the L∞ regularity. The
L∞ regularity of dΓy then follows from the regularity of Riem(Γy).
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Then for any n < p < ∞ and any point q ∈ Ω there exists a neighborhood
Ω′ ⊂ Ω of q and a coordinate transformation x→ y with Jacobian J = ∂y

∂x ∈

W 1,2p(Ω′
x), such that

‖Γy‖W 1,p(Ω′

y)
≤ C ‖(Γ, dΓ)‖L∞(Ωx), (2.5)

for some constant C > 0 depending only on Ωx, p, n, q and M . That is, the
connection components Γy in y-coordinates have optimal regularity, Γy ∈
W 1,p(Ω′

y).

Theorem 2.1′ tells us that we can raise the connection regularity by es-
sentially one derivative to Γy ∈W

1,p, arbitrarily close to W 1,∞ as p→∞.14

Note, since Γ and dΓ are assumed in L∞(Ω), the statement of the theorem is
sharper the larger p is (and extends trivially to 1 ≤ p <∞ as Ω is bounded),
and we can choose any p <∞ but not yet p =∞, a singular case in elliptic
regularity theory, c.f. the discussion in [21]. By Morrey’s inequality, Γy
is Hölder continuous when p > n, and this is sufficient regularity to con-
struct classical geodesic curves and locally inertial coordinates, as we prove
in Corollary 6.3 below. Taken together, this resolves the open problem as
to whether the spacetime singularities at GR shock waves are removable
in the positive, establishing that every Lipschitz continuous metric of GR
shock wave theory is regular enough to meet the physical requirements of
spacetime.

Theorem 2.1′ follows directly from the following more refined theorem,
containing an improved version of estimate (2.5), which follows from interior
elliptic estimates applied to the RT-equations in the proofs below.

Theorem 2.1. Assume Γ, dΓ ∈ L∞(Ω) in x-coordinates, satisfying the
bound (2.4) in terms of a constant M > 0. Then for any n < p < ∞
and any point q ∈ Ω there exists a neighborhood Ω′ ⊂ Ω of q (depending
only on Ωx, p, n and M) and a coordinate transformation x → y with Ja-

cobian J = ∂y
∂x ∈ W 1,2p(Ω′

x), such that the connection components Γy in

y-coordinates have optimal regularity Γy ∈ W
1,p(Ω′′

y) on every open set Ω′′

compactly contained in Ω′, where Ω′′
y ≡ y(Ω′′). Moreover, for each Ω′′ com-

pactly contained in Ω′, Γy satisfies the uniform bound

‖Γy‖W 1,p(Ω′′

y )
≤ C1(M) ‖(Γ, dΓ)‖L∞(Ω′

x)
, (2.6)

for some constant C1(M) > 0 depending only on Ω′′
x,Ω

′
x, p, n, q and M .

The refinement of estimate (2.6) over (2.5) is that the regions in (2.6) are
sets of roughly the same size. The proof of Theorem 2.1 is given in Section
5.

As a corollary, in the spirit of Uhlenbeck’s earlier paper [30] for posi-
tive definite metrics, we immediately obtain that dΓ ∈ L∞ implies that

14Recall that the Sobolov space W 1,∞ can be identified with the space of Lipschitz
continuous functions, and W 1,p can be identified with the space of Hölder continuous
functions with Hölder coefficient α = n

p
as long that p > n, [11].
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singularities on sets of measure zero in non-optimal connections are always
removable. The condition dΓ ∈ L∞ plays the role of a generalized Rankine
Hugoniot jump condition [26], or “Junction Condition” [15], and it gives
general expression to the condition that the curvature be free of “delta
function sources”, necessary and sufficient conditions introduced by Israel
for smoothing discontinuous connections across single shock surfaces [15].

Corollary 2.2. Assume Γ, dΓ are bounded and continuous off a set of mea-
sure zero in some open set Ω in x-coordinates. Then the additional condition
that the L∞ extension of Γ to Ω satisfies dΓ ∈ L∞(Ω), is sufficient to imply
that for any point q ∈ Ω, there exists a neighborhood Ω′ ⊂ Ω of q, and a co-
ordinate transformation x→ y on Ω′, such that the connection components
Γy in y-coordinates can be extended as Hölder continuous functions to Ω′

y

with Γy ∈W
1,p(Ω′

y).

This is a direct consequence of Theorem 2.1, keeping in mind that W 1,p is
embedded in the space of Hölder continuous functions for p > n by Morrey’s
inequality, c.f. (A.4).

To introduce our compactness theorem, let us briefly recall the relation
between weak and strong convergence in Banach spaces Wm,p. Recall that
whenever we have a uniform bound on a sequence of functions in Wm,p,
there always exists a weakly convergent subsequence whose limit satisfies
the same uniform bound Wm,p as the original sequence. (By the Banach-
Alaoglu Theorem, the closed unit ball is weakly compact in Wm,p.) But
compactness is the statement that this weak limit is actually a strong limit
in Wm,p. For this it suffices to have a uniform bound on the sequence of
functions in Wm+1,p, in which case weak convergence in Wm+1,p implies
strong convergence in Wm,p. Weak convergence is not enough in non-linear
problems because products are generally not continuous under weak limits,
but are always continuous under strong limits, and weak limits cannot be
estimated as close to the weakly convergent subsequence in the norms in
which the global bounds are obtained.

We now develop some notation required to state our extension of Uhlen-
beck’s compactness result, Theorem 1.5 in [29]. Let {Γi}i∈N be a sequence
of connections Γi defined on the tangent bundle TM, and let (Γi)x denote
their components in fixed x-coordinates defined on Ωx ⊂ R

n, bounded and
open. Assume n < p <∞. Our compactness theorem states the existence of
a strongly convergent subsequence of {Γi}i∈N in Lp under coordinate trans-
formation, assuming only the bound

‖(Γi, dΓi)‖L∞(Ωx) ≤M, (2.7)

for some constant M > 0 independent of Γi. More precisely, assuming
(2.7), Theorem 2.1 implies that for each i ∈ N, there exists a coordinate
transformation x→ yi(x), such that the connection components (Γi)yi ≡ Γyi
in yi-coordinates are one order more regular and satisfy the uniform bound
‖Γyi‖W 1,p(Ω′

yi
) ≤ C(M) for some constant C(M) > 0 and some open set Ω′,
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both depending only onM , independent of i. To conclude with a convergent
subsequence of {Γyi}i∈N, we express the components of each Γyi as functions
of the original x-coordinates Γyi(x), so that one does not loose regularity,
(i.e., we transform the y-components back to x-components as scalars, in
contrast to the connection transformation from Γyi to (Γi)x which looses one
derivative of regularity). The resulting components Γyi(x) ≡ (Γi)yi(yi(x)),
where Γyi(x) are the yi components of Γi viewed as functions of x, will
again meet the uniform W 1,p-bound ‖Γyi‖W 1,p(Ω′

x)
≤ C(M) but over the

fixed region Ω′
x in x-coordinates and for a different constant C(M) > 0 which

accounts for the Jacobian of the transformation from x to yi. By the Banach-
Alaoglu Theorem, one can now conclude with existence of a subsequence of
Γyi(x) which converges weakly in W 1,p(Ω′

x) and hence strongly in Lp(Ω′
x).

This is our compactness theorem. The proof is given in Section 5.

Theorem 2.3. Assume {(Γi)x}i∈N are the x-components of a sequence of
connections Γi on the tangent bundle TM of an n-dimensional manifold
M in a fixed coordinate system x on Ω, and let n < p < ∞. Assume
Γi, dΓi ∈ L

∞(Ω) in x-coordinates, such that the uniform bound

‖(Γi, dΓi)‖L∞(Ωx) ≡ ‖(Γi)x‖L∞ + ‖(dΓi)x‖L∞ ≤M (2.8)

holds for some constant M > 0 independent of i ∈ N. Then for any q ∈ Ω
there exists a neighborhood Ω′ ⊂ Ω of q, and a subsequence of Γi, (also
denoted by Γi), for which the following holds:
(i) There exists for each (Γi)x a coordinate transformation x→ yi(x) taking
Ω′
x to Ω′

yi, such that the components (Γi)yi ≡ Γyi of Γi in yi-coordinates

exhibit optimal regularity Γyi ∈ W 1,p(Ω′
yi), with uniform bound (2.5) in

W 1,p(Ω′
yi).

(ii) The yi-components Γyi, taken as functions of x, also exhibit optimal
regularity Γyi(x) ≡ (Γi)yi(yi(x)) ∈ W

1,p(Ω′
x), with uniform bound (2.5) in

W 1,p(Ω′
x).

(iii) The transformations x → yi(x) are uniformly bounded in W 2,2p(Ω′
x),

and converge to a transformation x → y(x), weakly in W 2,2p(Ω′
x), strongly

in W 1,2p(Ω′
x).

(iv) Main Conclusion: There is a subsequence on which the yi-components
Γyi(x) converge to some Γy(x), weakly in W 1,p(Ω′

x), strongly in Lp(Ω′
x),

and Γy are the connection coefficients of Γx in y-coordinates, where Γx is
the weak limit of (Γi)x in Lp(Ω′

x).

Theorem 2.3 extends Uhlenbeck’s compactness result, Theorem 1.5 of
[29], as follows: Theorem 1.5 of [29] applies to connections on vector bun-
dles (including tangent bundles) over Riemannian manifolds, and so far our
Theorem 2.3 applies only to connections on tangent bundles, but for arbi-
trary (differentiable) manifolds, including Lorentizan manifolds of General
Relativity. As we mentioned in Section 1, this extension requires a small
modification of assumptions. Namely, Theorem 1.5 of [29] assumes a se-
quence of connections (Γx)i ∈ W 1,p, with curvature Riem(Γi) uniformly
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bounded in Lp, and from this concludes with a uniform W 1,p bound on
connection coefficients in Coulomb gauge (where δΓ = 0) and with result-
ing compactness in Lp. In contrast, our Theorem 2.3 assumes a sequence
of connections (Γx)i which need not lie in W 1,p at the start, but assumes
uniform bounds on both Γi and Riem(Γi) in L

∞. We view our assumptions
as being essentially equivalent to Uhlenbeck’s assumptions, and natural for
the setting of the RT-equations, as we now discuss. First note that a uni-
form bound on ‖Riem(Γi)‖L∞ is implied by, but does not imply a uniform
bound on ‖(Γi, dΓi)‖L∞ = ‖Γi‖L∞ + ‖dΓ‖L∞ , since uncontrolled terms in
Γ could cancel in the wedge-product in Riem(Γ) = dΓ + Γ ∧ Γ. In light of
(2.3), for the bound on ‖(Γi, dΓi)‖L∞ to imply a bound on the curvature
tensor would require starting in a coordinate system x in which ‖Γi‖L∞ is
bounded by ‖dΓi‖L∞ , or alternatively by ‖Riem(Γi)‖L∞ . For this one could
take the locally inertial coordinate frames proven in Corollary 6.3 to exist
for W 1,p connections. This shows that our assumption of a uniform bound
on ‖Γi‖L∞ is implied by an L∞ bound on the curvature alone, in natural co-
ordinates, but not necessarily in all coordinate systems, which could involve
transformations with arbitrarily large Jacobians.

Theorems 2.1 and 2.3 are based on authors’ earlier discovery of the RT-
equations (“Regularity Transformation equations” or “Reintjes-Temple equa-
tions”), a system of elliptic partial differential equations which determine
whether coordinate systems exist in which the connection exhibits optimal
regularity [21]. The RT-equations are elliptic independent of any underlying
metric structure on the tangent bundle, hence our methods do not require
the ellipticity of the Laplace-Beltrami operator of a metric, and by this we
can extend Uhlenbeck’s results to tangent bundles of arbitrary manifolds.
(Again, using the Coulomb gauge method in the case of Lorentzian metrics
would entail hyperbolic estimates, which are problematic, c.f. [23].) To for-
mulate the RT-equations, we require an Euclidean Cartan algebra for matrix
valued differential forms. This is the topic of the next section.

3. Preliminaries - The Euclidean Cartan algebra

We now summarize the Cartan Calculus which we require to formulate
the RT-equations and refer the reader to Section 2 in [21] for further detail
and proofs. We work again in fixed x-coordinates defined on a open set
Ω ≡ Ωx ⊂ R

n. By a matrix valued differential k-form ω we mean an (n×n)-
matrix whose components are k-forms, and we write

ω = ω[i1...ik]dx
i1 ∧ ... ∧ dxik ≡

∑

i1<...<ik

ωi1...ikdx
i1 ∧ ... ∧ dxik , (3.1)

for (n × n)-matrices ωi1...ik such that total anti-symmetry holds in the in-
dices i1, ..., ik ∈ {1, ..., n}. (We always sum over repeated indices, following
Einstein’s convention, but we never “raise” or “lower” indices.) We define
the wedge product of a matrix valued k-form ω with a matrix valued l-form
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u = uj1...jldx
j1 ∧ ... ∧ dxjl as

ω ∧ u ≡
1

l!k!
ωi1...ik · uj1...jl dx

i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl , (3.2)

where “·” denotes standard matrix multiplication. In contrast to scalar
valued differential forms, ω ∧ ω can be non-zero, because matrices do in
general not commute. The exterior derivative d is defined component wise
on matrix-components,

dω ≡ ∂lω[i1...ik]dx
l ∧ dxi1 ∧ ... ∧ dxik , (3.3)

and we define the co-derivative δ on a matrix valued k-form ω as

δω ≡ (−1)(k+1)(n−k) ∗ d ∗ ω,

where ∗ is the Hodge star introduced in terms of the Euclidean metric in
x-coordinates. That is, ∗ satisfies the orthogonality condition

dx[i1∧...∧dxik ]∧∗
(

dx[j1∧...∧dxjk]
)

=

{

dx1 ∧ ... ∧ dxn, if i1 = j1, ..., ik = jk,

0 otherwise,

(3.4)
where indices are taken to be increasing. So δ is defined via the Euclidean
metric in x-coordinates, while d requires no metric. Both d and δ act com-
ponent wise on matrix components, so all properties of d and δ for scalar
valued differential forms carry over to matrix valued forms. The Laplacian
∆ ≡ dδ+ δd acts component wise on matrix-components and also on differ-
ential form components. By (3.4), one can show that ∆ is in fact identical
to the Laplacian of the Euclidean metric in x-coordinates,

∆ = ∂2x1 + ...+ ∂2xn ,

c.f. [6, 21] for more detail.
By (3.2) and (3.3), the Riemann curvature tensor can be written as

Riem(Γx) = dΓx + Γx ∧ Γx, (3.5)

in x-coordinates. The exterior derivative satisfies the product rule

d(ω ∧ u) = dω ∧ u+ (−1)kω ∧ du, (3.6)

where ω ∈ W 1,p(Ω) is a matrix valued k-form and u ∈ W 1,p(Ω) is a matrix
valued j-form, (c.f. Lemma 3.3 of [21]). Since the wedge product (3.2)
for matrix valued 0-forms J is identical to matrix multiplication, and since
dJ−1 = −J−1 · dJ · J−1, the Leibnitz rule (3.6) implies that

d
(

J−1 · dJ
)

= d(J−1) ∧ dJ = −J−1dJ ∧ J−1dJ, (3.7)

c.f. Lemma 4.3 in [21]. Regarding the co-derivative δ, we require the follow-
ing product rule

δ(J ·w) = J ·δw + 〈dJ ;w〉 (3.8)
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where J ∈W 1,p(Ω) is a matrix valued 0-form, w ∈W 1,p(Ω) a matrix valued
1-form, and where 〈· ; ·〉 is the matrix valued inner product defined on matrix
valued k-forms ω and u by

〈ω ;u〉µν ≡

n
∑

σ=1

∑

i1<...<ik

ωµσ i1...iku
σ
ν i1...ik

. (3.9)

So 〈ω ;u〉 converts two matrix valued k-forms into a matrix valued 0-form.
For multiplication by a matrix valued 0-form J we have the following mul-
tiplication property

J · 〈ω ;u〉 = 〈J · ω ;u〉, 〈ω · J ;u〉 = 〈ω ;J · u〉, 〈ω ;u · J〉 = 〈ω ;u〉 · J.
(3.10)

We also need to interpret matrix valued forms as vector valued differential
forms. The two operations which convert matrix valued differential forms
to vector valued forms on the right hand side of the RT-equations are ~·

and
−→
div(·). First, ~· converts matrix valued k-forms ω into vector valued

(k + 1)-forms ~ω by

~ωµ ≡ ωµν i1...ikdx
ν ∧ dxi1 ∧ ... ∧ dxik , (3.11)

with ω taken as in (3.1), c.f. (2.20) in [21] for the case k = 0, most relevant

to us. Secondly, the operation
−→
div(·) converts matrix valued k-forms ω into

vector valued k-forms
−→
div(ω) by the operation

−→
div(ω)α ≡

n
∑

l=1

∂l
(

(ωαl )i1...ik
)

dxi1 ∧ ... ∧ dxik .

Finally, for a matrix valued 1-form w and a matrix valued 0-form J , Lemma
2.4 of [21] gives the important identity

d
(−−−−→
δ(J ·w)

)

=
−→
div
(

d(J · w)
)

=
−→
div
(

dJ ∧ w
)

+
−→
div
(

J ·dw
)

, (3.12)

which is crucial for the regularity to close in the RT-equations.

4. The reduced RT-equations and optimal regularity

In this section we derive the reduced RT-equations from the RT-equations,
the system of elliptic PDE’s introduced in [21] which determines whether a
connection Γ can be mapped to optimal regularity, and prove their equiva-
lence. We then state the main theorems concerning the existence of solutions
of the reduced RT-equations and resulting optimal regularity for L∞ con-
nections, Theorems 4.3 and 4.1 respectively, which are proven in Sections 8
- 11. In the end of this section we apply Theorems 4.1 and 4.3 to give the
proof of our main results, Theorems 2.1 and 2.3.
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We begin by reviewing the RT-equations derived in [21]. The RT-equations
consist of the following nonlinear elliptic system of PDE’s

∆Γ̃ = δdΓ− δ
(

dJ−1 ∧ dJ
)

+ d(J−1A), (4.1)

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A, (4.2)

d ~A =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

, (4.3)

δ ~A = v, (4.4)

together with boundary data

d ~J = 0 on ∂Ω. (4.5)

The connection Γ ≡ Γµνkdx
k is given and interpreted as a matrix valued

1-form, and Γ on the right hand side of (4.1) - (4.4) always denotes the
components Γx in x-coordinates. The unknowns in the RT-equations are
(Γ̃, J,A) which are matrix valued differential forms as follows: J ≡ Jµν is
the Jacobian of the sought after coordinate transformation which smooths
the connection, viewed as a matrix-valued 0-form; Γ̃ ≡ Γ̃µνkdx

k represents

the unknown tensor one order smoother than Γ such that Riem(Γ − Γ̃) =
0, viewed as a matrix-valued 1-form; and A ≡ Aµν is an auxiliary matrix

valued 0-form introduced together with boundary data (4.5) to impose d ~J ≡
Curl(J) = 0, the condition for the Jacobian J that guarantees it is integrable
to a coordinate system, c.f. Theorem C.2 and [21]. See Section (3) for
definitions of the remaining operations in (4.1) - (4.4).

The RT-equations (4.1) and (4.2) were derived by constructing Lapla-
cians out of two equivalent forms of the Riemann-flat condition, a condition
introduced in [20] equivalent to the existence of coordinates in which the
connection has optimal regularity. These two starting conditions were that
Riem(Γ − Γ̃) = 0, or alternatively, that Γ̃ = Γ − J−1dJ for some tensor Γ̃
one order smoother than Γ. If Γx can be smoothed to optimal regularity by
the transformation x→ y with Jacobian J , then, defining

Γ̃J ≡ Γ− J−1dJ, (4.6)

the connection components Γy of optimal regularity are given by the tensor
transformation rule

(Γ̃J)
k
ij = (J−1)kγJ

α
i J

β
j (Γy)

γ
αβ , (4.7)

and Γ̃J will solve the RT-equations (4.1) - (4.4) as well as the Riemann-flat

condition Riem(Γ − Γ̃J) = 0. That is, Γ̃J , the tensor transformation by
J of the components of the connection Γy in y-coordinates, will solve the

RT-equations for some (A, v), when J is paired with Γ̃J . Conversely, one
can recover the connection of optimal regularity Γy via equation (4.7) from

a general solution Γ̃, J of the RT-equations, but this requires an existence
theory which establishes the relationship between the solution Γ̃ and Γ̃J , as
we now explain.
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In [21] we prove that if Γx, dΓx ∈ Wm,p, for m ≥ 1, p > n, then there
exists a coordinate transformation x→ y which raises the regularity by one
order to Γy ∈ W

m+1,p if and only if there exists a solution (J, Γ̃, A) of the
RT-equations (4.1) - (4.4), (taking Γ = Γx on the right hand side), with

boundary data (4.5), and regularity J, Γ̃ ∈ Wm+1,p, A ∈ Wm,p. In [22] we

proved that such a solution (J, Γ̃, A) exists for any such connection Γ ∈Wm,p

with dΓ ∈ Wm,p, when m ≥ 1, p > n. Extending this theory to the case of
Γ, dΓ ∈ L∞, when the RT-equations only have meaning in a weak sense, is
accomplished in the present paper, but was not possible with the methods
used in our previous paper [22].

Given a suitable weak formulation of equations (4.1)-(4.4) and boundary
condition (4.5), we could apply the Riemann-flat condition to conclude op-
timal regularity from existence of solutions. Thus the main obstacle is the
problem of proving an existence theory for the RT-equations at the low level
of regularity Γ, dΓ ∈ L∞ with J ∈ W 1,p. The problem is that the iteration
scheme in [22] does not close because the gradient product dJ−1∧dJ on the
right hand side of equation (4.1) fails to stay in a fixed Lp space under iter-
ation. Alternatively, trying to construct solutions J ∈W 1,∞ is problematic
as well, because p =∞ is a singular case in elliptic regularity theory, and our
iteration scheme in [22] would not close in L∞ for this different reason. We
here extend the existence theory and consequent optimal regularity theory
to the case Γ, dΓ ∈ L∞ by a serendipitous modification of the RT-equations.

In this paper we employ the gauge freedom of the RT-equations to cir-
cumvent the problem of incorporating the nonlinear product dJ−1 ∧ dJ in
(4.1) into an iteration scheme which closes in Lp spaces. The idea is to
separate this term from the iteration scheme by using the gauge freedom
v in the A equation (4.4) to consolidate Γ̃ and A into a single variable B,
and thereby uncouple equations (4.2) - (4.4) for J from equation (4.1) for

Γ̃. Defining

B ≡ A+ 〈dJ ; Γ̃〉, (4.8)

w ≡ v + δ
−−−−→
〈dJ ; Γ̃〉, (4.9)

observe now that we can write (4.2) - (4.4) as

∆J = δ(J ·Γ) −B, (4.10)

d ~B =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

, (4.11)

δ ~B = w. (4.12)

Equations (4.10)-(4.12) are the reduced RT-equations, c.f. (1.6)-(1.8). Since
the transformation from v to w can be viewed as a gauge transformation,
the gauge freedom of the RT-equations implies that we can ignore the de-
pendence of Γ̃ on w, and view w as the independent gauge freedom in the
RT-equations. Therefore equations (4.10) - (4.12) decouple the equations

for J and B from Γ̃, and hence from the first RT-equation (4.1), which in
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terms of B becomes

∆Γ̃ = δdΓ− δ
(

dJ−1 ∧ dJ
)

+ d
(

J−1(B − 〈dJ ; Γ̃〉)
)

. (4.13)

By this decoupling the Jacobians J which map Γ to optimal regularity can
be constructed independently of Γ̃, (which we can now discard), by solving
the reduced RT-equations (4.10) - (4.12) alone.

So, discard the original Γ̃, and assume (J,B) is a solution of the reduced
RT-equations (4.10) - (4.12) with J ∈ W 1,2p(Ω′

x) and B ∈ L2p(Ω′
x). The

goal now is to use the solutions J,B of the reduced RT-equations to establish
optimal regularity without reference to the original Γ̃. To show such a
Jacobian J indeed maps Γ to optimal regularity, it suffices to prove that
Γ̃ = Γ̃J provides another solution of (4.13). In our next theorem we show

that, incredibly enough, this is true: Γ̃ = Γ̃J is an exact solution of the
elliptic equation (4.13), an equation we could not solve by our previous
methods at the low regularity Γ, dΓ ∈ L∞. The equation (4.13) establishes

the requisite smoothness Γ̃J ∈W
1,p when Γ, dΓ ∈ L∞.

To complete the circle, we now explain how to recover a solution of the
full RT-equations form (4.10) - (4.12), when Γ̃ is replaced by Γ̃J . For this,

we need only show that J, Γ̃J solve the original RT-equations with a different
choice of gauge A′, v′. Reversing the above steps using Γ̃J in place of Γ̃, it
follows that the back change of gauge

A′ ≡ B − 〈dJ ; Γ̃J 〉, (4.14)

v′ ≡ w − δ
−−−−−→
〈dJ ; Γ̃J 〉, (4.15)

takes a solution (J,B) of the reduced RT-equations back to a solution of the

original RT-equations with the same J , but with Γ̃ replaced by Γ̃J . These
are recorded in parts (i) and (ii) of Theorem 4.1 below, which states that

(J, Γ̃J , A
′) defined in (4.6) - (4.14) indeed solves the full RT-equations (4.1)

- (4.4), and, by this, Γ̃J has the requisite smoothness Γ̃J ∈ W
1,p(Ω). Part

(iii) of Theorem 4.1 establishes an estimate for Γ̃J from which we deduce the
uniform W 1,p bound (2.6) on Γy in Theorem 2.1, the bound that underlies
Uhlenbeck compactness. The existence of solutions (J,B) of the reduced
RT-equations, satisfying estimate (4.16), which are assumed in Theorem
4.1, are shown to exist in Theorem 4.3 below. For the low regularities
considered in this paper, we need to establish the above equivalence and
existence theory in a weak sense. Serendipitously, the RT-equations allow
for a weak formulation because all lowest regularity terms on the right hand
side have derivatives δ or d on them, making them amenable to integration
by parts, (as in the theory of conservation laws [26]). This is accomplished
in Sections 8 - 11.

Theorem 4.1. Assume Γ, dΓ ∈ L∞(Ω) in x-coordinates, and let n < p <
∞. Assume (J,B) solves the reduced RT-equations (4.10) - (4.12) in a weak
sense for some w on an open set Ω′ ⊂ Ω, such that J, J−1 ∈W 1,2p(Ω′

x) and
B ∈ L2p(Ω′

x). Then the following holds:
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(i) Γ̃J solves (4.13), where Γ̃J is defined in (4.6). The tuple (J, Γ̃J , A
′)

solves the full RT-equations (4.1) - (4.4) in Ω′ for v = v′, where A′ and v′

are defined in (4.14) and (4.15).

(ii) The regularity of Γ̃J is given by Γ̃J ∈ W 1,p(Ω′′
x) for any open set Ω′′

compactly contained in Ω′, i.e., Γ̃J is one order more regular than the two
terms are separately on the right hand side of its definition in (4.6).
(iii) Let M > 0 be a constant such that ‖(Γ, dΓ)‖L∞(Ωx) ≤ M , where
‖(Γ, dΓ)‖L∞ is defined in (2.2). Assume that (J,B) satisfies further the
estimate15

‖I − J‖W 1,2p(Ω′

x)
+ ‖I − J−1‖W 1,2p(Ω′

x)
+ ‖B‖L2p(Ω′

x)
≤ C2(M) ‖(Γ, dΓ)‖L∞(Ω′

x)
,

(4.16)

for some constant C2(M) > 0 depending only on Ω′
x, n, p and M . Then, on

any open set Ω′′ compactly contained in Ω′, Γ̃ satisfies the uniform bound

‖Γ̃J‖W 1,p(Ω′′
x)
≤ C3(M) ‖(Γ, dΓ)‖L∞(Ω′

x)
(4.17)

where C3(M) > 0 is some constant depending only on Ω′′
x,Ω

′
x, n, p and M .

The key step in the proof of 4.1 is establish in Lemma 7.2 below, by
proving that (4.6) is an exact formula for the solution Γ̃ = Γ̃J of the first RT-

equation (4.1), from which the regularity gain of Γ̃J in (ii) can be deduced.
To give the argument in its essence, we assume one more level of smoothness
in Lemma 7.2. More care is required to extend the argument of Lemma 7.2
to the low regularities of Theorem 4.1 and prove the theorem rigorously,
which is the subject of Section 9.16 Assuming only that (ii) of Theorem 4.1
holds, the equivalence of optimal regularity and the reduced RT-equations,
in the spirit of our previous paper [21], can now be established as a corollary.
This reduces the problem of optimal regularity to an existence theorem for
the reduced RT-equations. 17

Corollary 4.2. Assume Γ, dΓ ∈ L∞(Ω) in x-coordinates, and let n < p <

∞ and q ∈ Ω. Then there exists a neighborhood Ω̃ ⊂ Ω of q and a coor-
dinate transformation x → y such that the connection components Γy in

y-coordinates have optimal regularity Γy ∈ W 1,p(Ω̃y) if and only if there
exists a weak solution (J,B) of the reduced RT-equations (4.10) - (4.12), de-
fined on some neighborhood Ω′ of q, with J, J−1 ∈W 1,2p(Ω′

x), B ∈ L
2p(Ω′

x)

and d ~J = 0 in Ω′
x. The Jacobian of the coordinate transformation x→ y is

dy = J ∈W 1,2p(Ω′
x).

15Estimate (4.16) bounds J and J−1, but is expressed in terms of I − J and I − J−1

to reflect the fact that J typically tends to the identity as M tends to zero.
16We actually prove Theorem 4.1 under the weaker assumption Γ, dΓ ∈ L2p(Ω), p > n.
17Although equation (4.1) can be bypassed for constructing solutions, equation (4.1) is

required to prove optimal connection regularity in the coordinate system introduced by J
and is therefore a vital part of the RT-equations. Note also that one can use an underlying
Cauchy-Riemann-type equation for Γ̃ instead of (4.1) and establish optimal regularity by
applying Gaffney’s inequality, but we prefer the Poisson type equation (4.1).
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Proof. The forward implication of Corollary 4.2 is straightforward because
the reduced RT-equations are derived from the full RT-equations which are
in turn deduced from the Riemann-flat condition, a condition equivalent to
optimal regularity, c.f. [21]. That is, given the Jacobian J and resulting
connection Γy of optimal regularity, and defining

Γ̃kij = (J−1)kγJ
α
i J

β
j (Γy)

γ
αβ ,

then Γ̃ satisfies the Riemann-flat condition. It is now straightforward to
check that (Γ̃, J) solves the RT-equation for some A, and, defining B by
(4.8), that (J,B) solves the reduced RT-equations (4.10) - (4.12). Recall that

the condition d ~J = 0 is equivalent to J being the Jacobian of a coordinate
transformation, c.f. Theorem C.2.

To prove the reverse implication assume part (ii) of Theorem 4.1 holds.

By Theorem (4.1), Γ̃J defined by (4.6) is in W 1,p(Ω′
x) and Γ̃J solves the

first RT-equation (4.13) in terms of the solution (J,B) of the reduced RT-
equations (4.10) - (4.12). Let x→ y be a coordinate transformation with Ja-

cobian dy = J . Now define the connection Γy in terms of Γ̃J in x-coordinates
by (4.7), that is,

(Γy)
γ
αβ = Jγk (J

−1)iα(J
−1)jβ(Γ̃J )

k
ij. (4.18)

Since Γ̃J ∈ W 1,p(Ω′
x) and J, J−1 ∈ W 1,2p(Ω′

x), p > n, Morrey’s inequal-
ity implies that the components Γy(x) ∈ W 1,p(Ω′

x) in x-coordinates, and
therefore when expressed in y-coordinates Γy ∈W

1,p(Ω′
y). Substituting the

definition of Γ̃J in (4.6) into (4.18) implies that

(Γy)
γ
αβ = Jγk (J

−1)iα(J
−1)jβ

(

Γx − J
−1dJ

)k

ij

= Jγk (J
−1)iα(J

−1)jβ(Γx)
k
ij − (J−1)iα(J

−1)jβ∂iJ
γ
j ,

from which we conclude that Γy are the connection components Γx trans-
formed to a coordinate system y in which Γ exhibits optimal regularity,
Γy ∈W

1,p(Ω). This completes the proof. �

Finally, to obtain the optimal regularity result stated in Theorem 2.1,
together with the uniform estimate (2.6), we require the following theorem
which establishes the existence of solutions to the reduced RT-equations
satisfying the assumptions J, J−1 ∈ W 1,2p(Ω′

x), B ∈ L2p(Ω′
x) of Theorem

4.1, together with the additional estimate (4.16). (The existence theory is
worked out in fixed x-coordinates, so we omit subscript x on Γ and Ω.)

Theorem 4.3. Assume Γ, dΓ ∈ L∞(Ω) in x-coordinates, and letM > 0 be a
constant such that ‖(Γ, dΓ)‖L∞(Ωx) ≤ M , and let n < p < ∞, q ∈ Ω. Then
there exists a neighborhood Ω′ ⊂ Ω of q, depending only on Ω, n, p, q,M ,
and there exists J ∈ W 1,2p(Ω′) and B ∈ L2p(Ω′) such that (J,B) solves the
reduced RT-equations (4.10) - (4.12) in a weak sense in Ω′. Moreover, J

is invertible with J−1 ∈ W 1,2p(Ω′), d ~J = 0 in Ω′ and (J,B) satisfies the
uniform bound (4.16).
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Theorem 4.1 in combination with the existence Theorem 4.3, imply our
main result regarding optimal regularity, Theorem 2.1, as shown in Section
5 below. The proof of Theorem 4.3 is the main technical step in this paper
and is presented in Sections 10 and 11. Note that the boundary data (4.5)
is ill-defined at the low regularity J ∈ W 1,2p. So to make sense of this, we
augmenting the reduced RT-equations with auxiliary elliptic PDE’s for y,
which allows us to replace (4.5) by Dirichlet data for J = dy, data one degree
more regular than (4.5) and thus well-defined. By Theorem 4.1, Theorem
4.3 also establishes the first existence theory for the full RT-equations at the
low regularities Γ, dΓ ∈ L∞(Ω) associated with GR shock waves.

To summarize, the RT-equations reduce the nonlinear problem of regular-
izing connections to a linear existence problem for constructing the Jacobian
J via the reduced RT-equations, followed by a regularity boost for Γ̃J pro-
vided by the first RT-equation (4.1). So for applications one only has to
solve the linear reduced RT-equations for J to obtain the regularizing coor-
dinate transformation, and our iteration scheme in Section 10 provides an
algorithm for doing this. Although linear, the low regularity of the coeffi-
cients of the reduced RT-equations is still an issue in the existence theory
below.

5. Proof of Theorems 2.1 and 2.3

In this section we give the proofs of our main results stated in Section
2, Theorem 2.1 on optimal regularity and Theorem 2.3 on Uhlenbeck com-
pactness, assuming Theorems 4.1 and (4.3). The proof of Theorems 4.1 and
(4.3) are the subject of Sections 7 - 11.

5.1. Proof of Theorem 2.1. Assume Theorems 4.1 and 4.3 hold, and
assume Γ, dΓ ∈ L∞(Ω) in x-coordinates satisfy ‖(Γ, dΓ)‖L∞(Ωx) < M for
some constant M > 0, and let n < p < ∞, and q ∈ Ω. To prove Theorem
2.1, it suffices to prove there exists a coordinate transformation x → y

defined on a neighborhood Ω′ of q such that J = ∂y
∂x ∈W

1,2p(Ω′
x) and

‖Γy‖W 1,p(Ω′′
y )
≤ C1(M) ‖(Γ, dΓ)‖L∞(Ω′

x)
, (5.1)

for any Ω′′ compactly contained in Ω′, and for some constant C1(M) > 0
depending only on Ω′′

x,Ω
′
x, p, n and M , while Ω′

x depends only on Ωx, p, n, q
and M .

By Theorem 4.3 there exists a solution (J,B) of the reduced RT-equations
(4.10) - (4.12) defined in Ω′

x containing q, such that J ∈ W 1,2p(Ω′
x), J

−1 ∈

W 1,2p(Ω′
x), B ∈ L

2p(Ω′
x), d ~J = 0 in Ω′

x, and the uniform bound (4.16) holds.

The condition d ~J ≡ Curl(J) = 0 implies that J is integrable to a coordinate
system, c.f. Theorem C.2 and [21, 23]. Theorem 4.1 states that J is the
Jacobian of a coordinate transformation x→ y such that the connection Γy
has optimal regularity Γy ∈ W

1,p(Ω′′
y), for any compactly contained subset

Ω′′ of Ω′. Moreover, part (iii) of Theorem 4.1 implies the uniform bound
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(4.17) on Γ̃, and this gives the bound (5.1) on Γy by the relation between

Γ̃J and Γy given in (4.7). That is, by

(Γy)
γ
αβ = Jγk (J

−1)iα(J
−1)jβ(Γ̃J )

k
ij,

which implies

‖Γy‖W 1,p(Ω′′
y )
≤ C ‖J‖W 1,p‖J−1‖2W 1,p‖Γ̃J‖W 1,p ,

where C > 0 is some constant resulting from applying Morrey’s inequality
several times. The sought after estimate (5.1) now follows by estimating Γ̃
by (4.17) and J, J−1 by (4.16). This completes the proof of Theorem 2.1,
once we give the proofs of Theorems 4.1 and 4.3 in Sections 9 - 11 below.

5.2. Proof of Theorem 2.3. For the proof we use Morrey’s inequality, the
Banach-Alaoglu Theorem, Sobolev compactness and the following technical
lemma which says products of strongly and weakly converging functions
converge weakly. Recall that Morrey’s inequality tells us that when p > n,
functions uniformly bounded in W 1,p are also uniformly bounded in L∞, so
W 1,p is closed under products, and uniform bounds inW 1,p norms extend to
uniform bounds on products. Banach-Alaoglu tells us that the closed unit
ball in Lp is weakly compact [24]. These together with Sobolev compactness
and the boundedness of Ω tell us that sequences of functions uniformly
bounded in W 1,p and L∞ admit subsequences which converge weakly in
W 1,p, strongly in Lp, with uniform bounds given by the original uniform
W 1,p and L∞ bounds.

Lemma 5.1. Let fi, gi be sequences of functions on a bounded set Ω such
that fi → f in Lp(Ω) with ‖fi‖∞, ‖f‖∞ ≤ M , and such that gi → g weakly
in Lp with ‖gi‖Lp , ‖g‖Lp ≤Mp, p > n. Then figi → fg weakly in Lp(Ω).

Proof. Since ‖fi‖∞, ‖f‖∞ ≤ M , and fi → f in Lp on a bounded set, it
follows that fi → f in every Lp, p ≥ 1. This follows by measure theory
because the measure of the set on which |fi − f | > ǫ tends to zero as
i → ∞ for every ǫ > 0. Recall now that the dual space of Lp is Lp

∗

with
1/p + 1/p∗ = 1. Thus to prove that figi − fg → 0 weakly in Lp, we must
show that

〈figi − fg, φ〉L2 ≡

∫

Ω
(figi − fg)φ→ 0 (5.2)

for every φ ∈ Lp
∗

, where 〈·, ·〉L2 is the L2 inner product. But

〈figi − fg, φ〉L2 = 〈f(gi − g), φ〉L2 + 〈(fi − f)gi, φ〉L2 . (5.3)

But f ∈ L∞ implies fφ ∈ Lp
∗

, so the first term in (5.3) satisfies

〈f(g − gi), φ〉L2 = 〈(g − gi), fφ〉L2 → 0

because gi − g tends to zero weakly in Lp.
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Consider now the second term in (5.3). Since fi − f ∈ L∞, we have
(fi − f)φ ∈ Lp

∗

, so we can apply Holder’s inequality twice to obtain the
estimate

|〈(fi − f)gi, φ〉L2 | = |〈gi, (fi − f)φ〉L2 | (5.4)

≤ ‖gi‖Lp‖(f − fi)φ‖Lp∗

≤ Mp‖(f − fi)φ‖Lp∗ .

Now let EN =
{

x ∈ Ω : |φ|p
∗

≥ N
}

. Then since φp
∗

∈ L1, it follows that
∫

EN
|φ|p

∗

→ 0 as N →∞. Thus

‖(f − fi)φ‖
p∗

Lp∗ =

∫

Ω
|f − fi|

p∗ |φ|p
∗

dµ (5.5)

=

∫

EN

|f − fi|
p∗ |φ|p

∗

dµ+

∫

Ec
N

|f − fi|
p∗ |φ|p

∗

dµ

≤ ‖(f − fi)
p∗‖L∞

∫

EN

|φ|p
∗

dµ +N

∫

Ec
N

|f − fi|
p∗ dµ

≤ (2M)p
∗

∫

EN

|φ|p
∗

dµ +N

∫

Ω
|f − fi|

p∗ dµ.

Now we can make the first term arbitrarily small by choosing N sufficiently
large, and the second term tends to zero with i because fi → f in Lp

∗

(Ω).
It follows that ‖(f − fi)φ‖Lp∗ → 0, and by this we conclude from (5.4) that
the second term in (5.3) tends to zero as well. Thus figi → fg weakly in Lp

as claimed. �

We can now give the proof of Theorems 2.3 assuming Theorem 4.1 and
4.3. So assume {(Γi)x}i∈N are the x-components of a sequence of connections
Γi defined on the tangent bundle TM of an n-dimensional manifold M in
a fixed coordinate system x, let n < p < ∞, and assume (Γi)x, d

(

(Γi)x
)

∈
L∞(Ωx), such that

‖(Γi, dΓi)‖L∞(Ωx) ≤M, (5.6)

for some constant M > 0 independent of i ∈ N. We need to prove that for
each q ∈ Ω there exists a fixed neighborhood Ω′ ⊂ Ω of q, and for each (Γi)x
there exists a coordinate transformation x → yi(x) taking Ω′

x to Ω′
yi , such

that the components Γyi ≡ (Γi)yi of Γi in yi-coordinates exhibit optimal
regularity Γyi ∈ W

1,p(Ω′
yi), both in yi-coordinates, and when expressed in

x-coordinates Γyi(x) ≡ Γyi(yi(x)) ∈ W 1,p(Ω′
x). We need to prove further

that a subsequence of yi(x) converges to some y(x) weakly in W 2,2p(Ω′
x),

strongly in W 1,2p(Ω′
x), and that a further subsequence Γyi(x) converges to

Γy(x) weakly inW 1,p(Ω′
x), strongly in Lp(Ω′

x), and that Γy is the connection
Γx in y-coordinates, where Γx is the weak Lp-limit of (Γi)x.

By Theorem 2.1, there exists a single neighborhood Ω′ depending only on
M , (assuming n, p,Ω fixed), on which a coordinate transformation x→ yi(x)
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exists for each i ∈ N, taking Ω′
x to Ω′

yi , which maps (Γi)x to optimal regu-

larity on Ω′, so Γyi ∈ W
1,p(Ω′

yi). Moreover, by estimate (2.6) of Theorem
2.1, ‖Γyi‖W 1,p(Ω′

yi
) are uniformly bounded. This proves (i) of Theorem 2.3.

For each i ∈ N, the coordinate transformations yi(x) are obtained from
the Jacobians constructed in Theorem 4.3. To obtain a uniform Lp-bound
on yi(x), we choose yi(x(q)) = 0 for each i ∈ N. It follows from (4.16) of
Theorem 4.3 that the Jacobians Ji of x → yi(x) satisfy the uniform bound
‖Ji‖W 1,2p(Ω′

x)
≤ C2(M) and ‖J−1

i ‖W 1,2p(Ω′
x)
≤ C2(M). Since the Jacobians

bound the derivatives of the coordinate maps x → yi(x), and yi(x(q)) = 0
bounds the Lp-norm (and supnorm), it follows that each map yi(x) as a
function of x is uniformly bounded in W 2,2p(Ω′

x) by some constant C4(M),
again depending only on M . It now follows from the basic compactness
theorem for Sobolev spaces that there exists a subsequence, also denoted
yi(x), on which yi(x) converges to y(x) weakly in W 2,2p(Ω′

x), strongly in
W 1,2p(Ω′

x), such that ‖y‖W 2,2p(Ω′

x)
< C4(M). In particular, Ji converges to

J weakly in W 1,2p(Ω′
x), strongly in L2p(Ω′

x), and the uniform bound on J−1
i

implies invertibility of J . This proves (iii) of Theorem 2.3.
Now since Ji ∈W

1,2p(Ω′
x), Γyi(x) are uniformly bounded in W 1,p(Ω′

x) by
the chain rule. That is, by Morrey’s inequality one can estimate products
Γyi(x) times Ji to lie in W 1,p(Ω′

x), with norm bounded by some C5(M)
depending only on M . This proves (ii) of Theorem 2.3.

By the uniform W 1,p-bound on Γyi(x), it follows that a further sub-
sequence of Γyi(x) converges weakly in W 1,p(Ω′

x) to a connection Γy(x)
which satisfies the same bound C5(M) in W 1,p(Ω′

x). Thus the coordinate
map x → y is in W 2,2p(Ω′

x), and so Γy exhibits optimal regularity in y-
coordinates.

Finally, by taking a further subsequence, (Γi)x converges to some Γx
weakly in Lp(Ωx) by the Banach Alaoglu Theorem, (i.e., the uniform L∞-
bound (5.6) directly implies a uniform Lp-bound because Ω is bounded). To
show that Γy is indeed the connection Γx in y-coordinates, we use that for
each i, Γyi is the connection (Γi)x in yi-coordinates, so by the transformation
law for connections (written in shorthand, suppressing indices) we have

J−1
i ·Ji·Ji · Γyi = (Γi)x − Ji dJi. (5.7)

Since Ji converges to J weakly in W 1,2p(Ω′
x), Ji converges to J strongly

in Lp and dJi converges to dJ weakly in Lp. Similarly, J−1
i converges to

J−1 and Γyi(x) to Γy(x) strongly in Lp and weakly in W 1,2p(Ω′
x), W

1,p(Ω′
x),

respectively. Thus by Lemma 5.1, the left hand side of (5.7) converges to
J−1 ·J ·J ·Γy weakly in Lp, and the right hand side of (5.7) converges to
Γx − J dJ weakly in Lp. Taken on whole, (5.7) and Lemma 5.1 imply that
the connection Γy is the connection Γx transformed to y-coordinates as Lp

functions, which proves (iv) and completes the proof of Theorem 2.3.
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In this section we completed the proofs of our main results, Theorem 2.1
and 2.3, assuming Theorems 4.1 and (4.3). The remainder of the paper is de-
voted to a proof of these two theorems, in Sections 7 - (11), and applications
of our main results are presented in Sections 6.3 and (6.1).

6. Applications of the main results

6.1. Application of Uhlenbeck compactness to the vacuum Einstein
equations. As an application of Uhlenbeck compactness for Γ,Riem(Γ) ∈
L∞, we prove the following corollary of Theorem 2.3 which provides a new
compactness theorem applicable to vacuum solutions of the Einstein equa-
tions. The main difficulty in a convergence proof for a PDE in an existence
theory, is typically the problem of establishing a uniform bound on the
highest order derivatives, suitable to apply Sobolev compactness. Uhlen-
beck compactness tells us that it suffices to establish a bound on just the
Riemann curvature, not all highest order derivatives of a connection, in order
to imply subsequential convergence of connection and metric.

Corollary 6.1. Let gi be a sequence of Lipschitz continuous metrics given
on a manifold M, and let Γi denote the Christoffel symbols of gi for each
i ∈ N. Assume that (gi)i∈N is a sequence of approximate solutions of the
vacuum Einstein equations such that, in a neighborhood of each point, there
exists a coordinate system x in which Ric(gi) → 0 weakly in Lp (some p
with n < p <∞), the sequence Ric(gi) is uniformly bounded in L∞, and gi
satisfies the uniform bound

‖gi‖L∞ + ‖Γi‖L∞ + ‖Weyl(gi)‖L∞ ≤M (6.1)

for some constant M > 0, together with the non-degeneracy condition that
|det(gi)| is uniformly bounded away from zero.18 Then, in each such coordi-
nate system, there exists a subsequence of (gi)i∈N which converges component-
wise and weakly in W 1,p(Ω) to some metric g which satisfies (6.1) and solves
the vacuum Einstein equations Ric(g) = 0. Furthermore, according to The-
orem 2.1, for each p ∈ (n,∞) there exists locally, (i.e., in a neighborhood of
each point), a W 2,2p coordinate transformation x → yi which lifts the com-
ponents of g to W 2,p and these are the W 2,p-limits of gyi , the components
of gi in optimal coordinates yi, as in (ii) of Theorem 2.3.

Note that if M is a compact manifold, one can cover M with a finite
number of such optimal coordinate patches, and by a diagonal argument,
extract a subsequence which converges to a solution of the vacuum Einstein
equations in each coordinate system of the finite covering, and hence in all
ofM.

Proof. To begin, note that the L∞ bound on Γi provides an L∞ bound
on the derivatives of gi, so the sequence (gi)i∈N is uniformly bounded in

18Here norms are taken in coordinate systems and Weyl(gi) denotes the Weyl curvature
tensor of gi.
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W 1,p, any p ∈ (1,∞). Thus the weak W 1,p convergence of a subsequence
of (gi)i∈N to some metric g ∈ W 1,p in x-coordinates follows by the Banach
Alaoglu Theorem for any p ≤ ∞; (that g is a metric follows by our non-
degeneracy assumption). But this is not enough to conclude that Ric(g) = 0,
because the convergence is not strong enough to pass weak limits through
Ric(gi). To prove that Ric(g) = 0 we apply now Uhlenbeck compactness
of Theorem 2.3. Since Ric(g) = 0 is a point-wise condition, we assume
without loss of generality that the coordinate transformations to optimal
regularity (x → yi), asserted to exist by Theorem 2.3, are defined on the
entire coordinate patch in which each gi is given.

Note first that assuming a uniform L∞ bound on Ric(gi) and Weyl(gi)
implies that ‖Riem(gi)‖L∞ is uniformly bounded, since the Ricci tensor to-
gether with the Weyl tensor comprise the Riemann curvature tensor [5].
Thus, also taking into account the bound on the metric and connection in
(6.1), Theorem 2.3 applies and yields the existence of a convergent subse-
quence of (gi)i∈N, asserting weak W 2,p and strong W 1,p convergence, (any p
with n < p < ∞). Namely, let yi be a coordinate system in which Γi and
hence gi has optimal regularity, and denote by gyi the metric gi(x) in yi coor-
dinates but with its components expressed as functions over x-coordinates,
c.f. (ii) of Theorem 2.3. Then gyi ∈W

2,p in x-coordinates and

‖gyi‖W 2,p ≤ ‖gyi‖Lp + ‖Γyi‖W 1,p

is bounded uniformly by some constant C(M) > 0, since ‖Γyi‖W 1,p and the

Jacobians
∥

∥

∂yi
∂x

∥

∥

W 1,p are both uniformly bounded, c.f. (4.16) and (4.17). The
asserted convergence of a subsequence now follows by the Banach Alaoglu
Theorem. We denote this convergent subsequence by (gyi)i∈N, where gyi ≡
gyi(x) is to be understood as the metric in yi-coordinates with components
expressed in x-coordinates.

The main point then is that the curvature is linear in derivatives, and
one can pass weak limits through such derivatives. That is, by assumption
Ric(gi)→ 0 weakly in Lp for some p ∈ (n,∞) as i→∞, and to prove that
the limit metric g ≡ lim

i→∞
gi solves the vacuum Einstein equations, we need

only show that Ric(gi) converges to Ric(g) weakly in Lp as i→∞. For this,
observe that the weak W 1,p convergence of Γi implies weak Lp convergence
of dΓi to dΓ, where Γ denotes the connection of g. Moreover, the strong Lp

convergence of Γi implies strong convergence of Γi ∧Γi to Γ∧Γ in L
p
2 . This

implies weak convergence of the Riemann curvature, namely for any matrix

valued 2-form Ψ ∈W
1,(p/2)∗

0 ⊂W 1,p∗

0 we have

〈Riem(Γi),Ψ〉L2 = −〈Γi, δΨ〉L2 + 〈Γi ∧ Γi,Ψ〉L2

i→∞
−→ −〈Γ, δΨ〉L2 + 〈Γ ∧ Γ,Ψ〉L2 = 〈Riem(Γ),Ψ〉L2 ,

which implies weak convergence in L
p

2 by denseness ofW
1,(p/2)∗

0 in Lp
∗

. Since
this applies to any p > n, we conclude that Riem(Γi) converges weakly to
Riem(Γ) in Lp which implies the sought after convergence, Ric(gi)→ Ric(g)
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weakly in Lp. This proves g solves the vacuum Einstein equations Ric(g) = 0
and this holds in any coordinate system by tensor transformation. �

Note that without Uhlenbeck compactness Theorem 2.3, the uniform L∞

bound on a sequence of metric connections and their curvatures would not
in general imply that the limit metric solves the vacuum Einstein equations.
Indeed, weak Lp convergence of a subsequence of the metric connections is
not in general sufficient to pass weak limits through nonlinear functions like
products [7, Chapter 16]. As a result, even though the Ricci tensor would
correctly converge to zero, the limit Ricci tensor would in general fail to be
the Ricci tensor of the limit connection.

6.2. Optimal regularity in spherically symmetric spacetimes. The
following corollary of Theorem 2.1 establishes for the first time that solu-
tions of the Einstein equations constructed in Standard Schwarzschild Co-
ordinates, including the Lipschitz continuous metrics associated with shock
waves in [13], can always be smoothed to optimal regularity by coordi-
nate transformation. Solutions of the Einstein equations in SSC have a
long history in General Relativity going back to Schwarzschild and Birkhoff.
The existence theory in [13] establishes (weak) shock wave solutions of the
Einstein-Euler equations by Glimm’s method, (see also [3]). The Einstein-
Euler system couples the unknown metric gij to the unknown density ρ,
pressure p and velocity u of a perfect fluid via T ij = (ρ + p)uiuj + pgij in
G = κT . The spacetime metrics of these solutions are non-optimal with cur-
vature in L∞, but optimal metric regularity would be required to introduce
locally inertial frames and geodesic curves by standard methods.

For this consider a metric in Standard Schwarzschild Coordinates (SSC)

ds2 = −B(t, r)dt2 +
dr2

A(t, r)
+ r2dΩ2. (6.2)

This represents the coordinates in which the Einstein equations for a spheri-
cally symmetric spacetime metric (arguably) take their simplest form. Since
the first three Einstein equations in SSC are

−rAr + (1−A) = κBT 00r2 (6.3)

At = κBT 01r (6.4)

r
Br
B
−

1−A

A
=

κ

A2
T 11r2 (6.5)

the metric can generically be only one level more regular than the curvature
tensor, at every level of regularity, and is hence non-optimal. (See [13] for
the full system of equations.) As an application of Theorem 2.1, we have the
following result which establishes that shock wave solutions of the Einstein
equations constructed by the Glimm scheme are one order more regular than
previously known [13]. (The result here extends to every level of regularity,
c.f. [23].)
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Corollary 6.2. Let T ∈ L∞ and assume g ≡ (A,B) is a (weak) solution
of the Einstein equations in SSC satisfying g ∈ C0,1 and hence Γ ∈ L∞ in
an open set Ω. Then for any p > 4 and any q ∈ Ω there exists a coor-
dinate transformation x → y defined in a neighborhood of q, such that, in
y-coordinates, g ∈W 2,p, Γ ∈W 1,p.

Proof. In Standard Schwarzschild coordinates the Ricci and Riemann curva-
ture tensor have the same regularity (as can be verified using Mathematica).
So assuming T in L∞ implies dΓ in L∞, and Theorem 2.1 implies the corol-
lary. �

6.3. Construction of locally inertial coordinates. The standard method
for constructing locally inertial frames does not apply to connections Γ ∈
L∞(Ω) because the classical Riemann normal coordinate construction re-
quires Lipschitz continuity for a connection, and regularity C1,1 for a metric,
[18]. The following corollary of Theorem 2.1 establishes that locally iner-
tial coordinates always exist in a Hölder sense, for any L∞ connection with
Riem(Γ) ∈ L∞(Ω).

Corollary 6.3. Assume Γ,Riem(Γ) ∈ L∞(Ω) on a bounded spacetime do-
main Ω ⊂ Rn. Then for any p ≥ 1 and any point q ∈ Ω there exists a
neighborhood Ω′ ⊂ Ω of q and a coordinate transformation with Jacobian
J ∈ W 1,2p(Ω′) such that the connection in the resulting coordinates z has
regularity Γ ∈W 1,p(Ω′) and satisfies

Γγαβ(q) = 0 (6.6)
∣

∣Γγαβ(q̂)
∣

∣ ≤ C |q − q̂|α, (6.7)

where α ∈ (0, 1) is the Hölder coefficient associated with 2p > n by Mor-
rey’s inequality and | · | is the Euclidean norm on R

n applied to q − p in
z-coordinates.

We call a coordinate system y in which the connection is in W 1,p for p > n
and satisfies (6.6) and (6.7), a locally inertial coordinate system with Hölder
corrections to the gravitational field. The case α = 1 in (6.7) would give
the standard second order correction due to the gravitational field. For
Lorentz metrics one can in addition arrange for the metric to be equal to the
Minkowski metric at q by suitable multiplication with a constant Jacobian.19

Proof of Corollary 6.3. The assumptions of Corollary 6.3 are identical to
those of Theorem 2.1. Applying Theorem 2.1 gives us a Jacobian J ∈
W 1,2p(Ω′), as determined by the RT-equations, defined in some neighbor-
hood Ω′ ⊂ Ω of q, such that the connection in the resulting coordinates yα

19This Jacobian is the unique composition of the orthogonal matrix diagonalizing the
metric at q multiplied with the diagonal matrix that has the inverse of the square root
of each eigenvalue of the metric on its diagonal. See the construction in [20] for details.
Since the Jacobian is constant, properties (6.6) - (6.7) are preserved.
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has regularity Γ ∈ W 1,p(Ω′). Without loss of generality, we assume that
y(q) = 0.

To arrange for condition (6.6), following the development in Chapter 8
of [20], we introduce a smooth coordinate transformation y → z, (hence
preserving the regularity W 1,p of Γ), such that Γ satisfied the sought after
properties (6.6) - (6.7) in z-coordinates. Indeed, it is the Hölder continuity
of Γ, implied by Morrey’s inequality (A.4), which allows us to evaluate
the connection in y-coordinates evaluated at the point q, Γαβγ

∣

∣

q
, and then

introduce the coordinate transformation

zµ(y) ≡ δµαΓ
α
βγ

∣

∣

q
yβyγ + δµα y

α. (6.8)

where δµα denotes the Kronecker symbol. Clearly (6.8) defines a smooth
coordinate transformation and, by our incoming assumption y(q) = 0, it
follows that

z(y(q)) = 0 and
∂zµ

∂yα

∣

∣

∣

q
= δµα. (6.9)

Moreover, and this is the main point of definition (6.8), we have

∂2zµ

∂yβ∂yγ

∣

∣

∣

q
= δµαΓ

α
βγ

∣

∣

q
, (6.10)

which implies that the connection Γσµν in z-coordinates vanishes at q. Indeed,
from the transformation law of connections we find that

∂zσ

∂yα
Γαβγ =

∂2zσ

∂yβ∂yγ
+ Γσµν

∂zµ

∂yβ
∂zν

∂yγ
,

so using (6.9) and (6.10) to evaluate Γσµν at q gives

δσαΓ
α
βγ

∣

∣

q
= δσαΓ

α
βγ

∣

∣

q
+ Γσµν

∣

∣

q
δµβδ

ν
γ

and this implies that in z-coordinates Γσµν
∣

∣

q
= 0 for all σ, µ, ν ∈ {1, ..., n}.

This proves property (6.6) of Corollary 6.3.
Now property (6.7) follows directly from (6.6) together with the Hölder

continuity of Γ in z-coordinates. Namely, since the coordinate transforma-
tion y → z is in C∞(Ω′), we again have Γ ∈ W 1,p(Ω′) in z-coordinates, so
Morrey’s inequality implies that Γ ∈ C0,α for α = 1− n

p . This completes the

proof of Corollary 6.3. �

7. How to recover the original RT-equations from the

reduced RT-equations by gauge transformation

7.1. Conceptual overview. We start by describing, more carefully, the
logical connection between the full RT-equations (4.1) - (4.4) and the re-
duced RT-equations (4.10) - (4.12). Recall from Section 4 that the original
RT-equations were derived by constructing the Laplacian dδ + δd starting
from two equivalent formulations of the Riemann-flat condition, one involv-
ing dJ and one involving dΓ̃; and the first order A equation came by replacing
A = JδΓ̃ in the J equation, setting d of the right hand side equal to zero,
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and imposing dJ = 0 on the boundary in (4.5). Now in the existence theory
set out in [22] for the case Γ, dΓ ∈ W 1,p, we saw that not every solution of
the original RT-equations determines a solution in which J is paired with
Γ̃ = Γ̃J ≡ Γ − J−1dJ given in (4.6). Here Γ̃J is the tensor transformation
(4.7) of the connection coefficients obtained by transforming the original Γ
by J . To complete the argument in [21], we proved that given a solution

(Γ̃, J,A, v) of the full RT-equations, Γ̃J will solve a modified version of the
first RT-equation (4.1). In [21], the role of this modified elliptic equation was

to establish that Γ̃J , (and hence also Γy by (4.7)), is of optimal regularity.
This was established rigorously in [22] at the smoothness level Γ, dΓ ∈W 1,p.

We now understand this more conceptually as follows. The variables for
the original RT-equations are (Γ̃, J,A, v). The transformation (Γ̃, J,A, v)→

(Γ̃, J,B,w) effected by the change of variables (4.8) - (4.9) given by

B = A− 〈dJ ; Γ̃〉,

w = v − δ〈dJ ; Γ̃J 〉,

transforms the last three RT-equations (4.2)-(4.4) into the reduced RT-
equations (4.10)-(4.12), and transforms the first RT-equation (4.1) into equa-

tion (4.13), an elliptic equation for Γ̃ involving (Γ̃, J,B) on the right hand
side. Thus the original four RT-equations (4.1)-(4.4) are equivalent to the
three reduced RT-equations (4.10)-(4.12) together with (4.13). Now the
rather remarkable discovery, which is the basis for the present paper, is that
Γ̃ = Γ̃J turns out to exactly solve equation (4.13), but only on solutions

(J,B) of the reduced RT-equations. That is, Γ̃J does not in general solve
the first RT-equation (4.1), but the transformation (4.8) - (4.9), which un-

couples Γ̃ from the last three equations, also produces the elliptic equation
(4.13) satisfied by Γ̃J . The result then, is that we no longer need the orig-
inal RT-equations, because optimal regularity is determined entirely from
the reduced RT-equations (4.10) - (4.12) for (J,B), together with the elliptic

equation (4.13) for the gain in regularity of Γ̃J . At the end, the original Γ̃
is out of the picture. To borrow words from Ludwig Wittgenstein (regard-
ing his private language argument), the original RT-equations are a “ladder
we climb” to obtain the reduced RT-equations within the gauge freedom of
the original RT-equations, but that ladder can then be thrown away once
we find them. But still, to complete the picture, it is interesting to under-
stand the sense in which solutions (Γ̃J , J,B,w) of the reduced RT-equations

correspond to solutions (Γ̃, J,A, v) of the original RT-equations.
To clarify this, recall that if we are given a coordinate transformation x→

y and J is its Jacobian, applying the tensor transformation law (4.7) to Γ̃J
produces the coefficients of the connection Γy in y coordinates. Now we know
from [22] that the solution space of the original RT-equations (4.1)-(4.5)

is larger than we want, because it contains solutions (Γ̃, J,A, v) for which

Γ̃ 6= Γ̃J . That is, Γ̃ need not have anything to do with the transformation
of our starting non-optimal connection Γ. In fact, we have discovered that
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there exist solutions of the RT-equations with the same J , but different
(Γ̃, A, v). Define then the equivalence class E(J) of all solutions of the original
RT-equations (4.1)-(4.5) which share the same Jacobian field J . (It could
be empty). Recall that only the J-equation (4.2) comes with a boundary
condition (4.5), so the “gauge freedom” in the RT-equations is the freedom to
choose the free function v, and the freedom to impose boundary conditions
for Γ̃ and A in equations (4.1) and (4.3), (4.4), respectively. Thus the
equivalence class E(J) associated with a given Jacobian J is the set of all

solutions (Γ̃, J,A, v) of the RT-equations (4.1)-(4.5), solutions determined by

v and all the possible boundary conditions we might impose to determine Γ̃
and A from equations (4.1) and (4.3), (4.4). Now once we have established

that Γ̃J solves (4.13), reversing the argument leading to (4.8) - (4.9) in

Section 4, (which entails simply replacing Γ̃ by Γ̃J in the formulas for B

and w), shows directly that (Γ̃J , J,A
′, v′) will solve the original original RT-

equations whenever (Γ̃, J,A, v) does, where

A′ = B − 〈dJ ; Γ̃J 〉,

v′ = w − δ〈dJ ; Γ̃J 〉.

Thus conceptually, starting with a solution (Γ̃, J,A, v) of the original RT-

equations, (J,B) will solve the reduced RT-equations, Γ̃J will solve the mod-
ified first RT-equation (4.13), and the back transformation (4.14), (4.15) de-
termines a new solution of the original RT-equations within the equivalence
class E(J), this new solution having as its first component Γ̃ = Γ̃J . That

is, through a change of gauge, we can substitute Γ̃ for Γ̃J in any solution
of the original RT-equations. This gives expression to the content of what
is claimed in (i),(ii) of Theorem 4.1. In summary, we write this as a direct
corollary of Theorem 4.1:

Corollary 7.1. If (Γ̃, J,A, v) lies within the equivalence class E(J) of the

RT-equations, then (Γ̃J , J,A
′, v′) ∈ E(J) as well.

That Γ̃J given by (4.6) actually solves (4.13), the first RT-equation (4.1)
modified by the substitution (4.8)), on solutions of the reduced RT-equations,
is crucial because it is this equation which gives the requisite optimal regu-
larity of Γ̃J , the connection coefficients of Γ transformed by J . As laid out
above, it really is quite remarkable that a change of gauge simultaneously
eliminates Γ̃ from the last three RT-equations, and then on top of that,
transforms the first RT-equations into a new elliptic equation satisfied by
Γ̃J . So as a preliminary to the proof of Theorem 4.1, we now go through
the key idea in the proof of parts (i) and (ii) leading to ΓJ being a solution
of (4.13), in the case when Γ is smooth, thereby displaying how it works
without being distracted by the weak formulation of the equations.

7.2. Recovering solutions of the RT-equations from the reduced
RT-equations: A complete proof of Theorem 4.1 is the subject of Section
9. As a preliminary, we explain in this section the key step in the equivalence
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between the reduced and full RT-equations in its simplest setting, when Γ
is a smooth connection. That is, we explain why Γ̃ = Γ̃J ≡ Γ− J−1dJ au-
tomatically solves the first RT-equation when defined in terms of a solution
(J,B) of the reduced RT-equations. On the face of it, this is quite remark-

able, because the J-equation appears to have lost all knowledge of Γ̃ once
we gauge transform from A to B. The point, which we establish here, is
that when we take the B gauge, the formula (4.6) for Γ̃J in terms of J and Γ
alone gives an exact solution of the first RT-equation (4.1), provided J solves

the reduced RT-equations. Thus the regularity of Γ̃J is determined by the
first RT-equation, but is ultimately encoded in the reduced RT-equations.

Lemma 7.2. Let Γ be smooth and assume (J,B) is a smooth solution of
the reduced RT-equations (4.10) - (4.12) for some given w, such that J is

invertible. Then Γ̃ = Γ̃J and A = A′, defined in (4.6) and (4.14), satisfy
the first RT-equation (4.1).

Proof. To prove Lemma 7.2, we first take the exterior derivative d of equation
Γ̃J = Γ− J−1dJ , c.f. (4.6), to obtain

dΓ̃J = dΓ− d
(

J−1dJ
)

= dΓ− d
(

J−1
)

∧ dJ, (7.1)

where we use d
(

J−1dJ
)

= d
(

J−1
)

∧ dJ by the Leibniz rule (3.7). Taking
now the co-derivative δ of (7.1) gives

δdΓ̃J = δdΓ− δ
(

dJ−1 ∧ dJ
)

, (7.2)

thus giving the first term of the Laplacian ∆Γ̃J ≡ δdΓ̃J + dδΓ̃J .
To determine the second term of ∆Γ̃J , we take δ of equation Γ̃J = Γ −

J−1dJ , c.f. (4.6), to compute

δΓ̃J = δΓ− δ
(

J−1dJ
)

. (7.3)

Using now the Leibniz rule for co-derivatives (3.8) we have

δΓ̃J = δΓ− 〈d(J−1); dJ〉 − J−1δdJ
= δΓ− 〈d(J−1); dJ〉 − J−1∆J, (7.4)

since ∆J = δdJ by δJ = 0, because the co-derivative δ vanishes on 0-forms.
Substituting now the reduced RT-equation (4.10) for ∆J into (7.4) gives

δΓ̃J = δΓ− 〈d(J−1); dJ〉 − J−1
(

δ(J ·Γ) −B
)

, (7.5)

and since δ(J ·Γ) = JδΓ + 〈dJ ; Γ〉 by (3.8), we obtain that

δΓ̃J = J−1B − 〈d(J−1); dJ〉 − J−1〈dJ ; Γ〉. (7.6)

The cancellation of the lowest regularity term δΓ in the step from (7.5) to
(7.6) is the essence of the gain of regularity implied by the RT-equations, c.f.
Theorem 4.1. (To establish this cancellation for weak solutions takes some
work, see Section 9.2.) Now the right hand side of (7.6) is equal to J−1A
as a consequence of the definition of A in (4.14), as proven in Lemma 7.3
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below. So assuming Lemma 7.3 to be true for the moment, we find equation
(7.6) to be identical to

δΓ̃ = J−1A. (7.7)

Taking now the exterior derivative d of (7.7) and adding the resulting equa-
tion to (7.2) gives us

∆Γ̃J = δdΓ− δ
(

dJ−1 ∧ dJ
)

+ d
(

J−1A
)

(7.8)

which proves that Γ̃J solves the sought after equation (4.1). �

To complete the proof of Lemma 7.2, it remains to prove Lemma 7.3.

Lemma 7.3. For A defined in (4.14), we have

A = B − J〈d(J−1); dJ〉 − 〈dJ ; Γ〉, (7.9)

so the right hand side of (7.6) is equal to J−1A.

Proof. To verify (7.9), we substitute Γ̃J = Γ − J−1dJ , c.f. (4.6), into the

definition A = B −
〈

dJ ; Γ̃J
〉

, c.f. (4.14), to compute

A = B −
〈

dJ ; (Γ− J−1dJ)
〉

= B + 〈dJ ;J−1dJ〉 − 〈dJ ; Γ〉. (7.10)

We now use the multiplication property (3.10) of the matrix valued inner
product 〈· ; ·〉 twice, to write the second term in (7.10) as

〈dJ ;J−1dJ〉 = 〈dJ ·J−1; dJ〉
= J〈J−1dJ ·J−1; dJ〉
= −J〈d(J−1); dJ〉, (7.11)

where the last equality holds since d(J−1) = −J−1 dJ · J−1 by the Leibniz
rule for gradients, (since J is a 0-form so d is the gradient). Substituting
(7.11) into (7.10) gives the sought after identity (7.9) and proves Lemma
7.3. �

This completes the proof of Lemma 7.2, the case of smooth solutions. Ac-
complishing this for weak solutions is subject of Section 9.2.

8. Weak formulation of the RT-equations

We now begin the existence theory for weak solutions of the reduced RT-
equations (4.10)-(4.12) on bounded domains Ω ⊂ R

n. This provides an
existence theory for weak solutions of the full RT-equations (4.1)-(4.5) by
using the change of gauge (B,w)→ (A′, v′) given in (4.14) - (4.15).

The RT-equations are a nonlinear elliptic system of equations in unknowns
J,A and Γ̃ determined by the assumed given connection Γ, and they allow
for the freedom to choose the arbitrary function v in the second A-equation
(4.4), together with boundary conditions for Γ̃ and A in (4.1) and (4.3),
(4.4), within the appropriate regularity class. We refer to this as the gauge
freedom in the full RT-equations, and loosely refer to v or A as the choice of
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gauge. Note first that because the right hand sides involve the derivatives
DΓ of Γ, the RT-equations are consistent with the regularity J, Γ̃ being one
order more regular than Γ, dΓ because this puts the right hand sides of the
Γ̃ and J equations (4.2) and (4.1) at the same regularity as DΓ, so long as A
has the same regularity as Γ; and this is consistent with the regularity of the
right hand side of the A equations (4.3) - (4.4) being one order less regular
than Γ. Thus, the RT-equations are consistent with elliptic PDE theory
in the sense that Laplacians in (4.1) - (4.2) should raise the regularity of

Γ̃ and J two orders above the right hand side, which is one order above
the regularity of Γ; and the first order Cauchy Riemann system (4.3) -
(4.4) should raise the regularity of A to the same regularity as Γ. In [22]
authors proved that this consistency of the RT-equations is correct in the
classical sense by giving an existence theory for the full RT-equations in the
case Γ, dΓ ∈ W 1,p, and in Sections 9 - 11 we extent this classical theory to
the case of weak solutions, when Γ, dΓ ∈ L∞. When Γ, dΓ ∈ L∞, we also
have Γ, dΓ ∈ Lp for every p, so our goal is to establish existence of weak
solutions J, Γ̃ ∈ W 1,p, A ∈ Lp, on sufficiently small domains. Note that in
this case, the right hand sides of the Γ̃, J and A equations (4.1) - (4.4) are
at the regularity W−1,p, some p < ∞, a regularity too weak for classical
solutions. So an existence theory requires a weak formulation of the RT-
equations. Note that the RT-equations do indeed admit a weak formulation
because all of the lowest order terms on the right hand side of (4.1)-(4.4)
are matrix valued differential forms with d or δ operating on them, so that
integration by parts will raise the regularities one order. To accomplish the
integration by parts and express a rigorous weak formulation, we need to
construct an inner product and the adjoint operators associated with the
matrix valued differential forms on the right hand side of the RT-equations.
This is accomplished in this section.

The existence theory for weak solutions of the RT-equations is accom-
plished in Sections 9 - 11. A few preliminary comments are in order. First,
the iteration scheme used in [22] only closes in Lp spaces for classical solu-
tions, because of the bad nonlinear term dJ−1 ∧ dJ on the right hand side
of the Γ̃ equation (4.1). The problem is that products of functions in Lp

are not in Lp, (or alternatively, in classical elliptic theory, the Laplacian
does not lift L∞ to C1,1), so the iteration scheme does not close in any Lp

space. We overcome this problem with the reduced RT-equations. I.e., by
showing that for solutions (Γ̃, J,A, v) with v ∈ W−1,p, the change of gauge
(A, v) → (B,w), given in (4.8) - (4.9), uncouples the (J,B) equation from

the Γ̃ equation which contains the bad nonlinear term. We named the re-
sulting linear system (4.10)-(4.12) in (J,B) the reduced RT-equations, and
view this as the RT-equations written in a special gauge. Since the right
hand sides of the reduced RT-equations are linear, we prove in Section 10
that our iteration scheme, modified to the weak formulation of the equa-
tions, does converge when Γ, dΓ ∈ L∞, for sufficiently small bounded sets
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Ω. Even though the reduced RT-equations are linear, it is a system and the
coefficients are at critical low regularity, so an iteration scheme is still re-
quired to handle the lower order terms. The smallness of the neighborhood
Ω is used to rule out complications with the Fredholm alternative. Once we
obtain a solution (J,B) of the reduced RT-equations, we then prove that

(4.6) provides an exact solution Γ̃ = Γ̃J of the first RT-equation (4.1) (with
B substituted for A), and by this we obtain the desired regularity of the

transformed connection coefficients Γ̃J from the now classical linear Lp the-
ory of the Laplacian. In this way the bad nonlinear product in (4.1) can be
handled by simply using solutions of the reduced RT-equations with larger
p, J ∈ W 1,2p), so the bad nonlinear term dJ−1 ∧ dJ on the right hand side

of (4.1) is in W−1,p, thereby placing the solution Γ̃ = Γ̃J ∈ W
1,p. Once we

have a solution to the RT-equation in the (B,w) gauge, we no longer require
a solution of the original RT-equations, but to complete the circle we show
that the transformation back to (A′, v′) in (4.14), (4.15) provides a weak
solution in the original gauge, thereby demonstrating the consistency of the
whole theory for every gauge at the level Γ, dΓ ∈ L∞.

We finish this introduction of the existence theory to follow, by pointing
out some of the obstacles our theory faces in the weak formulation required
when Γ, dΓ ∈ L∞. One technical step in the argument is to prove that a
weak solution of the B equation really does impose the integrability equa-
tion dJ = 0. That is, the boundary condition dJ = 0 (4.5), is not a classical
Dirichlet boundary condition, and when J ∈ W 1,p, dJ = 0 is too weak
to impose on a boundary. Fortunately, the way we handled this boundary
condition in the iteration scheme introduced in [22], can be modified to the
weak setting. The idea is to introduce an auxiliary elliptic equation for y
satisfying dy = J in the iteration. Then we can use Dirichlet boundary
conditions for J which make sense at this low regularity, and thereby ob-
tain the integrability from dy = J which implies dJ = 0. This provides a
very clean way to handle the boundary condition since we can then apply
classical linear Lp-elliptic theory for the Dirichlet problem at each stage of
the iteration. However, for the low regularity considered here, this proce-
dure is more technical because it involves two different version of the weak
Laplacian combined with operations on the Cartan algebra of differential
forms. This is accomplished in Sections 10 - 11. Finally, the proof that Γ̃J
solves the first RT-equation in a weak sense is more involved, because the
weak reduced RT-equation for J cannot be used in a straightforward way to
achieve the cancellation of the lowest regularity term δΓ in equation (7.6).
This is achieved in Section 9.2.

8.1. Integration by parts for matrix valued differential forms. To
introduce the weak formulation of the RT-equations, we first define the
following inner products over matrix and vector valued differential forms.
On matrix valued k-forms A and B, we define the point-wise inner product

〈A,B〉 ≡ tr〈A;BT 〉
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(3.9)
=

n
∑

ν,σ=1

∑

i1<...<ik

Aνσ i1...ikB
ν
σ i1...ik

, (8.1)

where the matrix valued inner product 〈A;B〉 is defined in (3.9). We further
introduce the L2-inner product

〈A,B〉L2 ≡

∫

Ω
〈A,B〉dx (8.2)

where dx denotes the Lebesgue measure in R
n. For vector valued k-forms v

and w we define the point-wise inner product

〈v,w〉 ≡

n
∑

α=1

∑

i1<...<ik

vαi1...ikw
α
i1...ik

, (8.3)

in terms of the Euclidean inner product, and we introduce the L2-inner
product by

〈v,w〉L2 ≡

∫

Ω
〈v,w〉dx. (8.4)

The inner products on matrix valued 0-forms and vector valued 1-forms are
in fact identical,

〈A,B〉 = 〈 ~A, ~B〉, (8.5)

where A and B are matrix valued 0-forms. For k ≥ 1, vectorization of matrix
valued k-forms generally results in a loss of information due to cancellation
of symmetries, and one can not expect (8.5) to be valid.

To introduce the weak formalism of the RT-equations below, we further
require the following well-known partial integration formula for scalar valued
differential forms,

〈dα, β〉L2 + 〈α, δβ〉L2 = 0, (8.6)

where α is a k-form and β a (k + 1)-form, such that either α|∂Ω = 0 or
β|∂Ω = 0, c.f. Theorem 1.11 in [6]. Equation (8.6) holds for regularity
α ∈ W 1,p(Ω) and β ∈ W 1,p∗(Ω), (where p, p∗ are conjugate exponents,
1
p +

1
p∗ = 1), and the condition α|∂Ω = 0 or β|∂Ω = 0 is understood in the

sense that α ∈W 1,p
0 (Ω) or β ∈W 1,p∗

0 (Ω). Here W 1,p
0 (Ω) is the closure of the

space of smooth functions C∞
0 with respect to the W 1,p-norm, so for p > n

functions in W 1,p
0 (Ω) vanish on ∂Ω in the sense of continuous functions. In

our first lemma, we extend (8.6) to matrix and vector valued differential
forms.

Lemma 8.1. Let u be a matrix valued k-form and ω be a matrix valued

(k + 1)-form, k ≥ 0, such that u ∈ W 1,p
0 (Ω) and ω ∈ W 1,p∗

0 (Ω), where
1
p +

1
p∗ = 1, then

〈du, ω〉L2 + 〈u, δω〉L2 = 0, (8.7)

and (8.7) continues to hold if only one of the forms u and ω vanishes on the

boundary, i.e., only u ∈W 1,p
0 (Ω) or ω ∈W 1,p∗

0 (Ω). Moreover, (8.7) holds as
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well when u ∈W 1,p
0 (Ω) is a vector valued k-form and ω ∈W 1,p∗

0 (Ω) a vector
valued (k + 1)-form, (or if either ω|∂Ω = 0 or u|∂Ω = 0 in the above sense).

Proof. The Lemma follows directly from (8.6) together with the fact that
the exterior derivative and co-derivative act on matrix-components sepa-
rately, c.f. [21]. Namely, assuming the case that u and v are matrix valued
differential forms, we find from definition (8.2) that

〈du, ω〉L2 =

n
∑

ν,σ=1

∫

Ω

∑

i1<...<ik+1

(du)νσ i1...ik+1
ωνσ i1...ik+1

dx.

Applying now the partial integration formula for scalar valued forms (8.6)
to the above right hand side for fixed ν and σ, we obtain that

〈du, ω〉L2 = −
n
∑

ν,σ=1

∫

Ω

∑

i1<...<ik

uνσ i1...ik(δω)
ν
σ i1...ik

dx

= −〈u, δω〉L2 .

This is the sought after identity (8.7) for matrix valued forms. The case for
vector valued forms follows analogously. �

Before we define the weak formulation of the RT-equations, we first intro-
duce the weak formulations of Cauchy Riemann type and Poisson equations.
So consider an equation of Cauchy Riemann type,

{

du = f

δu = g,
(8.8)

where u, f and g are vector valued differential forms. In light of (8.7), we
say that a vector valued k-form u ∈W 1,p(Ω) solves (8.8) weakly, if

{

〈u, δψ〉L2 = −f(ψ)

〈u, dϕ〉L2 = −g(ϕ),
(8.9)

for any vector valued (k + 1)-form ψ ∈ W 1,p∗

0 (Ω) and any vector valued

(k−1)-form ϕ ∈W 1,p∗

0 (Ω) both vanishing on ∂Ω, where we assume that f is
a scalar valued linear functional on the space of vector valued (k+1)-forms

in W 1,p∗

0 (Ω) and g is a scalar valued linear functional on the space of vector

valued (k − 1)-forms in W 1,p∗

0 (Ω). (See Section C for a complete list of
consistency conditions on f and g required for existence of solutions.) Weak
solutions of (8.8) for matrix valued differential forms can be introduced in
a similar fashion, but are not used in this paper since the third and fourth
RT-equations 4.3 - (4.4) are vector valued 1-forms.

Now consider the Poisson equation

∆u = f. (8.10)

We say that a matrix valued k-form u ∈W 1,p(Ω) solves (8.10) weakly, if

∆u[φ] = f(φ), (8.11)
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for any matrix valued k-form φ ∈W 1,p∗

0 (Ω), where

∆u[φ] ≡ −〈du, dφ〉L2 − 〈δu, δφ〉L2 (8.12)

and f is a scalar valued linear functional on the space of matrix valued k-

forms φ ∈W 1,p∗

0 (Ω). To extend the notion of weak solutions of the Poisson
equation (8.10) to vector valued differential forms, simply use vector valued

test k-forms φ ∈W 1,p∗

0 (Ω) and the corresponding inner product (8.4), which
suffices since the exterior derivative d and the co-derivative δ act only on
form-indices, but not on matrix or vector indices.

The following lemma clarifies that the weak formulation of the Laplacian
in (8.12) for differential forms is identical to the standard weak form of the
Laplacian (c.f., [11, 12]) taken component wise. By this we know we can
use standard theorems of elliptic regularity theory for the analysis in this
paper, c.f. Section B.

Lemma 8.2. Let u ∈W 1,p(Ω) be a matrix (or vector) valued k-form, then

∆u[φ] = −〈∇u,∇φ〉L2 , (8.13)

for any matrix (or vector) k-form φ ∈ W 1,p∗

0 (Ω), where ∆u[φ] is the weak
Laplacian defined in (8.12), ∇ is the Euclidean gradient in x-coordinates
taken on each component20, and we set

〈∇u,∇φ〉L2 ≡
n
∑

j=1

∫

Ω
〈∂ju, ∂jφ〉dx. (8.14)

Moreover, (8.13) holds assuming only u ∈ Lp(Ω) with du, δu ∈ Lp(Ω), (the
low regularity we encounter in the proof of Theorem 4.1).

Proof. By compactness of C∞
0 (Ω) in W 1,p∗

0 (Ω) it suffices to prove (8.13) for
φ ∈ C∞

0 (Ω). So let φ ∈ C∞
0 (Ω) and use partial integration component wise

to compute

〈∇u,∇φ〉L2 = −〈u,∇ · (∇φ)〉L2 .

Substituting now that ∇ · (∇φ) = ∆φ = dδφ + δdφ and using partial inte-
gration for differential forms (8.7), we obtain that

〈∇u,∇φ〉L2 = −〈u, dδφ〉L2 − 〈u, δdφ〉L2

= 〈δu, δφ〉L2 + 〈du, dφ〉L2

= −∆u[φ]. (8.15)

This proves (8.13) in the case u ∈W 1,p(Ω).
To prove the supplement, assume that u ∈ Lp(Ω) with du, δu ∈ Lp(Ω).

For this regularity the weak Laplacian (8.12) is well-defined, i.e.,

∆u[φ] ≡ −〈du, dφ〉L2 − 〈δu, δφ〉L2 , (8.16)

20So ∇ is taken on each matrix, vector or differential form component separately, e.g.,
∇u = (∇u)i1...ikdx

i1 ∧ ... ∧ dxik for u = ui1...ikdx
i1 ∧ ... ∧ dxik .
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exists for any matrix valued k-form φ ∈ W 1,p∗

0 (Ω). Again, considering φ in
the dense subspace C∞

0 (Ω), ∆φ = δdφ+ dδφ is well-defined. We now apply
partial integration (8.7) to write (8.16) as

∆u[φ] = 〈u,∆φ〉L2 = lim
h→0
〈u,∇h · ∇φ〉L2 , (8.17)

where the last equality holds by convergence of the difference quotient ∇hφ
to ∇φ, so that we have ∇h · ∇φ→ ∆φ as h→ 0. By partial integration for
∇h, we find that

− 〈∇hu,∇φ〉L2 = 〈u,∇h · ∇φ〉L2 . (8.18)

By (8.17) the right hand side in (8.18) converges, which implies that the left
hand side in (8.18) converges as h→ 0 as well, and we have

lim
h→0
〈∇hu,∇φ〉L2 = 〈∇u,∇φ〉L2 . (8.19)

Combing this with (8.17), we find that

∆u[φ] = −〈∇u,∇φ〉L2

for any φ ∈ C∞
0 (Ω). By denseness of C∞

0 (Ω) in W 1,p∗

0 (Ω) this establishes
(8.13) for the low regularity u ∈ Lp(Ω) with du, δu ∈ Lp(Ω). This completes
the proof of Lemma 8.2. �

8.2. The weak RT-equations and weak reduced RT-equations. We
are now prepared to derive the weak formulation of the RT-equations (4.1)
- (4.4), that is, of the system

∆Γ̃ = δdΓ− δ
(

dJ−1 ∧ dJ
)

+ d(J−1A),

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A,

d ~A =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

− d
(

−−−−→
〈dJ ; Γ̃〉

)

,

δ ~A = v.

To begin, assume we are given a smooth solution (Γ̃, J,A) of the RT-equations

(4.1) - (4.4) with Γ̃ ∈W 1,p(Ω), J ∈W 1,2p(Ω) and A ∈ L2p(Ω), and assuming
p > 1 suffices here. Now, in light of (8.12), for any matrix valued 1-form

Φ ∈W 1,p∗

0 (Ω), we write the left hand side of the first RT-equation (4.1) as

∆Γ̃[Φ] ≡ −〈δΓ̃, δΦ〉L2 − 〈dΓ̃, dΦ〉L2 , (8.20)

where we applied (8.7) to ∆ = δd + dδ in the last equality, where again
1
p∗ + 1

p = 1. Applying now (8.7) to rewrite the right hand side of (4.1) in

an analogous way, we find that the first RT-equation (4.1) can be written
equivalently as

−∆Γ̃[Φ] =
〈

(dΓ− dJ−1 ∧ dJ), dΦ
〉

L2 + 〈J
−1A, δΦ〉L2 (8.21)

for any matrix valued 1-form Φ ∈ W 1,p∗

0 (Ω). This is the weak formulation
of (4.1). Similarly, we find the weak formulation of (4.2) to be

−∆J [φ] =
〈

J ·Γ, dφ
〉

L2 +
〈(

〈dJ ; Γ̃〉+A
)

, φ
〉

L2 , (8.22)
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for all matrix valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), where ∆J [φ] = −〈dJ, dφ〉L2 .
Since we address the solution space J ∈W 1,2p(Ω), we require the test space

W
1,(2p)∗

0 (Ω), where (2p)∗ denotes the conjugate exponent to 2p, i.e., 1
(2p)∗ +

1
2p = 1, (and note that (2p)∗ 6= 2p∗ in general).

To derive the weak formulation of (4.3) - (4.4), we first clarify how to

shift
−→
div over to test functions, i.e., we have to find the adjoint to the

operation defined in (3.11). For this, we introduce div←− as the mapping from

vector valued 2-forms ψ ∈W
1,(2p)∗

0 (Ω) to matrix valued 2-forms in L(2p)∗(Ω)
defined by

(

div←−(ψ)
)µ

ν
= ∂νψ

µ
ij dx

i ∧ dxj , (8.23)

where the conjugate exponent (2p)∗ in used in light of the desired solution
space A ∈ L2p(Ω) below. Now, by applying partial integration component
wise, it is easy to verify the following lemma.

Lemma 8.3. For any matrix valued 2-form ω, it is

〈
−→
div(ω), ψ〉L2 = −〈ω, div←−(ψ)〉L2 (8.24)

for any vector valued 2-form ψ ∈W
1,(2p)∗

0 (Ω).

Proof. By the definition in (3.11) we have
−→
div(ω)µ ≡

∑n
ν=1 ∂ν(ω

µ
ν )ijdx

i∧dxj ,
so components-wise partial integration gives us

〈
−→
div(ω), ψ〉L2 =

∑

µ

∑

i<j

∫

Ω

∑

ν

∂ν(ω
µ
ν )ijψ

µ
ijdx

=
∑

µ,ν

∑

i<j

∫

Ω
(ωµν )ij∂νψ

µ
ijdx

= −〈ω, div←−(ψ)〉L2 , (8.25)

which proves (8.24) and the lemma. �

Applying now (8.24) together with (8.7) for vector valued differential forms,
we find that (4.3) - (4.4) can be written equivalently as

{

〈 ~A, δψ〉L2 =
〈

(dJ ∧ Γ + J dΓ),div←−(ψ)
〉

L2 − 〈
−−−−→
〈dJ ; Γ̃〉, δψ〉L2

〈 ~A, dϕ〉L2 = −〈v, ϕ〉L2 ,
(8.26)

for all vector valued 2-form ψ ∈W
1,(2p)∗

0 (Ω) and any vector valued function

ϕ ∈ W
1,(2p)∗

0 (Ω), (so ψ|∂Ω = 0 and ϕ|∂Ω = 0). This is the weak formulation
of (4.3) - (4.4). For the purpose of this paper we only need the weak for-
mulation when Γ, dΓ ∈ L∞, but we introduce it here more generally for Lp

spaces.

Definition 8.4. Let Γ, dΓ ∈ L2p(Ω), and assume Γ̃ ∈W 1,p(Ω), J ∈W 1,2p(Ω)

and A ∈ L2p(Ω). We say (Γ̃, J,A) is a weak solution of the RT-equations

if (8.21), (8.22) and (8.26) hold for all test functions Φ ∈ W 1,p∗

0 (Ω) and
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φ,ψ, ϕ ∈ W
1,(2p)∗

0 (Ω) specified above, where p∗ and (2p)∗ are the conjugate
exponents defined by 1

p∗ + 1
p = 1 and 1

(2p)∗ + 1
2p = 1.

The weak formulation of the RT-equations in Definition 8.4 can be easily
adapted to the reduced RT-equations, subject of the next definition. Recall
first that the reduced RT-equations (4.10) - (4.12) are

∆J = δ(J ·Γ) −B,

d ~B =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

,

δ ~B = w,

with unknowns J and B.

Definition 8.5. Let Γ, dΓ ∈ L2p(Ω). For J ∈ W 1,2p(Ω) and B ∈ L2p(Ω),
we say that (J,B) is a weak solution of the reduced RT-equations (4.10) -
(4.12), if

−∆J [φ] = 〈J ·Γ, dφ〉L2 + 〈B,φ〉L2 (8.27)

holds for any matrix valued 0-form φ ∈W
1,(2p)∗

0 (Ω), (where ∆J [φ] = −〈dJ, dφ〉L2),
and if

{

〈 ~B, δψ〉L2 =
〈

(dJ ∧ Γ + J dΓ), div←−(ψ)
〉

L2

〈 ~B, dϕ〉L2 = w,
(8.28)

holds for any vector valued 2-form ψ ∈ W
1,(2p)∗

0 (Ω) and any vector valued

function ϕ ∈W
1,(2p)∗

0 (Ω).

9. The gauge freedom - Proof of Theorem 4.1

In this section we prove that, given a solution (J,B) of the reduced RT-

equations (4.10) - (4.12), then (J, Γ̃, A) solves the full RT-equations (4.1) -

(4.4) with Γ̃ = Γ̃J and A = A′, where Γ̃J and A′ are defined in (4.6) and
(4.14) as

Γ̃J = Γ− J−1dJ,
A′ = B − 〈dJ ; Γ̃〉.

From this, using the first RT-equation (4.1) in terms of A = A′ (which is

equivalent to equation (4.13)), we then prove that Γ̃J gains one derivative
over the regularity of the terms separately on the right hand side of its
definition in (4.6). This is the subject of Theorem 4.1. Throughout the rest

of this paper we only address the case Γ̃ = Γ̃J and A = A′, so for ease of
notation from here on, we denote Γ̃J by Γ̃ and A′ by A.

For completeness, and to connect our point of view here with [23], in Sec-
tion 9.2, we prove Theorem 4.1 at the higher level of connection regularity,
Γ, dΓ ∈ Wm,p(Ω), m ≥ 1, p > n, a regularity sufficient to take point-wise
Lp estimates and apply Morrey’s inequality (A.4). In Section 9.2 we prove
the low regularity case Γ, dΓ ∈Wm,p(Ω).
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9.1. The smooth case of Theorem 4.1. We here prove the following
proposition which establishes Theorem 4.1 in the case Γ, dΓ ∈ Wm,p(Ω),
m ≥ 1, p > n. This is proposition is not needed to prove the results in
this paper. For ease of notation we let Ω ≡ Ωx denote the neighborhood Ω′

x

of Theorem 4.1 in x-coordinates, and we denote the compactly contained
subset Ω′′

x by Ω′.

Proposition 9.1. Assume Γ, dΓ ∈Wm+1,p(Ω) in x-coordinates, for m ≥ 1,
p > n and p < ∞. Assume (J,B) solves the reduced RT-equations (4.10)
- (4.12) in a weak sense for some w ∈ Wm−1,p(Ω), such that J, J−1 ∈
Wm+1,p(Ω) and B ∈Wm,p(Ω).21 Then the following holds:

(i) Defining Γ̃J by (4.6), Γ̃ ≡ Γ̃J solves (4.13), and the tuple (J, Γ̃, A) solves
the full RT-equations (4.1) - (4.4) in Ω for v ≡ v′ and A ≡ A′, where A′

and v′ are defined in (4.14) and (4.15).

(ii) The regularity of Γ̃ ≡ Γ̃J is given by Γ̃J ∈W
m+1,p(Ω′) for any open set

Ω′ compactly contained in Ω, i.e., Γ̃J is one order more regular than the two
terms are separately on the right hand side of its definition in (4.6).
(iii) Let M > 0 be a constant such that

‖(Γ, dΓ)‖Wm,p(Ω) ≡ ‖Γ‖Wm,p(Ω) + ‖dΓ‖Wm,p(Ω) ≤M.

Assume that (J,B) satisfies further the estimate

‖I−J‖Wm+1,p(Ω)+‖I−J
−1‖Wm+1,p(Ω)+‖B‖Wm,p(Ω) ≤ C1(M) ‖(Γ, dΓ)‖Wm,p(Ω),

(9.1)

for some constant C1(M) > 0 depending only on Ω, n, p and M . Then, on

any open set Ω′ compactly contained in Ω, Γ̃ ≡ Γ̃J satisfies the uniform
bound

‖Γ̃‖Wm+1,p(Ω′

x)
≤ C2(M) ‖(Γ, dΓ)‖Wm,p(Ω) (9.2)

where C2(M) > 0 is some constant depending only on Ω′,Ω, n, p and M .

Proof. Let Γ, dΓ ∈Wm,p(Ω), for m ≥ 1, p > n, and assume (J,B) is a solu-
tion of the reduced RT-equations (4.10) - (4.12) with J, J−1 ∈ Wm+1,p(Ω)
and B ∈ Wm,p(Ω). For this regularity Lemma 7.2 applies and yields that

(J, Γ̃, A) solves the first RT-equation (4.1).

We now prove that (J, Γ̃, A) solves the second RT-equation (4.2). By
assumption, (J,B) solves the reduced RT-equation (4.10), that is,

∆J = δ(J ·Γ) −B. (9.3)

By definition of A in (4.14), we have

B = A+ 〈dJ ; Γ̃〉, (9.4)

so substitution of (9.4) into (9.3) gives

∆J = δ(J ·Γ) − 〈dJ ; Γ̃〉 −A,

which is the sought after RT-equation (4.2).

21The existence of such a solution follows from our existence theory in [22, 23].



UHLENBECK COMPACTNESS AND OPTIMAL REGULARITY 45

We now prove that (J, Γ̃, A) solves the last two RT-equations (4.3) - (4.4).
By assumption, (J,B) solves (4.3) - (4.4) for some w ∈Wm−1,p(Ω), that is,

d ~B =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

, (9.5)

δ ~B = w. (9.6)

Substituting (9.4) into (9.5) and subtracting the resulting equation by d
−−−−→
〈dJ ; Γ̃〉

gives us the equation

d ~A =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

− d
−−−−→
〈dJ ; Γ̃〉,

which is the sought after third RT-equation (4.3). Similarly, substituting
(9.4) into (9.6) gives

δ ~A = w − δ〈dJ ; Γ̃〉,

which is the sought after RT-equation (4.4) for v defined by (4.15), that is,

for v = w − δ〈dJ ; Γ̃〉. Taken together, we proved that (J, Γ̃, A) solves the
full RT-equations (4.1) - (4.4) for the gauge freedom in v fixed by the choice
(4.15). This proves (i) of the proposition.

To prove (ii) of Proposition 9.1, we need to show the regularity Γ̃ ∈
Wm+1,p(Ω) together with estimate (9.2). In a first step, we establish the

lower regularity Γ̃ ∈ Wm,p(Ω) and A ∈ Wm,p(Ω) from their definitions in
(4.6) and (4.14). For this we use that by Morrey’s inequality (A.4) the space
Wm,p(Ω) is closed under multiplication when m ≥ 1, p > n, c.f. [21]. Now

Γ̃ ∈Wm,p(Ω), since Γ ∈Wm,p(Ω), J−1 ∈Wm+1,p(Ω) and dJ ∈Wm,p(Ω) so

that the closedness of Wm,p(Ω) yields Γ̃ = Γ− J−1dJ ∈ Wm,p(Ω) by (4.6).
Moreover, the regularity A ∈ Wm,p(Ω) directly follows from (4.14), since

dJ, Γ̃ ∈ Wm,p(Ω) implies that A = B − 〈dJ ; Γ̃〉 ∈ Wm,p(Ω). This shows

that Γ̃ and A are both in Wm,p(Ω).

We now prove that Γ̃ ∈ Wm,p(Ω) is one derivative more regular, Γ̃ ∈
Wm+1,p(Ω), by establishing estimate (9.2). For this, we use the first RT-
equation (4.1),

∆Γ̃ = δdΓ− δ
(

dJ−1 ∧ dJ
)

+ d
(

J−1A
)

. (9.7)

But estimate (B.8) of elliptic regularity theory gives

‖Γ̃‖Wm+1,p(Ω′) ≤ Ce
(

‖∆Γ̃‖Wm−1,p(Ω) + ‖Γ̃‖Wm,p(Ω)

)

(9.8)

for any open set Ω′ compactly contained in Ω, where C > 0 is some constant
depending only on Ω′,Ω, p, n,m. The regularity gain of Γ̃ follows once we
show ∆Γ̃ ∈ Wm−1,p(Ω), since Γ̃ ∈ Wm,p(Ω). But to derive the sought
after estimate (9.2) we need a more refined analysis. For this, we begin by
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substituting for ∆Γ̃ the right hand side of (9.7) to obtain

‖Γ̃‖Wm+1,p(Ω′)

≤ Ce

(

‖δdΓ‖Wm−1,p(Ω) + ‖δ
(

dJ−1 ∧ dJ
)

‖Wm−1,p(Ω) + ‖d
(

J−1A
)

‖Wm−1,p(Ω)

)

≤ Ce

(

‖dΓ‖Wm,p(Ω) + ‖δ
(

dJ−1 ∧ dJ
)

‖Wm−1,p(Ω) + ‖J
−1A‖Wm,p(Ω)

)

. (9.9)

(We subsequently often write ‖ · ‖Wm,p instead of ‖ · ‖Wm,p(Ω).) The first
term on the right hand side of (9.9) is bounded by assumption. Using first
the product rule and then Morrey’s inequality (A.4), the second term can
be bounded by

‖δ
(

dJ−1 ∧ dJ
)

‖Wm−1,p(Ω)

≤
∥

∥|D(dJ−1)| · |dJ |
∥

∥

Wm−1,p +
∥

∥|dJ−1| · |D(dJ)|
∥

∥

Wm−1,p

≤ ‖D(dJ−1)‖Wm−1,p‖dJ‖Wm−1,∞ + ‖dJ−1‖Wm−1,∞‖D(dJ)‖Wm−1,p

≤ ‖J−1‖Wm+1,p‖J‖Wm,∞ + ‖J−1‖Wm,∞‖J‖Wm+1,p

(A.4)

≤ 2CM‖J
−1‖Wm+1,p(Ω)‖J‖Wm+1,p(Ω),

which is bounded by our incoming assumptions J−1, J ∈Wm+1,p(Ω). Using
that dJ = d(J − I), the previous estimate gives us

‖δ
(

dJ−1 ∧ dJ
)

‖Wm−1,p(Ω) ≤ 2CM‖J
−1‖Wm+1,p(Ω)‖I − J‖Wm+1,p(Ω) (9.10)

To estimate the third term on the right hand side of (9.9), we use that by

definition Γ̃ ≡ Γ̃J = Γ− J−1dJ and A = B − 〈dJ ; Γ̃〉, to write

J−1A = J−1B − J−1〈dJ ; Γ〉+ 〈dJ−1; dJ〉,

where we used the multiplication property (3.10) to get J−1〈dJ ;J−1dJ〉 =
〈dJ−1; dJ〉. We now estimate the third term on the right hand side of (9.9)
as

‖J−1A‖Wm,p(Ω) ≤ ‖J
−1B‖Wm,p + ‖J−1〈dJ ; Γ〉‖Wm,p + ‖〈dJ−1; dJ〉‖Wm,p .

(9.11)

We now use the closedness of Wm,p(Ω) under multiplication (m ≥ 1, n > p)
by Morrey’s inequality (A.4), to estimate the products in (9.11), for instance,

‖J−1B‖Wm,p(Ω) = ‖D(J−1B)‖Wm−1,p + ‖J−1B‖Wm−1,p

≤ ‖D(J−1)B‖Wm−1,p + ‖J−1DB‖Wm−1,p + ‖J−1B‖Wm−1,p

≤ ‖D(J−1)‖Wm−1,p‖B‖Wm−1,∞ + ‖J−1‖Wm−1,∞‖DB‖Wm−1,p

+ ‖J−1‖Wm−1,∞‖B‖Wm−1,p

≤ CM‖J
−1‖Wm,p‖B‖Wm,p .
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In this fashion, replacing dJ on the right hand side of (9.11) by d(I − J),
we obtain

‖J−1A‖Wm,p ≤ C‖J−1‖Wm+1,p

(

‖B‖Wm,p + ‖J‖Wm+1,p‖Γ‖Wm,p + ‖I − J‖Wm+1,p

)

≤ C‖J−1‖Wm+1,p

(

1 + ‖J‖Wm+1,p

)(

‖B‖Wm,p + ‖Γ‖Wm,p + ‖I − J‖Wm+1,p

)

,

(9.12)

where C > 0 is some constant depending only on Ω,m, n, p. Substituting
(9.10) and (9.12) back into the original estimate (9.9), we obtain

‖Γ̃‖Wm+1,p(Ω′) ≤ P(J)
(

‖Γ‖Wm,p+‖dΓ‖Wm,p+‖I−J‖Wm+1,p+‖B‖Wm,p

)

+C‖Γ̃‖Wm,p ,

(9.13)

where P(J) ≡ C
(

1+‖J−1‖Wm+1,p

)(

1+‖J‖Wm+1,p

)

for some constant C > 0

depending only on Ω,m, n, p. By the definition of Γ̃ in (4.6), we bound

‖Γ̃‖Wm,p(Ω) using Morrey’s inequality as

‖Γ̃‖Wm,p(Ω) ≤ CM
(

‖Γ‖Wm,p(Ω) + ‖J
−1‖Wm+1,p(Ω)‖J‖Wm+1,p(Ω)

)

,

from which we obtain the simplified bound

‖Γ̃‖Wm+1,p(Ω′) ≤ P(J)
(

‖Γ‖Wm,p + ‖dΓ‖Wm,p + ‖I − J‖Wm+1,p + ‖B‖Wm,p

)

,

(9.14)
by changing the constant C > 0 in the definition on P suitably. Finally,
using our incoming assumption (9.1) to bound the above Sobolev norms
on J, J−1 and B, we obtain the sought after uniform bound (9.2). Clearly,

estimate (9.2) implies the sought after regularity Γ̃ ∈ Wm+1,p(Ω).22 This
completes the proof of Proposition 9.1. �

9.2. Proof of Theorem 4.1. We now prove Theorem 4.1, roughly fol-
lowing the steps in the proof of Proposition 9.1, but adapted to the weak
formulation of the RT-equations to account for the low regularity addressed
here. This is significantly more complicated because the substitution of the
J-equation in the proof of Lemma 7.2, (required to get the cancellation
of terms involving δΓ, on which our whole theories rests), is not a simple
replacement when dealing with the weak form of the equations, due to the
problem of multiplying distributions by low regularity functions, c.f. Lemma
9.2 below. Moreover, for the low regularity here, products must be estimated
by Hölder inequality instead of Morrey, which we compensate for by putting
J in the smaller Sobolev spaceW 1,2p and estimating Γ̃ inW 1,p. Even though
we begin here with a given solution of the reduced RT-equations, low regu-
larity products have to be incorporated into the weak formulation of the Γ̃
equation, a reflection of the fact that the RT-equations are non-linear.

22Note, the gain of one derivative to the required regularity Γ̃ ∈ Wm+1,p(Ω), is entirely
based on the cancellation of δΓ-terms in equation (7.6) of the proof of Lemma 7.2.
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So assume Γ, dΓ ∈ L∞(Ω) in x-coordinates and ‖(Γ, dΓ)‖L∞(Ω) ≤ M for
some constantM > 0, and let n < p <∞. Assume (J,B) solves the reduced
RT-equations (4.10) - (4.12) on Ω, such that

‖I − J‖W 1,2p(Ω) + ‖I − J
−1‖W 1,2p(Ω) + ‖B‖L2p(Ω) ≤ C2(M)‖(Γ, dΓ)‖L∞(Ω),

(9.15)
where C2(M) > 0 is some constant depending only on Ω, n, p andM . Define

Γ̃ by (4.6) and A by (4.14), that is,

Γ̃ = Γ̃J ≡ Γ− J−1dJ and A = A′ ≡ B − 〈dJ ; Γ̃〉.

Again we denote Γ̃J by Γ̃ and A′ by A from here on, and we let Ω ≡ Ωx
denote the neighborhood Ω′

x of Theorem 4.1 in x-coordinates, and we denote
the compactly contained subset Ω′′

x by Ω′. Theorem 4.1 (i) states that

(J, Γ̃, A) solves the full RT-equations (4.1) - (4.4) in Ω for v = v′ defined in

(4.15). Parts (ii) and (iii) of Theorem 4.1 states that Γ̃ is in W 1,p(Ω′) and
satisfies the uniform bound

‖Γ̃‖W 1,p(Ω′) ≤ C3(M)‖(Γ, dΓ)‖L∞(Ω), (9.16)

on any open set Ω′ compactly contained in Ω, and where C3(M) > 0 is some
constant depending only on Ω′,Ω, n, p and M .

Anticipating future work, we give the proof of Theorem 4.1 under the
weaker assumption that Γ, dΓ ∈ L2p(Ω), assuming the uniform bound

‖(Γ, dΓ)‖L2p(Ω) ≡ ‖Γx‖L2p(Ω) + ‖dΓx‖L2p(Ω) ≤M,

in place of ‖(Γ, dΓ)‖L∞(Ω) ≤M and assuming the right hand side of (9.15)
is bounded by ‖(Γ, dΓ)‖L2p(Ω) in place of ‖(Γ, dΓ)‖L∞(Ω). Since

‖(Γ, dΓ)‖L2p(Ω) ≤ vol(Ω)
1
2p ‖(Γ, dΓ)‖L∞(Ω)

for Ω bounded, Theorem 4.1 follows directly by substituting ‖(Γ, dΓ)‖L∞ for
‖(Γ, dΓ)‖L2p .

Proof of Theorem 4.1. So assume J ∈ W 1,2p(Ω) and B ∈ L2p(Ω) solve the
reduced RT-equations (4.10) - (4.12). Since only the regularity of the gauge
variable w in (4.12) is relevant for the proof, we assume here without loss of
generality that w = 0, the case for which we prove existence of solutions in
Section 10. So (J,B) is assumed to solve

∆J = δ(J ·Γ) −B, (9.17)

d ~B =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

, (9.18)

δ ~B = 0, (9.19)

in the weak sense of Definition 8.5. That is, we assume

−∆J [φ] = 〈J ·Γ, dφ〉L2 + 〈B,φ〉L2 (9.20)
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for any matrix valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), where ∆J [φ] = −〈dJ, dφ〉L2 ,
and we assume

{

〈 ~B, δψ〉L2 =
〈

(dJ ∧ Γ + J dΓ),div←−(ψ)
〉

L2

〈 ~B, dϕ〉L2 = 0,
(9.21)

for any vector valued 2-form ψ ∈W
1,(2p)∗

0 (Ω) and any vector valued function

ϕ ∈ W
1,(2p)∗

0 (Ω). Here (2p)∗ denotes the conjugate exponent of 2p, i.e.,
1

(2p)∗ +
1
2p = 1, so (2p)∗ = (2p)∗

(2p)∗−1 , (and (2p)∗ 6= 2p∗ in general). In the proof

of Theorem 4.1 we use C > 0 to denote a running constant depending only
on Ω, n and p.

The proof of Theorem 4.1 requires several lemmas. Before we estab-
lish these lemmas, we derive the preliminary regularities Γ̃ ∈ L2p(Ω) and

A ∈ Lp(Ω) from the definitions of Γ̃ in (4.6) and A in (4.14), regulari-

ties we require to bootstrap to the desired regularities Γ̃ ∈ W 1,p(Ω) and
A ∈ L2p(Ω) below. For this, recall that J is assumed to be invertible with
J−1 ∈W 1,2p(Ω), so Morrey’s inequality (A.4) implies that J−1dJ ∈ L2p(Ω).

Thus, since Γ ∈ L2p(Ω) by assumption, Γ̃ ∈ L2p(Ω) follows directly from
its definition in (4.6). To show that A ∈ Lp(Ω), we first apply Hölder’s

inequality as in (A.7) to conclude that 〈dJ ; Γ̃〉 ∈ Lp(Ω), since dJ and Γ̃ are
both in L2p(Ω), which implies that A ∈ Lp(Ω) by our incoming assump-
tion B ∈ L2p(Ω). So we now have established the preliminary regularity

Γ̃ ∈ L2p(Ω) and A ∈ Lp(Ω).

In Lemma 9.3 below we prove that Γ̃ defined in (4.6) solves the first
RT-equation (4.1) for A defined by (4.14), in the weak sense (8.21). We
then apply elliptic regularity theory to this equation to boost the regularity
of Γ̃ one order to Γ̃ ∈ W 1,p(Ω). By Morrey’s inequality and (4.14), Γ̃ ∈
W 1,p(Ω′) then implies that A ∈ L2p(Ω′). These are the regularities stated
in Theorem 4.1. The main step in the proof of Lemma 9.3 is accomplished
in the following lemma by adapting the computation in the proof of Lemma
7.2 to the weak formulation required for the low regularity here.

Lemma 9.2. Under the assumption of Theorem 4.1, we have

δΓ̃[φ] = 〈J−1A,φ〉L2 (9.22)

for any matrix valued 0-form φ ∈W 1,p∗

0 (Ω), where δΓ̃[φ] ≡ −〈Γ̃, dφ〉L2 . That

is, δΓ̃ = J−1A in the sense of weak derivatives.23

Proof. Assume J is a solution of the first reduced RT-equation in the weak
sense (8.27) for some given B ∈ L2p(Ω). The proof is based on adapting
the computation (7.3) - (7.7) of the proof of Lemma 7.2 to regularities J ∈
W 1,2p(Ω) and B ∈ L2p(Ω). This requires care because of the presence of

23For the reader familiar with our previous work in [21, 23], note that establishing
(9.22) reverses a basic identity in the derivation of the RT-equations from the Riemann-

flat condition where we defined A in terms of JδΓ̃.



50 M. REINTJES AND B. TEMPLE

low regularity products. Instead of computing δΓ̃ directly as in (7.3), which
would not yield the weak Laplacian on J (essential for the argument), we

begin by taking δ of J Γ̃.24 Using that Γ̃ ≡ Γ − J−1dJ by its definition in
(4.6), taking δ of J Γ̃ gives us

δ(J Γ̃)[φ] = −〈J Γ̃, dφ〉L2

= −〈JΓ, dφ〉L2 + 〈dJ, dφ〉L2 , (9.23)

for any matrix valued 0-form φ ∈ W 1,p∗

0 (Ω). Note that the expressions
in (9.23) are finite by Hölder inequality (A.6), since Γ ∈ L2p(Ω) and J ∈
W 1,2p(Ω), and since Lp

∗

(Ω) ⊂ L(2p)∗(Ω) because Ω is bounded and p∗ = p
p−1

is larger than (2p)∗ = 2p
2p−1 . For example,

∣

∣〈dJ, dφ〉L2

∣

∣ ≤ C ‖dJ‖L2p‖dφ‖L(2p)∗ ≤ C‖dJ‖L2p ‖dφ‖
p∗

(2p)∗

Lp∗ <∞,

where C > 0 is some constant depending only on Ω, n and p, c.f. the use
of Hölder’s inequality in (A.8). Now, by the weak reduced RT-equation
(9.20), we replace the the second term on the right hand side of (9.23) by
〈dJ, dφ〉L2 = 〈J·Γ, dφ〉L2 + 〈B,φ〉L2 , which after the essential cancellation of
the lowest regularity term 〈J ·Γ, dφ〉L2 leads to

δ(J Γ̃)[φ] = 〈B,φ〉L2 ,

that is,

〈J Γ̃, dφ〉L2 + 〈B,φ〉L2 = 0. (9.24)

Our goal now is to move d to the other side of the first inner product in (9.24)

as δ on the product J Γ̃ and isolate the weak derivative δΓ̃, from which then
the sought after equation (9.22) follows. Note that at the start, J Γ̃ is not
regular enough to apply the Leibnitz product rule. But by the consistency
of the RT-equation we anticipate that Γ̃ is one order more regular and this
explains why the following mollification argument works to establish that
the product rule is valid for δ(J Γ̃).

So now consider standard mollifiers Γǫ ∈ C
∞(Ω) and Jǫ ∈ C

∞(Ω) of Γ
and J respectively, so that Γǫ converges to Γ in L2p(Ω) as ǫ → 0 and Jǫ
converges to J in W 1,2p(Ω) as ǫ→ 0.25 Define

Γ̃ǫ ≡ Γǫ − J
−1dJǫ,

then Γ̃ǫ ∈ W 1,2p(Ω). To show that Γ̃ǫ −→ Γ̃ in L2p(Ω) as ǫ → 0, recall
J−1 ∈W 1,2p(Ω) is bounded in L∞(Ω) by Morrey’s inequality, so we have

‖J−1(dJǫ − dJ)‖L2p ≤ ‖J−1‖L∞‖dJǫ − dJ‖L2p −→ 0

24Note, applying the results of Lemma 7.2 in this setting at a mollified level, would
entail the problem of controlling the zero mollification limit through the second reduced
RT-equation (4.2), a system of inhomogeneous elliptic PDE’s for which it would be difficult
to avoid generalized eigenvalues.

25Since the test functions have compact support, mollifying does not change the region
of integration Ω.
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as ǫ → 0, and this implies that Γ̃ǫ −→ Γ̃ in L2p(Ω) as ǫ → 0. Now, since

Γ̃ǫ −→ Γ̃ in L2p(Ω) as ǫ→ 0, equation (9.24) implies that

lim
ǫ→0

(

〈J Γ̃ǫ, dφ〉L2 + 〈B,φ〉L2

)

= 0. (9.25)

The regularity Γ̃ǫ ∈W
1,2p(Ω) allows us now to use partial integration (8.7),

followed by the Leibniz rule (3.8), δ(J Γ̃ǫ) = JδΓ̃ǫ + 〈dJ ; Γ̃〉, to compute

〈J Γ̃ǫ, dφ〉L2 + 〈B,φ〉L2 = −〈δ(J Γ̃ǫ), φ〉L2 + 〈B,φ〉L2

(3.8)
= −〈JδΓ̃ǫ, φ〉L2 +

〈

(B − 〈dJ ; Γ̃ǫ〉), φ
〉

L2

= −〈JδΓ̃ǫ, φ〉L2 + 〈Aǫ, φ〉L2 , (9.26)

where
Aǫ ≡ B − 〈dJ ; Γ̃ǫ〉.

Note that Aǫ → A in Lp(Ω) as ǫ → 0 by the convergence properties of

Γ̃ǫ and Jǫ. We now applying the multiplication property of 〈·; ·〉 in (3.10)
together with cyclic commutativity of matrix multiplication in the trace, to
write (9.26) as

〈J Γ̃ǫ, dφ〉L2 + 〈B,φ〉L2 = −〈δΓ̃ǫ, φJ〉L2 + 〈J−1Aǫ, φJ〉L2 . (9.27)

To clarify this step, consider for example

〈JδΓ̃ǫ, φ〉L2
(8.2)
=

∫

Ω
tr〈JδΓ̃ǫ;φ

T 〉dx
(3.10)
=

∫

Ω
tr
(

J ·〈δΓ̃ǫ;φ
T 〉
)

dx

=

∫

Ω
tr
(

〈δΓ̃ǫ;φ
T 〉·J

)

dx
(3.10)
=

∫

Ω
tr
(

〈δΓ̃ǫ; (J
Tφ)T 〉 = 〈δΓ̃ǫ, J

Tφ〉L2 .

Applying now the integration by parts formula (8.7) to the first term on the
right hand side of (9.27) and defining ψ ≡ JTφ, we obtain

〈J Γ̃ǫ, dφ〉L2 + 〈B,φ〉L2 = 〈Γ̃ǫ, dψ〉L2 + 〈J−1Aǫ, ψ〉L2 . (9.28)

Since J ∈ W 1,2p(Ω), and 2p > n > p∗, it follows that ψ ≡ JTφ ∈ W 1,p∗

0 (Ω)

is indeed a test function, (c.f. Lemma D.1 in the appendix). Thus, since Γ̃ǫ
converges to Γ̃ in L2p(Ω) and since Aǫ → A in Lp(Ω) as ǫ→ 0, we conclude
that the right hand side in (9.28) converges as ǫ → 0. Moreover, by (9.25)
the left hand side in (9.28) converges as well and the limit of (9.28) as ǫ→ 0
vanishes, which gives

− 〈Γ̃, dψ〉L2 = 〈J−1A,ψ〉L2 , (9.29)

for ψ = JTφ. Since any test function ψ ∈ W 1,p∗

0 (Ω) can be written as

ψ = JTφ for some φ ∈ W 1,p∗

0 (Ω), (c.f. Lemma D.1 in the appendix), we

conclude that the sought after equation (9.29) holds for any ψ ∈ W 1,p∗

0 (Ω).
This proves Lemma 9.2. �

We now apply Lemma 9.2 to establish that Γ̃ solves the first RT-equation
for (4.1) for A = A′ defined in (4.14), (which is equivalent to first RT-
equation (4.13) in terms of B), at the correct level of regularity. This lemma
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establishes the first statement in part (i) of Theorem 4.1 together with part
(ii).

Lemma 9.3. Under the assumption of Theorem 4.1, Γ̃ solves the first RT-
equation (4.1) for A defined by (4.14), and Γ̃ ∈W 1,p(Ω), A ∈ L2p(Ω).

Proof. To begin recall that by (9.22) of Lemma 9.2, we have

δΓ̃[φ] = 〈J−1A,φ〉L2

for any matrix valued 0-form φ ∈ W 1,p∗

0 (Ω), where δΓ̃[φ] ≡ −〈Γ̃, dφ〉L2 .
Since A ∈ Lp(Ω) and J−1 ∈ W 1,2p(Ω), this directly implies that the weak

co-derivative δ of Γ̃ is an Lp function, δΓ̃ ∈ Lp(Ω), and it follows that

δΓ̃ = J−1A ∈ Lp(Ω) (9.30)

holds in the sense of Lp functions. We can now take the exterior derivative
d of δΓ̃ in a weak sense, which gives in light of (9.30) that

〈δΓ̃, δΦ〉L2 = 〈J−1A, δΦ〉L2 (9.31)

for any matrix valued 1-form Φ ∈ W 1,p∗

0 (Ω). This determines the second

term of the weak Laplacian of Γ̃ in (8.20).

To determine the first term of the weak Laplacian ∆Γ̃[Φ] in (8.20), we

take the exterior derivative of Γ̃ǫ ≡ Γǫ − J
−1dJǫ, where Γǫ and Jǫ are the

mollifications of Γ and J introduced in the proof of Lemma 9.2, (required
to apply the Leibnitz rule to low regularity products). This gives us

dΓ̃ǫ = dΓǫ − d(J
−1dJǫ)

= dΓǫ − dJ
−1 ∧ dJǫ, (9.32)

where we applied the Leibniz rule (3.6) for the last equality. We now show
that the right hand side of (9.32) converges in Lp(Ω) as ǫ → 0. For this
recall first that dΓ ∈ L2p(Ω), which implies that d(Γǫ) = (dΓ)ǫ −→ dΓ in
L2p(Ω) as ǫ → 0. Moreover, by using Hölder’s inequality (A.6) as in (A.9)
we find that

∥

∥dJ−1 ∧
(

dJǫ − dJ
)
∥

∥

p

Lp ≤ C
∥

∥|dJ−1|p
∥

∥

L2

∥

∥|dJǫ − dJ |
p
∥

∥

L2

≤ C
∥

∥dJ−1
∥

∥

p

L2p

∥

∥dJǫ − dJ
∥

∥

p

L2p (9.33)

where the point-wise norm | · |p on matrix valued differential form is defined
in (A.1). Estimate (9.33) implies by L2p convergence of dJǫ to dJ that
dJ−1∧ dJǫ converges to dJ

−1∧ dJ in Lp(Ω) as ǫ→ 0. We conclude that the
right hand side of (9.32) converges in Lp(Ω) as ǫ→ 0, and this yields that

dΓ̃ = dΓ− dJ−1 ∧ dJ ∈ Lp(Ω). (9.34)

Taking now the co-derivative δ of (9.34) gives

δdΓ̃ = δdΓ− δ
(

d(J−1) ∧ dJ
)

∈W−1,p(Ω),

but of course in the weak sense

〈dΓ̃, dΦ〉L2 = 〈
(

dΓ− dJ−1 ∧ dJ
)

, dΦ〉L2 , (9.35)
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for any matrix valued 1-form Φ ∈W 1,p∗

0 (Ω). Combing now (9.31) and (9.35),
and using that by our definition in (8.20)

∆Γ̃[Φ] = −〈δΓ̃, δΦ〉L2 − 〈dΓ̃, dΦ〉L2 ,

we finally obtain that Γ̃ solves the sought after first RT-equation,

∆Γ̃[Φ] = −〈
(

dΓ− dJ−1 ∧ dJ
)

, dΦ〉L2 − 〈J−1A, δΦ〉L2 , (9.36)

in the weak form (8.21).

To complete the proof of Lemma 9.3, it remains to show Γ̃ gains one
derivative over Γ, i.e., Γ̃ ∈ W 1,p(Ω). For this, note that we have already

established that δΓ̃ and dΓ̃ are in Lp(Ω), c.f. (9.30) and (9.34). Thus, since

the right hand side of (9.36) results from taking d of δΓ̃ and δ of dΓ̃, we
conclude that the right hand side of (9.36) lies in W−1,p(Ω), that is,

∆Γ̃ ∈W−1,p(Ω). (9.37)

Applying now Lemma 8.2 for the case of regularity Γ̃ ∈ Lp(Ω) with dΓ̃, δΓ̃ ∈

Lp(Ω), we find that ∆Γ̃[Φ] = −〈∇Γ̃,∇Φ〉L2 . Thus the standard weak Lapla-

cian −〈∇Γ̃,∇Φ〉L2 lies in W−1,p(Ω) by (9.37). Applying now basic elliptic
regularity theory, c.f. Theorem B.2 in the appendix, we conclude with the
sought after regularity Γ̃ ∈ W 1,p(Ω′) for any open set Ω′ ⊂ Ω compactly

contained in Ω. Note finally, since Γ̃ ∈ W 1,p(Ω), the regularity A ∈ L2p(Ω)

follows directly from its definition A ≡ B−〈dJ ; Γ̃〉 in (4.14). This completes
the proof of Lemma 9.3. �

In the next Lemma we prove the basic elliptic estimate (4.17) from which
we later derive the curvature bound (2.6), using Hölder and Morrey inequal-
ity in combination with estimate (4.16) assumed on J, J−1 and B. Lemma
9.4 proves part (iii) of Theorem 4.1.

Lemma 9.4. Under the assumption of Theorem 4.1, in particular assuming
‖(Γ, dΓ)‖L2p ≤M and the bound (9.15) on (J,B), the weak solution Γ̃ ≡ Γ̃J
of the first RT-equation (4.1), where Γ̃J is defined in (4.6), satisfies

‖Γ̃‖W 1,p(Ω′) ≤ C(M)‖(Γ, dΓ)‖L2p(Ω), (9.38)

for any open set Ω′ compactly contained in Ω and some constant C(M) > 0
depending only on Ω,Ω′, p, n and M .

Proof. By Lemma 9.3, Γ̃ ≡ Γ̃J solves the weak first RT-equation (9.36), that
is,

∆Γ̃[Φ] = −
〈(

dΓ− dJ−1 ∧ dJ
)

, dΦ
〉

L2 − 〈J
−1A, δΦ〉L2 , (9.39)

for any matrix valued 1-form Φ ∈ W 1,p∗

0 (Ω). Applying the basic elliptic
estimates (B.8) to (9.39), we obtain

‖Γ̃‖W 1,p(Ω′) ≤ C
(

‖F‖W−1,p(Ω) + ‖Γ̃‖Lp(Ω)

)

(9.40)

for any open Ω′ compactly contained in Ω, and where we define the functional

F(Φ) ≡ −
〈(

dΓ− dJ−1 ∧ dJ
)

, dΦ
〉

L2 − 〈J
−1A, δΦ〉L2 (9.41)
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for any matrix valued 1-form Φ ∈W 1,p∗

0 (Ω). Recall that the operator norm
‖ · ‖W−1,p is defined by

‖F‖W−1,p(Ω) ≡ sup
{

|F(Φ)|
∣

∣Φ ∈W 1,p∗

0 (Ω), ‖Φ‖W 1,p∗ (Ω) = 1
}

. (9.42)

From (9.41) we find
∣

∣F(Φ)
∣

∣ ≤
∣

∣

〈(

dΓ− dJ−1 ∧ dJ
)

, dΦ
〉

L2

∣

∣+
∣

∣

〈

J−1A, δΦ
〉

L2

∣

∣,

which we further estimate using Hölder’s inequality (A.6) as

∣

∣F(Φ)
∣

∣ ≤ C
(

∥

∥

(

dΓ− dJ−1 ∧ dJ
)∥

∥

Lp‖dΦ‖Lp∗ +
∥

∥J−1A
∥

∥

Lp‖δΦ‖Lp∗

)

≤ C
(

‖dΓ‖Lp(Ω) +
∥

∥dJ−1 ∧ dJ
∥

∥

Lp(Ω)
+
∥

∥J−1A
∥

∥

Lp(Ω)

)

, (9.43)

where we estimated ‖dΦ‖Lp∗ ≤ ‖Φ‖W 1,p∗ = 1 and ‖δΦ‖Lp∗ ≤ 1 for the
last inequality. Throughout this proof C > 0 denotes a universal constant
depending only on Ω, n, p We now use Hölder’s inequality as in (A.9) to
estimate the second term in (9.43) as

∥

∥dJ−1 ∧ dJ
∥

∥

p

Lp(Ω)
≤ C

〈

|dJ−1|p, |dJ |p
〉

L2

≤ C
∥

∥|dJ−1|p
∥

∥

L2(Ω)

∥

∥|dJ |p
∥

∥

L2(Ω)

= C
∥

∥dJ−1
∥

∥

p

L2p(Ω)

∥

∥dJ
∥

∥

p

L2p(Ω)
, (9.44)

where we lost a little regularity from L2p to Lp, as anticipated in our theory
by starting with J ∈W 1,2p(Ω). Now taking the p-th root of (9.44) and using
that dJ = d(J − I), we obtain

∥

∥dJ−1 ∧ dJ
∥

∥

Lp(Ω)
≤
∥

∥J−1
∥

∥

W 1,2p(Ω)

∥

∥I − J
∥

∥

W 1,2p(Ω)
. (9.45)

To estimate the third term in (9.43), we substitute (4.6) and (4.14), that

is, we substitute Γ̃ = Γ − J−1dJ into A = B − 〈dJ ; Γ̃〉. This leads to the
identity

J−1A = J−1B − J−1〈dJ ; Γ〉+ 〈dJ−1; dJ〉,

where we used the multiplication property (3.10) to write

J−1〈dJ ;J−1dJ〉 = 〈dJ−1; dJ〉.

We now obtain the bound
∥

∥J−1A
∥

∥

Lp ≤ ‖J
−1B‖Lp + ‖J−1〈dJ ; Γ〉‖Lp + ‖〈dJ−1; dJ〉‖Lp

≤ ‖J−1B‖Lp + CM‖J
−1‖W 1,p ‖〈dJ ; Γ〉‖Lp + ‖〈dJ−1; dJ〉‖Lp , (9.46)

where we applied Morrey’s inequality (A.4) in the last step to bound the
L∞-norm of J−1. We now estimate the remaining product terms in (9.46)
employing Hölder’s inequality as in (9.44), to obtain
∥

∥J−1A
∥

∥

Lp ≤ C‖J
−1‖W 1,p

(

‖B‖L2p+‖dJ‖L2p‖Γ‖L2p+‖d(I−J)‖L2p

)

, (9.47)
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where C > 0 is some constant depending only on Ω, n, p. Applying dJ =
d(J − I) we write bound (9.47) further as
∥

∥J−1A
∥

∥

Lp ≤ C‖J
−1‖W 1,p

(

1 + ‖J‖W 1,p

)(

‖B‖L2p + ‖Γ‖L2p + ‖I − J‖W 1,2p

)

.
(9.48)

Combining now (9.45) and (9.48) to bound the right hand side of (9.43), we
conclude that

∣

∣F(Φ)
∣

∣ ≤ P0
(

‖dΓ‖Lp + ‖Γ‖L2p + ‖B‖L2p + ‖I − J‖W 1,2p

)

, (9.49)

where P0 = C
(

1+‖J−1‖W 1,2p

)(

1+‖J‖W 1,2p

)

. Substituting the bound (9.49)
for the right hand side of (9.40), we find that

‖Γ̃‖W 1,p(Ω′) ≤ P0
(

‖dΓ‖L2p + ‖Γ‖L2p + ‖B‖L2p + ‖I − J‖W 1,2p

)

+C‖Γ̃‖Lp(Ω).
(9.50)

From Γ̃ = Γ− J−1dJ and Hölder inequality, we bound ‖Γ̃‖Lp(Ω) by

‖Γ̃‖Lp(Ω) ≤ vol(Ω)
1
2p ‖Γ‖L2p(Ω) + C ‖J−1‖L2p(Ω)‖dJ‖L2p(Ω),

(where we estimated ‖Γ‖Lp = ‖Γ · 1‖Lp ≤ vol(Ω)
1
2p ‖Γ‖L2p(Ω) using Hölder’s

inequality), from which we conclude with the bound

‖Γ̃‖W 1,p(Ω′) ≤ P0
(

‖dΓ‖L2p + ‖Γ‖L2p + ‖B‖L2p + ‖I − J‖W 1,2p

)

, (9.51)

by modifying the constant C > 0 in the definition of P0 suitably.
To derive the sought after bound (9.38) we now use that (J,B) are as-

sumed to meet the bound (9.15), that is,

‖I − J‖W 1,2p(Ω) + ‖I − J
−1‖W 1,2p(Ω) + ‖B‖L2p(Ω) ≤ C2(M)‖(Γ, dΓ)‖L2p(Ω).

(9.52)
So using (9.52) together with the definition ‖(Γ, dΓ)‖L2p(Ω) = ‖dΓ‖L2p +
‖Γ‖L2p to bound the right hand side of (9.51), we conclude that there exists
some constant C3(M) > 0 depending only on Ω, n, p and M , such that

‖Γ̃‖W 1,p(Ω′) ≤ C3(M)‖(Γ, dΓ)‖L2p(Ω)

which is the sought after bound (9.16). This completes the proof of Lemma
9.4. �

To establish part (i) of Theorem 4.1 it only remains to verify that (J, Γ̃, A)
solves the weak RT-equations (8.22) - (8.26).

Lemma 9.5. Under the assumption of Theorem 4.1, (J, Γ̃, A) solves the
second, third and fourth weak RT-equations (8.22) - (8.26) for v defined in

(4.15) with w = 0, that is, v ≡ δ〈dJ ; Γ̃〉.

Proof. By our assumption that J ∈W 1,2p(Ω) and B ∈ L2p(ω) solve the first
weak reduced RT-equation (9.20), that is,

−∆J [φ] = 〈J ·Γ, dφ〉L2 + 〈B,φ〉L2 (9.53)
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holds for any matrix valued 0-form φ ∈W
1,(2p)∗

0 (Ω), where ∆J [φ] = −〈dJ, dφ〉L2 .

Substituting B = 〈dJ ; Γ̃〉 + A, (which follows from the definition of A in
(4.14)), into (9.53), we directly obtain

−∆J [φ] =
〈

J ·Γ, dφ
〉

L2 +
〈(

〈dJ ; Γ̃〉+A
)

, φ
〉

L2 ,

which is the sought after weak RT-equation (8.22).
We now show that the third and fourth weak RT-equations (8.26) hold.

By assumption J ∈ W 1,2p(Ω) and B ∈ L2p(Ω) solve the weak reduced RT-
equations (9.21), that is,

{

〈 ~B, δψ〉L2 =
〈

(dJ ∧ Γ + J dΓ),div←−(ψ)
〉

L2

〈 ~B, dϕ〉L2 = 0,

holds for any vector valued 2-form ψ ∈ W
1,(2p)∗

0 (Ω) and any vector valued

function ϕ ∈ W
1,(2p)∗

0 (Ω). From the definition of A in (4.14), we find that

~B = ~A+
−−−−→
〈dJ ; Γ̃〉 and substituting this for ~A in (9.54) gives us

{

〈 ~A, δψ〉L2 =
〈

(dJ ∧ Γ + J dΓ),div←−(ψ)
〉

L2 − 〈
−−−−→
〈dJ ; Γ̃〉, δψ〉L2

〈 ~A, dϕ〉L2 = −〈v, ϕ〉L2 ,

for v = δ〈dJ ; Γ̃〉. This proves that (J, Γ̃, A) solves the weak RT-equations
(8.22) - (8.26), completes the proof of Lemma 9.5. �

Taken together, Lemmas 9.2 - 9.5 complete the proof of Theorem 4.1, under
the weaker assumption Γ, dΓ ∈ L2p(Ω). From here on we reimpose our
original assumption Γ, dΓ ∈ L∞(Ω). To complete the proofs of Theorems
2.1 and 2.3 it remains only to prove Theorem 4.3, the subject of the next
two sections.

10. Existence theory for the reduced RT-equations - Proof of

Theorem 4.3

In this section we prove Theorem 4.3, regarding existence of solutions
to the reduced RT-equations (4.10) - (4.12) which meet the assumptions
of Theorem 4.1. This is the final step remaining to complete the proof of
Theorems 2.1 and 2.3. The proof of Theorem 4.3 is based on an iteration
scheme which reduces the problem to known estimates in elliptic PDE the-
ory, recorded in Appendix B. To handle the first order system of equations
for B (4.11) - (4.12), we extend the existence theory for Cauchy-Riemann
type equations in [6] to the low regularity required here. This extension is
presented in Appendix C. The proof of Theorem 4.3 is given in terms of
several technical lemmas whose proofs are postponed to Section 11.

So assume Γ, dΓ ∈ L∞(Ω) in x-coordinates, let M > 0 be a constant such
that

‖(Γ, dΓ)‖L∞(Ω) ≡ ‖Γ‖L∞(Ω) + ‖dΓ‖L∞(Ω) ≤ M,
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and assume p > n, <∞ and let q ∈ Ω. Again,we work in fixed x-coordinates
and we write Ω for Ωx and Γ for Γx throughout the remainder of this pa-
per. Then, to prove Theorem 4.3, it suffices to prove that there exists a
neighborhood Ω′ ⊂ Ω of x(q), depending only on Ω, n, p,M , and there exists
J ∈ W 1,p(Ω′) and B ∈ Lp(Ω′) such that (J,B) solves the reduced RT-
equations (4.10) - (4.12) in Ω′ in the weak sense of Definition 8.5, such that
(J,B) satisfies the uniform bound (4.16), J is invertible with J−1 ∈W 1,p(Ω′)
and

d ~J ≡ Curl(J) = 0 (10.1)

in Ω′, so J is integrable to coordinates.26 For simplicity we assume without
loss of generality that w = 0 in (4.12), that is, we prove existence of a
solution (J,B) of

∆J = δ(J ·Γ) −B, (10.2)

d ~B =
−→
div
(

dJ ∧ Γ
)

+
−→
div
(

J dΓ
)

, (10.3)

δ ~B = 0, (10.4)

in the weak sense specified in Definition 8.5. Without loss of generality we
assume that Ω is the unit ball in R

n centered at x(q) = 0, Ω = B1(0). We
show below that it suffices to take Ω′ = Bǫ(0), the ball of radius ǫ > 0
centered at x = 0, where ǫ > 0 is taken sufficiently small for the iteration
scheme to converge. We begin the proof of Theorem 4.3 by giving a formal
introduction to the iteration scheme on which our existence proof is based.

10.1. The iteration scheme. Start with J0 = 11. For induction, we show
that (Bk+1, Jk+1) can be constructed from Jk for each k ≥ 0. So assume Jk
is given for some k ≥ 0. Define Bk+1 as a weak solution of

{

d ~Bk+1 =
−→
div
(

dJk ∧ Γ
)

+
−→
div
(

Jk dΓ
)

,

δ ~Bk+1 = 0,
(10.5)

such that Bk+1 ∈ Lp(Ω) satisfies a uniform bound in the Lp-norm. The
regularity Lp is too low to impose boundary data in 10.5, and our theory
does not require Bk+1 meet any boundary conditions, Bk+1 only needs to
satisfy a uniform Lp bound. This is achieved by choosing Bk+1 to be the
zero mollification limit of a solution of the corresponding mollified equation
with zero Dirichlet boundary data, c.f. Sections 10.3 and C.

Likewise, the regularity J ∈W 1,2p(Ω) is too low to impose the boundary

condition (4.5), d ~J = 0 on ∂Ω, a problem we circumvent by imposing ~J = dy,
for y solving an auxiliary elliptic equation. For this, define auxiliary variables
Ψk+1 and yk+1 in terms of Jk and Bk+1, but independent of the previous

26For ease of notation we show J ∈ W 1,p and B ∈ Lp, since P > n is arbitrary, the
proof yields solutions with J ∈W 1,2p and B ∈ L2p, as stated in Theorem 4.3.



58 M. REINTJES AND B. TEMPLE

iterates Ψk and yk. That is, we define the vector valued 0-form Ψk+1 ∈ L
p(Ω)

as a weak solution of

dΨk+1 =
−−−−→
δ(Jk ·Γ)−

−−−→
Bk+1, (10.6)

with uniform Lp bounds, obtained again by mollification in the same manner
as in the case for Bk+1. We then define the vector valued 0-form yk+1 ∈
W 2,p(Ω) as the solution of

∆yk+1 = Ψk+1, (10.7)

for zero Dirichlet data. Given Bk+1,Ψk+1 and yk+1, now define Jk+1 ∈
W 1,p(Ω) as the weak solution of the following Dirichlet boundary value prob-
lem:

∆Jk+1 = δ(Jk ·Γ)−Bk+1, (10.8)
−−→
Jk+1 = dyk+1 on ∂Ω. (10.9)

Equations (10.5) - (10.8) define our iteration scheme in a formal way. To
prove convergence we need a small parameter ǫ > 0. We incorporate ǫ into
the iteration scheme in Sections 10.2 - 10.3, and prove convergence for ǫ > 0
sufficiently small in Section 10.4.

Two clarifying remarks are in order. First note that (10.6) requires a
solvability condition, namely that d of its right hand side must be zero.
This condition is meet, because by (3.12) we have

d
(−−−−→
δ(Jk ·Γ)

)

=
−→
div
(

dJk ∧ Γ
)

+
−→
div
(

Jk·dΓ
)

,

which implies in light of equation (10.5) for Bk+1 that

d
(−−−−→
δ(Jk ·Γ)−

−−−→
Bk+1

)

= 0,

so the right hand side of (10.5) has a vanishing exterior derivative. That
this consistency condition is necessary and sufficient for the low regularity
here is shown in Appendix C.

Secondly, we remark on the role of auxiliary equations (10.6) - (10.7).
The reason for introducing Ψk and yk+1 is that the W 1,p-regularity of Jk+1

is too low to impose the boundary data d ~Jk+1 = 0 which was required in [21]
to arrange for the integrability condition of J (10.1). Now, augmenting the
reduced RT-equations by equations (10.6) and (10.7), allows us to impose
Dirichlet data for Jk+1 which again gives rise to integrability of Jk+1 to
coordinates, as we show in the following lemma for smooth solutions. In
Lemma 10.9 below we extend this result to the low regularities required by
the above iteration scheme.

Lemma 10.1. Assume Γ is smooth and that Bk+1,Ψk+1, yk+1, Jk+1 are de-
fined by the iteration scheme (10.5) - (10.9) and are smooth. Then dyk+1 =
~Jk+1, and hence Jk+1 is integrable to coordinates yk+1 and d ~Jk+1 = 0.
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Proof. By (10.5) - (10.9) it follows that

∆dyk+1 = d∆yk+1 = dΨk+1 =
−−−−→
δ(Jk ·Γ)−

−−−→
Bk+1 = ∆ ~Jk+1,

where the last equality holds, since the operation vec commutes with the
Laplacian ∆ (which acts component wise). Thus,

∆( ~Jk+1 − dyk+1) = 0 in Ω,

~J − dy = 0 on ∂Ω, (10.10)

which implies by uniqueness of solutions of the Laplace equation that ~Jk+1 =
dyk+1 in Ω. Since second derivatives of yk+1 commute, we conclude that

d ~Jk+1 = Curl( ~Jk+1) = 0 in Ω.

Moreover, Jk+1 is the Jacobian of the coordinate system yk+1. �

Lemma 10.9 below generalizes the above result to the low regularity re-
quired in this paper. To prove convergence of the iteration scheme, we
introduce a small parameter ǫ > 0 by restricting to Ω′ = Bǫ(0), and prove
convergence for ǫ > 0 sufficiently small.

10.2. The ǫ-rescaled reduced RT-equations. We first incorporate the
small parameter ǫ > 0 into the theory by deriving an ǫ-rescaled version of
the reduced RT-equations, required to prove convergence of our iteration
scheme. For this we use the fact that regularity is a local problem, so that
we can suitably restrict and rescale Γ to isolate the small parameter ǫ, while
maintaining the uniform bound (2.4) assumed in Theorems 2.1 and 2.3. This
is accomplished in the following lemma.

Lemma 10.2. Assume Ω = B1(0) and introduce the coordinate transfor-
mation x→ x̃(x) = x

ǫ . Define Γ∗ as the restriction of the components of Γx
to Bǫ(0), transformed to x̃-coordinates as scalars, Γ∗(x̃) ≡ Γx(x(x̃)). Then,
Γx̃ satisfies in x̃-coordinates

Γx̃(x̃) = ǫ Γ∗(x̃), (10.11)

together with the bound

‖(Γ∗, dΓ∗)‖L∞(Ω′

x̃)
= ‖Γx‖L∞(Ω′

x)
+ ǫ‖dΓx‖L∞(Ω′

x)
, (10.12)

where Ω′
x̃ = B1(0) and Ω′

x = Bǫ(0).

Proof. By the connection transformation law we have

(Γx̃)
σ
µν =

∂x̃σ

∂xk

( ∂xi

∂x̃µ
∂xj

∂x̃ν
(Γx)

k
ij +

∂2xk

∂x̃µ∂x̃ν

)

= ǫ (Γx)
σ
µν , (10.13)

since ∂xi

∂x̃j
= ǫ δij under the transformation x̃(x) = x

ǫ . It follows that for

x̃ ∈ B1(0), we have component wise

Γx̃(x̃) = ǫ Γx(x(x̃)) ≡ ǫ Γ
∗(x̃).

To prove (10.12), observe that by construction of Γ∗, as the scalar trans-
formed components of the restriction of Γx to the ball of radius ǫ, we have
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‖Γ∗‖L∞(Ω′

x̃
) = ‖Γx‖L∞(Ω′

x)
, and by the chain rule we have ‖dΓ∗‖L∞(Ω′

x̃
) =

ǫ‖dΓx‖L∞(Ω′
x)

since ∂x
∂x̃ = ǫI. In combination, this gives (10.12) and com-

pletes the proof. �

By (10.12), and assuming without loss of generality that ǫ ≤ 1, we find
that Γ∗ satisfies the original uniform bound (2.4),

‖(Γ∗, dΓ∗)‖L∞(Ω′

x̃)
≤M.

We can thus construct solutions to the reduced RT-equations and apply
Theorem 4.1 in x̃-coordinates, and obtain the uniform curvature bound (2.6)
in x̃-coordinates, without ever scaling back to x-coordinates.27

So now we can take the x̃-coordinates to be the original x-coordinates,
and assume without loss of generality that the connection in x-coordinates
has the form

Γx = ǫ Γ∗, (10.14)

for some Γ∗ satisfying

‖(Γ∗, dΓ∗)‖L∞(Ωx) < M, (10.15)

and we assume without loss of generality that Ωx = B1(0). In light of
(10.14), we introduce the scaling ansatz

J = I + ǫ u, B = ǫ a. (10.16)

Since we only need to prove existence of a solution to establish optimal con-
nection regularity via the RT-equations, assumption 10.16 is made without
loss of generality. Note, the variables Ψ and y “inherit” their ǫ-scaling from
B and J , c.f. Section 10.3 below. To derive the reduced RT-equations ex-
pressed in terms of the rescaled variables, we now substitute (10.14) and
(10.16) into (10.2) - (10.4) and divide by ǫ. This yields the following equiv-
alent set of equations:

Lemma 10.3. The reduced RT-equations (8.27) - (8.28) written in terms of
the rescaled connection (10.14) and rescaled variables (10.16) are equivalent
to

−∆u[φ] = Fu(u, a)[φ], (10.17)
{

〈~a, δψ〉L2 = Fa(u)[ψ]

〈~a, dϕ〉L2 = 0,
(10.18)

for any matrix valued 0-form φ ∈ W 1,p∗

0 (Ω), any vector valued 2-form ψ ∈

W 1,p∗

0 (Ω) and any vector valued function ϕ ∈W 1,p∗

0 (Ω), where we define the

27A note might be in order here regarding our proof of Uhlenbeck compactness. In the
proof we implicitly assumed that there is a uniform ǫ > 0 which applies uniformly to each
connection in the sequence. In the Proposition10.11 below we show that ǫ can be taken
to be on the order of 1

M
, and therefore independent of connections in the sequence.
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linear functionals

Fu(u, a)[φ] ≡
〈

Γ∗, dφ
〉

L2 + ǫ
〈

u·Γ∗, dφ
〉

L2 +
〈

a, φ
〉

L2 , (10.19)

Fa(u)[ψ] ≡
〈

dΓ∗, div←−(ψ)
〉

L2 + ǫ
〈

(u·dΓ∗ + du ∧ Γ∗), div←−(ψ)
〉

L2 . (10.20)

Proof. Substituting J = I + ǫu and B = ǫa into (8.27) and dividing by ǫ,
we obtain

−∆u[φ]
(8.12)
= 〈du, dφ〉L2

= 〈(I + ǫu)·Γ∗, dφ〉L2 + 〈a, φ〉L2

= 〈Γ∗, dφ〉L2 + ǫ〈u·Γ∗, dφ〉L2 + 〈a, φ〉L2

= Fu(u, a)[φ]

which proves the equivalence between (10.2) and (10.17). Similarly, substi-
tuting our scaling ansatz J = I + ǫu and B = ǫa into (8.28), a division by ǫ
gives

〈~a, δψ〉L2 =
〈

(ǫdu ∧ Γ∗ + (I + ǫu)·dΓ∗),div←−(ψ)
〉

L2

=
〈

dΓ∗,div←−(ψ)
〉

L2 + ǫ
〈

(du ∧ Γ∗ + u·dΓ∗),div←−(ψ)
〉

L2

= Fa(u)[ψ]

as well as 〈~a, dϕ〉L2 = 0, which proves the equivalence between (8.28) and
(10.18). �

The existence result of Theorem 4.3 is a corollary of the following propo-
sition, the proof of which is topic of Sections 10.3 - 11.

Proposition 10.4. Let Γ∗, dΓ∗ ∈ L∞(Ω) satisfy the bound (10.15) and
let n < p < ∞. Then, for every ǫ > 0 sufficiently small, there exists
u ∈ W 1,p(Ω) and a ∈ Lp(Ω) which solve the ǫ-rescaled reduced RT-equation
(10.17) - (10.18).

The proof of Proposition 10.4 is based on the iteration scheme introduced
in Section 10.1, but adjusted to incorporate the small parameter ǫ. The
resulting iteration scheme for the ǫ-rescaled reduced RT-equations is intro-
duced in the next Section 10.3. The proof of our main existence result, The-
orem 4.3, is completed in Section 10.5 by applying Proposition 10.4 together
with additional arguments to establish the integrability and invertability of
the Jacobian J = I + ǫ u, claimed in the theorem, as well as the uniform
bound (4.16).

10.3. The iteration scheme in the ǫ-rescaled variables. In this section
we define the iterates (uk, ak), k ≥ 0, for approximating solutions of (10.17)-
(10.18), and set up the framework for proving convergence of the scheme in
the appropriate Sobolev spaces for ǫ sufficiently small. The iteration scheme
we introduce here differs from the iteration scheme in Section 10.1 in that
it is adapted to the rescaled equations (10.17)-(10.18). Existence at each
stage will be established in Lemma 10.7 below. From here on we often omit
dependence of norms on Ω, e.g., writing ‖ · ‖Lp for ‖ · ‖Lp(Ω). We define now
the matrix valued 0-forms uk+1 and ak+1 by induction as follows.
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To start the iteration, set

u0 = a0 = 0.

Given uk ∈ W
1,p(Ω) and ak ∈ L

p(Ω) for k ≥ 0, we then construct a partic-
ular matrix valued 0-form ak+1 ∈ L

p(Ω) which solves
{

〈−−→ak+1, δψ〉L2 = Fa(uk)[ψ],

〈−−→ak+1, dϕ〉L2 = 0,
(10.21)

and satisfies the estimate

‖ak+1‖Lp ≤ C‖Fa(uk)‖W−1,p , (10.22)

for some constant C > 0 independent of k, where (10.21) are taken in
the weak sense specified in Lemma 10.3. Existence is established Lemma
10.7 and relies on the algorithm developed in Appendix C for constructing
particular solutions when regularity is too low to impose Dirichlet data in a
classical sense.

We next introduce the vector valued 0-form Ψk+1 ∈ Lp(Ω) as a weak
solution of

dΨk+1 =
−−−−−→
δ(Jk ·Γ

∗)−−−→ak+1, (10.23)

where Jk ≡ I + ǫuk, such that Ψk+1 meets the bound

‖Ψk+1‖Lp ≤ C‖Fa(uk)‖W−1,p , (10.24)

for some constant C > 0 independent of k. That is, Ψk+1 ∈ L
p(Ω) meets

the bound (10.24) and satisfies

〈Ψk+1, δ~φ〉L2 = FΨ(uk, ak+1)[φ], (10.25)

for any matrix-valued 0-form φ ∈W 1,p∗

0 (Ω), where we set

FΨ(uk, ak+1)[φ] ≡ 〈JkΓ
∗, dφ〉L2 + 〈−−→ak+1, ~φ〉L2 . (10.26)

The definition in (10.26) is based on the product rule 〈
−→
δw, ~φ〉L2 = −〈w, dφ〉L2

for matrix valued 1-forms w ∈ W 1,p(Ω), established in the proof of Lemma
10.5 below. Because of this product rule it is convenient to interpret the
test forms in (10.25) and (10.26) as matrix valued 0-forms instead of vector
valued 1-forms. In Lemma 10.5 below we show that the weak formulation of
(10.25) is equivalent to the strong formulation (10.23) in the case of smooth
solutions. Existence of Ψk+1 also follows from Lemma 10.7 by use of the
algorithm in Appendix C.

We next define the vector valued 0-form yk+1 ∈ W
2,p(Ω) as the solution

of
{

∆yk+1 = Ψk+1,

yk+1

∣

∣

∂Ω
= 0.

(10.27)

Similar to Lemma 10.1, equations (10.21), (10.25) and (10.27) again arrange
for the integrability of Jk+1 = I + ǫuk+1.
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Finally, we define uk+1 ∈W
1,p(Ω) as the unique weak solution satisfying

−∆uk+1[φ] = Fu(uk, ak+1)[φ], (10.28)

for every matrix valued 0-forms φ ∈W 1,p∗

0 (Ω), with Dirichlet boundary data

uk+1|∂Ω = dyk+1|∂Ω. (10.29)

Equations (10.21) - (10.29) define our iteration scheme. For completeness
we show in the next lemma that smooth solutions Ψk+1 of the weak equation
(10.25) are indeed strong solutions of (10.23).

Lemma 10.5. Let Ψk+1 ∈ W
1,p(Ω) be a vector valued 0-form, then Ψk+1

solves (10.25) if and only if Ψk+1 solves (10.23).

Proof. We first prove the following statement: Let w ∈W 1,p(Ω) be a matrix

valued 1-form and φ ∈W 1,p∗

0 (Ω) a matrix valued 0-form, then

〈
−→
δw, ~φ〉L2 = −〈w, dφ〉L2 . (10.30)

To prove (10.30), let w = wµνidx
i and φ = φµν , then

δw =
∑

i=1,..,n

∂iw
µ
νi and

−→
δwµ = (δw)µν dx

ν =

n
∑

i=1

∂iw
µ
νidx

ν .

Using partial integration component wise, we compute

〈
−→
δw, ~φ〉L2 =

∑

µ,ν

∫

Ω
δwµνφ

µ
ν dx =

∑

µ,ν,i

∫

Ω
∂iw

µ
νi φ

µ
νdx

= −
∑

µ,ν,i

∫

Ω
wµνi ∂iφ

µ
νdx = −〈w, dφ〉L2 ,

c.f. the definition of inner products on matrix and vector valued differential
forms (8.2) and (8.4). This proves the sought after equation (10.30).

We now apply (10.30) to prove Lemma 10.5. So assume Ψk+1 ∈W
1,p(Ω)

solves (10.25), that is,

〈Ψk+1, δ~φ〉L2 = 〈JkΓ
∗, dφ〉L2 + 〈−−→ak+1, ~φ〉L2 , (10.31)

for any matrix-valued 0-form φ ∈ W 1,p∗

0 (Ω). From the partial integration
formula (8.7) for vector valued forms, we find that

〈Ψk+1, δ~φ〉L2 = −〈dΨk+1, ~φ〉L2 , (10.32)

and by (10.30), we have

〈JkΓ
∗, dφ〉L2 = −〈

−−−−−→
δ(JkΓ

∗), ~φ〉L2 . (10.33)

Combining (10.32) and (10.33), we write (10.31) as

〈dΨk+1, ~φ〉L2 =
〈(−−−−−→
δ(JkΓ

∗)−−−→ak+1

)

, ~φ
〉

L2
,

and since this equation holds for any matrix valued 0-form φ ∈ W 1,p∗

0 (Ω),
we conclude by Riesz representation that the strong form (10.23) holds. The
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opposite implication is straightforward. This completes the proof of Lemma
10.5. �

The iteration scheme on which the existence theory for the reduced RT-
equations stated in Proposition 10.4 is based, is defined in (10.21) - (10.29).
Our strategy for completing the proof of Proposition 10.4 is to first state the
main technical lemmas regarding the iteration scheme being well-defined and
convergent, including elliptic estimate for differences of iterates to establish
convergence in suitable Sobolev spaces. The statement of these lemmas is
the topic of the next section.

10.4. Well-posedness and convergence of the iteration scheme. In
this section we state the main lemmas required for the proof of Proposition
10.4, and assuming these we give the proof of Proposition 10.4. Proofs of the
supporting lemmas are postponed until Section 11 below. The first lemma
provides an apriori estimate for the source terms.

Lemma 10.6. Let Γ∗, dΓ∗ ∈ L∞(Ω) and assume u ∈ W 1,p(Ω) and a ∈
Lp(Ω), for n < p < ∞, then there exists a constant Cs > 0 depending only
on Ω, n, p, such that

‖Fu(u, a)‖W−1,p ≤ ‖a‖Lp + Cs
(

vol(Ω) + ǫ ‖u‖Lp

)

‖(Γ∗, dΓ∗)‖L∞ (10.34)

‖Fa(u)‖W−1,p ≤ Cs
(

vol(Ω) + ǫ ‖u‖W 1,p

)

‖(Γ∗, dΓ∗)‖L∞ . (10.35)

Lemma 10.6 is proven in Section 11.1 below. Our second lemma gives the
elliptic estimates required to establish that the iteration scheme is well-
defined.

Lemma 10.7. Assume uk ∈ W 1,p(Ω) is given, n < p < ∞. Then there
exists ak+1 ∈ L

p(Ω) which solves (10.21), there exists the auxiliary iterates
Ψk+1 ∈ L

p(Ω) and yk+1 ∈ W
2,p(Ω) which solve (10.25) - (10.27), and there

exists uk+1 ∈ W
1,p(Ω) which solves (10.28) with boundary data (10.29). In

addition, the iterates satisfy the following elliptic estimates:

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω), (10.36)

‖Ψk+1‖Lp(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (10.37)

‖yk+1‖W 2,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (10.38)

‖uk+1‖W 1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (10.39)

for some constant Ce > 0 depending only on n, p and Ω.

The proof of Lemma 10.7, given in Section 11.2, is based on the Lp elliptic
estimate (B.3) of Theorem B.1 and Gaffney’s inequality (C.3) of Theorem
C.2.28 Lemma 10.7 directly implies the following corollary.

Corollary 10.8. The iteration scheme is well-defined.

28Note that the boundary data (10.29) for J , i.e. J = dy on ∂Ω, does not enter estimate
(10.39), since it can be bounded by ‖Fu(uk, ak+1)‖W−1,p(Ω) using (10.38).
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Before we establish convergence of the iteration scheme, we show that
each Jacobian Jk = I + ǫ uk is integrable to coordinates for each k ∈ N.
This is the subject of the next lemma, proven in Section 11.4 below, which
extends Lemma 10.1 to the low regularities here.

Lemma 10.9. Let uk+1 ∈ W
1,p(Ω) be a solution of (10.28) with boundary

data (10.29), and let yk+1 ∈W
2,p(Ω) be a solution of (10.27). Then

d−−→uk+1 = 0 (10.40)

in Ω and Jk+1 ≡ I+ ǫ uk+1 is the Jacobian of the coordinate transformation
x→ x+ ǫ yk+1(x).

We now discuss convergence of the iteration scheme. Lemma 10.7 yields
a sequence of iterates (uk, ak)k∈N. To establish convergence of this sequence
in W 1,p × Lp, we require estimates on the differences

ak ≡ ak − ak−1 and uk ≡ uk − uk−1 (10.41)

in terms of the corresponding previous difference of iterates, ak−1 and uk−1.
This is accomplished in the following lemma, proven in Section 11.3. The
proof of the lemma combines the elliptic estimates (10.36) - (10.37) with
suitable bounds on differences of source terms by previous differences of
iterates in the fashion of the estimates of Lemma 10.6.

Lemma 10.10. Assume Γ∗, dΓ∗ ∈ L∞(Ω), then

‖ak+1‖Lp ≤ ǫ Cd ‖(Γ
∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (10.42)

‖uk+1‖W 1,p ≤ ǫ Cd ‖(Γ
∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (10.43)

where Cd ≡ CsCe(1 + Ce) > 0 depends only on n, p, Ω, where Cs > 0 and
Ce > 0 are the constants of Lemmas 10.6 and 10.7 respectively.

Convergence of the iteration scheme will follow from Lemma 10.10, because

‖(Γ∗, dΓ∗)‖L∞(Ω) ≤M,

by (10.15). This is proven in the following proposition, which completes the
proof of Proposition 10.4, assuming Lemmas 10.6, 10.7 and 10.10 hold.

Proposition 10.11. Assume Lemmas 10.6, 10.7 and 10.10 hold. Let Γ∗, dΓ∗ ∈
L∞(Ω) satisfy the initial bound (10.15), ‖(Γ∗, dΓ∗)‖L∞ < M for some con-
stant M > 0, and assume

0 < ǫ <
1

CdM
, (10.44)

where Cd > 0 is the constant from Lemma 10.10. Then the sequence of iter-
ates (uk, ak)k∈N defined by (10.21) - (10.29) converges in W 1,p(Ω)× Lp(Ω),
and the corresponding limits

u ≡ lim
k→∞

uk ∈W
1,p(Ω),

a ≡ lim
k→∞

ak ∈ L
p(Ω),
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solve the reduced RT-equations (10.17) - (10.18) and satisfy the bound

‖u‖W 1,p(Ω) + ‖a‖Lp(Ω) ≤ C2(M)‖(Γ∗, dΓ∗)‖L∞(Ω), (10.45)

for some constant C2(M) > 0 depending only on Ω, n, p and M .

Proof. We prove Proposition 10.11 under the assumption that Lemmas 10.6,
10.7 and 10.10 are valid, and postpone their proofs to Section 11. So by
Lemma 10.7 there exist a sequence of iterates (uk). Given two such iterates
uk, ul ∈ W

1,p(Ω), (k ≥ l), estimate (10.43) of Lemma 10.10 in combination
with our incoming bound ‖(Γ∗, dΓ∗)‖L∞ ≤M , implies

‖uk − ul‖W 1,p ≤

k
∑

j=l+1

‖uj‖W 1,p ≤ ‖ul+1‖W 1,p

k
∑

j=l+1

(ǫCdM)j .

By the bound (10.44) on ǫ, the above geometric series converges as k →
∞. This implies that (uk)k∈N is a Cauchy sequence in the Banach space
W 1,p(Ω). Therefore, (uk)k∈N converges to some u in W 1,p(Ω). Similarly,
(10.42) together with the bound (10.15) implies

‖ak − al‖Lp ≤

k
∑

j=l+1

‖aj‖Lp ≤ ‖ul+1‖Lp

k
∑

j=l+1

(ǫCdM)j ,

which in light of (10.44) is a convergent geometric series, and we conclude
with convergence of (ak)k∈N to some a in the Banach space Lp(Ω).

The limit (u, a) solves (10.17) and (10.18) because each term in the equa-
tions (10.21) and (10.28) converge to the corresponding terms in (10.17)
and (10.18) with respect to the Lp-norm on Ω. For example, using Hölder
inequality we find from (10.28) that

∆u[φ] + Fu(u, a)[Φ] = lim
k→∞

(

∆uk+1[φ] + Fu(uk, ak+1)[Φ]
)

= 0,

which shows that u = lim
k→∞

uk is indeed a solution of (10.17).

To derive estimate (10.45), we use the bounds on source terms of Lemma
10.6 in combination with the above convergence (uk, ak) → (u, a). That is,
using that we initiated the iteration with a0 = 0 and u0 = 0, we find

‖a‖Lp = ‖a− a0‖Lp ≤
∞
∑

k=1

‖ak+1 − ak‖Lp + ‖a1‖Lp .

Using first (10.42) and then (10.43) successively, we estimate the above sum
as

‖a‖Lp ≤

∞
∑

k=1

(

ǫ Cd ‖(Γ
∗, dΓ∗)‖L∞

)k
+ ‖a1‖Lp . (10.46)

We now use the elliptic estimate (10.36) in combination with the bound
(10.35) on Fa(u0) and u0 = 0 to obtain

‖a1‖Lp ≤ Ce vol(Ω) ‖(Γ
∗, dΓ∗)‖L∞ (10.47)
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Substituting this back into (10.46) and using (10.15) to estimate ‖(Γ∗, dΓ∗)‖L∞

by M > 0, we obtain

‖a‖Lp ≤

(

Cevol(Ω) + ǫ Cd

∞
∑

k=1

(

ǫ CdM
)k−1

)

‖(Γ∗, dΓ∗)‖L∞ ,

and our ǫ-bound (10.44) implies the above infinite sum converges, so we
conclude that

‖a‖Lp ≤ C2(M)‖(Γ∗, dΓ∗)‖L∞ (10.48)

for some constant C2(M) > 0 depending only on Ω, n, p and M .
We now derive an estimate on u in a similar way. Using u0 = 0, we begin

by writing

‖u‖W 1,p = ‖u− u0‖W 1,p ≤

∞
∑

k=1

‖uk+1 − uk‖W 1,p + ‖u1‖W 1,p ,

and applying (10.43) together with our initial bound (10.15) yields

‖u‖W 1,p ≤ ǫCd

∞
∑

k=1

(

ǫCdM
)k−1
‖(Γ∗, dΓ∗)‖L∞ + ‖u1‖W 1,p , (10.49)

where the sum is finite by our ǫ-bound (10.44). Using the elliptic estimate
(10.39) in combination with the bound (10.34) on Fu(u0, a1), we obtain

‖u1‖W 1,p ≤ Ce
(

‖a1‖Lp + vol(Ω)
)

‖(Γ∗, dΓ∗)‖L∞

(10.47)

≤ Ce(Ce + 1) vol(Ω)‖(Γ∗, dΓ∗)‖L∞ .

Substituting this estimate into (10.49), we obtain the estimate

‖u‖W 1,p ≤ C2(M) ‖(Γ∗, dΓ∗)‖L∞ , (10.50)

for some constant C2(M) > 0 depending only on Ω, n, p and M . Adding
(10.48) and (10.50) yields the sought after estimate (10.45). �

Theorem 10.11 is a refined restatement of Proposition 10.4, and thereby
completes the proof of Proposition 10.4, once we give the proofs of Lemmas
10.6, 10.7 and 10.10. This is accomplished in Section 11 below.

10.5. Proof of Theorem 4.3. We now give the proof of our main existence
result, Theorem 4.3, assuming Proposition 10.11 and Lemma 10.9 hold. So
given a weak solution u ∈ W 1,p(Ω) and a ∈ Lp(Ω) of the rescaled reduced
RT-equations (10.17) - (10.18) constructed in Proposition 10.11, we obtain
a solution J ∈ W 1,p(Ω) and B ∈ Lp(Ω) of the reduced RT-equations (10.2)
- (10.4) by setting

J = I + ǫ u and B = ǫ a, (10.51)

as can be verified by inspection, c.f. our scaling ansatz (10.16) and Lemma
10.3. It remains to prove that (J,B) satisfy estimate 4.16, and that J is
integrable to coordinates as well as invertible for any ǫ > 0 subject to some
upper bound depending only on Ω, n, p and M .
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We first prove that J is invertible assuming ǫ > 0 meets (10.44) together
with the upper bound

ǫ <
1

2CMC2(M)M
, (10.52)

where CM > 0 is the constant from Morrey’s inequality (A.4), C2(M) is
the constant from estimate (10.45) of Proposition 10.11, and M > 0 is our
incoming bound on ‖(Γ, dΓ)‖L∞ in (4.16). For this we use the following
lemma, which was proven in [22, Lemma 6.1].

Lemma 10.12. Let J = I+ǫu for some matrix valued 0-form u ∈W 1,p(Ω),
p > n, and assume

0 < ǫ <
1

2CM‖u‖W 1,p

, (10.53)

where CM > 0 is the constant from Morrey’s inequality (A.4). Then J is
invertible and there exists a matrix valued 0-form u− ∈W 1,p(Ω) such that

J−1 = I + ǫ u− (10.54)

and there exists a constant C− > 0 depending only on Ω, n, p such that

‖u−‖W 1,p(Ω) ≤ C− ‖u‖W 1,p(Ω). (10.55)

To apply Lemma 10.12 to the matrix valued 0-form u ∈ W 1,p(Ω) con-
structed in Proposition 10.11, it suffices to show that the ǫ-bound (10.52)
implies the ǫ-bound (10.53) of Lemma 10.12. By estimate (10.45) of Propo-
sition 10.11 and our initial bound (10.16) on Γ∗, we find

‖u‖W 1,p(Ω) ≤ C2(M)‖(Γ∗, dΓ∗)‖L∞(Ω) ≤ C2(M)M,

which implies
1

2CMC2(M)M
≤

1

2CM‖u‖W 1,p

,

and this shows that our ǫ-bound (10.52) implies (10.53). We conclude that
the Jacobian J = I + ǫ u is invertible with J−1 ∈ W 1,p(Ω), c.f. (10.54).
Moreover, by (10.54) and (10.55) it follows that

‖I − J−1‖W 1,p(Ω) ≤ ǫC−‖u‖W 1,p(Ω), (10.56)

where C− > 0 is the constant from Lemma 10.12, which depends only on
Ω, n, p.

We now prove estimate (4.16). For this, observe first that by (10.51), we
have ‖I − J‖W 1,p = ǫ ‖u‖W 1,p and ‖B‖Lp = ǫ ‖a‖Lp . Applying now estimate
(10.45) of Proposition 10.11, we obtain

‖I − J−1‖W 1,p + ‖I − J‖W 1,p + ‖B‖W 1,p ≤ ǫ (1 + C−)
(

‖u‖W 1,p + ‖a‖Lp

)

≤ C2(M)ǫ ‖(Γ∗, dΓ∗)‖L∞(Ω),

absorbing (1 + C−) > 0 into the constant C2(M) > 0. Now our scaling
assumption Γx = ǫΓ∗ in (10.14) directly gives

‖I − J−1‖W 1,p(Ω) + ‖I − J‖W 1,p(Ω) + ‖B‖W 1,p(Ω) ≤ C(M)‖(Γx, dΓx)‖L∞(Ω),



UHLENBECK COMPACTNESS AND OPTIMAL REGULARITY 69

which is the sought after estimate 4.16 of Theorem 4.3.
We finally show that J ≡ I + ǫ u is indeed a Jacobian which is integrable

to coordinates. For this recall that by Lemma 10.9, for each k ≥ 1, the
Jacobian Jk ≡ I + ǫ uk is integrable to coordinates, that is,

d
−→
Jk = 0 (10.57)

holds, c.f. (10.40), where uk+1 ∈ W 1,p(Ω) is defined by (10.28) - (10.29)
of the iteration scheme. By the convergence uk → u in W 1,p as k → ∞, it

follows that Jk converges to J inW 1,p as k →∞ as well. Thus d
−→
Jk converges

to d
−→
J in Lp, and this implies d

−→
J = 0 by (10.57). That is, J is integrable

to some coordinate system y. It then follows directly that yk defined by our
iteration scheme converges to some y inW 2,p(Ω), and that J is the Jacobian
of the coordinate transformation x → x+ ǫ y(x). This completes the proof
of Theorem 4.3. �

It remains only to prove Lemmas 10.6, 10.7 and 10.10, used to prove
Proposition 10.11, and to prove Lemma 10.9, which together with Proposi-
tion 10.11 was used to prove Theorem 4.3.

11. Proof of Lemmas 10.6, 10.7, 10.9 and 10.10

The proof of Theorem 4.3 in Section 10.5 above followed from Lemma
10.9 and Proposition 10.11, which assumed Lemmas 10.6, 10.7 and 10.10 to
be valid. In this section we prove these lemmas and thereby complete the
proof of Theorem 4.3.

11.1. Proof of Lemma 10.6 (Estimate for the source terms). Recall
Lemma 10.6 provides the basic estimates for the terms on the right hand
side of equations (10.17) - (10.18). Lemma 10.6 is required in the proofs of
Lemmas 10.7 and 10.10. So let Γ∗, dΓ∗ ∈ L∞(Ω), and assume u ∈ W 1,p(Ω)
and a ∈ Lp(Ω), for n < p < ∞. Then Lemma 10.6 states that (10.34) and
(10.35) hold, namely

‖Fu(u, a)‖W−1,p ≤‖a‖Lp + Cs
(

vol(Ω) + ǫ ‖u‖Lp

)

‖(Γ∗, dΓ∗)‖L∞(Ω)

‖Fa(u)‖W−1,p ≤Cs
(

vol(Ω) + ǫ ‖u‖W 1,p

)

‖(Γ∗, dΓ∗)‖L∞(Ω),

where Cs > 0 is some constant depending only on Ω, n, p, and where Fu(u, a)
and Fa(u) are defined in (10.19) and (10.20).

Proof. Recall that the operator norm on a linear functional F ∈W−1,p(Ω),

F : W 1,p∗

0 (Ω) −→ R, is defined as

‖F‖W−1,p ≡ sup
φ∈T

∣

∣F [φ]
∣

∣, (11.1)

where

T ≡
{

φ ∈W 1,p∗

0 (Ω)
∣

∣ ‖φ‖W 1,p∗ = 1
}

,
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and p∗ is the conjugate of p, 1
p +

1
p∗ = 1. We first derive (10.34). For this,

recall the definition of Fu(u, a) in (10.19),

Fu(u, a)[φ] ≡
〈

Γ∗, dφ
〉

L2 + ǫ
〈

u·Γ∗, dφ
〉

L2 +
〈

a, φ
〉

L2 ,

for any matrix valued 0-form φ ∈W 1,p∗

0 (Ω). From this together with (11.1),
we directly obtain that

‖Fu(u, a)‖W−1,p ≤ sup
φ∈T

(

∣

∣

〈

Γ∗, dφ
〉

L2

∣

∣+ ǫ
∣

∣

〈

u·Γ∗, dφ
〉

L2

∣

∣+
∣

∣

〈

a, φ
〉

L2

∣

∣

)

.

(11.2)

We now estimate the right hand side of (11.2) term by term. In this proof
we use C > 0 to denote a running constant depending only on Ω, n, p. For
the first term we apply Hölder’s inequality (A.6) to obtain

∣

∣

〈

Γ∗, dφ
〉

L2

∣

∣ ≤ C ‖Γ∗‖Lp‖dφ‖Lp∗

≤ C |Ω| ‖Γ∗‖L∞‖φ‖W 1,p∗

≤ C |Ω| ‖(Γ∗, dΓ∗)‖L∞ , (11.3)

for |Ω| ≡ vol(Ω), and where the last estimate follows from ‖φ‖W 1,p∗ = 1 for
φ ∈ T . Using again Hölder’s inequality and (10.15), we estimate the second
term in (11.2) by

∣

∣

〈

u·Γ∗, dφ
〉

L2

∣

∣ ≤ C ‖u·Γ∗‖Lp‖dφ‖Lp∗

≤ C ‖Γ∗‖L∞‖u‖Lp‖φ‖W 1,p∗

≤ C ‖u‖Lp ‖(Γ∗, dΓ∗)‖L∞ (11.4)

and the third term by
∣

∣

〈

a, φ
〉

L2

∣

∣ ≤ C ‖a‖Lp‖φ‖Lp∗ ≤ C ‖a‖Lp . (11.5)

Substituting (11.3) - (11.5) into (11.2), we obtain

‖Fu(u, a)‖W−1,p ≤ C
(

vol(Ω) + ǫ ‖u‖Lp

)

‖(Γ∗, dΓ∗)‖L∞ + ‖a‖Lp

which implies the sought after estimate (10.34).
We next prove (10.35). The functional Fa is defined in (10.20) as

Fa(u)[ψ] ≡
〈

dΓ∗,div←−(ψ)
〉

L2 + ǫ
〈

(u·dΓ∗ + du ∧ Γ∗),div←−(ψ)
〉

L2 ,

for any vector valued 2-form ψ ∈W 1,p∗

0 (Ω), where
(

div←−(ψ)
)µ

ν
= ∂νψ

µ
ij dx

idxj

by (8.23). Thus we have

‖Fa(u)‖W−1,p ≤ sup
ψ∈T

(

∣

∣

〈

dΓ∗,div←−(ψ)
〉

L2

∣

∣+ ǫ
∣

∣

〈

(u·dΓ∗ + du∧Γ∗),div←−(ψ)
〉

L2

∣

∣

)

,

(11.6)

where T is now taken as the space of vector valued 2-forms in W 1,p∗

0 (Ω)

having unit length with respect to theW 1,p∗-norm. Applying again Hölder’s
inequality, we estimate the first term in (11.6) by

∣

∣

〈

dΓ∗,div←−(ψ)
〉

L2

∣

∣ ≤ C ‖dΓ∗‖Lp ‖div←−(ψ)‖Lp∗
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≤ C |Ω| ‖dΓ∗‖L∞ ‖ψ‖W 1,p∗

≤ C |Ω| ‖(Γ∗, dΓ∗)‖L∞ , (11.7)

since ‖ψ‖W 1,p∗ = 1 for all ψ ∈ T . Likewise, we estimate the second term in
(11.6) using Hölder’s inequality by
∣

∣

〈

(u·dΓ∗ + du ∧ Γ∗),div←−(ψ)
〉

L2

∣

∣ ≤ C
∥

∥u·dΓ∗ + du ∧ Γ∗
∥

∥

Lp‖div←−(ψ)‖Lp∗

≤C
(

‖u‖Lp‖dΓ∗‖L∞ + ‖du‖Lp‖Γ∗‖L∞

)

‖ψ‖W 1,p∗

≤C ‖u‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ ,

(11.8)

again using ‖ψ‖W 1,p∗ = 1. Substituting (11.7) and (11.8) into (11.6), we
finally obtain

‖Fa(u)‖W−1,p ≤ C
(

vol(Ω) + ǫ ‖u‖W 1,p

)

‖(Γ∗, dΓ∗)‖L∞ , (11.9)

which is the sought after estimate (10.35). This completes the proof. �

11.2. Proof of Lemma 10.7 (Well-posedness of the iteration scheme).
We now prove Lemma 10.7 regarding well-posedness of the iteration scheme.
For this, assume uk ∈ W

1,p(Ω) is given and let n < p < ∞, n ≥ 2. Lemma
10.7 then states that there exists ak+1 ∈ L

p(Ω) which solves (10.21), there
exists Ψk+1 ∈ Lp(Ω) and yk+1 ∈ W 2,p(Ω) which solve (10.25) - (10.27),
and there exists uk+1 ∈ W

1,p(Ω) which solves (10.28) with boundary data
(10.29), and these solutions satisfy the elliptic estimates (10.36) - (10.39),

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω), (11.10)

‖Ψk+1‖Lp(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (11.11)

‖yk+1‖W 2,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (11.12)

‖uk+1‖W 1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (11.13)

for some constant Ce > 0 depending only on n, p and Ω.

Proof. We begin by proving existence of a weak solution ak+1 to the first
order system (10.21), namely

{

〈−−→ak+1, δψ〉L2 = Fa(uk)[ψ],

〈−−→ak+1, dϕ〉L2 = 0,

subject to the bound (10.36), by applying Proposition C.4 of Appendix C.
Proposition C.4 gives the existence of solutions to Cauchy Riemann type
systems in a scalar variable at low level of regularity ak+1 ∈ Lp(Ω). We
obtain such solutions by solving mollified equations with classical Dirich-
let data, and then taking the zero mollification limit to obtain solutions
ak+1 ∈ L

p(Ω). (Note that ak+1 ∈ L
p is too weak to impose Dirichlet data di-

rectly.) To start, note that the incoming assumption uk ∈W
1,p(Ω) together

with the source estimates of Lemma 10.6 show that Fa(uk) ∈ W−1,p(Ω),
which is the regularity assumed in Proposition C.4. We now show that each
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vector component of (10.21) is a Cauchy Riemann type system in scalar
variables, each component satisfying the assumptions of Proposition C.4.
The right hand side of the second equation in (10.21) is zero, and hence
of the form assumed in Proposition C.4. To apply Proposition C.4 to the
first equation in (10.21), it suffices to show that there exists a vector valued
1-form w ∈ W−1,p(Ω) such that Fa(u) = dw in a weak sense, which then
also implies the standard consistency conditions dFa(u) = 0 a weak sense.
This is accomplished in the next lemma.

Lemma 11.1. Assume u ∈ W 1,p(Ω) is given, then there exists a vector
valued 1-form w ∈ W−1,p(Ω) such that Fa(u) = dw in the weak sense

Fa(u)[ϕ] = −w[δϕ] for any vector valued 2-form ϕ ∈ W 2,p∗

0 (Ω). More-
over, dFa(u) = 0 holds in the weak sense that Fa(u)[δϕ] = 0 for any vector

valued 3-form ϕ ∈W 2,p∗

0 (Ω).

Proof. By definition (10.20), we have

Fa(u)[ψ] ≡
〈

dΓ∗,div←−(ψ)
〉

L2 + ǫ
〈

(u·dΓ∗ + du ∧ Γ∗),div←−(ψ)
〉

L2

=
〈

(

(I + ǫu)·dΓ∗ + d(I + ǫu) ∧ Γ∗
)

,div←−(ψ)
〉

L2

for any vector valued 2-form ψ ∈ W 1,p∗

0 (Ω). Let Γ∗
ρ denote a standard

mollifier of Γ∗ ∈ L∞(Ω) and uρ a mollifier of u ∈W 1,p(Ω), then Γ∗
ρ → Γ∗ in

L∞ and dΓ∗
ρ → dΓ∗ in L∞ as ρ→ 0, while uρ → u in W 1,p(Ω) as ρ→ 0. As

a consequence, setting

Fρ[ψ] ≡ lim
ρ→0

〈

(

(I + ǫuρ)·dΓ
∗
ρ + d(I + ǫuρ) ∧ Γ∗

ρ

)

,div←−(ψ)
〉

L2
,

Hölder inequality (A.6) implies convergence

Fa(u)[ψ] = lim
ρ→0
Fρ[ψ]. (11.14)

We now show that Fρ[δϕ] = 0. For this we begin by using the Leibnitz rule
for differential forms (3.6) to compute

Fρ[ψ] =
〈

d
(

(I + ǫuρ)·Γ
∗
ρ

)

,div←−(ψ)
〉

L2
,

Application of the adjoint property (8.24) gives

Fρ[ψ] =
〈−→
div
(

d
(

(I + ǫuρ)·Γ
∗
ρ

))

, ψ
〉

L2
.

We now apply (3.12) to commute d and
−→
div, from which we obtain

Fρ[ψ] =
〈

d
−−−−−−−−−−−→
δ
(

(I + ǫuρ)·Γ
∗
ρ

)

, ψ
〉

L2

=
〈−−−−−−−−−−−→
δ
(

(I + ǫuρ)·Γ
∗
ρ

)

, δψ
〉

L2
, (11.15)

where the last equality follows from partial integration for differential forms
(8.7). Now, since Γ∗

ρ → Γ∗ in L∞ and uρ → u in W 1,p(Ω) as ρ → 0, it
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follows that the expression on the right hand side converges in W−1,p(Ω)
and defines the vector valued 1-form w ∈W−1,p(Ω) as

w[ψ] ≡ lim
ρ→0

〈−−−−−−−−−−−→
δ
(

(I + ǫuρ)·Γ
∗
ρ

)

, δψ
〉

L2
.

Combining (11.14) with (11.15) imply that Fa(u)[ψ] = w[δψ] for any vector

valued 2-form ϕ ∈W 2,p∗

0 (Ω), which is the sought after equation.
To prove the supplement, substitute ψ = δϕ into (11.15), the identity

δ2 = 0 then gives us

Fρ[δϕ] =
〈−−−−−−−−−−−→
δ
(

(I + ǫuρ)·Γ
∗
ρ

)

, δδϕ
〉

L2
= 0,

which implies by (11.14) that

Fa(u)[δϕ] = lim
ρ→0
Fρ[δϕ] = 0

for any vector valued 3-form ϕ ∈W 2,p∗

0 (Ω). This proves Lemma 11.1. �

By Lemma 11.1, the desired condition dFa(u) = 0 holds for each vector
component in the weak sense, since there exists of a vector valued 1-form
w ∈ W−1,p(Ω) such that Fa(u) = dw. We conclude that Proposition C.4
applies component wise and yields the existence of a solution ak+1 ∈ L

p(Ω)
to (10.21). Moreover, the solution constructed in Proposition C.4 meets the
Lp-bound (C.14), which by application to each vector component directly
implies the sought after Lp-bound (10.36) on ak+1.

Next, we prove existence of a weak solution Ψk+1 ∈ Lp(Ω) of (10.25),
namely of

〈Ψk+1, δ~φ〉L2 = FΨ(uk, ak+1)[φ]

for any matrix-valued 0-form φ ∈W 1,p∗

0 (Ω), subject to the Lp bound (10.24)
by applying Proposition C.5, which is a version of Proposition C.4 applying
to the simpler case of 0-forms. For this, we need to verify that each vector
component of (10.25) meets the consistency condition df = 0, in the weak
sense f(δψ) = 0, of Proposition C.5, which is achieved in the next Lemma.

Lemma 11.2. Assume ak+1 ∈ L
p(Ω) solves (10.21) for some uk ∈W

1,p(Ω),
then FΨ, defined in (10.25), satisfies the weak consistency condition

FΨ(uk, ak+1)[δψ] = 0 (11.16)

for any vector valued 2-form ψ ∈W 2,p∗

0 (Ω), (so ψ|∂Ω = 0 and δψ|∂Ω = 0).29

Proof. By (10.26), FΨ is defined as

FΨ(uk, ak+1)[φ] = 〈JkΓ
∗, dφ〉L2 + 〈−−→ak+1,

−→
φ 〉L2 ,

29Note, δψ is a vector valued 1-form, and any such form can always be interpreted as
a matrix valued 0-form. So δψ is an admissible argument for FΨ.
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for matrix valued 0-forms φ ∈W 1,p∗

0 (Ω), where Jk ≡ I+ǫuk. In order for FΨ

to act on the vector valued 1-form δ
(

ψµijdx
i ∧ dxj

)

= (δψ)µν dxν , we express

δψ as the associated matrix valued 0-form (δψ)µν , then

FΨ(uk, ak+1)[δψ] = 〈JkΓ
∗, d(δψ)〉L2 + 〈−−→ak+1,

−→
δψ〉L2 , (11.17)

where d(δψ) = ∂i(δψ)
µ
ν dxi is the exterior derivative of the matrix valued

0-form δψ, and where
−→
δψ denotes the original vector valued 1-form δψµ =

(δψ)µνdxν . The main technical step of this proof is to show by a mollification
argument that the first term on the right hand side of (11.17) equals

〈JkΓ
∗, d(δψ)〉L2 = −

〈(

Jk ·dΓ
∗ + dJk ∧ Γ∗

)

,div←−(ψ)
〉

L2 . (11.18)

Assuming for the moment (11.18) holds, we substitute Jk = I+ ǫuk to write
(11.18) as

〈JkΓ
∗, d(δψ)〉L2 = −

〈

dΓ∗,div←−(ψ)
〉

L2 − ǫ
〈

(uk·dΓ
∗ + duk ∧ Γ∗),div←−(ψ)

〉

L2

= −〈−−→ak+1,
−→
δψ〉L2 , (11.19)

where the last equality follows from (10.21), the equation for ak+1. Sub-
stituting (11.19) into (11.17) gives the sought after consistency condition,

FΨ(uk, ak+1)[δψ] = 0 for any vector valued 2-form ψ ∈ W 1,p∗

0 (Ω), which
completes the proof of Lemma 11.2 once we prove equation (11.18) holds.

To verify (11.18), we consider a standard mollifier Γ∗
ρ of Γ

∗ together with
a mollifier (uk)ρ of uk, as in the proof of Lemma 11.1. For ease of notation
we omit writing out the mollifier (uk)ρ in the subsequent argument, that
is, whenever Γ∗

ρ appears we assume Jk denotes the mollification (Jk)ρ =

I + ǫ(uk)ρ. Now, since Γ∗
ρ → Γ∗ in L∞(Ω) and (uk)ρ → uk in W 1,p(Ω), it

follows that

〈JkΓ
∗, d(δψ)〉L2 = lim

ρ→0
〈JkΓ

∗
ρ, d(δψ)〉L2 .

Using the partial integration formula (8.7), we obtain

〈JkΓ
∗
ρ, d(δψ)〉L2 = −〈δ(JkΓ

∗
ρ), (δψ)〉L2

= −〈
−−−−−→
δ(JkΓ

∗
ρ),
−→
δψ〉L2 ,

where for the last equality we used the inner product identity (8.5) for matrix

and valued forms, using again the notation
−→
δψ = (δψ)µν dxν . Applying now

partial integration (8.7) for vector valued 1-forms, we get

〈JkΓ
∗
ρ, d(δψ)〉L2 = 〈d

−−−−−→
δ(JkΓ

∗
ρ), ψ〉L2 ,

and using (3.12) to commute d and
−→
div as

d
−−−−−→
δ(JkΓ

∗
ρ) =

−→
div
(

d(JkΓ
∗
ρ)
)

,

we find that

〈JkΓ
∗
ρ, d(δψ)〉L2 = 〈

−→
div
(

d(JkΓ
∗
ρ)
)

, ψ〉L2

(8.24)
= −〈d(JkΓ

∗
ρ),div←−(ψ)〉L2 , (11.20)
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using the adjoint property (8.24) for
−→
div in the last step. Now, by the

Leibnitz rule, the L∞ convergence of Γ∗
ρ and dΓ∗

ρ and the W 1,p convergence
of (Jk)ρ, it follows that

d
(

(Jk)ρΓ
∗
ρ

)

= d(Jk)ρ ∧ Γ∗
ρ + (Jk)ρ·dΓ

∗
ρ

ρ→0
−→ dJk ∧ Γ∗ + Jk·dΓ

∗

converges in Lp(Ω). Thus the left and right hand sides in (11.20) both
converge (as can be shown using Hölder inequality) and yield

〈JkΓ
∗, d(δψ)〉L2 = −

〈(

dJk ∧ Γ∗ + Jk ·dΓ
∗
)

,div←−(ψ)
〉

L2 ,

which is the sought after identity (11.18). This completes the proof of
Lemma 11.2. �

Lemma 11.2 establishes the consistency condition required by Proposition
C.5 for existence of a solution to the first order Cauchy Riemann type sys-
tem. To apply Proposition C.5 and conclude with the sought after existence
of a vector valued 0-form Ψk+1 ∈ Lp(Ω) which solves (10.25), it remains
only to show that FΨ(uk, ak+1) ∈W

−1,p(Ω). For this, recall that by (10.26),
FΨ is defined as

FΨ(uk, ak+1)[φ] = 〈JkΓ
∗, dφ〉L2 + 〈−−→ak+1,

−→
φ 〉L2 ,

for any matrix valued 0-form φ, where Jk ≡ I + ǫuk. Comparing this Fu in
(10.19),

Fu(u, a)[φ] ≡
〈

(I + ǫ u)·Γ∗, dφ
〉

L2 +
〈

a, φ
〉

L2 ,

where φ ∈W 1,p(Ω) can be any matrix valued 0-form, we conclude that

‖FΨ(uk, ak+1)‖W−1,p(Ω) = ‖Fu(uk, ak+1)‖W−1,p(Ω).

which is finite by the source estimate (10.34) of Lemma 10.6. We can now ap-
ply Proposition (C.5) and conclude with existence of a vector valued 0-form
Ψk+1 ∈ L

p(Ω) which solves (10.25) and satisfies the sought after estimate
(11.11).

We now prove the existence of a solution yk+1 ∈W
2,p(Ω) to the Dirichlet

problem (10.27),
{

∆yk+1 = Ψk+1,

yk+1

∣

∣

∂Ω
= 0,

together with the elliptic estimate (11.12). By Lemma 10.6, Fu(uk, ak+1)
is in W−1,p(Ω) and we can apply the basic existence result for the Poisson
equation with Lp sources, Theorem B.1. This yields the existence of a
solution yk+1 ∈ W 2,p(Ω). To prove estimate (10.39), we now apply the
elliptic estimate (B.4) of Theorem B.1 component wise to (10.27), which
gives us

‖yk+1‖W 2,p(Ω) ≤ C ‖Ψk+1‖Lp(Ω).

Using now estimate (10.38) on ‖Ψk+1‖Lp(Ω), we obtain

‖yk+1‖W 2,p(Ω) ≤ C ‖Fu(uk, ak+1)‖W−1,p(Ω),
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where we have absorbed the constant from the estimate on ‖Ψk+1‖Lp into
the universal constant C > 0. This is the sought after estimate (11.12).

We now prove existence of a solution uk+1 ∈ W 1,p(Ω) of (10.28) with
boundary data (10.29), that is,

−∆uk+1[φ] = Fu(uk, ak+1)[φ], (11.21)

for any matrix valued 0-form φ ∈ W 1,p∗

0 (Ω), and with Dirichlet bound-
ary data uk+1|∂Ω = dyk+1|∂Ω. By Lemma 10.6 we have Fu(uk, ak+1) ∈
W−1,p(Ω), so existence of a solution uk+1 ∈ W

1,p(Ω) of (11.21) follows di-
rectly from Theorem B.1. To prove estimate (10.37), we apply estimate
(B.3) of Theorem B.1 component wise to equation (11.21) and obtain

‖uk+1‖W 1,p(Ω) ≤ C
(

‖Fu(uk, ak+1)‖W−1,p(Ω) + ‖dyk+1‖W 1,p(Ω)

)

, (11.22)

where the second terms on the right hand side results from the boundary
data, uk+1 = dyk+1 on ∂Ω. Applying now estimate (11.12) to bound the
boundary term by

‖dyk+1‖W 1,p(Ω) ≤ ‖yk+1‖W 2,p(Ω) ≤ C ‖Fu(uk, ak+1)‖W−1,p(Ω),

we obtain
‖uk+1‖W 1,p(Ω) ≤ C ‖Fu(uk, ak+1)‖W−1,p(Ω),

which is the sought after estimate (10.37). We now choose the maximum
over all constants in the above estimates as the constant Ce > 0 stated in
Lemma 10.7. This completes the proof of Lemma 10.7. �

11.3. Proof of Lemma 10.10 (Bounds on differences of iterates).
We prove the closeness of subsequent iterates required to conclude with
convergence of the iteration scheme in the proof of Proposition 10.11. So
assume Γ∗, dΓ∗ ∈ L∞(Ω), and let Ce > 0 denote the constant from the
elliptic estimates of Lemma 10.7, which depends only on n, p, Ω. Then, to
prove Lemma 10.10, it suffices to show that differences of iterates satisfy

‖ak+1‖Lp ≤ ǫ Ce ‖(Γ
∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (11.23)

‖uk+1‖W 1,p ≤ ǫ Ce(1 +Ce) ‖(Γ
∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (11.24)

for any k ∈ N. To prove Lemma 10.10, we require the following lemma
which gives bounds on differences of source terms,

Fa(uk) ≡ Fa(uk)− Fa(uk−1),

Fu(uk, ak+1) ≡ Fu(uk, ak+1)− Fu(uk−1, ak),
(11.25)

which by linearity of Fa and Fu is a straightforward modification of the proof
of Lemma 10.6.

Lemma 11.3. Assume (uk, ak) are defined by the iteration scheme (10.21)
- (10.28), then the differences of source terms defined in (11.25) satisfy

∥

∥Fu(uk, ak+1)
∥

∥

W−1,p ≤‖ak+1‖Lp + ǫ ‖uk‖Lp ‖(Γ∗, dΓ∗)‖L∞ , (11.26)
∥

∥Fa(uk)
∥

∥

W−1,p ≤ǫ ‖uk‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ . (11.27)
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Proof. We prove the lemma by using linearity of the source terms Fu and
Fa and following the steps in the proof of Lemma 10.6. In more detail, we
find from the definition of Fu(u, a) in (10.19), that

Fu(uk, ak+1)[φ] = ǫ
〈

uk·Γ
∗, dφ

〉

L2 +
〈

ak+1, φ
〉

L2 ,

for any matrix valued 0-form φ ∈W 1,p∗

0 (Ω). Following the steps in the proof
of Lemma 10.6, then yields (11.26). Similarly, from the definition of Fa in
(10.20) that

Fa(uk)[ψ] ≡ ǫ
〈

(uk·dΓ
∗ + duk ∧ Γ∗),div←−(ψ)

〉

L2 ,

for any vector valued 2-form ψ ∈ W 1,p∗

0 (Ω), and following the steps in the
proof of Lemma 10.6 gives us (11.27). This completes the proof of Lemma
11.3. �

Lemma 10.10 now follows from the elliptic estimates (10.36) and (10.39)
together with the bounds on differences of sources in Lemma 11.3. That is,
by linearity of (10.36), we have

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω)

(11.27)

≤ ǫCe ‖uk‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ . (11.28)

Likewise, by linearity of (10.39), we find

‖uk+1‖W 1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω)
(11.26)

≤ Ce
(

‖ak+1‖Lp + ǫ ‖uk‖Lp ‖(Γ∗, dΓ∗)‖L∞

)

(11.28)

≤ ǫCe(1 + Ce) ‖uk‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ . (11.29)

This completes the proof of Lemma 10.10. �

11.4. Proof of Lemma 10.9 (Integrability of J). On smooth k-forms
the Laplacian acts component wise, (i.e., on components of matrix-, vector-
and differential forms separately), and the relation between vector and ma-
trix valued solutions of the Poisson equations in a classical sense is straight-

forward. That is, we have
−→
∆u = ∆~u in a classical sense. This is used in

Lemma 10.1 to prove that the Jacobian J produced by the iteration scheme is

integrable to coordinates. The next lemma establishes the relation
−→
∆u = ∆~u

for the weak Laplacian.

Lemma 11.4. Let u ∈W 1,p(Ω) be a matrix valued 0-form, then

∆(u)
[

φ
]

= ∆~u
[

~φ
]

(11.30)

for any matrix valued 0-form φ ∈W 1,p∗

0 (Ω).
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Proof. From the weak form of the Laplacian in (8.12), using that δu = 0 and
du = ∇u for matrix valued 0-forms, (where again ∇u denotes the gradient
acting on each component of u), we find

−∆(u)[φ] = 〈du, dφ〉L2 + 〈δu, δφ〉L2 = 〈du, dφ〉L2

= 〈∇u,∇φ〉L2 =
∑

j

〈∂ju, ∂jφ〉L2 ,

where the last equality follows from the definition in (8.14), c.f. Lemma 8.2.
Using now that for fixed j the inner product is invariant under vectorization
for matrix valued 0-forms, c.f. (8.5), we obtain

−∆(u)[φ] = 〈∇~u,∇~φ〉L2 .

Now, let uǫ be a standard mollification of u. Then uǫ → u in W 1,p(Ω) as
ǫ→ 0, which allows us to compute

−∆(u)[φ] = lim
ǫ→0
〈∇~uǫ,∇~φ〉L2

= − lim
ǫ→0
〈∆~uǫ, ~φ〉L2

= lim
ǫ→0

(

〈d~uǫ, d~φ〉L2 + 〈δ~uǫ, δ~φ〉L2

)

= 〈d~u, d~φ〉L2 + 〈δ~u, δ~φ〉L2

= −∆~u[~φ].

This completes the proof. �

We now prove Lemma 10.9, which states that

d−−→uk+1 = 0, (11.31)

where uk+1 ∈ W
1,p(Ω) is a solution of (10.28) with boundary data (10.29).

Equation (11.31) implies directly that Jk+1 ≡ I + ǫ uk+1 is integrable to
coordinates. Moreover, Lemma 10.9 states that Jk+1 is the Jacobian of the
coordinate transformation x → x+ ǫ yk+1(x), where yk+1 ∈ W

2,p(Ω) is the
solution of (10.27).

Proof of Lemma 10.9. The idea of proof is similar to that of Lemma 10.1,
but adapted to the weak formulation of (10.23), to take into account the
regularity of Ψk+1 ∈ L

p(Ω) and uk+1 ∈ Lp(Ω). That is, we need to show
that

∆
(−−→uk+1 − dyk+1

)[

~φ
]

= 0, (11.32)

for any matrix valued 0-form φ ∈W 1,p∗

0 (Ω). Assume for the moment (11.32)
is true. Then, since −−→uk+1−dyk+1 vanishes on ∂Ω by the boundary condition
(10.29), equation (11.32) implies that

−−→uk+1 − dyk+1 = 0 (11.33)

in Ω, which is the sought after equation (10.40). Moreover, (11.33) directly
implies that

d(x+ ǫyk+1) =
−−→
Jk+1,



UHLENBECK COMPACTNESS AND OPTIMAL REGULARITY 79

where Jk+1 ≡ I+ǫ uk+1. Thus Jk+1 is in fact the Jacobian of the coordinate
transformation x→ x+ǫ yk+1(x). This proves Lemma 10.9 once we establish
(11.32).

To prove (11.32), recall that Ψk+1 satisfies (10.25),

〈Ψk+1, δ~φ〉L2 = 〈JkΓ
∗, dφ〉L2 + 〈−−→ak+1, ~φ〉L2 , (11.34)

for any matrix-valued 0-form φ ∈W 1,p∗

0 (Ω), where Jk ≡ I + ǫuk. Moreover,
yk+1 ∈W

2,p(Ω) solves
∆yk+1 = Ψk+1, (11.35)

with boundary data yk+1

∣

∣

∂Ω
= 0, c.f. (10.27).

Combining (11.34) and (11.35), and using d2yk+1 = 0, we obtain from the
definition of the weak Laplacian in (8.12) that

−∆(dyk+1)[~φ] =
〈

δdyk+1, δ~φ
〉

L2 +
〈

d2yk+1, d~φ
〉

L2

=
〈

δdyk+1, δ~φ
〉

L2

=
〈

∆yk+1, δ~φ
〉

L2 , (11.36)

since yk+1 is a vector valued 0-form, so that δyk+1 = 0 and ∆yk+1 = (δd +
dδ)yk+1 = δdyk+1. Substituting now (11.35) for ∆yk+1, we write (11.36) as

−∆(dyk+1)[~φ]
(11.35)
=

〈

Ψk+1, δ~φ
〉

L2

(11.34)
= 〈Jk Γ

∗, dφ〉L2 + 〈−−→ak+1, ~φ〉L2 . (11.37)

Now, recall that uk+1 solves (10.28), that is,

−∆uk+1[φ] =
〈

Jk Γ
∗, dφ

〉

L2 +
〈

ak+1, φ
〉

L2 . (11.38)

By definition of the inner products we have
〈

ak+1, φ
〉

L2 =
〈−−→ak+1,

−→
φ
〉

L2 , c.f.
(8.5). Thus, (11.37) in combination with (11.38) gives us

∆(dyk+1)
[

~φ
]

= ∆uk+1

[

φ
]

(11.39)

for any matrix valued 0-form φ ∈ W 1,p∗

0 (Ω). Finally, applying Lemma 11.4
to the right hand side of (11.39), we obtain

∆(dyk+1)
[

~φ
]

= ∆−−→uk+1

[

~φ
]

,

which directly gives the sought after equation (11.32). This completes the
proof of Lemma 10.9. �

This finishes the proof of Theorem 2.1 and 2.3, thereby establishing opti-
mal regularity and Uhlenbeck compactness for L∞ connections.

Appendix A. Sobolev norms and inequalities

We first give an overview of the norms used in this paper. These norms are
coordinate dependent, so we assume at the start a given coordinate system
x defined on an open set Ω ⊂M such that Ωx ≡ x(Ω) ⊂ R

n is bounded. In
this paper we always write Ω instead of Ωx when there is no confusion, c.f.
Section 2. In this section Ω always refers to Ωx. We denote by ‖ · ‖Wm,p(Ω)
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the standard Wm,p-norm, defined as the sum of the Lp-norms of derivatives
from order zero up to m [11]. When applied to matrix or vector valued
differential forms ω, ‖ω‖Wm,p(Ω) denotes the p-th root of the sum of the
p-th powers of the Wm,p-norms of all components, summed over all matrix
and differential form components for matrix valued differential forms, and
over all vector and differential form components for vector valued differential
forms. Specifically, for matrix valued k-form ω = ωµν i1...ikdx

i1 ∧ ... ∧ dxik we
define

|ω|p ≡
∑

µ,ν,i1,...,ik

|ωµν i1...ik |
p

‖ω‖pLp(Ω) ≡
∑

µ,ν,i1,...,ik

∥

∥ωµν i1...ik‖
p
Lp =

∫

Ω
|ω|pdx

‖ω‖Wm,p(Ω) ≡
∑

|l|≤m

‖∂lω‖Lp(Ω) (A.1)

where 1 ≤ p <∞, l is a multi-index, so l = (l1, ..., ln), |l| = l1 + ...+ ln and
∂lω ≡ (∂l1ω, ...∂lnω) taken component wise. Likewise, define the L∞-norm

‖ω‖L∞(Ω) ≡
∑

µ,ν,i1,...,ik

‖ωµν i1...ik‖L∞(Ω), (A.2)

and the L2-inner product on matrix valued forms ω and u,

〈ω, u〉L2 ≡

∫

Ω
tr
(

〈ω ;uT 〉
)

=

∫

Ω

n
∑

ν,σ=1

∑

i1<...<ik

ωνσ i1...iku
ν
σ i1...ik

, (A.3)

c.f. (8.2), where tr(·) is the matrix trace and 〈· ; ·〉 the matrix valued inner
product (3.9), and where we integrate with respect to Lebesgue measure
in a fixed coordinate system x. By this we introduce the Hilbert-Schmidt
inner product on the matrix components of matrix valued differential forms.
When convenient we drop the dependence of the region Ω of norms, for
example, writing ‖ · ‖Wm,p instead of ‖ · ‖Wm,p(Ω).

We now summarize the basic integral inequalities we apply in this paper,
see [11] for details. The space W 1,p for p > n, is embedded in the space of
Hölder continuous functions C0,α(Ω). Namely, for p > nMorrey’s inequality
gives

‖f‖C0,α(Ω) ≤ CM‖f‖W 1,p(Ω), (A.4)

where α ≡ 1 − n
p and CM > 0 is a constant depending only on n, p and

Ω [11].30 Morrey’s inequality (A.4) extends unchanged to components of
matrix valued differential forms. By Morrey’s inequality we can estimate
products of W 1,p functions f and g on bounded domains Ω as

‖fg‖W 1,p(Ω) ≤ CM‖f‖W 1,p(Ω)‖g‖W 1,p(Ω), (A.5)

30When applying (A.4) for higher derivative estimates in Section 9.1, we often en-
counter CM multiplied by some positive combinatorial factor depending only on m which
we again denote by CM .
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by pulling L∞ norms of undifferentiated functions out of Lp norms and
applying (A.4) to bound the resulting L∞ norms. This shows that W 1,p(Ω)
is closed under multiplication on bounded domains.

To handle products in the RT-equations at the lowest order of regularity
we employ Hölder’s inequality, which states

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lp∗ (Ω), (A.6)

where p and p∗ are conjugate exponents, i.e., 1
p + 1

p∗ = 1. Now, assuming

f, g ∈ L2p(Ω), (A.6) implies the estimate

‖fg‖Lp(Ω) = ‖|fg|p‖
1
p

L1(Ω)

(A.6)

≤ ‖|f |p‖
1
p

L2(Ω)
‖|g|p‖

1
p

L2(Ω)

= ‖f‖L2p(Ω) ‖g‖L2p(Ω), (A.7)

which shows in particular that fg ∈ Lp(Ω). Estimate (A.7) allows us to
control the gradient product dJ−1∧dJ in (4.1) in the proof of Theorem 4.1,
which is a key step in our analysis. Hölder’s inequality (A.6) and estimate
(A.7) extend to matrix valued differential forms, only a little care must be
taken to handle index summation, for example,

‖A ·B‖L1(Ω) ≡
∑

µ,ν

‖(A · B)µν‖L1(Ω)

≤
∑

µ,ν,σ

‖AµσB
σ
ν ‖L1(Ω)

(A.6)

≤
(

∑

µ,ν

‖Aµν‖Lp(Ω)

)(

∑

µ,ν

‖Bµ
ν ‖Lp∗ (Ω)

)

≤ C
(

∑

µ,ν

‖Aµν‖
p
Lp(Ω)

)
1
p
(

∑

µ,ν

‖Bµ
ν ‖

p∗

Lp∗(Ω)

)
1
p∗

≡ C ‖A‖Lp(Ω)‖B‖Lp∗(Ω) (A.8)

for matrix valued 0-form A and matrix valued k-form B, where C > 0 is a
constant depending only on n (just to compensate for the order of taking
roots and summation) and we omitted summation over form indices i1, ..., ik.
Similarly one obtains that

‖A ∧B‖L1(Ω) ≤ C ‖A‖Lp(Ω)‖B‖Lp∗(Ω),

‖A ∧B‖Lp(Ω) ≤ C ‖A‖L2p(Ω)‖B‖L2p(Ω), (A.9)

for A and B being general matrix valued differential forms.

Appendix B. Elliptic PDE theory

We now summarize the estimates we use from elliptic PDE theory. We
assume throughout that n < p < ∞, n ≥ 2 and that Ω ⊂ R

n is a bounded
open domain, simply connected and with smooth boundary. Our estimates
are based on the following two theorems, which directly extend to matrix
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valued and vector valued differential forms since the Laplacian acts compo-
nent wise, c.f. Lemma 8.2. That is, we take the weak Laplacian here as
∆u[φ] = −〈∇u,∇φ〉L2 for scalar functions u ∈ W 1,p(Ω) and for test func-

tions φ ∈W 1,p∗

0 (Ω), whereW 1,p∗

0 (Ω) is the closure of C∞
0 (Ω) with respect to

the W 1,p∗-norm (so φ|∂Ω = 0). Our first theorem is based on Theorem 7.2
in [25], but adapted to the case of solutions to the Poisson equation with
non-zero Dirichlet data.

Theorem B.1. Let Ω ⊂ Rn be a bounded open set with smooth boundary
∂Ω, assume f ∈W−1,p(Ω) and u0 ∈W

1,p(Ω)∩C0(Ω) for n < p <∞. Then
the Dirichlet boundary value problem31

∆u[φ] = f [φ], in Ω (B.1)

u = u0 on ∂Ω, (B.2)

for any φ ∈W 1,p∗

0 (Ω), has a unique weak solution u ∈W 1,p(Ω) with bound-

ary data u − u0 ∈ W 1,p
0 (Ω). Moreover, any weak solution32 u of (B.1) -

(B.2) satisfies

‖u‖W 1,p(Ω) ≤ C
(

‖f‖W−1,p(Ω) + ‖u0‖W 1,p(Ω)

)

, (B.3)

for some constant C depending only on Ω, n, p, and if f ∈ Lp(Ω) and u0 ∈
W 2,p(Ω), then the solution u satisfies

‖u‖W 2,p(Ω) ≤ C
(

‖f‖Lp(Ω) + ‖u0‖W 2,p(Ω)

)

. (B.4)

Proof. Theorem 7.2 in [25] yields existence of a unique solution u ∈W 1,p(Ω)
to (B.1) - (B.2) satisfying estimate (B.3) in the case of zero Dirichlet data,
i.e. when u0 = 0 in Ω. Note, Theorem 7.2 in [25] applies since the weak
Laplacian is a strongly uniformly elliptic operator in the sense of equation
(1.8) of [25, Def 1.3].33 To extend this result to non-zero Dirichlet data, let
ũ ∈W 1,p(Ω) be the solution of the Laplace equation ∆ũ = 0 with boundary

data ũ = u0 on ∂Ω in the sense that u0 − ũ ∈ W
1,p
0 (Ω); note that u can be

constructed via Green’s representation formula [12, Eqn. (2.21)] for W 1,p-
data. Assume now w ∈ W 1,p is the solution of (B.1) with zero Dirichlet

data satisfying (B.3), ∆w = f in a weak sense and w ∈ W 1,p
0 (Ω), which

exists by Theorem 7.2 in [25]. Then u ≡ w + ũ solves (B.1) - (B.2), since

∆u = ∆w = f (in a weak sense) and u − u0 ∈ W 1,p
0 (Ω). To show that

estimate (B.3) holds, we begin by using the triangle inequality twice to get

‖u‖W 1,p ≤ ‖w‖W 1,p + ‖ũ− u0‖W 1,p + ‖u0‖W 1,p . (B.5)

31Note that u ∈ W 1,p(Ω) is Hölder continuous by Morrey’s inequality (A.4), since we
assume here p > n. So boundary data can be assigned in the sense of continuous functions.

32It suffices to assume that u is regular enough to make sense of the weak formulation
of the Laplacian, for example, du, δu ∈ Lp(Ω) for a differential form u, as in Section 9.2.

33That in fact any such solution satisfies estimate (B.3) follows from Theorem 6.1 in
[25], equation (6.2), where we can take C2 = 0 since ∆ is strongly uniformly elliptic.
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We can now apply the established case of estimate (B.3), for the case of zero
Dirichlet data, to the first two terms, since w, ũ−u0 ∈W

1,p(Ω). This yields

‖w‖W 1,p ≤ C‖f‖W−1,p(Ω), (B.6)

while the second term, using in addition that ∆(ũ − u0) = ∆u0 and that
‖∆u0‖Wm−1,p(Ω) ≤ ‖u0‖Wm+1,p(Ω), is bounded by

‖ũ− u0‖W 1,p(Ω) ≤ C‖∆(ũ− u0)‖W−1,p(Ω)

≤ C‖u0‖W 1,p(Ω). (B.7)

Substitution of estimates (B.6) and (B.7) into (B.5) yields the sought after
estimate (B.3) in the general case of non-zero Dirichlet data. We proved
that there exists a solution to (B.1) - (B.2) which satisfies estimate (B.3).

To complete the proof, note that estimate (B.4) in the case of zero Dirich-
let data (u0 = 0) is already proven in [25, Thm 7.2], (c.f. Lemma 9.17 in
[12]). The case of estimate (B.4) for non-zero Dirichlet data follows by an
argument analogous to (B.5) and (B.7). Namely, let ũ be the solution of

∆ũ = 0 with boundary data u0 − ũ ∈W
1,p
0 (Ω), and let w ∈W 2,p(Ω) be the

solution of ∆w = f with w ∈ W 1,p
0 (Ω) established in [25, Thm 7.2]. Then

setting again u ≡ w+ ũ and applying estimate (B.4) in the case of vanishing
Dirichlet data (y = 0) to w and ũ−u0 yields the sought after estimate (B.4):

‖u‖W 2,p(Ω) ≤ ‖w‖W 2,p + ‖ũ− u0‖W 2,p + ‖u0‖W 2,p

≤ C
(

‖f‖Lp(Ω) + ‖∆(ũ− u0)‖Lp(Ω)

)

+ ‖u0‖W 2,p(Ω)

≤ C
(

‖f‖Lp(Ω) + ‖u0‖W 2,p(Ω)

)

,

where C > 0 was again used as a running constant. This completes the
proof of Theorem B.1. �

We require the following interior elliptic estimates in the proof of Theorem
4.1 in Section 9 in the case m = 0, and for higher regularities m ≥ 1 to prove
Proposition 9.1. Note that interior elliptic estimates usually are established
earlier in the development of elliptic PDE theory, but for completeness we
derive the interior estimate from (B.3).

Theorem B.2. Let f ∈ Wm−1,p(Ω), for m ≥ 0 and n < p < ∞. Assume
u is a weak solution of (B.1). Then u ∈ Wm+1,p(Ω′) for any open set Ω′

compactly contained in Ω and there exists a constant C depending only on
Ω,Ω′,m, n, p such that

‖u‖Wm+1,p(Ω′) ≤ C
(

‖f‖Wm−1,p(Ω) + ‖u‖Wm,p(Ω)

)

. (B.8)

Proof. We only need to prove the case m = 0. The case for m ≥ 1 can easily
be obtained by differentiating and applying the estimate for the case m = 0;
(c.f. Appendix A in [22].)

We apply estimate (B.3) to φu where φ is a standard smooth cutoff func-
tion, φ = 1 in Ω′, φ = 0 on ∂Ω. Then

∆(φu) = φ∆u+ 2∇φ · ∇u+ u∆φ ≡ f̂ . (B.9)
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Then applying (B.3) together with the assumption that we have a solution
of the Poisson equation (B.1), we have

‖u‖W 1,p(Ω′) = ‖φu‖W 1,p(Ω′) ≤ ‖φu‖W 1,p(Ω) ≤ C‖f̂‖W 1,p(Ω) (B.10)

= C‖φ‖C2

(

‖f‖W−1,p(Ω) + ‖∇u‖W−1,p(Ω) + ‖u‖W−1,p(Ω)

)

,

from which (B.8) follows, since by definition of Sobolev norms we have
‖∇u‖W−1,p(Ω) ≤ ‖u‖Lp and ‖u‖W−1,p(Ω) ≤ ‖u‖Lp . This completes the
proof. �

Appendix C. Cauchy Riemann type equations at low

regularities

In this appendix we prove Propositions C.4 and C.5 which give existence
of weak solutions to Cauchy Riemann type equation for scalar valued differ-
ential forms, required in the proof of Lemma 10.7 for well-posedness of the
iteration scheme. For this, in Theorems C.1, C.2 and C.3 below, we first
collect the theorems from [6] regarding classical W 1,p solutions of first order
Cauchy-Riemann type equations

du = f and δu = 0, in Ω, (C.1)

where the Cartan algebra of differential forms is determined by the Euclidean
metric in R

n. We extend these theorems in Proposition C.4 and C.5 below
to prove existence of weak Lp solutions, the lower regularity required for
well-posedness of our iteration scheme, in the special case when boundary
data is free to assign.

To begin, we state the following partial integration formula for non-zero
boundary data,

∫

Ω
〈du,w〉dx +

∫

Ω
〈u, δw〉dx =

∫

∂Ω
〈N ∧ u,w〉 =

∫

∂Ω
〈u,N · w〉, (C.2)

where u is a k-form and w a (k + 1)-form, N denotes the outward-pointing
unit normal of ∂Ω and N · w denotes the contraction of N and w, c.f.
Theorem 3.28 in [6], (and (8.6) for the case of vanishing boundary data).

We now state the basic elliptic estimate for (C.1), which mirrors estimate
(B.3) for the Poisson equation, the so-called Gaffney inequality, (c.f. The-
orem 5.21 in [6]). The Gaffney inequality shows that d and δ control all
derivatives of u.

Theorem C.1. (Gaffney Inequality): Let u ∈ Wm+1,p(Ω) be a k-form
for m ≥ 0, 1 ≤ k ≤ n − 1 and n ≥ 2. Then there exists a constant C > 0
depending only on Ω, m,n, p, such that

‖u‖Wm+1,p(Ω) ≤ C
(

‖du‖Wm,p(Ω) + ‖δu‖Wm,p(Ω) + ‖u‖
W

m+
p−1
p ,p

(∂Ω)

)

. (C.3)

The following special case of Theorem 7.4 in [6], provides the existence
theorem sufficient for our purposes, and contains a refinement of Gaffney’s
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inequality (C.3) for 1-forms and 0-forms.

Theorem C.2. (i) Let f ∈ Wm,p(Ω) be a 2-form with df = 0, where m ≥
0, n ≥ 2, 1 < p < ∞. Assume further that f = dv for some 1-form
v ∈ Wm,p(Ω).34 Then there exists a 1-form u = ui dx

i ∈ Wm+1,p(Ω) which
solves

du = f and δu = 0 in Ω, (C.4)

together with the boundary condition

u ·N = 0 on ∂Ω, (C.5)

where N is the unit normal on ∂Ω and u ·N ≡ uiN
i. Moreover, there exists

a constant C > 0 depending only on Ω, m,n, p, such that

‖u‖Wm+1,p(Ω) ≤ C‖f‖Wm,p(Ω). (C.6)

(ii) Let f ∈ Wm,p(Ω) be a 1-form with df = 0. Then there exists a 0-form
u ∈Wm+1,p(Ω) such that u solves du = f , has zero average

∫

Ω udx = 0 and
satisfies estimate (C.6).

Proof. Theorem C.2 and its proof are taken from [22], and the proof is in-
cluded for completeness, c.f. Theorem 2.4 in [22]. Part (i) is a special case
of Theorem 7.4 in [6] for 1-forms with zero boundary conditions. Namely,
our assumption df = 0 together with zero boundary data, (ω0 = 0, following
notation in [6]), directly gives condition (C1) of [6, Thm 7.4]. The first equa-
tion of condition (C2) of [6, Thm 7.4] follows trivially from our assumptions;
g = 0 and ω0 = 0 in the notation of [6]. The second equation in (C2), that
∫

Ω〈f ; Ψ〉 = 0 for any harmonic form Ψ (i.e. δΨ = 0) with vanishing normal
components (i.e. N · Ψ = 0) on the boundary (Ψ ∈ HN in the notation
of [6]), follows by application of the integration by parts formula (C.2) for
differential forms to f = dv,

〈f,Ψ〉L2 = −〈v, δΨ〉L2 + 〈v,N ·Ψ〉L2 = 0.

Theorem 7.4 in [6] now yields the existence of a solution u ∈Wm+1,p(Ω) to
(C.4) - (C.5) satisfying estimate (C.6).

Part (ii) of Theorem C.2, can be thought of as a version of Theorem [6,
Thm 7.4], in the special case of 0-forms, which does not require condition
(C2) by abandoning boundary data. That is, we seek a 0-form u solving the
gradient equation du = f such that estimate (C.6) holds. (No boundary data
is required for our purposes). To begin the proof, observe that a solution
u ∈Wm+1,p(Ω) of du = f , in the case m ≥ 1, is given by the path integral

u(x) =

∫ x

x0

f · d~r + u0 (C.7)

along any differentiable curve connecting x0 and x, where x0 ∈ Ω is some
point we fix, and the constant u0 is the value of u at x0, which is free to be

34Since d2 = 0, the assumption f = dv implies df = 0, and is a slightly stronger
assumption than df = 0, convenient for our purposes.
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chosen. Note, since df = 0, the integral (C.7) is path independent, as can
be shown by applying Stokes Theorem to integration of df over the region
enclosed by two curves connecting x0 and x. We now choose u0 such that
the average of u is zero,

∫

Ω udx = 0. Then Poincaré’s inequality [12, Eqn.
(7.45)] implies that ‖u‖Lp(Ω) ≤ C‖f‖Lp(Ω) for a suitable constant C > 0.
Thus, since ‖du‖Lp(Ω) = ‖f‖Lp(Ω) follows directly from du = f , we have

‖u‖W 1,p(Ω) ≤ C‖f‖Lp(Ω). (C.8)

Estimate (C.6) follows by suitable differentiation of du = f and application
of estimate (C.8). Existence of a solution u to du = f in the case m = 0
follows again from (C.7) by mollifying f , and using that this mollification is
controlled by estimate (C.8). This completes the proof of Theorem C.2. �

We finally require the so-called Hodge-Morrey decomposition, taken from
Theorem 6.12 in [6]:

Theorem C.3. (Hodge-Morrey decomposition): (i) Let Φ ∈ Lp(Ω) be
a 1-form for 1 < p < ∞. Then there exists 1-forms w1, w2 ∈ W

2,p(Ω) such
that

Φ = dα+ δβ + h, (C.9)

where α = δw1 and β = dw2 such that N ∧α
∣

∣

∂Ω
= 0 and N ·β

∣

∣

∂Ω
= 0, where

N is interpreted as either a 1-form or a vector normal to ∂Ω, and where h
is a harmonic 1-form in the sense that dh = 0 = δh. Moreover, there exists
a constant C > 0 depending only on Ω, n, p such that

‖w1‖W 2,p(Ω) + ‖w2‖W 2,p(Ω) + ‖h‖Lp(Ω) ≤ C‖Φ‖Lp(Ω). (C.10)

(ii) Let Φ ∈ Lp(Ω) be a 0-form, 1 < p < ∞, then there exist 0-forms
w ∈W 2,p(Ω) and a constant h0 such that

Φ = δβ + h0, (C.11)

where β = dw and N ·β
∣

∣

∂Ω
= 0, and exists a constant C > 0 depending only

on Ω, n, p such that

‖w‖W 2,p ≤ C‖Φ‖Lp . (C.12)

Proof. Part (i) of Theorem C.3 is the case of Theorem 6.12 (iii) in [6] for
1-forms Φ. Part (ii) follows from (iii) of [6, Thm 6.12] for 0-forms Φ, by
observing that any harmonic 0-form h is constant, (since dh = 0 is the
vanishing gradient condition for h), so h = h0.

35
�

35One can understand Theorem C.3 (ii) quite easily from the point of view of the
Poisson equation. Namely the sought after function w is the solution to the Poisson
equation ∆w = Φ − h0 with Neumann data N · dw = 0 on ∂Ω, where h0 is a constant
chosen such that Φ− h0 satisfies the consistency condition

∫
Ω
(Φ− h0)dx = 0 existence of

w, (required by the divergence theorem applies to the equation). The solution w is unique
up to addition by a constant, and we choose this constant for w to have zero average∫
Ω
wdx = 0. Now, the Poincaré inequality implies the Lp-norm of w to be bounded by the

Lp norm of dw, and from this estimate (C.12) follows from standard elliptic estimates.
(Compare also with Theorem 9.2 in [6] and its proof.)
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We are now prepared to establish the existence theorems for 1-forms and
0-forms required in our iteration scheme in Section 11.2, Proposition C.4 and
C.5 below. We begin with the case of 1-forms. That is, given f ∈W−1,p(Ω)
for 1 < p < ∞, we prove existence of a 1-form a ∈ Lp(Ω) which is a weak
solution

{

da = f

δa = 0,
(C.13)

such that

‖a‖Lp ≤ C‖f‖W−1,p (C.14)

for some constant C > 0 depending only on n, p,Ω. No boundary data is
imposed. Here a is a scalar valued 1-form and f a linear functional over

the space of 2-forms with components in W 1,p∗

0 (Ω), f : W 1,p∗

0 (Ω) −→ R,

where W 1,p∗

0 (Ω) is the closure of C∞
0 (Ω) with respect to the W 1,p∗-norm,

and where 1
p +

1
p∗ = 1. We refer to such a linear functional again as a 2-form

in W−1,p(Ω). Equations (C.13) are interpreted in the following weak sense,
{

〈a, δφ〉L2 = −f(φ)

〈a, dψ〉L2 = 0,
(C.15)

for all 2-forms φ with components inW 1,p∗

0 (Ω) and all 0-forms ψ ∈W 1,p∗

0 (Ω),
(so φ|∂Ω = 0 and ψ|∂Ω = 0), where 〈·, ·〉L2 denotes the standard L2-inner
product on differential forms.

Proposition C.4. Let f ∈ W−1,p(Ω) be a 2-form satisfying df = 0 in the

weak sense that f(δψ) = 0 for all 3-forms ψ with components in W 2,p∗

0 (Ω);
assume further that f = dv for some 1-form v ∈W−1,p(Ω) in the sense that

f [φ] = −v(δφ) for any 2-forms φ ∈W 1,p∗

0 (Ω).36 Then there exists a solution
a ∈ Lp(Ω) of (C.15) satisfying (C.14).

Proof. The proof consists of the following three steps: (1) Construct approx-
imate solutions aǫ. (2) Derive an ǫ-independent bound on the approximate
solutions which implies existence of a convergent subsequence. (3) Prove
that the limit of this convergent subsequence is a solution of (C.14) which
satisfies estimate (C.15).

To implement step (1), we mollify the functional f , that is, we introduce
f ǫ(x) ≡ f(ϕǫ(· − x)), where ϕǫ ≡ ϕǫijdx

i ∧ dxj is a 2-form with components

ϕǫij ∈ C
∞
0 (Ω) that are a standard mollifier function. So f ǫ ∈ C∞(Ω), and f ǫ

converges to f in W−1,p component-wise. For each ǫ > 0, we now introduce
aǫ as the solution of

{

daǫ = f ǫ

δaǫ = 0,
(C.16)

36As in Theorem 8.8, assuming f = dv is a slightly stronger assumption than df = 0,
convenient in our proof of well-posedness of the iteration scheme, c.f. Lemma 10.7.
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with boundary data N jaǫj = 0 on ∂Ω, where N is the outward pointing

unit normal of ∂Ω. The solution aǫ does indeed exist by Theorem C.2 (i),
since f ǫ = dvǫ for the 1-form vǫ ≡ v[ϕǫ] ∈ C∞(Ω). Namely, our assumption

f [φ] = −v(δφ) for any 2-forms φ ∈W 1,p∗

0 (Ω) implies that

f ǫ = f(ϕǫ) = −v[δϕǫ] = dv[ϕǫ] = dvǫ,

by definition of the distributional derivative dv. Clearly, df ǫ = d2vǫ = 0.
Thus Theorem C.2 (i) applies and yields a solution aǫ ∈ W 1,p(Ω) for each
ǫ > 0, establishing step (1).

To establish step (2), we now derive a uniform bound on ‖aǫ‖Lp in order
to conclude convergence of a subsequence to the sought after solution a.
The uniform bound we derive can be thought of as a version of Gaffney’s
inequality at the lower level of Lp regularity, when boundary data cannot
be imposed strongly. To begin, since the operator norm is equivalent to the
Lp norm, we find that

‖aǫ‖Lp = sup
Φ∈F

∣

∣〈aǫ,Φ〉L2

∣

∣, (C.17)

where

F ≡
{

Φ ∈ Lp
∗

(Ω) a 1-form with ‖Φ‖Lp∗ = 1
}

is the space of test functions. Now, fix Φ ∈ F and apply the Hodge-Morrey
decomposition of Theorem C.3 to write

Φ = dα+ δβ + h, (C.18)

where α = δw1 and β = dw2 for 1-forms w1, w2 ∈ W 2,p∗(Ω), such that
N ∧ α

∣

∣

∂Ω
= 0 and N · β

∣

∣

∂Ω
= 0, and where h is a harmonic 1-form. Next,

applying the existence theory of Theorem C.2 (ii), we define the 0-form

Ψ ∈W 1,p∗

0 as a solution of
dΨ = h (C.19)

which exists, since dh = 0 for h harmonic; no boundary data imposed. We
now substitute the decomposition (C.18) for Φ to write 〈aǫ,Φ〉L2 in (C.17)
equivalently as

〈aǫ,Φ〉L2 = 〈aǫ, (dα + δβ + h)〉L2

= 〈aǫ, dα〉L2 + 〈aǫ, δβ〉L2 + 〈aǫ, h〉L2 . (C.20)

Applying now the partial integration formula (C.2) to each term, we obtain

〈aǫ, dα〉L2 = −〈δaǫ, α〉L2 + 〈aǫ, N ∧ α〉L2(∂Ω) = −〈δa
ǫ, α〉L2 , (C.21)

where the last equality follows from N ∧ α
∣

∣

∂Ω
= 0, c.f. Theorem C.3.

Similarly, partial integration together with N · β
∣

∣

∂Ω
= 0 gives

〈aǫ, δβ〉L2 = −〈daǫ, β〉L2 + 〈aǫ, N · β〉L2(∂Ω) = −〈da
ǫ, β〉L2 , (C.22)

and by (C.19),

〈aǫ, h〉L2 = 〈aǫ, dΨ〉L2

= −〈δaǫ,Ψ〉L2 + 〈N · aǫ,Ψ〉L2(∂Ω)
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= −〈δaǫ,Ψ〉L2 , (C.23)

since N · aǫ = 0 on ∂Ω by assumption. Now, substituting (C.21) - (C.23)
into (C.20), and using that aǫ solves (C.16), we obtain

〈aǫ,Φ〉L2 = −〈δaǫ, α〉L2 − 〈daǫ, β〉L2 − 〈δaǫ,Ψ〉L2

= −〈f ǫ, β〉L2 . (C.24)

Now (C.24) and the definition of the operator norm ‖ · ‖W−1,p imply

|〈aǫ,Φ〉L2 | ≤ ‖f ǫ‖W−1,p ‖β‖W 1,p∗ . (C.25)

By Theorem C.3, we have β = dw2 so estimate (C.10) gives us

‖β‖W 1,p∗ = ‖dw2‖W 1,p∗ ≤ ‖w2‖W 2,p∗

(C.10)

≤ C‖Φ‖Lp∗ , (C.26)

where C > 0 is some constant only depending on p, n,Ω. Substituting (C.26)
into (C.25) and using that ‖Φ‖Lp∗ = 1 for any Φ ∈ F , we obtain the estimate

|〈aǫ,Φ〉L2 | ≤ C‖f ǫ‖W−1,p ≤ 2C‖f‖W−1,p , (C.27)

for all ǫ > 0 sufficiently small, since f ǫ converges to f in W−1,p by standard
mollification. Finally, substituting (C.27) into (C.17), we obtain the sought
after uniform bound

‖aǫ‖Lp ≤ C‖f‖W−1,p, (C.28)

where C > 0 is some constant only depending on p, n,Ω.
We now complete step (3). By (C.28), ‖aǫ‖Lp is bounded independent of

ǫ, so the Banach Alaoglu Theorem implies convergence of a subsequence to
some differential form a ∈ Lp weakly in Lp. We now show that this limit a
solves (C.13). For this, let ǫk > 0 such that ǫk → 0 as k → ∞ and assume
ak = aǫk is the convergent subsequence, so ak → a weakly in Lp as k →∞.

By (C.2), we have for any φ and ψ ∈W 1,p∗

0 (Ω) that

〈daǫ, φ〉L2 = −〈aǫ, δφ〉L2 ,
〈δaǫ, ψ〉L2 = −〈aǫ, dψ〉L2 . (C.29)

So using that ak solves (C.16), we write (C.29) as
{

〈ak, δφ〉L2 = −〈f ǫk , φ〉L2

〈ak, dψ〉L2 = 0,
(C.30)

which converges to the sought after equation (C.15). We conclude that a
is the sought after weak solution of (C.15). Moreover, the sought after
estimate (C.14) follows from the uniform bound (C.28), since

‖a‖Lp = sup
ψ∈Lp∗

∣

∣〈a, ψ〉
∣

∣ = lim
k→∞

sup
ψ∈Lp∗

∣

∣〈ak, ψ〉
∣

∣

= lim
k→∞

‖ak‖Lp

(C.28)

≤ C‖f‖W−1,p . (C.31)

This completes the proof of Proposition C.4. �
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Our final existence result for 0-forms u is required to extend Theorem C.2
(ii) to solutions in the space Lp(Ω). It is an extension of Poincaré’s Lemma
to linear functionals. We seek weak solutions u ∈ Lp(Ω) of the first order
equation

du = f, (C.32)

satisfying
‖u‖Lp ≤ C‖f‖W−1,p , (C.33)

for any 1-form f with components in W−1,p(Ω), where C > 0 is a constant
depending only on n, p,Ω. That is, we prove existence of weak solutions
u ∈ Lp(Ω) of (C.32) in the sense that

〈u, δφ〉 = −f(φ), (C.34)

for any 1-form φ with components in W 1,p∗

0 (Ω) subject to estimate (C.33).

Proposition C.5. Assume the 1-form f ∈W−1,p(Ω) satisfies df = 0 in the

sense that f(δφ) = 0 for any 2-form φ with components in W 2,p∗

0 (Ω). Then
there exists a solution u ∈ Lp(Ω) of (C.34) satisfying (C.33).

Proof. The proof is similar to that of Proposition C.4, consisting of the same
three steps. To begin with the first step, we mollify the functional f , setting
again f ǫ(x) ≡ f(ϕǫ(·−x)), where ϕǫ ∈ C∞

0 (Ω) is a 1-form whose components
are standard mollifier functions. So f ǫ ∈ C∞(Ω), and f ǫ converges to f in
W−1,p component wise. For each ǫ > 0, we have df ǫ = −f(δϕǫ) = 0 by
assumption. Thus Theorem C.2 (ii) applies, and yields the existence of a
0-form uǫ ∈W 1,p(Ω) solving

duǫ = f ǫ (C.35)

such that uǫ has zero average,
∫

Ω u
ǫdx = 0.

In the next step we derive a uniform bound on ‖uǫ‖Lp . That is, we express
the Lp-norm in terms of the operator norm,

‖uǫ‖Lp = sup
Φ∈F

∣

∣〈uǫ,Φ〉L2

∣

∣, (C.36)

where
F ≡

{

Φ ∈ Lp
∗

(Ω) a function with ‖Φ‖Lp∗ = 1
}

is the space of test functions and 〈·, ·〉L2 denotes the standard L2 inner
product. We fix some Φ ∈ F and apply the Hodge-Morrey decomposition
in Theorem C.3 (ii) to write

Φ = δβ + h0, (C.37)

where β = dw for some 0-form w ∈W 2,p∗(Ω) and N ·β
∣

∣

∂Ω
= 0. From (C.37)

we find that

〈uǫ,Φ〉L2 = 〈uǫ, δβ〉L2 + 〈uǫ, h0〉L2 = 〈uǫ, δβ〉L2 ,

since 〈uǫ, h0〉L2 = h0
∫

ω u
ǫdx = 0 by our zero average assumption on uǫ.

Integration by parts (C.2) gives further

〈uǫ,Φ〉L2 = −〈duǫ, β〉L2 + 〈uǫ, N · β〉L2(∂Ω) = 〈f ǫ, β〉L2 , (C.38)
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where the last equality follows by substituting (C.32) for uǫ and N ·β|∂Ω = 0.
From (C.38) and the definition of the operator norm ‖ · ‖W−1,p , we obtain

|〈uǫ,Φ〉L2 | ≤ ‖f ǫ‖W−1,p ‖β‖W 1,p∗ . (C.39)

Using now that β = dw in combination with estimate (C.12) of the Hodge-
Morrey decomposition, we obtain

‖β‖W 1,p∗ ≤ ‖w‖W 2,p∗ ≤ C‖Φ‖Lp∗ , (C.40)

for some constant C > 0 only depending on p, n,Ω. Substituting now (C.40)
into (C.39) and using that ‖Φ‖Lp∗ = 1 for any Φ ∈ F , we obtain the uniform
bound

|〈uǫ,Φ〉L2 | ≤ C‖f ǫ‖W−1,p ≤ 2C‖f‖W−1,p , (C.41)

for all ǫ > 0 sufficiently small, because f ǫ converges to f in W−1,p by
standard mollification. Finally, substituting (C.41) into (C.36), we obtain
the sought after uniform bound

‖uǫ‖Lp ≤ C‖f‖W−1,p, (C.42)

where C > 0 is some constant only depending on p, n,Ω.
The uniform bound (C.42) implies the existence of a subsequence which

converges to some function u ∈ Lp(Ω) subject to the Lp-bound (C.33), and
an argument similar to that of step (3) in the proof of Proposition C.4 shows
that u solves (C.35). This completes the proof of Proposition C.5. �

Appendix D. A lemma used in the proof of Theorem 4.1

For completeness we prove the following technical lemma which was used
in the proof of Lemma 9.2 above. The point was that JTφ can be taken as
test function in the same space as the test function φ used in the argument.
It suffices to prove the lemma for products φJ instead of JTφ, since only
regularity of components is at issue here.

Lemma D.1. Let J ∈ W 1,2p(Ω) for p > n ≥ 2, and assume J is invertible

with inverse J−1 ∈ W 1,2p(Ω). Then φJ ∈ W 1,p∗

0 (Ω) for any φ ∈ W 1,p∗

0 (Ω),

and for every ψ ∈ W 1,p∗

0 (Ω) there exists some φ ∈ W 1,p∗

0 (Ω) such that

ψ = φJ . That is, J ·W 1,p∗

0 (Ω) =W 1,p∗

0 (Ω).

Proof. So let J ∈W 1,2p(Ω) for p > n. We first show that φJ ∈W 1,p∗

0 (Ω) for

any φ ∈W 1,p∗

0 (Ω). To begin, observe that by the Leibniz rule, we obtain

‖φJ‖W 1,p∗ ≡ ‖φJ‖Lp∗ + ‖d(φJ)‖Lp∗

≤ ‖φJ‖Lp∗ + ‖dφ·J‖Lp∗ + ‖φdJ‖Lp∗ . (D.1)

(Note that d is simply the gradient for the matrix valued 0-forms J and φ.)
By Morrey’s inequality the first term in (D.1) can be bounded as

‖φJ‖Lp∗ ≤ C‖φ‖Lp∗‖J‖L∞ ≤ C‖φ‖Lp∗‖J‖W 1,p



92 M. REINTJES AND B. TEMPLE

and similarly

‖dφ·J‖Lp∗ ≤ ‖dφ‖Lp∗ ‖J‖W 1,p .

So we only have to show that the third term in (D.1) is bounded to prove

that φJ ∈ W 1,p∗

0 (Ω). For this, we apply Hölder’s inequality as in (A.8) to
estimate

‖φdJ‖p
∗

Lp∗ ≤

∫

Ω
|φ|p

∗

|dJ |p
∗

dx ≤ C
∥

∥|φ|p
∗
∥

∥

Lq

∥

∥|dJ |p
∗
∥

∥

L
2p
p∗
, (D.2)

where q is the conjugate exponent of 2p
p∗ resulting from Hölder’s inequality,

1
q+

p∗

2p = 1, and C > 0 denotes a running constant depending only on Ω, n, p.

Observe now that by (A.1) we have
∥

∥|φ|p
∗
∥

∥

Lq ≤ ‖φ‖
p∗

Lqp∗ and
∥

∥|dJ |p
∗
∥

∥

L
2p
p∗
≤

‖dJ‖p
∗

L2p , so substitution into (D.2) gives

‖φdJ‖Lp∗ ≤ C ‖φ‖Lqp∗ ‖dJ‖L2p . (D.3)

We conclude that to prove φJ ∈ W 1,p∗

0 (Ω), it suffices to show that φ ∈

W 1,p∗

0 (Ω) implies ‖φ‖Lqp∗ to be finite. For this, we apply the Sobolev

embedding Theorem for bounded domains, which states that W 1,p∗(Ω) ⊂

L
np∗

n−p∗ (Ω). Thus the boundedness of ‖φ‖Lqp∗ follows from the Sobolev em-
bedding Theorem, as long as

qp∗ ≤
np∗

n− p∗
, (D.4)

c.f. [11]. To verify (D.4), we first compute that

q =
2

3− p∗
, (D.5)

as follows: Inserting into the defining identity 1
q + p∗

2p = 1 that p∗ = p
p−1

and solving for q, we find that q = 2(p−1)
2(p−1)−1 = 2

2− 1
p−1

= 2
3−p∗ , where the

last equality follows from the identity p∗ = p
p−1 = 1 + 1

p−1 . To continue,

we substitute (D.5) into the left hand side of (D.4), and show that (D.4)
holds if and only if 2p > n. For this, note first that p∗ = p

p−1 ∈ (1, 2)

and recall that n ≥ 2. So n − p∗ ≥ 0 and 3 − p∗ ≥ 0, which allows us

to write (D.4) equivalently as 2p∗

p∗−1 ≥ n, and using that p∗ = p
p−1 we find

that this is equivalent to 2p ≥ n. Since we assumed that p > n, we verified
(D.4) and thereby proved that the Sobolev embedding Theorem implies that

φJ ∈ W 1,p∗

0 (Ω) for any φ ∈ W 1,p∗

0 (Ω). This proves the forward implication
of Lemma D.1.

To prove the backward implication, that for every ψ ∈ W 1,p∗

0 (Ω) there

exists a φ ∈ W 1,p∗

0 (Ω) such that ψ = φJ , we make the ansatz φ ≡ ψJ−1.
Since J−1 ∈ W 1,2p(Ω) by assumption, we use the forward implication of

Lemma D.1 to conclude that φ = ψJ−1 ∈ W 1,p∗

0 (Ω), while φJ = ψ holds
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trivially. This proves the backward implication and completes the proof of
Lemma D.1. �
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