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ABSTRACT. We resolve the problem of optimal regularity and Uhlen-
beck compactness for affine connections in General Relativity and Math-
ematical Physics. First, we prove that any connection I' defined on the
tangent bundle of an arbitrary differentiable manifold, satisfying the
condition that the components of I' together with the components of
its Riemann curvature tensor are bounded in L°° in a given coordinate
system, can be smoothed by coordinate transformation to optimal reg-
ularity, I' € WP (one derivative smoother than the curvature), any
p < oco. For Lorentzian metrics in General Relativity this implies that
shock wave solutions of the Einstein-Euler equations are non-singular—
geodesic curves, locally inertial coordinates and the Newtonian limit, all
exist in a classical sense. The proof is based on extending authors’ exis-
tence theory for the RT-equations by one order, to the level of L* con-
nections, and to accomplish this we introduce the reduced RT-equations,
a system of elliptic partial differential equations for the Jacobians of the
regularizing coordinate transformations. Secondly, we prove that this
existence theory suffices to extend Uhlenbeck compactness from the case
of connections on vector bundles over Riemannian manifolds, to the case
of (affine) connections on the tangent bundle of arbitrary manifolds, in-
cluding Lorentzian manifolds of relativistic Physics. By this, Uhlenbeck
compactness and optimal regularity are pure logical consequences of the
rule which defines how connections transform from one coordinate sys-
tem to another—the starting assumption of geometry.
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1. INTRODUCTION

In this paper we resolve two problems in Mathematical Physics by ex-
tending the multi-dimensional existence theory for the RT—equationﬂ intro-
duced in [21] to affine connections at the low level of L* regularity, with
L° curvature tensor. First, this existence theory establishes that such con-
nections can always be smoothed to optimal regularity WP by coordinate
transformation, any p € (n,00), settling in the affirmative that spacetime
singularities associated with GR shock waves are always removablelq In par-
ticular, this establishes for the first time that (weak) shock wave solutions
of the Einstein-Euler equations constructed by the Glimm scheme are one
order more regular than previously known [I3], and that multi-dimensional
shock wave solutions are always non-singular in the sense that the associ-
ated gravitational metric always solves the Einstein equations G = kT in
the strong LP-sense; and geodesic curvesE locally inertial coordinates and
the Newtonian limit all exist in a classical sense. Secondly, in the case of
affine connections, our L*° existence theory for the RT-equations suffices to
extend, Uhlenbeck compactnessE from Riemannian to Lorentzian geometry.
That is, we extend Uhlenbeck compactness from the case of WP connec-
tions with uniform LP curvature bounds for connections defined on vector
bundles over Riemannian manifolds (with positive definite metrics) [29], to
the case of affine connections uniformly bounded in L* with L° curvature
bounds, defined on the tangent bundle of arbitrary differentiable manifolds,
including Lorentzian manifolds of relativistic Physics. Karen Uhlenbeck’s
compactness theorem in [29] for Riemannian geometry was a topic of the

IThe Regularity Transformation equations or the Reintjes-Temple equations.

2Because we work on bounded domains, establishing optimal regularity in L”, p > n,
directly implies it for L', 1 < p’ < p.

3For L connections the basic existence theorem for ODE’s at low regularities (Peano’s
Theorem) does not apply to construct geodesic curves or particle trajectories.

4By Uhlenbeck compactness we mean compactness of a sequence of connections I'; de-
rived from a uniform bound on the un-differentiated connection and curvature components
alone.
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2019 Abel Prize and 2007 Steele Prize and was central to prove fundamen-
tal results in geometry, notably Donaldson’s work in [9], see also [28], [32].
The importance of Uhlenbeck compactness is to provide a convergent subse-
quence of connections from uniform bounds on the curvature alone, without
the need to bound all connection derivatives, with a convergence strong
enough to pass limits through non-linear products.

The RT-equations are a system of nonlinear elliptic partial differential
equations in matrix valued differential forms (f, J, A). These equations de-
termine the Jacobians J of coordinate transformations which transforms a
given connection I' to optimal regularity. The unknown I' represents the
regularized connection components, A is an auxiliary variable introduced to
impose the integrability condition dJ = 0, and I', the connection compo-
nents of an arbitrary given connection, appears as a source term on the right
hand side of the RT-equations, along with a vector valued O-form v free to
be chosen. Our theory starts with no more than the component functions
I'= (Ff]) defined on some open set 2 C R™, and we view ' as the compo-
nents of a connection in some given but arbitrary coordinate system x on
2. The RT-equations, derived in [2I] from the connection transformation
law and first analyzed in [22], are given by

AT = 6d(T —J 'dJ) +d(J*A),
AJ = §(JT)—(dJ;T) — A,
A = &(dJAT) + dEv(Tdr) — d((dTD)),
dA = v,
with boundary data
dJ =0 on 9Q. (1.5)

The unknowns (f, J, A) in the RT-equations, together with the given con-
nection components I', are defined by their components in z-coordinates
on Qf The operations on the right hand side are defined in Section B in
terms of the Cartan Algebra of differential forms in z-coordinates, and the
RT-equations are reintroduced in Section [l

The RT-equations are elliptic regardless of metric signature, because A
is the Laplacian of the Euclidean metric in x-coordinates, and determine
the Jacobians of coordinate transformations to optimal regularity. Thus the
problem of optimal regularity and Uhlenbeck compactness is reduced to an
existence theory for the RT-equations, c.f. [21] 23]. The RT-equations, and
hence both Uhlenbeck compactness and optimal regularity, are mathemati-
cal consequences of only the rule which defines how connections transform

SHere I' = I'*.dz' and T' = T'",dz" are matrix valued 1-forms, J = J¥ and A = A are
matrix valued O-forms, and A= fffd:cl is a vector valued 1-form, the vectorization of A,
c.f. Sections [ and M for details.
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from one coordinate system to another, logically independent of any addi-
tional structure on the geometry, like positive definiteness of the metric or
the Einstein equations.

In order to extend the existence theory for the RT-equations to the level
of L*> connections, we introduce the reduced RT-equations, (system (L)) -
(L8)) below), an elliptic system of equations equivalent to the original RT-
equations (L.I) - (T.4) as a consequence of the gauge freedom v inherent in
those equations. The reduced RT-equations simplify the nonlinearities in the
problem of optimal regularity to a degree sufficient to extend our analysis
of the RT-equations by one order, from the level of connection components
I' € WP achieved in [22], to I' € L*, the level of GR shock waves. Our
first main result, which follows from this existence theory, establishes that if
the components of I and Riem(I") are in L* in a given coordinate system,
then in a neighborhood of every point there exists a W??2P coordinate trans-
formation, such that in the transformed coordinates the components of I"
exhibit optimal regularity, I' € W1P any p € (n,00), (i.e., the components
of I' are one derivative more regular than the components of its curvature
tensor Riem(I")), c.f. Theorem 2] below[d This new existence theory for the
reduced RT-equations provides uniform WP estimates for the connection
in the transformed coordinates, and this directly implies the new Uhlenbeck
compactness theorem, stated in Theorem 2.3] below, which does not rely on
any underlying Riemannian or Lorentzian metric. Although the derivation
of the reduced RT-equations begins with the original RT-equations, the re-
duced RT-equations introduced in this paper represent a new starting point,
and the subsequent proofs are self-contained and stand logically independent
of the original RT-system.

1.1. The problem of optimal regularity. The existence of coordinates
in which connections are non-optimal is a fundamental feature of Riemann’s
curvature tensor, following directly from the fact that the Riemann curva-
ture transforms as a tensor by contraction with undifferentiated Jacobians,
while the transformation of a connection involves derivatives of the Jaco-
bian. So any transformation by a Jacobian which has the same regularity as
a given connection, will lower the regularity of a connection of optimal reg-
ularity (one derivative more regular than its curvature) by one order due to
the terms containing derivatives of the Jacobian in the transformation law

6With slight abuse of terminology we call this optimal regularity, because it is the
extra derivative we are most concerned with, not the level of p, as the extra derivative
alone suffices to imply Uhlenbeck compactness and the existence of locally inertial frames
and geodesic curves. The highest possible regularity for I' would be one full derivative
above the curvature, c.f. [23]. One full derivative above L*° is C%' = W and one full
derivative above L? is W?, and note that on bounded domains W'? contains W as a
subspace [I1]. Filling in the gap between them is a topic for future research, but currently
of secondary importance.
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for connections[] The result is a transformed connection with components
one order less regular, and in the same regularity class as the curvature,
because the Riemann curvature tensor would preserve its regularity under
tensor transformation. This holds for classical spaces of regularity like C*, as
well as weak regularity measured by Sobolev spaces WP, and Hélder reg-
ularity C"™. To prove the reverse direction, that non-optimal connections
can always be smoothed to optimal regularity by coordinate transforma-
tion, one needs to undo the above process, and this requires constructing a
singular transformation given only the information about the non-optimal
connection and its curvature. For example, at the level of L*° connections,
such a coordinate transformation must be singular in the sense that jumps
in derivatives of the Jacobian must be tuned to precisely cancel out the dis-
continuities in the given non-optimal connection in the transformation law
for connections.

The existence of coordinate transformations which smooth connections
to optimal regularity, one derivative more regular than the curvature, is
surprising in light of the fact that the curvature, being a “curl” plus a
“commutator”, does not directly control every derivative of I'; only dI' =
Curl(T"). That is, the complementary derivatives, 6I' = div(I'), are not
controlled directly by assuming a given regularity of the curvature. Since
the basic compactness theorems for Sobolev spaces are based on controlling
every derivative, it follows that optimal regularity is intimately connected to
compactness. This principle, as expressed through the exterior derivative d
and the co-derivative § of the Cartan algebra of differential forms associated
with an assumed positive definite metric, underlies Uhlenbeck’s celebrated
compactness result.

We note that the regularity of metric, connection and curvature is not
altered by sufficiently smooth coordinate transformations, so in this sense
regularity is a geometric property of the manifold when one takes the smooth
atlas. Thus one can view the RT-equations as providing a low regularity
transformation which lifts regularity, but that regularity then becomes a
geometric property of the resulting manifold when again the atlas of smooth
coordinate transformations is taken, c.f. the discussion in [23].

1.2. Uhlenbeck compactness. Uhlenbeck’s compactness theorem, The-
orem 1.5 of [29], applies to Riemannian metrics, and is based on estab-
lishing a uniform bound on the components of a connection in Coulomb
gauge, the Coulomb gauge providing a coordinate system arranged to sat-
isfy 0I' = 0 to bound the derivatives uncontrolled by the curvature through
dl'. Compactness in Coulomb gauge then follows from a uniform bound
on the curvature. To illustrate the heart of the issue in [29], taking J of
Riem(I') = dI' + T' AT, when 6I' = 0, results in an equation of (essen-
tially) the form AI' = § Riem(I"), where A = dé + dd is the Laplacian of

7N0te, this principle directly carries over to metric tensors which, by Christoffel’s for-
mula, are always exactly one derivative more regular than their connections.
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the underlying Riemannian metric; so by elliptic regularity, a sequence of
connections I'; € WP with Riem(I';) uniformly bounded in L, will be uni-
formly bounded in WP in Coulomb gauge, for p < co. Sobolev compactness
then implies a subsequence converges weakly in WP and strongly in LP in
Coulomb gauge.

In the case of Lorentzian metrics, dé + dd is the hyperbolic D’Alembert
(wave) operator, and since hyperbolic operators propagate irregularities
from initial data surfaces along characteristics, deducing optimal regular-
ity for Lorentzian metrics in Coulomb gauge is at best problematic, c.f. [23],
Ch. 9]. Our incoming point of view is that the Coulomb gauge condition
o' = 0 is too restrictive for general connections, and instead of trying to
eliminate the uncontrolled ¢ derivatives of I' altogether, our idea is to bound
them in the right space by the RT-equations, elliptic equations in [ and J.
Different from Uhlenbeck’s argument, the RT-equations are formulated in
terms of the Cartan algebra of differential forms associated with the Eu-
clidean metric of an arbitrary coordinate system z in which the components
Ffj of I" are given, not the invariant Cartan algebra of any underlying met-
ric. Because they are based on the auxiliary Riemannian structure provided
by the coordinate Euclidean metric, the RT-equations are elliptic regardless
of any invariant metric structure for I'. This allows us to obtain optimal
regularity and Uhlenbeck compactness for arbitrary connections on the tan-
gent bundle of arbitrary manifolds, without recourse to metric signature or
even any underlying metric structure. Note that the RT-equations are not
invariant in a tensorial sense, but a different version of them is given in
each coordinate system. As a consequence the RT-equations have the same
simple elliptic structure in every coordinate system, and this makes them
inherently useful for analysisﬁ

We now compare our compactness theorem to Uhlenbeck’s result in [29].
Theorem 1.5 of [29] assumes a sequence of connections I'; € WP, with cur-
vature Riem(I';) uniformly bounded in L?, and from this concludes that in
Coulomb gauge, the connection coefficients are uniformly bounded in WP,
with uniform bound provided by the original bound on the curvature in LP.
The uniform bound on the extra derivative in WP then implies Uhlenbeck
compactness, i.e., the convergence of a subsequence of I'; weakly in WP,
and hence strongly in LP, in Coulomb gauge. In contrast, our Theorem 23]
stated below, assumes a sequence of connections I'; € L°°, which need not lie
in WP at the start, but assumes uniform bounds on both T'; and Riem(T;)
in L, (or equivalently on TI';,dl’; in L*). From this, Theorem [Z3] con-
cludes the existence of coordinate transformations x — y;(x), (which play
the role of Coulomb gauge), with Jacobians uniformly bounded in W27,
such that in the new coordinates, the sequence of connection components
I'y, are uniformly bounded in WP with bound given by our original L™

8In contrast, the Einstein equations only take simpler forms in canonical coordinates
like Standard Schwarzschild Coordinates [I3] or wave coordinates [5].
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bounds on I'; and dI';. From this we again conclude Uhlenbeck compactness,
i.e., strong convergence of a subsequence of I'y, in LP, with y; converging in
WL2P Thus our theorem replaces the assumption I'; € WP (which for us
is the assumption of optimal regularity at the start), with the assumption
that the components of I'; are uniformly bounded in L*°. In any event, our
assumption of a uniform bound on both I'; and dI'; is a small concession
considering that it just assumes the two terms I'; and dI'; which appear at
different orders in the Riemann curvature tensor, are bounded separately,
uniformly, in the same space as the curvature. Our assumption of a local
L bound instead of a local LP bound on the curvatures of a sequence of
connections I'; is a bit stronger, but at this stage we are interested in L
regularity as it includes the case of GR shock waves.

1.3. GR shock waves. The authors’ present multi-dimensional theory of
optimal regularity began with the special case of shock wave solutions of the
Einstein-Euler equations constructed by Glimm’s random choice method in
[13], (see also [3]). The Lorentzian metrics associated with these shock wave
solutions are only Lipschitz continuous (C%!), a regularity too low to con-
struct geodesic curves and locally inertial coordinates directly by classical
ODE methods. This motivated the question as to whether one can raise
the metric regularity by coordinate transformation, to recover these basic
objects of geometry, or whether the Lorentzian metrics of GR shock waves
are exhibiting essential non-removable spacetime singularities. A coordi-
nate transformation to optimal regularity would remove these singularitiesﬁ
Thus, since shock waves form generically in the compressible Euler equations
and correctly model gas dynamics, resolving the question whether these sin-
gularities can be removed, directly addresses the basic consistency of the
Einstein-Euler system

In his classic 1966 paper [15] Israel introduced the multi-dimensional the-
ory of junction conditions and used it to prove that a metric C%! across a
single smooth shock surface can be locally smoothed to optimal regularity
CY! by coordinate transformation to Gaussian normal coordinates. But the
optimal regularity results in [I5] do not apply to shock wave interactions,
and thus not to the C%! metrics in [13], because the underlying Gaussian
normal coordinate construction cannot be associated to intersecting shock
surfaces. The only extension of Israel’s result to shock wave interactions
(before this paper) was accomplished for the special case of spherically sym-
metric shock wave interactions in [17, [I8]. But it remained out of reach how
to address these apparent singularities in shock wave solutions constructed in

9This is a perspicatious warm-up problem for the multi-dimensional theory of GR
shock waves because the role played by non-optimal coordinates in spherically symmetric
spacetimes is no different than the role they play in general multi-dimensional spacetimes:
They exist simply because the Riemann curvature tensor involves second derivatives of
the metric, but transforms as a tensor by first derivative Jacobians.

101nteresting1y, metrics of a similar low regularity arise in the recent study of “wild”
solutions of the non-relativistic Euler equations in [2].
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[13], (or constructed in multi-dimensions by the junction conditions), when
they contain more complex shock wave interactions.

Authors’ paper [20] was a first step for the general problem of smoothing
metrics and connections. In [20], we introduced a necessary and sufficient
condition for the general problem of smoothing metrics with connection
and Riemann curvature tensor in L°°, the so-called Riemann-flat condition,
which is the condition that there should exist a tensor I' € C%! such that
Riem(I' — ') = 0. Our main theorem in [20] then states that there exists a
CY! coordinate transformation which smooths an L> connection I' by one
order to Lipschitz continuous C%! = W1 (hence optimal) if and only if the
Riemann-flat condition holds[T] The tensor T gives rise to a coordinate sys-
tem y in which I' exhibits optimal regularity, and the components of I' and
I" agree in y-coordinates. However, even though the Riemann-flat condition
gives a new geometric point of view on the problem of optimal regularity,
it was entirely unclear how to construct such a tensor I', or whether this is
always possible. The breakthrough in our research program came about in
[21], when we derived, from two equivalent forms of the Riemann-flat con-
dition, the RT-equations (I.1) - (I.4]), a system of solvable elliptic equations
in the sought after tensor I' and Jacobian J.

In this paper we extend our current existence theory for the RT-equations
in [22] by one order of regularity to I',Riem(I') € L*°, (or equivalently
I',dI" € L*), and prove that any such connection can be locally smoothed to
optimal regularity I' € WP, This resolves the problem of optimal regularity
at GR shock waves by establishing that for any weak solution of the Einstein
equations satisfying I',dI" € L* in z-coordinates, there always exist local
coordinate transformations x — y with Jacobian J € W'2P, such that
I' € WP in y coordinates. Here p > n can be taken to be arbitrarily large,
but not yet p = co. So we do not obtain I' € C%!, g € C1! as Israel did
for smooth shock surfaces, but we are arbitrarily close in the sense that p
can be arbitrarily large. For p > n, any I' € WP is Holder continuous by
Morrey’s inequality, a regularity sufficient for geodesic curves to exist (by
Peano’s Theorem), for spacetime to admit locally inertial frames, and for
the correct Newtonian limit to exist at each point in spacetime. An explicit
construction of locally inertial frames is given in Corollary below.

1.4. The reduced RT-equations. The key idea and innovation in the
present paper is to introduce what we call the reduced RT-equations, a sim-
plified elliptic system required to extend our previous existence theory for
the RT-equations in [22] to L>° connections. The derivation of the reduced
RT-equations is based on using the gauge freedom v in the original RT-
equations (LI]) -(T4) to uncouple the system of PDE’s for the unknown
Jacobian J of the smoothing transformation from the PDE (1)) for the
sought after connection components I' of optimal regularity. This isolates

Hrpis equivalence extends easily to I' € L and Ie WP, the case address in this
paper.
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the nonlinearities in the T’ system, and thereby eliminates them from the
iteration scheme for J which is the basis of our existence theory. The gauge
freedom v in the RT-equations reflects the multiplicity of coordinate maps
which can smooth a connection to optimal regularity. In summary, the un-
knowns J and I' are coupled together in the original RT-equations, and the
reduced RT-equations consist of the resulting uncoupled system of equations
(CH) - (C8) in J alone. To finish the proof we use the I' equation to show di-
rectly that the coordinate system determined by a solution J of the reduced
RT-equations, does indeed lift the original connection I' to optimal regu-
larity I' € WP, To complete the picture, Theorem ZI] below establishes
that a solution J of the reduced RT-equation determines a I' which meets
the Riemann-flat condition, and J together with this I solve the original
RT-equations. This again demonstrates that J is indeed a Jacobian which
takes I' to optimal regularity.
The reduced RT-equations are given by the following system,

AJ = 6(JT)- B, (1.6)
dB = div(dJ AT) + div(.J dD), (1.7)
6B = w, (1.8)

where J is the Jacobian of the transformation to optimal regularity, B is
an auxiliary matrix valued differential form introduced to impose the inte-
grability of J to coordinates, and the new gauge freedom is the freedom to
choose the vector valued function w. The operations on the right hand side
of (LO) - (L8) are defined in Section [ in terms of the Euclidean Cartan
algebra of matrix valued differential forms. Equation (I.6]) requires J to be
viewed as a matrix valued differential form, but the integrability condition
is expressed in terms the vector valued differential form J = JH dx' through

dJ = 0, and one challenge is to incorporate both matrix valued differential
forms and their vectorization within a single framework. The reduced RT-
equations are derived from the original RT-equations in Section[dl Although
the reduced RT-equations are independent of I', we do not have a derivation
of them independent of I' and the original (coupled) RT-system.

1.5. Prior results. It was shown by DeTurck and Kazdan in [§] that for
(positive definite) Riemannian metrics, optimal regularity can always be
achieved in harmonic coordinates. The first optimal regularity result in
Lorentzian geometry is due to Anderson [I]. Anderson’s results are based on
using harmonic coordinates on the Riemannian hypersurfaces of a given fo-
liation of spacetime, and establish curvature bounds for vacuum spacetimes
and certain matter fields when the Riemann curvature is in L*°, under some
technical assumptions. A similar result for vacuum spacetimes was proven in
[]. As far as we can tell, these results do not apply to GR shock waves, and
our result cannot be obtained from these prior methods, free of additional
assumptions, even in the special case of vacuum spacetimes. (Keep in mind
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that the setting of vacuum excludes fluid dynamical shock waves, and so is a
warm-up problem from the point of view of shock wave theory. Historically
shock waves are one of the main motivations for the study of low regularity
solutions.) The results in [I], [4] require applying sophisticated analytical and
geometric machinery on top of the classical harmonic coordinate construc-
tion in [8], and suggest strongly that metric signature is a central issue. Our
results show that optimal regularity is entirely independent of metric and
metric Signature

1.6. Outline of the paper. In Section 2] we state our main results, Theo-
rems 2.1l and 233l In Section Bl we introduce the Cartan calculus for matrix
and vector valued differential forms required in this paper. In Section @
we prove that solutions of the reduced RT-equations determine solutions of
the full RT-equations, c.f. Theorem K1l and our main existence theorem
for the reduced RT-equations is given in Theorem 4.3l The proofs of our
main Theorems 2.1] and 2.3] are given in Section [, assuming Theorems [4.1]
and [43] are true. In Section [6l we give three applications of Theorems 2.1]
and 23t A new compactness result for the vacuum Einstein equations in
GR at low regularities as an application of Uhlenbeck compactness, a proof
of optimal regularity for GR shock waves constructed by Glimm’s theorem,
and a construction of locally inertial frames for general L°° connections. In
particular, the existence of locally inertial frames rules out regularity singu-
larities at GR shock waves by establishing that shock wave solutions of the
Finstein-Euler equations are locally inertial.

Sections [ {I1] are devoted to the proofs of Theorems [A.1] and E3l In
these sections we have given a careful development of the weak formulation
of the RT-equations, and we present the existence theory for weak solutions
of the reduced RT-equations starting with two basic theorems from linear
elliptic PDE theory, Theorems [B.I] and recorded in the appendix. In
order to develop a rigorous existence theory for I', dI" € L we introduce a
calculus of L? adjoints for the differential operators on vector and matrix
valued differential forms appearing in the RT-equations, required to make
sense of the equations at the level of weak (distributional) solutions. The
theory in Sections [7] - [Tl is self-contained, and written to be accessible to
mathematicians and physicists who need not be experts in PDE theory.
An exposition of the development of the RT-equations in [23] summarizes
the results and methods in [21I] 22], and provides an outlook on the results
established in this paper, stating without proof Theorems 2] and 23] as
well as Corollaries and

12\We note that the recent resolution of the bounded L? curvature conjecture for vacuum
spacetimes, (c.f. Theorem 1.6 of [16]), does not address the issue of optimal regularity,
essentially because initial data taken from non-optimal connections is one order less regular
than the data assumed in [I6], see the discussion in [23].
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2. STATEMENT OF OUR UHLENBECK COMPACTNESS AND OPTIMAL
REGULARITY THEOREMS FOR L® CONNECTIONS

Let ' denote a connection on the tangent bundle T'M of an arbitrary n-
dimensional differentiable manifold M, n > 2. Since the problem of optimal
regularity is local, we assume at the start a given coordinate system x defined
on an open set ) C M, such that Q, = 2(Q2) C R" is bounded. That is, we
work in a fixed chart (x, ) on M. Without loss of generality we assume
has a smooth boundary. We use the notation I';, to denote the components of
I in z-coordinates, 'y = Ff](a:) We say I';,dl'; € L™(€,) if all component
functions are in L*°(Q2,) in z-coordinates. Here dI'; denotes the exterior
derivative of I'; viewed as a matrix valued 1-form in z-coordinates, a non-
invariant object in the sense that it transforms neither as a tensor nor as a
connection. Since the Riemann curvature tensor can be expressed as

Riem(I'y) = dly + Ty AT, (2.1)

(c.f. (B3E) below), assuming I';,dl', € L>®(£,) is equivalent to assuming
Iy, Riem(T'y) € L*>(Q;). Given a coordinate transformation z — y, we let
r,=r) 5(y) denote the connection components in y-coordinates defined on
Q, = y(Q). For coordinate transformations with Jacobians J € W1P(Q,),
p > n, (always assumed here), the assumption I',,dl, € L>®(£,) is an
invariant statement so we write I',dl' € L*>°(Q2). Note, the statement
that T'; is in WP, (i.e., I, has optimal regularity), is not an invariant
statement for Jacobians at the low regularity J € W1P(Q,). We introduce
the coordinate dependent norm

(T, dT) || oo (0,) = 1Tl oo (20) + 1ALz || oo (02, (2.2)

which is central to our estimates. The norms we use in this paper are
recorded carefully in Appendix[Al Note that, for the purpose of this paper,
we replace ||dl'|| L by ||Riem(T")||z on the right hand side of (2.2]), because

210) implies

[dT|[ze < | Riem(T)||ze + 2|02 < [|dT|[zoe +4[T[F.  (2:3)
We use the notation that subscript = on I';, can be dropped when it is clear
from the context that we address only the z-components of I'. Since all our

analysis is done in fixed z-coordinates there should be no confusion.
Our main theorem regarding optimal regularity is the following:

Theorem 2.1’ Assume T',dl’ € L>®°(R) in x-coordinates and let M > 0 be

a constant such that
[T, d0) |z (0,) = ITellzeo(@,) + sl Lo @,) < M. (24)
13This holds since for such coordinate transformations Riem(T") transforms as a tensor,

and contraction by Holder continuous Jacobians does not lower the L® regularity. The
L*° regularity of dI'y then follows from the regularity of Riem(T').
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Then for any n < p < oo and any point q € () there exists a neighborhood
Q' C Q of q and a coordinate transformation x — y with Jacobian J = % €

Wh2r(Q)), such that
ICyllwre@y) < C (L, d0)|| 1, (2.5)

for some constant C > 0 depending only on Q.,p,n,q and M. That is, the
connection components I'y in y-coordinates have optimal regularity, I'y €
lep(Q;).

Theorem 2.1’ tells us that we can raise the connection regularity by es-
sentially one derivative to I'y, € WP arbitrarily close to W™ as p — oo
Note, since I" and dI" are assumed in L>°(€2), the statement of the theorem is
sharper the larger p is (and extends trivially to 1 < p < oo as {2 is bounded),
and we can choose any p < co but not yet p = oo, a singular case in elliptic
regularity theory, c.f. the discussion in [21I]. By Morrey’s inequality, I,
is Holder continuous when p > n, and this is sufficient regularity to con-
struct classical geodesic curves and locally inertial coordinates, as we prove
in Corollary below. Taken together, this resolves the open problem as
to whether the spacetime singularities at GR shock waves are removable
in the positive, establishing that every Lipschitz continuous metric of GR
shock wave theory is regular enough to meet the physical requirements of
spacetime.

Theorem 2.1" follows directly from the following more refined theorem,
containing an improved version of estimate (2.5), which follows from interior
elliptic estimates applied to the RT-equations in the proofs below.

Theorem 2.1. Assume I',dl' € L*(Q) in x-coordinates, satisfying the
bound (2.4)) in terms of a constant M > 0. Then for any n < p < o0
and any point q € Q there exists a neighborhood Q' C Q of q (depending
only on Qu,p,n and M) and a coordinate transformation x — y with Ja-
cobian J = % € Wh2P(Q))), such that the connection components Ty in
y-coordinates have optimal regularity T, € WP (Q2y) on every open set Q'
compactly contained in ', where Q) = y(Q"). Moreover, for each Q" com-
pactly contained in V', Ty, satisfies the uniform bound

ITyllwrry < CLM) [T, dD) || Lo (), (2.6)
for some constant C1 (M) > 0 depending only on Q. Q p,n,q and M.

The refinement of estimate (2.6) over (2.5) is that the regions in (2.6]) are
sets of roughly the same size. The proof of Theorem 2.1]is given in Section
Bl

As a corollary, in the spirit of Uhlenbeck’s earlier paper [30] for posi-
tive definite metrics, we immediately obtain that dI' € L°° implies that

MRecall that the Sobolov space W1 can be identified with the space of Lipschitz
continuous functions, and W'? can be identified with the space of Holder continuous

n

functions with Holder coefficient o = 2 as long that p > n, [11].
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singularities on sets of measure zero in non-optimal connections are always
removable. The condition dI" € L plays the role of a generalized Rankine
Hugoniot jump condition [26], or “Junction Condition” [15], and it gives
general expression to the condition that the curvature be free of “delta
function sources”, necessary and sufficient conditions introduced by Israel
for smoothing discontinuous connections across single shock surfaces [15].

Corollary 2.2. Assume I',dI" are bounded and continuous off a set of mea-
sure zero in some open set ) in x-coordinates. Then the additional condition
that the L> extension of T to Q satisfies dT' € L>°(Q), is sufficient to imply
that for any point q € Q, there exists a neighborhood ' C Q of q, and a co-
ordinate transformation x — y on ', such that the connection components
I'y in y-coordinates can be extended as Holder continuous functions to ny
with 'y, € lep(%).

This is a direct consequence of Theorem 2.1} keeping in mind that WP is
embedded in the space of Holder continuous functions for p > n by Morrey’s
inequality, c.f. (A.4).

To introduce our compactness theorem, let us briefly recall the relation
between weak and strong convergence in Banach spaces W""P. Recall that
whenever we have a uniform bound on a sequence of functions in WP,
there always exists a weakly convergent subsequence whose limit satisfies
the same uniform bound W™P as the original sequence. (By the Banach-
Alaoglu Theorem, the closed unit ball is weakly compact in W™P.) But
compactness is the statement that this weak limit is actually a strong limit
in W™P_ For this it suffices to have a uniform bound on the sequence of
functions in W™TLP in which case weak convergence in W™1P implies
strong convergence in WP, Weak convergence is not enough in non-linear
problems because products are generally not continuous under weak limits,
but are always continuous under strong limits, and weak limits cannot be
estimated as close to the weakly convergent subsequence in the norms in
which the global bounds are obtained.

We now develop some notation required to state our extension of Uhlen-
beck’s compactness result, Theorem 1.5 in [29]. Let {I';};en be a sequence
of connections I'; defined on the tangent bundle TM, and let (T';), denote
their components in fixed z-coordinates defined on 2, C R™, bounded and
open. Assume n < p < oco. Our compactness theorem states the existence of
a strongly convergent subsequence of {I'; };en in LP under coordinate trans-
formation, assuming only the bound

(T, i) || oo () < M, (2.7)

for some constant M > 0 independent of I';. More precisely, assuming
1), Theorem 2] implies that for each i € N, there exists a coordinate
transformation © — y;(z), such that the connection components (I';),, = T',
in y;-coordinates are one order more regular and satisfy the uniform bound
|]Fyl.HW1,p(%i) < C(M) for some constant C'(M) > 0 and some open set V',
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both depending only on M, independent of 7. To conclude with a convergent
subsequence of {I'y, }ien, we express the components of each I'y, as functions
of the original z-coordinates I'y,(x), so that one does not loose regularity,
(i.e., we transform the y-components back to z-components as scalars, in
contrast to the connection transformation from Iy, to (I';), which looses one
derivative of regularity). The resulting components I'y, (z) = (I';), (vi(x)),
where I'y,(x) are the y; components of I'; viewed as functions of z, will
again meet the uniform W'P-bound [Ty lwipry < C(M) but over the
fixed region €2}, in z-coordinates and for a different constant C'(M) > 0 which
accounts for the Jacobian of the transformation from z to y;. By the Banach-
Alaoglu Theorem, one can now conclude with existence of a subsequence of
'y, (z) which converges weakly in WP(Q.) and hence strongly in LP($).
This is our compactness theorem. The proof is given in Section Bl

Theorem 2.3. Assume {(I';),}ien are the x-components of a sequence of
connections I'; on the tangent bundle TM of an n-dimensional manifold
M in a fized coordinate system x on €2, and let n < p < oco. Assume
I;,dl; € L*°(Q) in x-coordinates, such that the uniform bound

I(Ta, dU3)l| oo (20) = 1(Ti)zll oo + [[(dTi)z [ < M (2.8)

holds for some constant M > 0 independent of i € N. Then for any q € §2
there exists a neighborhood Q' C Q of q, and a subsequence of T';, (also
denoted by I';), for which the following holds:

(i) There exists for each (T';), a coordinate transformation x — y;(x) taking
Qf, to ., such that the components (I';),, = 'y, of I'; in y;-coordinates
exhibit optimal regularity Ty, € WYP(Q, ), with uniform bound Z3) in
lep(Q;h_).

(ii) The y;-components T'y,, taken as functions of x, also exhibit optimal
reqularity Ty, () = (T;)y, (vi(x)) € WIP(Q), with uniform bound .3 in
Whp(Q).

(iii) The transformations x — y;(x) are uniformly bounded in W2?P(Q.),
and converge to a transformation x — y(x), weakly in W*2P(€)), strongly
in WH2P(QL).

(iv) Main Conclusion: There is a subsequence on which the y;-components
Ly, (z) converge to some Ty(z), weakly in WIP(Y,), strongly in LP(Q2),
and I'y are the connection coefficients of I'y, in y-coordinates, where I'y, is
the weak limit of (T';), in LP(Q,).

Theorem [2.3] extends Uhlenbeck’s compactness result, Theorem 1.5 of
[29], as follows: Theorem 1.5 of [29] applies to connections on vector bun-
dles (including tangent bundles) over Riemannian manifolds, and so far our
Theorem 23] applies only to connections on tangent bundles, but for arbi-
trary (differentiable) manifolds, including Lorentizan manifolds of General
Relativity. As we mentioned in Section [I this extension requires a small
modification of assumptions. Namely, Theorem 1.5 of [29] assumes a se-
quence of connections (I;); € WP, with curvature Riem(T;) uniformly
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bounded in LP, and from this concludes with a uniform W? bound on
connection coefficients in Coulomb gauge (where 6I' = 0) and with result-
ing compactness in LP. In contrast, our Theorem [2.3] assumes a sequence
of connections (I';); which need not lie in WP at the start, but assumes
uniform bounds on both I'; and Riem(I';) in L®°. We view our assumptions
as being essentially equivalent to Uhlenbeck’s assumptions, and natural for
the setting of the RT-equations, as we now discuss. First note that a uni-
form bound on ||Riem(I;)||z~ is implied by, but does not imply a uniform
bound on ||(I';,dl;)||ree = ||Ti||Lee + [|dT|| o<, since uncontrolled terms in
I" could cancel in the wedge-product in Riem(I') = dI' + ' AT. In light of
23), for the bound on ||(T';,dl;)||ze to imply a bound on the curvature
tensor would require starting in a coordinate system x in which ||T;||ze is
bounded by ||dL;|| e, or alternatively by ||Riem(I";)||ze. For this one could
take the locally inertial coordinate frames proven in Corollary to exist
for WP connections. This shows that our assumption of a uniform bound
on ||T';||zee is implied by an L> bound on the curvature alone, in natural co-
ordinates, but not necessarily in all coordinate systems, which could involve
transformations with arbitrarily large Jacobians.

Theorems 2.1] and 2.3] are based on authors’ earlier discovery of the RT-
equations (“Regularity Transformation equations” or “Reintjes-Temple equa-
tions”), a system of elliptic partial differential equations which determine
whether coordinate systems exist in which the connection exhibits optimal
regularity [2I]. The RT-equations are elliptic independent of any underlying
metric structure on the tangent bundle, hence our methods do not require
the ellipticity of the Laplace-Beltrami operator of a metric, and by this we
can extend Uhlenbeck’s results to tangent bundles of arbitrary manifolds.
(Again, using the Coulomb gauge method in the case of Lorentzian metrics
would entail hyperbolic estimates, which are problematic, c.f. [23].) To for-
mulate the RT-equations, we require an Euclidean Cartan algebra for matrix
valued differential forms. This is the topic of the next section.

3. PRELIMINARIES - THE EUCLIDEAN CARTAN ALGEBRA

We now summarize the Cartan Calculus which we require to formulate
the RT-equations and refer the reader to Section 2 in [21] for further detail
and proofs. We work again in fixed x-coordinates defined on a open set
2 =Q, C R". By a matrix valued differential k-form w we mean an (n xn)-
matrix whose components are k-forms, and we write

]doci1 A Adzt = Z Wiy iy dat A A, (3.1)
11 <...<1p

for (n x n)-matrices w;,. ;, such that total anti-symmetry holds in the in-
dices i1, ...,7, € {1,...,n}. (We always sum over repeated indices, following
Einstein’s convention, but we never “raise” or “lower” indices.) We define
the wedge product of a matrix valued k-form w with a matrix valued [-form
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— . . dpedt Ji
u=uj,  jdx’t N\.. Adzlt as

1 . . . .
wAu = T Winen ~ W dz'* A ... Ndx™ ANdx?t AN dt (3.2)
where “” denotes standard matrix multiplication. In contrast to scalar

valued differential forms, w A w can be non-zero, because matrices do in
general not commute. The exterior derivative d is defined component wise
on matrix-components,

dw = 8lw[,~1___,~k}d:nl Adz A A datk (3.3)
and we define the co-derivative § on a matrix valued k-form w as
dw = (—=1)FFDO=R) 4 g,

where x is the Hodge star introduced in terms of the Euclidean metric in

z-coordinates. That is, * satisfies the orthogonality condition

dz A Adz WA K (deU A AdaIH) = {dwl Mo /\.d;v", = T T = b
0 otherwise,

(3.4)
where indices are taken to be increasing. So § is defined via the Euclidean
metric in z-coordinates, while d requires no metric. Both d and ¢ act com-
ponent wise on matrix components, so all properties of d and § for scalar
valued differential forms carry over to matrix valued forms. The Laplacian
A = dd + 0d acts component wise on matrix-components and also on differ-
ential form components. By (B8.4]), one can show that A is in fact identical
to the Laplacian of the Euclidean metric in x-coordinates,

A=0%+ ...+ 9%,

c.f. [6, 21] for more detail.
By (32) and (33), the Riemann curvature tensor can be written as

Riem(I',) =dl'y + T'p ATy, (3.5)
in z-coordinates. The exterior derivative satisfies the product rule
dw Au) =dwAu+ (=1)%w A du, (3.6)

where w € WHP(Q) is a matrix valued k-form and v € W1P(Q) is a matrix
valued j-form, (c.f. Lemma 3.3 of [2I]). Since the wedge product (B.2)
for matrix valued O-forms .J is identical to matrix multiplication, and since
dJ~''=—J71.dJ-J~!, the Leibnitz rule (3.6 implies that

d(J7-dJ) =d(J Y AdT = —J I AT, (3.7)

c.f. Lemma 4.3 in [2I]. Regarding the co-derivative d, we require the follow-
ing product rule

(Jw) = J-dw + (dJ; w) (3.8)
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where J € W1P(Q) is a matrix valued O-form, w € W1P(Q) a matrix valued
1-form, and where (- ; -) is the matrix valued inner product defined on matrix
valued k-forms w and u by

n

o=1141<...<ip

So (w ;u) converts two matrix valued k-forms into a matrix valued 0-form.
For multiplication by a matrix valued 0-form J we have the following mul-
tiplication property

Jolwiu) =(J - wiu), (w-Jiu)=w;:J w), (wiu-J)=(w;u)-J
(3.10)

We also need to interpret matrix valued forms as vector valued differential
forms. The two operations which convert matrix valued differential forms
to vector valued forms on the right hand side of the RT-equations are ~
and cﬁ/() First, - converts matrix valued k-forms w into vector valued

(k + 1)-forms & by

ot =wh daz’ Adz™ A ... A datE, (3.11)

l/il...ik

with w taken as in (B1)), c.f. (2.20) in [21] for the case k = 0, most relevant
to us. Secondly, the operation div(-) converts matrix valued k-forms w into
vector valued k-forms div(w) by the operation

(ﬁ/(w)a = Z N ((Wf)iy..ip)dz™ A ... A da'™.
=1

Finally, for a matrix valued 1-form w and a matrix valued 0-form J, Lemma
2.4 of [2]] gives the important identity

A(5(Jw]) = div(d(J - w)) = div(d] A w) + div(J-dw), (3.12)

which is crucial for the regularity to close in the RT-equations.

4. THE REDUCED RT-EQUATIONS AND OPTIMAL REGULARITY

In this section we derive the reduced RT-equations from the RT-equations,
the system of elliptic PDE’s introduced in [21] which determines whether a
connection I' can be mapped to optimal regularity, and prove their equiva-
lence. We then state the main theorems concerning the existence of solutions
of the reduced RT-equations and resulting optimal regularity for L°° con-
nections, Theorems [4.3] and [£.1] respectively, which are proven in Sections [§
-1l In the end of this section we apply Theorems [£1] and [£3] to give the
proof of our main results, Theorems 2.I] and 2.31
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We begin by reviewing the RT-equations derived in [2I]. The RT-equations
consist of the following nonlinear elliptic system of PDE’s

AT = 4dl —6(dJ P AdJ) +d(JA), (4.1)
AJ = §(JT)—(dJ;T) — A, (4.2)
z — — e
dA = div(dJ AT) +div(J dl') —d((dJ;T)), (4.3)
A = w, (4.4)
together with boundary data
dJ =0 on 9. (4.5)

The connection I' = Ffjkdxk is given and interpreted as a matrix valued
1-form, and T on the right hand side of (41l - (£4]) always denotes the
components [', in z-coordinates. The unknowns in the RT-equations are
(T, J, A) which are matrix valued differential forms as follows: J = J} is
the Jacobian of the sought after coordinate transformation which smooths
the connection, viewed as a matrix-valued O-form; I' = f’:kdazk represents
the unknown tensor one order smoother than T' such that Riem(I' — I') =
0, viewed as a matrix-valued 1-form; and A = A} is an auxiliary matrix
valued O-form introduced together with boundary data (&3] to impose dJ =
Curl(J) = 0, the condition for the Jacobian J that guarantees it is integrable
to a coordinate system, c.f. Theorem and [2I]. See Section (B for
definitions of the remaining operations in (@.1) - (£4]).

The RT-equations (41]) and (£2]) were derived by constructing Lapla-
cians out of two equivalent forms of the Riemann-flat condition, a condition
introduced in [20] equivalent to the existence of coordinates in which the
connection has optimal regularity. These two starting conditions were that
Riem(I' — I') = 0, or alternatively, that I' = I' — J~'d.J for some tensor T'
one order smoother than I'. If ', can be smoothed to optimal regularity by
the transformation z — y with Jacobian J, then, defining

Ly=T-J"'dJ, (4.6)

the connection components I'y, of optimal regularity are given by the tensor
transformation rule

(T = (T a7 (1)1, (4.7)

and T'; will solve the RT-equations (&I) - @4) as well as the Riemann-flat
condition Riem(I' — T'y) = 0. That is, 'y, the tensor transformation by
J of the components of the connection I'y in y-coordinates, will solve the
RT-equations for some (A,v), when J is paired with [';. Conversely, one
can recover the connection of optimal regularity I', via equation (A7) from
a general solution T, J of the RT-equations, but this requires an existence
theory which establishes the relationship between the solution I and T, as
we now explain.
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In [21] we prove that if T',,dl’, € W™P for m > 1, p > n, then there
exists a coordinate transformation x — y which raises the regularity by one
order to I'y € Wm+LP if and only if there exists a solution (J,I', A) of the
RT-equations (41]) - [@4), (taking I' = ', on the right hand side), with
boundary data ([@H), and regularity J,I' € WtLP A € W™P, In [22] we
proved that such a solution (J, T, A) exists for any such connection I" € W™P
with dI' € W™P when m > 1, p > n. Extending this theory to the case of
I',dI' € L*°, when the RT-equations only have meaning in a weak sense, is
accomplished in the present paper, but was not possible with the methods
used in our previous paper [22].

Given a suitable weak formulation of equations (4.1])-(44) and boundary
condition (4.5]), we could apply the Riemann-flat condition to conclude op-
timal regularity from existence of solutions. Thus the main obstacle is the
problem of proving an existence theory for the RT-equations at the low level
of regularity I',dI" € L™ with J € WP, The problem is that the iteration
scheme in [22] does not close because the gradient product dJ ! AdJ on the
right hand side of equation (4.1)) fails to stay in a fixed LP space under iter-
ation. Alternatively, trying to construct solutions J € W1 is problematic
as well, because p = oo is a singular case in elliptic regularity theory, and our
iteration scheme in [22] would not close in L for this different reason. We
here extend the existence theory and consequent optimal regularity theory
to the case I', dI' € L*° by a serendipitous modification of the RT-equations.

In this paper we employ the gauge freedom of the RT-equations to cir-
cumvent the problem of incorporating the nonlinear product dJ~! A dJ in
(1) into an iteration scheme which closes in LP spaces. The idea is to
separate this term from the iteration scheme by using the gauge freedom
v in the A equation (@) to consolidate ' and A into a single variable B,
and thereby uncouple equations (£2) - (£4) for J from equation (1] for
I'. Defining

B = A+(dJ;T), (4.8)
— =
w = v+ 6dJ;T), (4.9)
observe now that we can write ([L.2) - (£4]) as
AJ = §(JT)- B, (4.10)
dB = div(dJ AT) + div(JdI), (4.11)
5B = w. (4.12)

Equations (£I0)-(I2) are the reduced RT-equations, c.f. (L)-(L8]). Since

the transformation from v to w can be viewed as a gauge transformation,
the gauge freedom of the RT-equations implies that we can ignore the de-
pendence of T’ on w, and view w as the independent gauge freedom in the
RT-equations. Therefore equations ([AI0) - (£I2) decouple the equations
for J and B from T, and hence from the first RT-equation (@II), which in
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terms of B becomes
AT = 6dT" — §(dJ " AdJ) +d(J (B - (dJ;T))). (4.13)

By this decoupling the Jacobians J which map I' to optimal regularity can
be constructed independently of T, (which we can now discard), by solving
the reduced RT-equations (4.10]) - (£.12]) alone.

So, discard the original I, and assume (J, B) is a solution of the reduced
RT-equations (II0) - (EI1Z) with J € WL(Q) and B € L*(Y,). The
goal now is to use the solutions J, B of the reduced RT-equations to establish
optimal regularity without reference to the original I'. To show such a
Jacobian J indeed maps I' to optimal regularity, it suffices to prove that
I = I'; provides another solution of (IZ:I:{I) In our next theorem we show
that, incredibly enough, this is true: T’ = 'y is an exact solution of the
elliptic equation ([£I3), an equation we could not solve by our previous
methods at the low regularity I',dI' € L. The equation (£.I3]) establishes
the requisite smoothness I’y € W when T, dI" € L.

To complete the circle, we now explain how to recover a solution of the
full RT-equations form (&I0) - (12]), when I is replaced by I'y. For this,
we need only show that J, T'; solve the original RT- equations with a different
choice of gauge A’,v'. Reversing the above steps using I'; in place of T, it
follows that the back change of gauge

A = B—(dJ;Ty), (4.14)
4~>
v'o= w—0(dJ;Ty), (4.15)

takes a solution (J, B) of the reduced RT-equations back to a solution of the
original RT-equations with the same .J, but with T replaced by I';. These
are recorded in parts (i) and (4i) of Theorem [.1] below, which states that
(J,T 7, A") defined in (@8] - (@I4) indeed solves the full RT-equations (1))
- (E4), and, by this, T'; has the requisite smoothness I'; € W1P(). Part
(#1) of Theorem A T] establishes an estimate for T'; from which we deduce the
uniform W? bound (Z6) on I'y in Theorem 2.1} the bound that underlies
Uhlenbeck compactness. The existence of solutions (J, B) of the reduced
RT-equations, satisfying estimate (4.16]), which are assumed in Theorem
41l are shown to exist in Theorem 3] below. For the low regularities
considered in this paper, we need to establish the above equivalence and
existence theory in a weak sense. Serendipitously, the RT-equations allow
for a weak formulation because all lowest regularity terms on the right hand
side have derivatives § or d on them, making them amenable to integration
by parts, (as in the theory of conservation laws [26]). This is accomplished

in Sections B - I11

Theorem 4.1. Assume I',dl’ € L>°(Q) in x-coordinates, and let n < p <
0o. Assume (J, B) solves the reduced RT-equations (L10) - (AI12) in a weak
sense for some w on an open set ¥ C Q, such that J,J~' € WH2P(Q) and
B € L?(Q,). Then the following holds:
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(i) Ty solves ([{.13), where T is defined in @&B). The tuple (J, T, A')
solves the full RT-equations (1)) - (@A) in Q' for v ="', where A" and v’
are defined in (£14) and (EI5).

(ii) The regularity of Ty is given by Ty € WIP(Q") for any open set Q"
compactly contained in €Y, i.e., T'y is one order more reqular than the two
terms are separately on the right hand side of its definition in (4.0)).

(iii) Let M > 0 be a constant such that ||(T',dl')||peq,) < M, where
H(F,df)hpo is defined in (Z2). Assume that (J, B) satisfies further the
estimatd]

11 = Tllwrzeiay) + 11 = T Hlwraray) + 1Bllrzeory) < Co(M) [[(T,dD)| pos ey
(4.16)

for some constant Cy(M) > 0 depending only on Q,,n,p and M. Then, on

any open set Q" compactly contained in Q', T' satisfies the uniform bound

IT s lwisry < C3(M) [T, dD)|| poo () (4.17)
where C5(M) > 0 is some constant depending only on Q. QL n,p and M.

The key step in the proof of 1] is establish in Lemma below, by
proving that (4.0]) is an exact formula for the solution I' = I'; of the first RT-
equation (), from which the regularity gain of T'; in (i) can be deduced.
To give the argument in its essence, we assume one more level of smoothness
in Lemma More care is required to extend the argument of Lemma [7.2]
to the low regularities of Theorem E.1] and prove the theorem rigorously,
which is the subject of Section @ Assuming only that (i¢) of Theorem [A.1]
holds, the equivalence of optimal regularity and the reduced RT-equations,
in the spirit of our previous paper [2I], can now be established as a corollary.
This reduces the problem of optimal regularity to an existence theorem for
the reduced RT-equations.

Corollary 4.2. Assume I',dl’ € L*°(Q) in x-coordinates, and let n < p <
oo and q € Q. Then there exists a neighborhood @ C Q of ¢ and a coor-
dinate transformation x — y such that the connection components I'y in

y-coordinates have optimal regularity I'y € lep(ﬁy) if and only if there
exists a weak solution (J, B) of the reduced RT-equations ([A10) - (£12), de-
fined on some neighborhood ' of q, with J,J~* € WL (QL), B € L*(Q)
and dJ =0 in Q. The Jacobian of the coordinate transformation x — y is
dy =J € Wh2P(Q)).

5 Estimate (@I5) bounds J and J~', but is expressed in terms of I — J and T — J~*
to reflect the fact that J typically tends to the identity as M tends to zero.

16yye actually prove Theorem BTl under the weaker assumption T, dI" € L?*(2), p > n.

17Although equation (@) can be bypassed for constructing solutions, equation (@] is
required to prove optimal connection regularity in the coordinate system introduced by J
and is therefore a vital part of the RT-equations. Note also that one can use an underlying
Cauchy-Riemann-type equation for I instead of (@) and establish optimal regularity by
applying Gaffney’s inequality, but we prefer the Poisson type equation (dI).
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Proof. The forward implication of Corollary is straightforward because
the reduced RT-equations are derived from the full RT-equations which are
in turn deduced from the Riemann-flat condition, a condition equivalent to
optimal regularity, c.f. [21I]. That is, given the Jacobian J and resulting
connection I'y of optimal regularity, and defining

0k = (J7Hkge gl ()L,

then T satisfies the Riemann-flat condition. It is now straightforward to
check that (f, J) solves the RT-equation for some A, and, defining B by
(#8), that (J, B) solves the reduced RT-equations (410) - (4.12]). Recall that
the condition d.J = 0 is equivalent to J being the Jacobian of a coordinate
transformation, c.f. Theorem [C.2]

To prove the reverse implication assume part (i) of Theorem [.1] holds.
By Theorem (1), I'; defined by (@8) is in WP(Q.) and T'; solves the
first RT-equation (AI3]) in terms of the solution (J, B) of the reduced RT-
equations (£I0]) - (£12]). Let z — y be a coordinate transformation with Ja-
cobian dy = J. Now define the connection Iy in terms of I in z-coordinates
by (41), that is,

(Ty)as = RT DTN (4.18)
Since I'y € W'2(QY,) and J,J~! € W'(Q.), p > n, Morrey’s inequal-
ity implies that the components I'y(z) € WHP(Q) in z-coordinates, and
therefore when expressed in y-coordinates T', € WP (©2;). Substituting the

definition of T'; in (@8] into (@I8) implies that
CNi f —1Ng _ k
(Py)lﬁ = J,Z(J 1);(J l)Jg(Fx —J 1d‘])z’?‘ ‘
= ST = (YA 0],
from which we conclude that I'y are the connection components I'; trans-
formed to a coordinate system y in which I' exhibits optimal regularity,

Iy € WHP(Q). This completes the proof. O

Finally, to obtain the optimal regularity result stated in Theorem 2.1
together with the uniform estimate (2.6]), we require the following theorem
which establishes the existence of solutions to the reduced RT-equations
satisfying the assumptions J,J~1 € WL2(Q))), B € L*(€,) of Theorem
4.1l together with the additional estimate (4.16]). (The existence theory is
worked out in fixed z-coordinates, so we omit subscript  on I' and €2.)

Theorem 4.3. Assume ', dI" € L*>(Q) in x-coordinates, and let M > 0 be a
constant such that ||(T',dl')|| Lo (q,) < M, and let n < p < oo, q € 2. Then
there exists a meighborhood ' C Q of q, depending only on Q,n,p,q, M,
and there exists J € WH2(QY) and B € L* () such that (J, B) solves the
reduced RT-equations (LI0) - (AI2) in a weak sense in . Moreover, J
is invertible with J=1 € Wh2(Q), dJ = 0 in ' and (J, B) satisfies the
uniform bound (AI6]).
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Theorem B.1] in combination with the existence Theorem (3] imply our
main result regarding optimal regularity, Theorem 2.1 as shown in Section
below. The proof of Theorem [£.3]is the main technical step in this paper
and is presented in Sections [[0] and [T} Note that the boundary data (4.3)
is ill-defined at the low regularity J € W?P. So to make sense of this, we
augmenting the reduced RT-equations with auxiliary elliptic PDE’s for y,
which allows us to replace (£35]) by Dirichlet data for J = dy, data one degree
more regular than (435]) and thus well-defined. By Theorem [ Theorem
[43] also establishes the first existence theory for the full RT-equations at the
low regularities I', dI" € L*°(Q2) associated with GR shock waves.

To summarize, the RT-equations reduce the nonlinear problem of regular-
izing connections to a linear existence problem for constructing the Jacobian
J via the reduced RT-equations, followed by a regularity boost for T'; pro-
vided by the first RT-equation (£I]). So for applications one only has to
solve the linear reduced RT-equations for J to obtain the regularizing coor-
dinate transformation, and our iteration scheme in Section [I0] provides an
algorithm for doing this. Although linear, the low regularity of the coeffi-
cients of the reduced RT-equations is still an issue in the existence theory
below.

5. PROOF OF THEOREMS 2.1] AND 2.3

In this section we give the proofs of our main results stated in Section
2], Theorem 2.1] on optimal regularity and Theorem 23] on Uhlenbeck com-
pactness, assuming Theorems 1] and (£.3]). The proof of Theorems 1] and
([£3]) are the subject of Sections [7] - [l

5.1. Proof of Theorem [2.Il Assume Theorems [£1] and @3] hold, and
assume I',dl" € L*°(2) in x-coordinates satisfy [|(I',dl')|[ze~(q,) < M for
some constant M > 0, and let n < p < oo, and g € 2. To prove Theorem
21 it suffices to prove there exists a coordinate transformation x — y
defined on a neighborhood Q' of ¢ such that J = % € Wh2r(Q)) and

ITyllwre@yy < CLM) [[(T, dL) || (0y,), (5.1)

for any Q" compactly contained in @', and for some constant Cy(M) > 0
depending only on Q7. Q! p,n and M, while Q). depends only on Q,,p,n,q
and M.

By Theorem [4.3] there exists a solution (J, B) of the reduced RT-equations
(@I0) - EI2) defined in ¥, containing ¢, such that J € WH2P(QL), J~1 €
W2 (Q), B € L(€),), dJ = 0 in €, and the uniform bound #I8) holds.
The condition d.J = Curl(J) = 0 implies that J is integrable to a coordinate
system, c.f. Theorem and [2I), 23]. Theorem [1] states that J is the
Jacobian of a coordinate transformation  — y such that the connection I,
has optimal regularity I'; € wlp (Qg), for any compactly contained subset
Q" of . Moreover, part (iii) of Theorem [L1] implies the uniform bound
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(@IT) on T, and this gives the bound (GI) on T, by the relation between
I'; and T, given in (7). That is, by

(Ty)ls = TR (TR AT N,
which implies
ITyllwiry < ClIIlwiall I IianlITollwe,

where C' > 0 is some constant resulting from applying Morrey’s inequality
several times. The sought after estimate (5.I) now follows by estimating r
by @I7) and J,J~! by ([@I6). This completes the proof of Theorem 2.1}
once we give the proofs of Theorems 4.1l and [4.3] in Sections [ - [[1] below.

5.2. Proof of Theorem [2.3l For the proof we use Morrey’s inequality, the
Banach-Alaoglu Theorem, Sobolev compactness and the following technical
lemma which says products of strongly and weakly converging functions
converge weakly. Recall that Morrey’s inequality tells us that when p > n,
functions uniformly bounded in WP are also uniformly bounded in L>, so
WP is closed under products, and uniform bounds in WP norms extend to
uniform bounds on products. Banach-Alaoglu tells us that the closed unit
ball in LP is weakly compact [24]. These together with Sobolev compactness
and the boundedness of € tell us that sequences of functions uniformly
bounded in WP and L™ admit subsequences which converge weakly in
WP strongly in LP, with uniform bounds given by the original uniform
WP and L*> bounds.

Lemma 5.1. Let f;,g; be sequences of functions on a bounded set €2 such
that f; — f in LP(Q) with || fillcos | flloo < M, and such that g; — g weakly
in LP with ||gi||ze, ||9llr < My, p > n. Then fig; — fg weakly in LP().

Proof. Since || filloos | fllcc < M, and f; — f in LP on a bounded set, it

follows that f; — f in every LP, p > 1. This follows by measure theory
because the measure of the set on which |f; — f| > € tends to zero as
i — oo for every € > 0. Recall now that the dual space of LP is LP" with
1/p+ 1/p* = 1. Thus to prove that f;g; — fg — 0 weakly in LP, we must
show that

(figi — fg,P) 12 = /Q(figi —fg9)¢ =0 (5.2)

for every ¢ € LP", where (-,-)p2 is the L? inner product. But

(figi — fg.d) 2 = (f(9i — 9) @)z + {(fi — f)gis P)r2- (5.3)
But f € L implies f¢ € LP", so the first term in (5.3)) satisfies

(flg—9i), )2 = (9 — 9i); f)r2 = 0

because g; — g tends to zero weakly in LP.
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Consider now the second term in (5.3]). Since f; — f € L, we have
(fi — f)¢ € LP", so we can apply Holder’s inequality twice to obtain the
estimate

((fi = Pgi Ozl = [gi, (fi =)o) 12| (5.4)
< Algillee1(f = £) ol Lo
< Mpl|(f = fo)oll Lo -

Now let Ey = {z € Q:|¢|"" > N}. Then since ¢*" € L', it follows that
fEN |p|P" — 0 as N — oo. Thus

p*

¢

I = ol = /Q = S 16 du (5.5)

= [ e s [ 15—

— P o p* _ P
I = FP /EN|¢| du+N/%|f £l dp

p* P 4|P" du

¢

¢

IA

< @MY /E 6" dut N /Q = fi7 dp.

Now we can make the first term arbitrarily small by choosing N sufficiently
large, and the second term tends to zero with i because f; — f in LP" ().
It follows that [|(f — fi)é|l . — 0, and by this we conclude from (5.4]) that
the second term in (5.3]) tends to zero as well. Thus fjg; — fg weakly in LP
as claimed. (]

We can now give the proof of Theorems [2.3] assuming Theorem [£.1] and
13l So assume {(I';), }icn are the z-components of a sequence of connections
I'; defined on the tangent bundle T M of an n-dimensional manifold M in
a fixed coordinate system x, let n < p < oo, and assume (Fi)x,d((Fi)x) €
L*>°(Q,), such that

[(Ts, dT3)[| oo (0,) < M, (5.6)

for some constant M > 0 independent of ¢ € N. We need to prove that for
each g € () there exists a fixed neighborhood ' C Q of ¢, and for each (T';),
there exists a coordinate transformation x — y;(z) taking €, to €, such
that the components I'y, = (I';),, of I'; in y;-coordinates exhibit optimal
regularity I'y, € whp (921)7 both in y;-coordinates, and when expressed in
z-coordinates I'y,(z) = Ty, (yi(x)) € WHP(Q,). We need to prove further
that a subsequence of y;(z) converges to some y(x) weakly in W22P(QL),
strongly in W12P(Q), and that a further subsequence I'y,(z) converges to
'y (x) weakly in WHP(,), strongly in LP(£2,), and that I, is the connection
I'; in y-coordinates, where I'; is the weak LP-limit of (T';).

By Theorem [2.1] there exists a single neighborhood €2’ depending only on
M, (assuming n, p, €2 fixed), on which a coordinate transformation x — y;(x)
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exists for each i € N, taking Q0 to €, which maps (T;), to optimal regu-
larity on €, so I'y, € lep(Qgﬁ). Moreover, by estimate (2.6]) of Theorem
ZT [Ty, llwre(qy, ) are uniformly bounded. This proves (i) of Theorem 23l

For each i € N, the coordinate transformations y;(z) are obtained from
the Jacobians constructed in Theorem .3l To obtain a uniform LP-bound
on y;(x), we choose y;(z(q)) = 0 for each i € N. It follows from (AI6) of
Theorem [A.3] that the Jacobians J; of © — y;(x) satisfy the uniform bound
[ Jillw12e )y < C2(M) and ||Ji_1HW1,2p(Q!E) < C9(M). Since the Jacobians
bound the derivatives of the coordinate maps = — y;(x), and y;(z(q)) = 0
bounds the LP-norm (and supnorm), it follows that each map y;(z) as a
function of z is uniformly bounded in W22 (€2) by some constant Cy(M),
again depending only on M. It now follows from the basic compactness
theorem for Sobolev spaces that there exists a subsequence, also denoted
yi(x), on which y;(z) converges to y(z) weakly in W22P(€).), strongly in
Wh2r(Q)), such that [yllw22r () < Ca(M). In particular, J; converges to
J weakly in Wh2P(Q"), strongly in L2P(£2,), and the uniform bound on J; !
implies invertibility of J. This proves (iii) of Theorem [2.3]

Now since J; € W12P(Q), T, (z) are uniformly bounded in WP(Q%) by
the chain rule. That is, by Morrey’s inequality one can estimate products
Ty, () times J; to lie in WHP(Q), with norm bounded by some Cs(M)
depending only on M. This proves (i7) of Theorem 231

By the uniform W!P-bound on Ty, (), it follows that a further sub-
sequence of I'y,(z) converges weakly in WHP(QL) to a connection I'y(x)
which satisfies the same bound C5(M) in W1P(Q.). Thus the coordinate
map r — y is in W22?(Q,), and so I’y exhibits optimal regularity in y-
coordinates.

Finally, by taking a further subsequence, (I';), converges to some I',
weakly in LP(€),) by the Banach Alaoglu Theorem, (i.e., the uniform L>°-
bound (5.6]) directly implies a uniform LP-bound because {2 is bounded). To
show that I'y is indeed the connection I'; in y-coordinates, we use that for
each i, I'y, is the connection (I';); in y;-coordinates, so by the transformation
law for connections (written in shorthand, suppressing indices) we have

TN i i Ty, = (T9)e — JidJ;. (5.7)

Since J; converges to J weakly in W12P(Q2)), J; converges to J strongly
in LP and dJ; converges to dJ weakly in LP. Similarly, Ji_1 converges to
J~Vand Iy, (z) to Ty(z) strongly in LP and weakly in WH2P(QL), WhP(QL),
respectively. Thus by Lemma [B.11 the left hand side of (5.7]) converges to
J71.J-J-Ty weakly in LP, and the right hand side of (7)) converges to
I'y — JdJ weakly in LP. Taken on whole, (5.7) and Lemma [51] imply that
the connection Iy is the connection I'; transformed to y-coordinates as LP
functions, which proves (iv) and completes the proof of Theorem 23]
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In this section we completed the proofs of our main results, Theorem 2.1]
and 23] assuming Theorems[Z.Iland (4.3). The remainder of the paper is de-
voted to a proof of these two theorems, in Sections[7l- (I1J), and applications
of our main results are presented in Sections [6.3 and (G.]).

6. APPLICATIONS OF THE MAIN RESULTS

6.1. Application of Uhlenbeck compactness to the vacuum Einstein
equations. As an application of Uhlenbeck compactness for I', Riem(T") €
L°°, we prove the following corollary of Theorem 2.3] which provides a new
compactness theorem applicable to vacuum solutions of the Einstein equa-
tions. The main difficulty in a convergence proof for a PDE in an existence
theory, is typically the problem of establishing a uniform bound on the
highest order derivatives, suitable to apply Sobolev compactness. Uhlen-
beck compactness tells us that it suffices to establish a bound on just the
Riemann curvature, not all highest order derivatives of a connection, in order
to imply subsequential convergence of connection and metric.

Corollary 6.1. Let g; be a sequence of Lipschitz continuous metrics given
on a manifold M, and let T'; denote the Christoffel symbols of g; for each
i € N. Assume that (g;)ien is a sequence of approzimate solutions of the
vacuum Finstein equations such that, in a neighborhood of each point, there
exists a coordinate system x in which Ric(g;) — 0 weakly in LP (some p
with n < p < 00), the sequence Ric(g;) is uniformly bounded in L, and g;
satisfies the uniform bound

1gill oo + 1Tl Lo + [[Weyl(gi)|[~ < M (6.1)

for some constant M > 0, together with the non-degeneracy condition that
| det(g;)| is uniformly bounded away from zero[§ Then, in each such coordi-
nate system, there exists a subsequence of (g;)ien which converges component-
wise and weakly in WP(Q) to some metric g which satisfies (6.1]) and solves
the vacuum FEinstein equations Ric(g) = 0. Furthermore, according to The-
orem [21], for each p € (n,o0) there exists locally, (i.e., in a neighborhood of
each point), a W>2P coordinate transformation x — y; which lifts the com-
ponents of g to WP and these are the W2P-limits of Gy, the components
of gi in optimal coordinates y;, as in (ii) of Theorem [2.3.

Note that if M is a compact manifold, one can cover M with a finite
number of such optimal coordinate patches, and by a diagonal argument,
extract a subsequence which converges to a solution of the vacuum Einstein
equations in each coordinate system of the finite covering, and hence in all

of M.

Proof. To begin, note that the L°° bound on I'; provides an L*° bound
on the derivatives of g;, so the sequence (g;)ien is uniformly bounded in

18Here norms are taken in coordinate systems and Weyl(g;) denotes the Weyl curvature
tensor of g;.
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WP any p € (1,00). Thus the weak WP convergence of a subsequence
of (g;)ien to some metric g € WP in z-coordinates follows by the Banach
Alaoglu Theorem for any p < oo; (that g is a metric follows by our non-
degeneracy assumption). But this is not enough to conclude that Ric(g) = 0,
because the convergence is not strong enough to pass weak limits through
Ric(g;). To prove that Ric(g) = 0 we apply now Uhlenbeck compactness
of Theorem [2Z3] Since Ric(g) = 0 is a point-wise condition, we assume
without loss of generality that the coordinate transformations to optimal
regularity (z — y;), asserted to exist by Theorem 23] are defined on the
entire coordinate patch in which each g; is given.

Note first that assuming a uniform L bound on Ric(g;) and Weyl(g;)
implies that ||Riem(g;)||ze is uniformly bounded, since the Ricci tensor to-
gether with the Weyl tensor comprise the Riemann curvature tensor [5].
Thus, also taking into account the bound on the metric and connection in
(610), Theorem 23] applies and yields the existence of a convergent subse-
quence of (g;)ien, asserting weak W?2P and strong WP convergence, (any p
with n < p < oo0). Namely, let y; be a coordinate system in which I'; and
hence g; has optimal regularity, and denote by g,, the metric g;(x) in y; coor-
dinates but with its components expressed as functions over xz-coordinates,
c.f. (ii) of Theorem 23l Then g,, € W?P in z-coordinates and

Hgyi”WZ’P < HQy@-HLP + HFyiHWLp

is bounded uniformly by some constant C (M) > 0, since ||I'y, |ly1.» and the
Jacobians || % HWI,,, are both uniformly bounded, c.f. (£16) and ([@I7). The
asserted convergence of a subsequence now follows by the Banach Alaoglu
Theorem. We denote this convergent subsequence by (gy,)ien, where g,, =
gy, () is to be understood as the metric in y;-coordinates with components
expressed in z-coordinates.

The main point then is that the curvature is linear in derivatives, and
one can pass weak limits through such derivatives. That is, by assumption
Ric(g;) — 0 weakly in L? for some p € (n,o00) as i — 0o, and to prove that
the limit metric g = lim g; solves the vacuum Einstein equations, we need

7 o

only show that Ric(g;) converges to Ric(g) weakly in LP as i — oo. For this,
observe that the weak WP convergence of I'; implies weak LP convergence
of dI'; to dI', where I' denotes the connection of g. Moreover, the strong L
convergence of I'; implies strong convergence of I'; AT'; to ' AT in L%. This
implies weak convergence of the Riemann curvature, namely for any matrix

valued 2-form ¥ € WO1 (p/2)" C WO1 " e have

<Riem(ri),\I/>L2 = —<Pi,(5\I/>L2 + <Fi /\Fi,\I/>L2
X (T,60) 2 + (D AT, ) 2 = (Riem(D), ¥),2,

which implies weak convergence in L5 by denseness of I/VO1 /2" 40 [P Since

this applies to any p > n, we conclude that Riem(I';) converges weakly to
Riem(I") in LP which implies the sought after convergence, Ric(g;) — Ric(g)
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weakly in LP. This proves g solves the vacuum Einstein equations Ric(g) = 0
and this holds in any coordinate system by tensor transformation. O

Note that without Uhlenbeck compactness Theorem 23] the uniform L
bound on a sequence of metric connections and their curvatures would not
in general imply that the limit metric solves the vacuum Einstein equations.
Indeed, weak LP convergence of a subsequence of the metric connections is
not in general sufficient to pass weak limits through nonlinear functions like
products [7, Chapter 16]. As a result, even though the Ricci tensor would
correctly converge to zero, the limit Ricci tensor would in general fail to be
the Ricci tensor of the limit connection.

6.2. Optimal regularity in spherically symmetric spacetimes. The
following corollary of Theorem [2.1] establishes for the first time that solu-
tions of the Einstein equations constructed in Standard Schwarzschild Co-
ordinates, including the Lipschitz continuous metrics associated with shock
waves in [I3], can always be smoothed to optimal regularity by coordi-
nate transformation. Solutions of the Einstein equations in SSC have a
long history in General Relativity going back to Schwarzschild and Birkhoff.
The existence theory in [I3] establishes (weak) shock wave solutions of the
Einstein-Euler equations by Glimm’s method, (see also [3]). The Einstein-
Euler system couples the unknown metric g;; to the unknown density p,
pressure p and velocity u of a perfect fluid via T% = (p + p)u'n’/ + pg¥ in
G = kT. The spacetime metrics of these solutions are non-optimal with cur-
vature in L°°, but optimal metric regularity would be required to introduce
locally inertial frames and geodesic curves by standard methods.

For this consider a metric in Standard Schwarzschild Coordinates (SSC)

dr?

Alt,r)

This represents the coordinates in which the Einstein equations for a spheri-
cally symmetric spacetime metric (arguably) take their simplest form. Since
the first three Einstein equations in SSC are

ds®* = —B(t,r)dt* + + r2d02. (6.2)

—rA,+(1—-A) = kBTYr? (6.3)
A; = wBT°r (6.4)

B, 1—-A K
7"§ — —A = ETH?J (65)

the metric can generically be only one level more regular than the curvature
tensor, at every level of regularity, and is hence non-optimal. (See [13] for
the full system of equations.) As an application of Theorem 2], we have the
following result which establishes that shock wave solutions of the Einstein
equations constructed by the Glimm scheme are one order more regular than
previously known [I3]. (The result here extends to every level of regularity,
c.f. [23].)
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Corollary 6.2. Let T € L™ and assume g = (A, B) is a (weak) solution
of the Einstein equations in SSC satisfying g € C%' and hence T' € L™ in
an open set Q. Then for any p > 4 and any q € §Q there exists a coor-
dinate transformation xr — y defined in a neighborhood of q, such that, in
y-coordinates, g € WP, T' € WP,

Proof. In Standard Schwarzschild coordinates the Ricci and Riemann curva-
ture tensor have the same regularity (as can be verified using Mathematica).
So assuming 7" in L implies dI" in L°°, and Theorem 2.I] implies the corol-
lary. O

6.3. Construction of locally inertial coordinates. The standard method
for constructing locally inertial frames does not apply to connections I' €

L>(€2) because the classical Riemann normal coordinate construction re-

quires Lipschitz continuity for a connection, and regularity C! for a metric,

[18]. The following corollary of Theorem 2] establishes that locally iner-

tial coordinates always exist in a Holder sense, for any L°° connection with

Riem(I") € L*>(Q).

Corollary 6.3. Assume I',Riem(I") € L>®(Q) on a bounded spacetime do-
main 0 C R™. Then for any p > 1 and any point q € ) there exists a
neighborhood ' C Q of q and a coordinate transformation with Jacobian
J € Wh2P(QY) such that the connection in the resulting coordinates z has
regqularity ' € WYP(QY) and satisfies

Flg(Q) = 0 (6.6)

@ < Cla—a, (6.7)

where a € (0,1) is the Holder coefficient associated with 2p > n by Mor-
rey’s inequality and | - | is the Euclidean norm on R™ applied to ¢ — p in

z-coordinates.

We call a coordinate system y in which the connection is in WP for p > n
and satisfies ([6.6]) and (6.7]), a locally inertial coordinate system with Holder
corrections to the gravitational field. The case = 1 in (6.7]) would give
the standard second order correction due to the gravitational field. For
Lorentz metrics one can in addition arrange for the metric to be equal to the
Minkowski metric at ¢ by suitable multiplication with a constant J acobian [

Proof of Corollary [6.3. The assumptions of Corollary are identical to
those of Theorem 211 Applying Theorem 2.1l gives us a Jacobian J €
WhH2P(Q)), as determined by the RT-equations, defined in some neighbor-
hood Q' C Q of ¢, such that the connection in the resulting coordinates y“

19This Jacobian is the unique composition of the orthogonal matrix diagonalizing the
metric at ¢ multiplied with the diagonal matrix that has the inverse of the square root
of each eigenvalue of the metric on its diagonal. See the construction in [20] for details.
Since the Jacobian is constant, properties (6.6]) - (6.1) are preserved.
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has regularity I' € WP(Q'). Without loss of generality, we assume that
y(q) = 0.

To arrange for condition (6.6]), following the development in Chapter 8
of [20], we introduce a smooth coordinate transformation y — z, (hence
preserving the regularity WP of T'), such that I' satisfied the sought after
properties ([6.6]) - (6.7]) in z-coordinates. Indeed, it is the Holder continuity
of ', implied by Morrey’s inequality (A.4]), which allows us to evaluate
the connection in y-coordinates evaluated at the point g, Fgﬁ/b, and then
introduce the coordinate transformation

(y) = 04T, |, v7y7 + ok y”. (6.8)

where 65 denotes the Kronecker symbol. Clearly (6.8) defines a smooth
coordinate transformation and, by our incoming assumption y(q) = 0, it
follows that

2(y(q)) =0 and =" = ok (6.9)
y q 8ya q [e'h °
Moreover, and this is the main point of definition (G.8]), we have
0?2+
_ SHPQ
3P0y o~ aqu, (6.10)

which implies that the connection I'},, in z-coordinates vanishes at ¢. Indeed,
from the transformation law of connections we find that

027 ., %29 5 021 02"

- — + -
Ay PV ayBayy T T ayB ayr

so using (6.9) and (6.10) to evaluate I'f,, at ¢ gives

5grg"/|q = 62 g’Y‘q + FZV‘qégéij/

and this implies that in z-coordinates qu‘q =0 for all o, pu,v € {1,...,n}.

This proves property (6.6]) of Corollary [6.3]

Now property ([6.7) follows directly from (6.6]) together with the Holder
continuity of I' in z-coordinates. Namely, since the coordinate transforma-
tion y — z is in C°°(Q), we again have I' € W1P(Q)') in z-coordinates, so
Morrey’s inequality implies that I' € C%% for a = 1 — %. This completes the
proof of Corollary O

7. HOW TO RECOVER THE ORIGINAL RT-EQUATIONS FROM THE
REDUCED RT-EQUATIONS BY GAUGE TRANSFORMATION

7.1. Conceptual overview. We start by describing, more carefully, the
logical connection between the full RT-equations (4.1]) - (£4]) and the re-
duced RT-equations (£I0]) - (412). Recall from Section [ that the original
RT-equations were derived by constructing the Laplacian dd + dd starting
from two equivalent formulations of the Riemann-flat condition, one involv-
ing dJ and one involving dI'; and the first order A equation came by replacing
A = JOI' in the J equation, setting d of the right hand side equal to zero,
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and imposing dJ = 0 on the boundary in (£5]). Now in the existence theory
set out in [22] for the case I',dI" € WP, we saw that not every solution of
the original RT-equations determlnes a solution in which J is paired with
I =T;=T—J"'dJ given in @&8). Here I'; is the tensor transformation
(&) of the connection coefficients obtained by transforming the original T
by J. To complete the argument in [21] we proved that given a solution
(T, J, A, v) of the full RT-equations, I'; will solve a modified version of the
first RT-equation (@.I]). In [21], the role of this modified elliptic equation was
to establish that T';, (and hence also T, by ([@T)), is of optimal regularity.
This was established rigorously in [22] at the smoothness level I', dI" € WP,

We now understand this more conceptually as follows. The variables for
the original RT-equations are (f, J, A,v). The transformation (f, J, Ajv) —
(T, J, B,w) effected by the change of variables (@) - [@9) given by

B = A—(dJ;T),
w = v—0dJ;Ty),

transforms the last three RT-equations (£2)-(44) into the reduced RT-
equations (£.10)-(@.12]), and transforms the first RT-equation (4.1]) into equa-
tion (@I3), an elliptic equation for T’ involving (T, .J, B) on the right hand
side. Thus the original four RT-equations (4.1])-(4.4]) are equivalent to the
three reduced RT-equations (AI0)-(£I2) together with (£I3). Now the
rather remarkable discovery, which is the basis for the present paper, is that
I' = 'y turns out to exactly solve equation (EI3), but only on solutions
(J, B) of the reduced RT-equations. That is, ['; does not in general solve
the first RT-equation (41]), but the transformation (48] - (4.9]), which un-
couples T from the last three equations, also produces the elliptic equation
([£13]) satisfied by I' ;. The result then, is that we no longer need the orig-
inal RT-equations, because optimal regularity is determined entirely from
the reduced RT-equations (£.10) - (.12) for (J, B), together with the elliptic
equation (4.I3]) for the gain in regularity of I';. At the end, the original T
is out of the picture. To borrow words from Ludwig Wittgenstein (regard-
ing his private language argument), the original RT-equations are a “ladder
we climb” to obtain the reduced RT-equations within the gauge freedom of
the original RT-equations, but that ladder can then be thrown away once
we find them. But still, to complete the picture, it is interesting to under-
stand the sense in which solutions (T';, J, B, w) of the reduced RT-equations
correspond to solutions (f, J, A,v) of the original RT-equations.

To clarify this, recall that if we are given a coordinate transformation z —
y and J is its Jacobian, applying the tensor transformation law (£7]) to I';
produces the coefficients of the connection I in y coordinates. Now we know
from [22] that the solution space of the original RT-equations (4.1])-(4.5])
is larger than we want, because it contains solutions (f, J, A,v) for which
r #+ [';. That is, I need not have anything to do with the transformation
of our starting non-optimal connection I'. In fact, we have discovered that
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there exist solutions of the RT-equations with the same J, but different
(T, A, v). Define then the equivalence class £(.J) of all solutions of the original
RT-equations (4.))-(@35]) which share the same Jacobian field J. (It could
be empty). Recall that only the J-equation (£2]) comes with a boundary
condition ([4.3)), so the “gauge freedom” in the RT-equations is the freedom to
choose the free function v, and the freedom to impose boundary conditions
for I' and A in equations (@I) and [@3), @), respectively. Thus the
equivalence class £(J) associated with a given Jacobian J is the set of all
solutions (I, J, A, v) of the RT-equations ([.I)- (@35, solutions determined by
v and all the possible boundary conditions we might impose to determine T’
and A from equations (A1) and (£3]), (4.4). Now once we have established
that T'; solves (EI3)), reversing the argument leading to @X) - @J) in
Section F] (which entails simply replacing T' by L' in the formulas for B
and w), shows directly that (I'y, .J, A, v') will solve the original original RT-
equations whenever (f, J, A,v) does, where

A = B—(dJ;Ty),
v o= w—§(dJ;Ty).
Thus conceptually, starting with a solution (f‘, J, A,v) of the original RT-

equations, (J, B) will solve the reduced RT-equations, I ; will solve the mod-
ified first RT-equation (413, and the back transformation (£.14)), (£15]) de-
termines a new solution of the original RT-equations within the equivalence
class £(J), this new solution having as its first component I' = I';. That
is, through a change of gauge, we can substitute I for I'; in any solution
of the original RT-equations. This gives expression to the content of what
is claimed in (i),(ii) of Theorem Il In summary, we write this as a direct
corollary of Theorem Tt

Corollary 7.1. If (li,J,A,v) lies within the equivalence class E(J) of the
RT-equations, then (U, J, A", v") € E(J) as well.

That 'y given by (&6) actually solves [@I3), the first RT-equation (@)
modified by the substitution (4.8])), on solutions of the reduced RT-equations,
is crucial because it is this equation which gives the requisite optimal regu-
larity of I';, the connection coefficients of I' transformed by J. As laid out
above, it really is quite remarkable that a change of gauge simultaneously
eliminates T from the last three RT-equations, and then on top of that,
transforms the first RT-equations into a new elliptic equation satisfied by
I';. So as a preliminary to the proof of Theorem A1, we now go through
the key idea in the proof of parts (i) and (ii) leading to I'; being a solution
of (I3), in the case when I' is smooth, thereby displaying how it works
without being distracted by the weak formulation of the equations.

7.2. Recovering solutions of the RT-equations from the reduced
RT-equations: A complete proof of Theorem 1] is the subject of Section
[ As a preliminary, we explain in this section the key step in the equivalence
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between the reduced and full RT-equations in its simplest setting, when I
is a smooth connection. That is, we explain why I' =T’y =T’ — J~'dJ au-
tomatically solves the first RT-equation when defined in terms of a solution
(J, B) of the reduced RT-equations. On the face of it, this is quite remark-
able, because the J-equation appears to have lost all knowledge of T’ once
we gauge transform from A to B. The point, which we establish here, is
that when we take the B gauge, the formula (£.6]) for I'; in terms of J and T’
alone gives an exact solution of the first RT-equation (4.1]), provided J solves
the reduced RT-equations. Thus the regularity of I' is determined by the
first RT-equation, but is ultimately encoded in the reduced RT-equations.

Lemma 7.2. Let I be smooth and assume (J,B) is a smooth solution of
the reduced RT-equations [AI0) - @I2) for some given w, such that J is
invertible. Then T =Ty and A = A, defined in [@&B) and @EId), satisfy
the first RT-equation (A.]).

Proof. To prove Lemmal[l.2] we first take the exterior derivative d of equation
Iy=T-J"'dJ, cf. (@8, to obtain
dl; = dr' —d(J 'dJ)
= dl' —d(J7') AdJ, (7.1)

where we use d(J~'dJ) = d(J~) A dJ by the Leibniz rule (37). Taking
now the co-derivative § of (T.I]) gives

6dly = 6dl — §(dJ ' A dJ), (7.2)

thus giving the first term of the Laplacian AT = 6dT; + dor . B
To determine the second term of AT';, we take § of equation I'y =T —
J71dJ, c.f. ([@0), to compute

6Ty =0T — §(J71dJ). (7.3)
Using now the Leibniz rule for co-derivatives (3.8]) we have
oLy = o0 —(d(JY);dJ) — J tedT
= 60 —{(d(J1);dJ) — J 1A, (7.4)
since AJ = ddJ by dJ = 0, because the co-derivative § vanishes on 0-forms.
Substituting now the reduced RT-equation (£I0) for AJ into (T.4]) gives

6Ty, = o —(d(J 1);dJ) —J1(6(JT) - B), (7.5)
and since 0(J-T') = JOT' + (dJ;T') by (B.8]), we obtain that
6Ty = J'B—(d(J");d]) — T HdJ;T). (7.6)

The cancellation of the lowest regularity term 6I" in the step from (7.5) to
([7.6]) is the essence of the gain of regularity implied by the RT-equations, c.f.
Theorem A1l (To establish this cancellation for weak solutions takes some
work, see Section [0.21) Now the right hand side of (7.8]) is equal to J~*A4
as a consequence of the definition of A in ([@I4]), as proven in Lemma [(3]
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below. So assuming Lemma [Z.3] to be true for the moment, we find equation
([Z.8) to be identical to

or = JlA (7.7)
Taking now the exterior derivative d of (7.7]) and adding the resulting equa-
tion to (2] gives us
AT; = 6d0 —5(dJ ' AdJ) +d(J71A) (7.8)
which proves that T'; solves the sought after equation (II). O
To complete the proof of Lemma [[.2] it remains to prove Lemma [7.3]
Lemma 7.3. For A defined in ([d14), we have
A=B—J{d(J):;dJ) — (dJ;T), (7.9)
so the right hand side of (T.6)) is equal to J~1A.

Proof. To verify (.9), we substitute L;=TI—J"'J, cf. [@J), into the
definition A = B — (dJ;Ty), c.f. [@I4), to compute

A = B-{(dJ;(I —J7'dJ]))
B+ (dJ; JYdJ) — (dJ;T). (7.10)

We now use the multiplication property (B.I0) of the matrix valued inner
product (-;-) twice, to write the second term in (ZI0Q) as

(dJ; 7Yy = (dJ-J7tdJ)
= J(J Y- J7td)
= —J{d(J");dJ), (7.11)

where the last equality holds since d(J~') = —J~1d.J - J~! by the Leibniz
rule for gradients, (since J is a O-form so d is the gradient). Substituting
([II) into (CI0O) gives the sought after identity (7.9) and proves Lemma
(3l O

This completes the proof of Lemma [7.2] the case of smooth solutions. Ac-
complishing this for weak solutions is subject of Section

8. WEAK FORMULATION OF THE RT-EQUATIONS

We now begin the existence theory for weak solutions of the reduced RT-
equations (AI0)-(£I2) on bounded domains © C R™. This provides an
existence theory for weak solutions of the full RT-equations (£.I)-(435]) by
using the change of gauge (B, w) — (A’,v) given in ([@I4) - (EI5).

The RT-equations are a nonlinear elliptic system of equations in unknowns
J, A and I" determined by the assumed given connection I', and they allow
for the freedom to choose the arbitrary function v in the second A-equation
([#4), together with boundary conditions for I' and A in (A1) and (E3)),
([#4]), within the appropriate regularity class. We refer to this as the gauge
freedom in the full RT-equations, and loosely refer to v or A as the choice of
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gauge. Note first that because the right hand sides involve the derivatives
DT of I', the RT-equations are consistent with the regularity J,I" being one
order more regular than I', dI" because this puts the right hand sides of the
I" and J equations (@Z) and @I at the same regularity as DI, so long as A
has the same regularity as I'; and this is consistent with the regularity of the
right hand side of the A equations (3] - (£4]) being one order less regular
than I'. Thus, the RT-equations are consistent with elliptic PDE theory
in the sense that Laplacians in (@J]) - (£2) should raise the regularity of
I and J two orders above the right hand side, which is one order above
the regularity of I'; and the first order Cauchy Riemann system (3] -
([#4) should raise the regularity of A to the same regularity as I'. In [22]
authors proved that this consistency of the RT-equations is correct in the
classical sense by giving an existence theory for the full RT-equations in the
case I',dI' € WP and in Sections [ - [[I] we extent this classical theory to
the case of weak solutions, when I',dI’ € L*°. When I',dI’ € L*>, we also
have I',dI" € LP for every p, so our goal is to establish existence of weak
solutions J,I' € WP, A € LP, on sufficiently small domains. Note that in
this case, the right hand sides of the I', J and A equations (@I)) - [@4) are
at the regularity W~1P, some p < oo, a regularity too weak for classical
solutions. So an existence theory requires a weak formulation of the RT-
equations. Note that the RT-equations do indeed admit a weak formulation
because all of the lowest order terms on the right hand side of (41])-(4.4)
are matrix valued differential forms with d or § operating on them, so that
integration by parts will raise the regularities one order. To accomplish the
integration by parts and express a rigorous weak formulation, we need to
construct an inner product and the adjoint operators associated with the
matrix valued differential forms on the right hand side of the RT-equations.
This is accomplished in this section.

The existence theory for weak solutions of the RT-equations is accom-
plished in Sections @ -[IIl A few preliminary comments are in order. First,
the iteration scheme used in [22] only closes in LP spaces for classical solu-
tions, because of the bad nonlinear term dJ~' A dJ on the right hand side
of the T' equation (@1). The problem is that products of functions in LP
are not in LP, (or alternatively, in classical elliptic theory, the Laplacian
does not lift L to C11), so the iteration scheme does not close in any LP
space. We overcome this problem with the reduced RT-equations. IL.e., by
showing that for solutions (f, J, A, v) with v € W~1P_ the change of gauge
(A,v) = (B,w), given in (A8) - (£9), uncouples the (J, B) equation from
the T' equation which contains the bad nonlinear term. We named the re-
sulting linear system (£10)-(£12) in (J, B) the reduced RT-equations, and
view this as the RT-equations written in a special gauge. Since the right
hand sides of the reduced RT-equations are linear, we prove in Section [0l
that our iteration scheme, modified to the weak formulation of the equa-
tions, does converge when I',dI’ € L*°, for sufficiently small bounded sets
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Q. Even though the reduced RT-equations are linear, it is a system and the
coefficients are at critical low regularity, so an iteration scheme is still re-
quired to handle the lower order terms. The smallness of the neighborhood
Q) is used to rule out complications with the Fredholm alternative. Once we
obtain a solution (J, B) of the reduced RT-equations, we then prove that
(D) provides an exact solution I' = I'y of the first RT-equation @) (with
B substituted for A), and by this we obtain the desired regularity of the
transformed connection coefficients T' 7 from the now classical linear LP the-
ory of the Laplacian. In this way the bad nonlinear product in (4.1l can be
handled by simply using solutions of the reduced RT-equations with larger
p, J € W12P) 5o the bad nonlinear term d.J~! A d.J on the right hand side
of @) is in WP, thereby placing the solution I' = T'; € W'P. Once we
have a solution to the RT-equation in the (B, w) gauge, we no longer require
a solution of the original RT-equations, but to complete the circle we show
that the transformation back to (A’,v') in (@I4]), (£I5) provides a weak
solution in the original gauge, thereby demonstrating the consistency of the
whole theory for every gauge at the level I',dl" € L.

We finish this introduction of the existence theory to follow, by pointing
out some of the obstacles our theory faces in the weak formulation required
when I',dI’ € L*°. One technical step in the argument is to prove that a
weak solution of the B equation really does impose the integrability equa-
tion dJ = 0. That is, the boundary condition dJ = 0 (£.5]), is not a classical
Dirichlet boundary condition, and when J € WP, dJ = 0 is too weak
to impose on a boundary. Fortunately, the way we handled this boundary
condition in the iteration scheme introduced in [22], can be modified to the
weak setting. The idea is to introduce an auxiliary elliptic equation for y
satisfying dy = J in the iteration. Then we can use Dirichlet boundary
conditions for J which make sense at this low regularity, and thereby ob-
tain the integrability from dy = J which implies dJ = 0. This provides a
very clean way to handle the boundary condition since we can then apply
classical linear LP-elliptic theory for the Dirichlet problem at each stage of
the iteration. However, for the low regularity considered here, this proce-
dure is more technical because it involves two different version of the weak
Laplacian combined with operations on the Cartan algebra of differential
forms. This is accomplished in Sections [I0] - {1l Finally, the proof that I';
solves the first RT-equation in a weak sense is more involved, because the
weak reduced RT-equation for J cannot be used in a straightforward way to
achieve the cancellation of the lowest regularity term JI' in equation (7.0]).
This is achieved in Section

8.1. Integration by parts for matrix valued differential forms. To
introduce the weak formulation of the RT-equations, we first define the
following inner products over matrix and vector valued differential forms.
On matrix valued k-forms A and B, we define the point-wise inner product

(A,B) = tr(4;BT)
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n
(B52)
v,o=1141<...<ij
where the matrix valued inner product (A4; B) is defined in ([3.9]). We further
introduce the L?-inner product

(A, B2 = /Q (A, B)dz (8.2)

where dx denotes the Lebesgue measure in R™. For vector valued k-forms v
and w we define the point-wise inner product

(v,w) = Z Z VG i W s (8.3)

a=1 i1<...<ik

in terms of the Euclidean inner product, and we introduce the L2-inner
product by

(v,wyre = /Q<v,w>dm. (8.4)

The inner products on matrix valued 0-forms and vector valued 1-forms are
in fact identical,

(4,B) = (4, B), (8.5)
where A and B are matrix valued 0-forms. For k > 1, vectorization of matrix
valued k-forms generally results in a loss of information due to cancellation
of symmetries, and one can not expect (835]) to be valid.

To introduce the weak formalism of the RT-equations below, we further
require the following well-known partial integration formula for scalar valued
differential forms,

(do, B2 + (@, 08) 2 =0, (8.6)
where a is a k-form and 8 a (k + 1)-form, such that either algg = 0 or
Blog = 0, c.f. Theorem 1.11 in [6]. Equation (86]) holds for regularity
a € WHP(Q) and B8 € WHP'(Q), (where p,p* are conjugate exponents,
% + 1% = 1), and the condition a|sn = 0 or Slsgq = 0 is understood in the
sense that o € Wy ?() or 8 € Wy (). Here Wy () is the closure of the
space of smooth functions C§° with respect to the WhP-norm, so for p > n

functions in VVOl P(€)) vanish on 9 in the sense of continuous functions. In
our first lemma, we extend (86]) to matrix and vector valued differential
forms.

Lemma 8.1. Let u be a matriz valued k-form and w be a matriz valued
(k + 1)-form, k > 0, such that u € Wol’p(Q) and w € Wol’p*(Q), where
% + Z% =1, then

(du,w)r2 + (u,dw)r2 =0, (8.7)
and BX) continues to hold if only one of the forms u and w vanishes on the
boundary, i.e., only u € Wol’p(Q) orw € Wol’p* (). Moreover, (81) holds as
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well when u € Wol’p(Q) is a vector valued k-form and w € Wol’p* (Q) a vector
valued (k + 1)-form, (or if either w|gg = 0 or u|spq = 0 in the above sense).

Proof. The Lemma follows directly from (8.0]) together with the fact that
the exterior derivative and co-derivative act on matrix-components sepa-
rately, c.f. [2I]. Namely, assuming the case that v and v are matrix valued
differential forms, we find from definition (8.2]) that

(du,w) 2 = Z/Q Z (du)gil...ikﬂwgil...ikﬂdl"

I/,O'Zl i1<...<ik+1

Applying now the partial integration formula for scalar valued forms (8.4
to the above right hand side for fixed v and o, we obtain that

(du,w)re = — Z/Q Z ugil...ik(éw)Zil...ikdx

v,o=1 11 <...<ig
= —(u,0w)p2.

This is the sought after identity (8.7) for matrix valued forms. The case for
vector valued forms follows analogously. O

Before we define the weak formulation of the RT-equations, we first intro-
duce the weak formulations of Cauchy Riemann type and Poisson equations.
So consider an equation of Cauchy Riemann type,

{d“ =/ (8.8)

ou =g,

where u, f and g are vector valued differential forms. In light of (87, we
say that a vector valued k-form u € W1P(Q) solves (8.8) weakly, if

(u,09) 2 = = f(¥)
{<u,d<p>m = —g(y), (59

for any vector valued (k + 1)-form ¢ € Wol P (Q) and any vector valued
(k—1)-form ¢ € WO1 " (§2) both vanishing on 92, where we assume that f is
a scalar valued linear functional on the space of vector valued (k + 1)-forms
in VVO1 » (©) and g is a scalar valued linear functional on the space of vector
valued (k — 1)-forms in WP (€). (See Section [(] for a complete list of
consistency conditions on f and g required for existence of solutions.) Weak
solutions of (B8] for matrix valued differential forms can be introduced in
a similar fashion, but are not used in this paper since the third and fourth
RT-equations [4.3] - (4.4) are vector valued 1-forms.
Now consider the Poisson equation

Au=f. (8.10)
We say that a matrix valued k-form u € W1P(Q) solves (810) weakly, if
Aulg] = f(¢), (8.11)
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for any matrix valued k-form ¢ € VVO1 P7(Q), where
Au[¢] = —<d’LL, d¢>L2 - <5u75¢>L2 (812)

and f is a scalar valued linear functional on the space of matrix valued k-
forms ¢ € VVO1 d (€2). To extend the notion of weak solutions of the Poisson
equation (8.I0) to vector valued differential forms, simply use vector valued
test k-forms ¢ € VVO1 () and the corresponding inner product (84), which
suffices since the exterior derivative d and the co-derivative § act only on
form-indices, but not on matrix or vector indices.

The following lemma clarifies that the weak formulation of the Laplacian
in (BI2]) for differential forms is identical to the standard weak form of the
Laplacian (c.f., [11, 12]) taken component wise. By this we know we can
use standard theorems of elliptic regularity theory for the analysis in this
paper, c.f. Section [Bl

Lemma 8.2. Let u € WHP(Q) be a matriz (or vector) valued k-form, then
Aulg] = —(Vu, V) e, (8.13)

for any matriz (or vector) k-form ¢ € Wol’p*(Q), where Au[@] is the weak
Laplacian defined in (812), V is the Euclidean gradient in x-coordinates
taken on each component™], and we set

Moreover, (8I3)) holds assuming only w € LP(Q2) with du,du € LP(RY), (the
low regularity we encounter in the proof of Theorem [{.1]).

Proof. By compactness of C§°(£2) in WO1 P (Q) it suffices to prove (8I3]) for
¢ € C§° (). So let ¢ € C§°(2) and use partial integration component wise
to compute

<VU, V§b>L2 = _<u7 V- (V¢)>L2
Substituting now that V- (V¢) = A¢ = dé¢p + dd¢ and using partial inte-
gration for differential forms (87)), we obtain that

<V'LL, Vo) = _<u7 d5¢>L2 - <u7 6d¢>L2
= (0u,0¢)r2 + (du,dd) 2
— L Aufg). (8.15)

This proves (813) in the case u € WP(Q).
To prove the supplement, assume that v € LP(Q) with du,du € LP(Q).
For this regularity the weak Laplacian (812)) is well-defined, i.e.,

Aulp] = —(du,dp) 2 — (du, d¢) 2, (8.16)

2086 V is taken on each matrix, vector or differential form component separately, e.g.,
Vu = (Vu)i, . i dzx’ A .. Adz' for u = wiy . i dz™ A ... ANdz's.
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exists for any matrix valued k-form ¢ € VVO1 P (Q) Again, considering ¢ in
the dense subspace C§°(Q2), A¢ = dd¢p + do¢ is well-defined. We now apply
partial integration (B.7) to write (816 as

Auf¢] = (u, A¢) 2 = lim(u, Vi - V)2, (8.17)

where the last equality holds by convergence of the difference quotient V¢
to V¢, so that we have V), - Vo — A¢ as h — 0. By partial integration for
V4, we find that

— (Vhu,Vé)r2 = (u, Vi - V) o. (8.18)
By (BI7)) the right hand side in (8.I8]) converges, which implies that the left
hand side in (8.18)) converges as h — 0 as well, and we have

}llin%)<vhu, V)2 = (Vu,V)re. (8.19)
—
Combing this with (817, we find that

Aufg] = =(Vu, Vo)

for any ¢ € C3°(€2). By denseness of C§°(12) in VVO1 P7(Q) this establishes
[BI3) for the low regularity u € LP(2) with du, du € LP(Q2). This completes
the proof of Lemma O

8.2. The weak RT-equations and weak reduced RT-equations. We
are now prepared to derive the weak formulation of the RT-equations (4.)
- ({4), that is, of the system

AT = &dr —6(dJ P AdJ) +d(TA),

AJ = §(JT)—(dJ;T) — A,

N — — —

dA = div(dJ AT) +div(Jdl') —d((dJ;T)),

A = .
To begin, assume we are given a smooth solution (f, J, A) of the RT-equations
@) - @F) with T € W2(Q), J € Wh?(Q) and A € L?(f2), and assuming
p > 1 suffices here. Now, in light of (812]), for any matrix valued 1-form
S VVO1 P (Q), we write the left hand side of the first RT-equation (4.1)) as

AT[®] = — (6T, 6®) 2 — (dT, d®) 2, (8.20)

where we applied (7)) to A = dd + dd in the last equality, where again
z% + % = 1. Applying now (87) to rewrite the right hand side of (&J]) in
an analogous way, we find that the first RT-equation (£1]) can be written
equivalently as

— AL[®] = ((dT' —dJ ' AdJ), d®),, + (J ' A, 6@) 2 (8.21)

for any matrix valued 1-form ® € VVOl (). This is the weak formulation
of ([@J)). Similarly, we find the weak formulation of (£2) to be

— AJ[¢] = (JT, dp),, + (((dJ;T) + A), ¢) 2, (8.22)
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for all matrix valued O-form ¢ € VV1 (2p)" (Q), where AJ[p] = —(dJ,d¢) 2.
Since we address the solution space J € Wh2r(Q), we require the test space

Wol’@p)*(Q), where (2p)* denotes the conjugate exponent to 2p, i.e., (211))* +
i =1, (and note that (2p)* # 2p* in general).

To derlve the weak formulation of (43]) - (44]), we first clarify how to
shift dlv over to test functions, i.e., we have to find the adjoint to the
operation defined in (B.I1]). For this, we introduce c(h_v as the mapping from

vector valued 2-forms ¢ € VVO1 2p)° (Q) to matrix valued 2-forms in L(?P)"(Q)
defined by

(@(zp))l‘j = Ol da' N da, (8.23)
where the conjugate exponent (2p)* in used in light of the desired solution

space A € L?"(Q) below. Now, by applying partial integration component
wise, it is easy to verify the following lemma.

Lemma 8.3. For any matriz valued 2-form w, it is

- .

(@i (@), ) 2 = —(w, div ()12 (8:24)
for any vector valued 2-form 1 € Wol’(zp)*(Q).

— . .
Proof. By the definition in (3.I1]) we have div(w)* = >"7'_; 9, (wh);jdz’ Adz?
so components-wise partial integration gives us

@ = YL [ S ety

Ko<y
= T35 [ ehat
u v 2<j
= @ VL2, (8.25)
which proves (824]) and the lemma. O

Applying now (8.24]) together with (8.7 for vector valued differential forms,
we find that (43)) - (£4]) can be written equivalently as

. e
{(/& 57,[)>L2 = <(d=] AT+ Jdr))Eh_V(w)>L2 - <<dJ7F>75¢>L2 (826)
(A,dp) 2 = —(v,0) 12,

for all vector valued 2-form 7 € VVOl (2p)° (©) and any vector valued function

@€ Wol’(zp)*(Q), (so Ylan = 0 and ¢|spq = 0). This is the weak formulation
of (@3] - [@4]). For the purpose of this paper we only need the weak for-
mulation when I',dI" € L*°, but we introduce it here more generally for L
spaces.

Definition 8.4. Let T, dl’ €~L2p(Q), and assumeT € WHP(Q), J € W12 (Q)
and A € L*"(Q). We say (I',J, A) is a weak solution of the RT-equations
if B21I), B22) and [B26) hold for all test functions ® € Wol’p (Q) and
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b, 0, € Wol’@p)*(Q) specz'ﬁed above, where p and (2p)* are the conjugate
exponents defined by 1% = =1 and o ) + 2p =1.

The weak formulation of the RT-equations in Definition [8.4] can be easily
adapted to the reduced RT-equations, subject of the next definition. Recall
first that the reduced RT-equations (£I0]) - (£I2) are

AJ = 6(JT) - .
dB = div(dJ AT) +div(JdD),
6B = w,

with unknowns J and B.

Definition 8.5. Let T',dl' € L*(Q). For J € WH?(Q) and B € L?(Q),
we say that (J, B) is a weak solution of the reduced RT-equations (AI0Q) -
@12), if

—AJ[p] = (J-I',do)r2 + (B, ¢) 12 (8.27)

holds for any matriz valued 0-form ¢ € Wol’(zp)* (Q), (where AJ[p] = —(dJ,dd)2),
and if

(8.28)

{@ )2 = ((dJ AT + J dI), div(h))
<B’d‘p>L2 = w,

holds for any vector valued 2-form 1 € Wol’(zp)*(Q) and any vector valued
function ¢ € VV1 (2p)" Q).

9. THE GAUCE FREEDOM - PROOF OF THEOREM [4.1]

In this section we prove that, given a solution (J, B) of the reduced RT-
equations (£10) - (.12), then (J, I, A) solves the full RT-equations (@) -
@d) with ' =Ty and A = A’, where I'; and A’ are defined in (@8] and

E14) as

I, = I'—J'dJ,
A = B-—(dJ;T).

From this, using the first RT-equation (&I in terms of A = A’ (which is
equivalent to equation ([@I3)), we then prove that I'; gains one derivative
over the regularity of the terms separately on the right hand side of its
definition in ([@.6]). This is the subject of Theorem Il Throughout the rest
of this paper we only address the case liz I[yand A = A, so for ease of
notation from here on, we denote I'jy by I" and A’ by A.

For completeness, and to connect our point of view here with [23], in Sec-
tion [0.2] we prove Theorem ] at the higher level of connection regularity,
I, dl’ €e W™P(Q), m > 1, p > n, a regularity sufficient to take point-wise
LP estimates and apply Morrey’s inequality (A.4]). In Section we prove
the low regularity case I', dI" € W"P(Q).
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9.1. The smooth case of Theorem [4.1Il We here prove the following
proposition which establishes Theorem (1] in the case I',dl' € W™P(Q),
m > 1, p > n. This is proposition is not needed to prove the results in
this paper. For ease of notation we let Q = Q, denote the neighborhood Q/,

of Theorem 1] in z-coordinates, and we denote the compactly contained
subset Q7 by .

Proposition 9.1. Assume I',dl" € W™TLP(Q) in x-coordinates, for m > 1,
p>mnand p < co. Assume (J, B) solves the reduced RT-equations (410
- EI2) in a weak sense for some w € W™ LP(Q), such that J,J~' €
Wm+LP(Q) and B € W"”’(Q) Then the following holds:

(i) Defining T'; by [@8), T =T solves (4-13), and the tuple (J,T, A) solves
the full RT-equations ([EI)) - @A) in Q for v = ' and A = A’, where A’
and v are defined in (A1) and (EIH).

(ii) The regularity of T =T is given by Ty € W™HLP(QY) for any open set
Q' compactly contained in 0, i.e., Ty is one order more reqular than the two
terms are separately on the right hand side of its definition in (4.0]).

(iii) Let M > 0 be a constant such that

(T d0) lwm.p ) = [ITllwmr @) + 1AL ][wme @) < M.
Assume that (J, B) satisfies further the estimate
1T = Tllwmsro@)+ 1 =T Hlwmsro@) + | Bllwmr@) < Ci(M) H(PudP)HWW’E(Q)S
9.1
for some constant C1(M) > 0 depending only on Q,n,p and M. Then, on

any open set ' compactly contained in Q, I' = I'; satisfies the uniform
bound

T [y < Ca(M) (T, dD) | (q) (9.2)
where Cy(M) > 0 is some constant depending only on ', Q.n,p and M.

Proof. Let T',dl’ € W™P(Q), for m > 1, p > n, and assume (J, B) is a solu-
tion of the reduced RT-equations (@I0) - (@I2) with J,J~! € Wm+Lr(Q)
and B € W™P(Q). For this regularity Lemma applies and yields that
(J,T, A) solves the first RT-equation (E.I)).

We now prove that (J,T, A) solves the second RT-equation (Z2)). By
assumption, (J, B) solves the reduced RT-equation (4.10), that is,

AJ = §(JT)-B. (9.3)
By definition of A in ([@I4]), we have
B=A+(dJ;T), (9.4)

so substitution of (@.4]) into (0.3 gives
AJ =6(JT) - (dJ;T) — A,
which is the sought after RT-equation (4.2]).

21The existence of such a solution follows from our existence theory in [22] 23].
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We now prove that (J,T', A) solves the last two RT-equations (3] - &4).
By assumption, (J, B) solves (&3] - (@4) for some w € W™~LP(Q), that is,

dB = div(dJ AT) + div(J dr),
5B = w. (9.6)
—

Substituting (@4)) into (I5) and subtracting the resulting equation by d(d.J; T)
gives us the equation

. P
dA = div(dJ AT) + div(.J dT) — d(dJ; T),

which is the sought after third RT-equation (43]). Similarly, substituting
[©@4) into ([@.6]) gives

6A =w— 6(dJ;T),

which is the sought after RT-equation (4.4]) for v defined by (4.I%)), that is,
for v = w — 8(d.J;T). Taken together, we proved that (J,T', A) solves the
full RT-equations (41]) - (£4) for the gauge freedom in v fixed by the choice
(#I5). This proves (i) of the proposition.

To prove (ii) of Proposition 0.1l we need to show the regularity I e
WmHLP(Q) together with estimate ([@.2). In a first step, we establish the
lower regularity I' € W™P(Q) and A € W™P(Q) from their definitions in
(#0) and (£I4)). For this we use that by Morrey’s inequality (A.4) the space
W™P(Q) is closed under multiplication when m > 1, p > n, c.f. [2I]. Now
[ e W™P(Q), since I € W™P(Q), J~' € Wmt2(Q) and dJ € W™P(Q) so
that the closedness of W™P(Q) yields T =T' — J~'dJ € W™P(Q) by (&f).
Moreover, the regularity A € W™P(Q) directly follows from (4.I4]), since
dJ,T € W™P(Q) implies that A = B — (dJ;T) € W™P(Q). This shows
that I and A are both in W™P(Q).

We now prove that T' € W™P(Q) is one derivative more regular, I €
WmtLr(Q)), by establishing estimate (@.2). For this, we use the first RT-

equation (4.1]),
AT = 6dT — §(dJ P AdT) +d(J1A). (9.7)
But estimate (B.8]) of elliptic regularity theory gives
T lwmire@) < Ce(IAT lwm-ro() + ITllwme@) (9.8)

for any open set Q' compactly contained in €, where C' > 0 is some constant
depending only on ', Q,p,n,m. The regularity gain of T' follows once we
show AT € W™1P(Q), since I € W™P(2). But to derive the sought
after estimate (0.2]) we need a more refined analysis. For this, we begin by
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substituting for AL the right hand side of (@7) to obtain

T |y mt1.002)
< ce<uadruwmfl,p(m +16(dT A dT)|ym-1oio) + Hd(J—lA)HWM,,,(Q))

< C6<HdP”Wm»P(Q) +16(dT AdT) [lwm-re() + HJ_lA”Wm»P(Q))- (9.9)

(We subsequently often write || - |wm» instead of || - [[wm.r(q).) The first
term on the right hand side of (@9 is bounded by assumption. Using first
the product rule and then Morrey’s inequality (A4]), the second term can
be bounded by

16(dJ ™ A dJ)|lym-10(q)
< ID@I™ )] - 1dT || s + T DA | s
< DT lwm-1p [dT [l wrm-r00 + [T [ym-1.00 [ D(dT) || yym-1.

NI lwmero | T llwmee + 17 Hlwmeo [ lwms1

< 20|l w1 lwmsie ),

which is bounded by our incoming assumptions J =1, J € W™+Lr(Q). Using
that dJ = d(J — I), the previous estimate gives us

16(d =" A dT) lwm-10@) < 2Cu 1T lwmrro@ Il = Tllwmrro@)  (9.10)

To estimate the third term on the right hand side of (@9), we use that by
definition ' =Ty =T — J~'dJ and A = B — (dJ;T'), to write

JYA=J'B - g YdJ;T) + (dJ 7Y dJ),

where we used the multiplication property (3.10) to get J~'(dJ;J 'dJ) =
(dJ~1;dJ). We now estimate the third term on the right hand side of (@.9)
as

1T Allwma) < 17 Blwma + |77 HdT; D) lwmr + [T~ dT) |[wms.
(9.11)

We now use the closedness of W™P(Q) under multiplication (m > 1, n > p)
by Morrey’s inequality (A.4]), to estimate the products in (@.I1]), for instance,

1T Bllwma) = DI B)llwm-10 + 77" Bllwm-1.
< DI Bllwm-rp + [T DB lwm-1p + |77 Bllwm-1
< DI Hllwm-1o [ Bllwm-1.0 + |7 lwm-r [ DBlyym-1.
T wm-re [ Bllwm-1
Cut | T~ Hlwme | Bllwmn.

IN
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In this fashion, replacing dJ on the right hand side of (O.I1) by d(I — J),

we obtain
17 Al < CIT wmsrs (| Bllwns + [ lwms sl IDlwms + 1 = Tl

< CIT wwrr (1 1w ) (1 Bllwms + [Tl wms + 1T = T )
(9.12)

where C' > 0 is some constant depending only on Q,m,n,p. Substituting
(©I0) and ([@.12)) back into the original estimate ([@.9]), we obtain

IPllwnssgezy < P (Tl 1T w1 T=T s s+ Bllwons )+l s,

(9.13)
where P(J) = C (14 ||J 7 lyym+10) (14| J|[yym+15) for some constant C' > 0
depending only on Q,m,n,p. By the definition of T in ([#6l), we bound
Hf”wm,p(g) using Morrey’s inequality as

T lwme) < Car(ITlwme@) + 1T iwmtro@ | T lwmtio@),

from which we obtain the simplified bound

[P wmnoery < PCO) (I Iwrs + T s + 17 = Tllmers + | Bllwns),

(9.14)
by changing the constant C' > 0 in the definition on P suitably. Finally,
using our incoming assumption (@.I)) to bound the above Sobolev norms
on J,J~! and B, we obtain the sought after uniform bound (@.2)). Clearly,
estimate (0.2) implies the sought after regularity I' € W™*t12(Q)[*] This
completes the proof of Proposition O

9.2. Proof of Theorem [4.Il We now prove Theorem [L1] roughly fol-
lowing the steps in the proof of Proposition @I, but adapted to the weak
formulation of the RT-equations to account for the low regularity addressed
here. This is significantly more complicated because the substitution of the
J-equation in the proof of Lemma [[.2] (required to get the cancellation
of terms involving dI', on which our whole theories rests), is not a simple
replacement when dealing with the weak form of the equations, due to the
problem of multiplying distributions by low regularity functions, c.f. Lemma
B2 below. Moreover, for the low regularity here, products must be estimated
by Holder inequality instead of Morrey, which we compensate for by putting
J in the smaller Sobolev space W1 2P and estimating I' in WP, Even though
we begin here with a given solution of the reduced RT-equations, low regu-
larity products have to be incorporated into the weak formulation of the I"
equation, a reflection of the fact that the RT-equations are non-linear.

22Note, the gain of one derivative to the required regularity I € W™ +1? (€2), is entirely
based on the cancellation of dT-terms in equation (Z.6]) of the proof of Lemma [T.2}
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So assume I',dI" € L>(Q) in z-coordinates and [|(T', dl")|| (o) < M for
some constant M > 0, and let n < p < co. Assume (J, B) solves the reduced
RT-equations (£I0) - (412) on , such that

11 = Jllwrzeioy + 1T = T Hlwrzei) + I Bllrzv) < Co(M)||(T,dD) || 1o o),

(9.15)
where Cy(M) > 0 is some constant depending only on ©,n,p and M. Define
I’ by ([A6) and A by (£I4), that is,

r=0;=I-J'dJ and A=A"=B-(dJ;T).

Again we denote 'y by I and A’ by A from here on, and we let Q = Q,
denote the neighborhood Q/, of Theorem [£Ilin z-coordinates, and we denote
the compactly contained subset Q) by Q. Theorem HIT] (i) states that
(J,T, A) solves the full RT-equations @I - (@4) in Q for v = v/ defined in
([EI5). Parts (ii) and (iii) of Theorem BTl states that T is in W1HP(€) and
satisfies the uniform bound

I lwrr o) < C3(M)|I(T, dT)|| oo (0 (9.16)

on any open set {2’ compactly contained in €2, and where C5(M) > 0 is some
constant depending only on ', Q, n,p and M.

Anticipating future work, we give the proof of Theorem [AI] under the
weaker assumption that I', dI" € L?((Q2), assuming the uniform bound

(T, dD) | 20 () = Tzl p20 () + 1Tz 20 (0) < M,

in place of ||(T',dl')|[ () < M and assuming the right hand side of (9.15)
is bounded by [|(T, dI") || 2p () in place of [|(I', dl")|| oo (q)- Since

1
[T, dl) || 20 () < vol ()27 [|(T, d') [ oe ()

for ©2 bounded, Theorem 1] follows directly by substituting ||(I', dI')|| L for
I, )| L2

Proof of Theorem [{.1. So assume J € W1?P(Q) and B € L?*"(f) solve the
reduced RT-equations (4.I0]) - (412]). Since only the regularity of the gauge
variable w in ([@I2]) is relevant for the proof, we assume here without loss of
generality that w = 0, the case for which we prove existence of solutions in
Section [I0L So (J, B) is assumed to solve

AJ = 8(JT)- B, (9.17)
dB = div(dJ AT) + div(.JdT), (9.18)
5B = 0, (9.19)

in the weak sense of Definition That is, we assume

—AJ[p] = (J-T',do)r2 + (B, d) 12 (9.20)
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for any matrix valued O-form ¢ € Wol’(zp)*(Q), where AJ[¢] = —(dJ,d¢) 2,
and we assume

{<1§, o)z = ((dJ AT + T dT), div(¥)) (9.21)

(B,dg)r> =0,

for any vector valued 2-form ¢ € WO1 (2p)" (©) and any vector valued function
p € Wol’(zp)*(Q). Here (2p)* denotes the conjugate exponent of 2p, i.e.,
@ + zip =1,s0 (2p)* = (2(5){);, (and (2p)* # 2p* in general). In the proof
of Theorem [l we use C' > 0 to denote a running constant depending only
on 2, n and p.

The proof of Theorem [A1] requires several lemmas. Before we estab-
lish these lemmas, we derive the preliminary regularities I' € L?’(Q) and
A € LP(Q) from the definitions of T' in (@B) and A in [@Id), regulari-
ties we require to bootstrap to the desired regularities T' € W1P(Q) and
A € L?(Q) below. For this, recall that J is assumed to be invertible with
J~1 € Wh2(Q), so Morrey’s inequality (A.4]) implies that J~'d.J € L?(Q).
Thus, since I' € L?(Q) by assumption, I' € L?(Q) follows directly from
its definition in ([A6). To show that A € LP(Q), we first apply Holder’s
inequality as in (A7) to conclude that (d.J;T) € LP(Q), since d.J and T are
both in L?P(€2), which implies that A € LP(2) by our incoming assump-
tion B € L?"(Q2). So we now have established the preliminary regularity
I e L?(Q) and A € LP(9).

In Lemma below we prove that T’ defined in (@B) solves the first
RT-equation (41]) for A defined by ([@I4]), in the weak sense (82I)). We
then apply elliptic regularity theory to this equation to boost the regularity
of T one order to I' € W'?(Q). By Morrey’s inequality and @I4), T €
WLP(Q)) then implies that A € L?*P()'). These are the regularities stated
in Theorem [£Jl The main step in the proof of Lemma is accomplished
in the following lemma by adapting the computation in the proof of Lemma
to the weak formulation required for the low regularity here.

Lemma 9.2. Under the assumption of Theorem [{.1], we have
oL[¢] = (J7' A, ¢) 2 (9.22)

for any matriz valued 0-form ¢ € Wol’p* (Q), where 6T[¢] = — (T, d¢) 2. That
is, 0T = J YA in the sense of weak derivatives

Proof. Assume J is a solution of the first reduced RT-equation in the weak
sense ([B27) for some given B € L?(Q). The proof is based on adapting
the computation (Z3) - (Z17) of the proof of Lemma [T.2] to regularities J €
WH2r(Q) and B € L*(Q2). This requires care because of the presence of

23For the reader familiar with our previous work in [2I] 23], note that establishing
[©@22)) reverses a basic identity in the derivation of the RT-equations from the Riemann-
flat condition where we defined A in terms of JoT.
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low regularity products. Instead of computing 0T directly as in ([T3), which
would not yield the weak Laplacian on J (essential for the argument), we
begin by taking ¢ of JIP1 Using that I' = T' — J~'dJ by its definition in
(&), taking & of JT gives us

S(JD)¢] = —(JT,d¢)re
= —(JI,do)r2 + (dJ,dp) 2, (9.23)

for any matrix valued 0-form ¢ € VVO1 P (Q) Note that the expressions
in [@23) are finite by Holder inequality (AL6]), since T' € L*(Q2) and J €
W12(Q), and since LP" (Q) € LEP)"(Q) because  is bounded and p* =

is larger than (2p)* = %. For example,

p
p—1

p*

|(dT,de) 2| < ClldT | g2 1o o= < ClldT|| 20 ld@l| 27 < oo,
where C' > 0 is some constant depending only on €2, n and p, c.f. the use
of Holder’s inequality in (A.8]). Now, by the weak reduced RT-equation
(@:20), we replace the the second term on the right hand side of (0.23]) by
(dJ,do)r2 = (J-T,dp)r2 + (B, ¢) 12, which after the essential cancellation of

the lowest regularity term (J-I', d¢) 2 leads to

S(JT)[9] = (B, d) L2,
that is,
(JT,d¢) 2 + (B, )2 = 0. (9.24)
Our goal now is to move d to the other side of the first inner product in (9.24])
as ¢ on the product JT' and isolate the weak derivative 6T, from which then
the sought after equation ([@.22)) follows. Note that at the start, JT' is not
regular enough to apply the Leibnitz product rule. But by the consistency
of the RT-equation we anticipate that I is one order more regular and this
explains why the following mollification argument works to establish that
the product rule is valid for 6(JT).
So now consider standard mollifiers I'y € C*>°(Q2) and J, € C*°(Q) of T

and J respectively, so that I'. converges to I' in L?’(Q) as ¢ — 0 and J,
converges to J in WH2(Q) as € — 04 Define

L.=C.—J '],

then T'. € Wh?(Q). To show that I'. — T in L?(Q) as € — 0, recall
J~1 € Wh2P(Q) is bounded in L>®(Q2) by Morrey’s inequality, so we have

1774 (dJe = )20 < (|7 |zeolldTe — dJ || 20 — O

24Note7 applying the results of Lemma in this setting at a mollified level, would
entail the problem of controlling the zero mollification limit through the second reduced
RT-equation ([2]), a system of inhomogeneous elliptic PDE’s for which it would be difficult
to avoid generalized eigenvalues.

258ince the test functions have compact support, mollifying does not change the region
of integration 2.
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as € — 0, and this implies that . — Tin L?(Q) as € — 0. Now, since
. — ['in L?(Q) as € — 0, equation ([@.24) implies that

lim ((JTc,d6)y> + (B, é)p2) = 0. (9.25)

The regularity T, € Wh2 (Q) allows us now to use partial integration &),
followed by the Leibniz rule (8.8), 6(JT) = JoI'c + (dJ;T'), to compute

(JTe,dd) 2 + (B,#) 2 = —(06(JTL), @) 2 + (B, ¢) 2
(6T, @)z + (B — (dT:T.)), 6) 0
= —(JOTe,d)r2 + (Ac, @) 12, (9.26)
where

A. = B — (dJ;T,).
Note that Ac — A in LP(Q2) as € — 0 by the convergence properties of
I'c and J.. We now applying the multiplication property of (-;-) in (310
together with cyclic commutativity of matrix multiplication in the trace, to
write (9.20]) as
(JTe,d)r2 + (B, d)r2 = —(0Te,¢J)p2 + (T A, ) 2. (9.27)

To clarify this step, consider for example

oty [ eatioNds = [ o (080T do
Q Q

:/tr(<5f€;¢T>-J)dx@/tr((5fs;(JT¢)T> = (6T, JT ) 2.
Q Q

Applying now the integration by parts formula (8.7]) to the first term on the
right hand side of (027 and defining ¢ = J7 ¢, we obtain

(JTe,dd)p2 + (B,¢)r2 = (Tesdp)pe + (J A h)pe.  (9.28)

Since J € Wh2P(Q), and 2p > n > p*, it follows that 1 = JT¢ € Wol’p* Q)
is indeed a test function, (c.f. Lemma [D.J]in the appendix). Thus, since L.
converges to I in L?P(2) and since A, — A in LP(Q) as € — 0, we conclude
that the right hand side in (3.28) converges as € — 0. Moreover, by ([©9.25)
the left hand side in (9.28]) converges as well and the limit of (9.28)) as € — 0
vanishes, which gives

— (T, )2 = (JTMA, ) 2, (9.29)
for v = JT¢. Since any test function ¢ € Wol’p* (©) can be written as
W = JT¢ for some ¢ € Wol’p*(Q), (c.f. Lemma [D.Jlin the appendix), we

conclude that the sought after equation (3.29) holds for any ¢ € VVO1 (9}
This proves Lemma O

We now apply Lemma[@.2] to establish that ' solves the first RT-equation

for (A1) for A = A’ defined in ([@I4]), (which is equivalent to first RT-
equation (£I3]) in terms of B), at the correct level of regularity. This lemma
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establishes the first statement in part (i) of Theorem ] together with part
(13).

Lemma 9.3. Under the assumption of Theorem [{.]], T solves the first RT-
equation (A1) for A defined by @EI4), and T € WHP(Q), A € L*(Q).

Proof. To begin recall that by ([@22]) of Lemma 0.2 we have
OT[¢] = (7' A, ) 2
for any matrix valued O-form ¢ € VVO1 P7(Q), where 6T[¢] = —(T',d¢) 2.

Since A € LP((2) and J “L e whr(Q), this directly implies that the weak
co-derivative 0 of I" is an LP function, " € LP(2), and it follows that

oL =J714 e LP(Q) (9.30)

holds in the sense of LP functions. We can now take the exterior derivative
d of 6T" in a weak sense, which gives in light of ([9.30]) that

(6T, 0®) 12 = (J 1A, 60) 2 (9.31)

for any matrix valued 1-form ¢ € VVOl P (©). This determines the second
term of the weak Laplacian of T' in (820).

To determine the first term of the weak Laplacian AL[®] in ([820), we
take the exterior derivative of T = I, — J ~1dJ., where I'. and J. are the
mollifications of I' and J introduced in the proof of Lemma [0.2] (required
to apply the Leibnitz rule to low regularity products). This gives us

dl. = dU.—d(J'dJ.)

= dl. —dJ ' AdJ, (9.32)
where we applied the Leibniz rule (3.6) for the last equality. We now show
that the right hand side of (9.32]) converges in LP(2) as ¢ — 0. For this
recall first that dI' € L?P(f2), which implies that d(T) = (dI')e — dI in
L?P(Q) as € — 0. Moreover, by using Holder’s inequality (A.6) as in (A.9)

we find that
|dJ =" A (dJe — dJ) AP o |lldJe = dT P,

dJ 0o |dde — dT|]5.,  (9.33)

[l
< CH L2p

where the point-wise norm |- [P on matrix valued differential form is defined
in (AI). Estimate ([@33) implies by L? convergence of d.J. to dJ that
dJ Y AdJ, converges to dJ ' AdJ in LP(Q) as ¢ — 0. We conclude that the
right hand side of ([9.32)) converges in LP(2) as € — 0, and this yields that

dl =dl' —dJ ' AdJ € LP(Q). (9.34)
Taking now the co-derivative § of ([9.34]) gives
§dl = 6dT" — §(d(J ) A dJ) € WHP(Q),
but of course in the weak sense
(dT,d®) 2 = ((dT — dJ " A dJ),d®) e, (9.35)
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for any matrix valued 1-form ® € VVO1 " (Q). Combing now (@:31) and (@.35),
and using that by our definition in (820)

AT[®] = — (6T, 6®) ;2 — (dT',d®) 2,
we finally obtain that I solves the sought after first RT-equation,
AT[®) = —((dT — dJ* AdJ),d®) 2 — (J 1A, 6®) 2, (9.36)

in the weak form (82I]).

To complete the proof of Lemma 0.3, it remains to show I' gains one
derivative over T, ie., T' € Wh? (©2). For this, note that we have already
established that 6" and dI" are in LP(Q), c.f. ([@30) and (@34). Thus, since
the right hand side of (936) results from taking d of 6T' and § of dI', we
conclude that the right hand side of (0.36) lies in W~1P(Q), that is,

AT € W=HP(Q). (9.37)

Applying now Lemma B2 for the case of regularity I' € LP(Q) with dI, 6T €
LP(Q), we find that AT[®] = —(VI, V®) 2. Thus the standard weak Lapla-
cian —(VL, V®) ;2 lies in W—12(Q) by ([@37). Applying now basic elliptic
regularity theory, c.f. Theorem in the appendix, we conclude with the
sought after regularity T’ € WhP(Q') for any open set Q' C € compactly
contained in Q. Note finally, since I' € W'P(Q), the regularity A € L% (1)
follows directly from its definition A = B—(d.J;T') in (@I4). This completes
the proof of Lemma O

In the next Lemma we prove the basic elliptic estimate (£.I7) from which
we later derive the curvature bound (2.6]), using Holder and Morrey inequal-
ity in combination with estimate (ZI6]) assumed on .J,.J~! and B. Lemma
proves part (ii¢) of Theorem [Tl

Lemma 9.4. Under the assumption of Theorem[{.1], in particular assuming
|(T, dD)||p2e < M and the bound (@QI5) on (J, B), the weak solution I' =T

of the first RT-equation @I)), where Ty is defined in ([@8), satisfies
T [0y < COM)[|(T, dD) | 120 (52 (9-38)

for any open set Q' compactly contained in Q and some constant C(M) > 0
depending only on Q,Q,p,n and M.

Proof. By Lemma[@.3] ' = I solves the weak first RT-equation (9.36)), that
is,

AT[®] = —((dl' — dJ " AdJ),dD),, — (J ' A,68)2, (9.39)
for any matrix valued 1-form ¢ € VVO1 P (Q) Applying the basic elliptic
estimates (B.8)) to ([@.39), we obtain

IT ey < CUIFw-10@) + 1T o) (9.40)
for any open ' compactly contained in 2, and where we define the functional

F(®)=—((dl —dJ " AdJ),d®),, — (JT'A,50) 2 (9.41)
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for any matrix valued 1-form ® € WO1 P’ (©2). Recall that the operator norm
| - llw-1.p is defined by

|Fllw—ro(0) = sup {IF(@)]| @ € WoP" (@), [@llyyrre () =1} (942)
From (@.41]) we find
|F(@)] < [{(dT = dJ " AdJ),d®) |+ |(J'A,69) .,
which we further estimate using Holder’s inequality (ALG) as

F@)| < (|l —dr Add)|,Idel e+ ([T A, 169 1 )
< C ([l oy + |47 AdT | gy + 177 ALy ) (9:43)

where we estimated |d®||;,+ < ||®|lyy1pc = 1 and ||6®|,+ < 1 for the
last inequality. Throughout this proof C' > 0 denotes a universal constant
depending only on Q,n,p We now use Holder’s inequality as in (A9) to
estimate the second term in (Q.43)) as
-1 P -1
HdJ /\dJHLp(Q) < C(ldJ'P, |dJ|p>L2
-1
< OldT P g 14T 1P| 2
—1||p p
= Cl|dT™ [ anoy 197120 - (9-44)
where we lost a little regularity from L% to LP, as anticipated in our theory

by starting with J € W12P(Q). Now taking the p-th root of (1.44]) and using
that dJ = d(J — I), we obtain

[dT =t A || ) < ([T (9.45)

1HW1»2P(Q)HI o JHWL?P(Q)'

To estimate the third term in ([0.43), we substitute (46) and (4.14), that
is, we substitute I' = I' — J~!dJ into A = B — (dJ;I'). This leads to the
identity

JYA=J1B - JHdJ;T) + (dT 71 d),
where we used the multiplication property (B10]) to write
JHdJ; Ty = (dJ 7Y dJ).
We now obtain the bound
[T Al < 1T Blloe + 177 Hd 5 D) lw + [[(d 5 dT) |z
< NI Bllee + Curll T Hlwaw (AT D)oo + (AT ™Y d )| 2e, (9.46)

where we applied Morrey’s inequality (A.4]) in the last step to bound the
L>®-norm of J~!. We now estimate the remaining product terms in (2.46))
employing Holder’s inequality as in (@.44]), to obtain

177 All < CHT s (1B 2o+ 1T 2o Tl 2o+ (T = D)l 20, (9.47)
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where C' > 0 is some constant depending only on Q,n,p. Applying dJ =
d(J — I) we write bound (@.47)) further as

177 A] L < CIIT Hlwro (14 1 lwrw) (1Bl g2e + [Tl 220 + 11 = T lwr.2p ).

(9.48)
Combining now (@.45]) and ([@.48)) to bound the right hand side of ([@.43)), we
conclude that

| F(@)] < Po(lldT | e + ITllz20 + 1Bllz2e + 11 = Tllwrn), (9.49)

where Py = C(1+[|J 7 |lyr20) (14| || w120 ). Substituting the bound ([@.49)
for the right hand side of (9.40]), we find that

ITlwrrry < Po(ldl |l zze + Tl z2e + Bllzze + I = Jllwze) + ClIT| o).
~ ] (9.50)
From I' =" — J~'d.J and Holder inequality, we bound ||T|| r() by

- 1 _
T o) < vol()27 ||| p2n(0y + C 1T~ | 22y 14T || 20 (c2)

(where we estimated ||I'||zr = ||T'- 1|jz» < vol(Q)% T z2p () using Holder’s
inequality), from which we conclude with the bound

ITlwrr@y < Po(ldlllzee + [Tl 2o + |1 Bllgzn + |11 = Tllwr2e),  (9.51)

by modifying the constant C' > 0 in the definition of Py suitably.
To derive the sought after bound (0.38]) we now use that (J, B) are as-
sumed to meet the bound (@.I5)), that is,

11 = Jllwresqy + I = T lwreoi) + [1Bllzzs@) < Co(M)||(T,dD) | 120 c)-
(9.52)
So using ([0.52) together with the definition ||(I',dl')||z2p() = [|dT||p2» +
|IT|| 20 to bound the right hand side of (O.51]), we conclude that there exists
some constant C3(M) > 0 depending only on Q,n,p and M, such that

T [0y < Ca(M)||(T, dL)|| 20 ()

which is the sought after bound (@.I6). This completes the proof of Lemma
9.4 (]

To establish part (i) of Theorem E1it only remains to verify that (J,T, A)
solves the weak RT-equations (8.22]) - (8:20]).

Lemma 9.5. Under the assumption of Theorem [{.1], (J,f,A) solves the
second, third and fourth weak RT-equations [822) - (828) for v defined in
EIR) with w =0, that is, v = §(dJ;T).

Proof. By our assumption that J € W12P(Q) and B € L?(w) solve the first
weak reduced RT-equation ([@.20)), that is,

—AJ[p] = (J-T',do)r2 + (B, ¢) 12 (9.53)
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holds for any matrix valued O-form ¢ € VVOl 2p)° (Q), where AJ[p] = —(dJ, d) 2.
Substituting B = (dJ;T") + A, (which follows from the definition of A in
(#14)), into (@.53]), we directly obtain

— AJ[¢] = (J T, do),, + (((dJ;T) + A), ) .,

which is the sought after weak RT-equation (8.22]).

We now show that the third and fourth weak RT-equations (8.26]) hold.
By assumption J € WH?P(Q) and B € L?(1) solve the weak reduced RT-
equations (9.21]), that is,

{@ )2 = ((dJ AT + T dT), div(y))
<B7d(10>L2 =0,

holds for any vector valued 2-form ¢ € VVO1 (2P )(Q) and any vector valued
function ¢ € Wol’(2p)*(Q). From the definition of A in (£I4]), we find that

B = A+ (dJ;T) and substituting this for A in (@.54)) gives us

- — =
{ug 012 = (AT AT+ J dT),div(¥)),, — (5T}, 60),2
<A7 d(:0>L2 = _<'07()0>L27

for v = §(dJ ;f>. This proves that (J,f,A) solves the weak RT-equations
[R22) - (B20), completes the proof of Lemma O

Taken together, Lemmas [0.2]- complete the proof of Theorem A.T] under
the weaker assumption I',dl" € L?’()). From here on we reimpose our
original assumption I',dI" € L*>°(Q2). To complete the proofs of Theorems
21 and 23] it remains only to prove Theorem 3] the subject of the next
two sections.

10. EXISTENCE THEORY FOR THE REDUCED RT-EQUATIONS - PROOF OF
THEOREM [4.3]

In this section we prove Theorem H.3] regarding existence of solutions
to the reduced RT-equations (£I0) - (AI2)) which meet the assumptions
of Theorem Il This is the final step remaining to complete the proof of
Theorems 2.1] and 2.3l The proof of Theorem E.3] is based on an iteration
scheme which reduces the problem to known estimates in elliptic PDE the-
ory, recorded in Appendix [Bl To handle the first order system of equations
for B (411 - (AI2), we extend the existence theory for Cauchy-Riemann
type equations in [6] to the low regularity required here. This extension is
presented in Appendix [Cl The proof of Theorem [.3] is given in terms of
several technical lemmas whose proofs are postponed to Section [I11

So assume I', dI" € L>°(2) in a-coordinates, let M > 0 be a constant such
that

1T, )| oo (@) = [Tl zoe(@) + 1AL [ @) < M,
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and assume p > n, < oo and let g € 2. Again,we work in fixed z-coordinates
and we write € for €, and I" for I'; throughout the remainder of this pa-
per. Then, to prove Theorem 3] it suffices to prove that there exists a
neighborhood Q' C Q of z(g), depending only on 2, n,p, M, and there exists
J € WhP(Q') and B € LP(Y) such that (J, B) solves the reduced RT-
equations (£I0) - (£I2) in Q' in the weak sense of Definition [85] such that
(J, B) satisfies the uniform bound ([@I8]), .J is invertible with J~! € W1P(Q')
and

dJ = Curl(J) = 0 (10.1)
in €, so J is integrable to coordinates2d For simplicity we assume without

loss of generality that w = 0 in (£I2]), that is, we prove existence of a
solution (J, B) of

AJ = §(JT)- B, (10.2)
dB = div(dJ AT) + div(.JdT), (10.3)
5B = 0, (10.4)

in the weak sense specified in Definition Without loss of generality we
assume that  is the unit ball in R™ centered at z(¢) = 0, Q = B;1(0). We
show below that it suffices to take ' = B(0), the ball of radius ¢ > 0
centered at x = 0, where € > 0 is taken sufficiently small for the iteration
scheme to converge. We begin the proof of Theorem [4.3] by giving a formal
introduction to the iteration scheme on which our existence proof is based.

10.1. The iteration scheme. Start with Jy = 1. For induction, we show
that (Bg+1, Jk+1) can be constructed from Ji for each £ > 0. So assume Ji
is given for some k > 0. Define Bj,1 as a weak solution of

6§k+1 = 07

such that Biiq € LP(Q) satisfies a uniform bound in the LP-norm. The
regularity LP is too low to impose boundary data in [I0.5, and our theory
does not require Byy1 meet any boundary conditions, By41 only needs to
satisfy a uniform LP bound. This is achieved by choosing Bjyi1 to be the
zero mollification limit of a solution of the corresponding mollified equation
with zero Dirichlet boundary data, c.f. Sections I0.3] and [Cl

Likewise, the regularity J € W12P(Q) is too low to impose the boundary
condition (4.3]), dJ = 0on 011, a problem we circumvent by imposing J = dy,
for y solving an auxiliary elliptic equation. For this, define auxiliary variables
Wriq and yi4q in terms of Ji and Bgyi, but independent of the previous

26For ease of notation we show J € W and B € LP, since P > n is arbitrary, the
proof yields solutions with J € W?? and B € L??, as stated in Theorem 3]
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iterates Uy and yi. That is, we define the vector valued 0-form ¥y, € LP(Q)
as a weak solution of

—
dVpy1 = 6(JpT') — Byya, (10.6)

with uniform LP bounds, obtained again by mollification in the same manner
as in the case for Byi1. We then define the vector valued 0-form yii1 €
W2P(Q) as the solution of

Ayryr = Ypya, (10.7)

for zero Dirichlet data. Given Bjy1, Vi1 and yiy1, now define Jypq €
WP (Q) as the weak solution of the following Dirichlet boundary value prob-
lem:

AJk+1 - 5(ka) - Bk+1, (108)
Jki1 = dygy1 on 0N (10.9)

Equations (I0.5]) - (I0.8]) define our iteration scheme in a formal way. To
prove convergence we need a small parameter € > 0. We incorporate € into
the iteration scheme in Sections [10.2]- T0.3] and prove convergence for € > 0
sufficiently small in Section [I0.41

Two clarifying remarks are in order. First note that (I0.6]) requires a
solvability condition, namely that d of its right hand side must be zero.
This condition is meet, because by (3.12]) we have

A(3(7T)) = div(dJi AT) + div(JpdT),
which implies in light of equation (I0.5]) for By, that
e
d<5(JkT - Bk-i—l) =0,

so the right hand side of (I0.5) has a vanishing exterior derivative. That
this consistency condition is necessary and sufficient for the low regularity
here is shown in Appendix [Cl

Secondly, we remark on the role of auxiliary equations (10.6) - (10.7).
The reason for introducing ¥y and yj,1 is that the WhP_regularity of Jrt1
is too low to impose the boundary data dj;Hl = 0 which was required in [21]
to arrange for the integrability condition of J (I0.I). Now, augmenting the
reduced RT-equations by equations (I0.6) and (I0.7), allows us to impose
Dirichlet data for Jiy1 which again gives rise to integrability of Jx41 to
coordinates, as we show in the following lemma for smooth solutions. In
Lemma [10.9] below we extend this result to the low regularities required by
the above iteration scheme.

Lemma 10.1. Assume I' is smooth and that Byy1, Vi1, Yki1, Jkr1 are de-
fined by the iteration scheme ([I0.5]) - (I09) and are smooth. Then dyy1 =
Ji+1, and hence Jiy1 is integrable to coordinates yi4+1 and dJyy1 = 0.
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Proof. By (I0.5]) - (I0.9]) it follows that
— .
Adypy1 = dAygy1 = dVpyy = 0(JpT) — Bry1 = Adpy,

where the last equality holds, since the operation vec commutes with the
Laplacian A (which acts component wise). Thus,

A(Jkt1 — dyk1) =0 in Q,

J—dy=0 on 09, (10.10)
which implies by uniqueness of solutions of the Laplace equation that jk+1 =
dyp+1 in €. Since second derivatives of yx41 commute, we conclude that

dj;H_l = Curl(j;H) =0 in Q.
Moreover, Ji1 is the Jacobian of the coordinate system yy1. O
Lemma, [10.9] below generalizes the above result to the low regularity re-
quired in this paper. To prove convergence of the iteration scheme, we

introduce a small parameter € > 0 by restricting to ' = B.(0), and prove
convergence for € > 0 sufficiently small.

10.2. The e-rescaled reduced RT-equations. We first incorporate the
small parameter ¢ > 0 into the theory by deriving an e-rescaled version of
the reduced RT-equations, required to prove convergence of our iteration
scheme. For this we use the fact that regularity is a local problem, so that
we can suitably restrict and rescale I' to isolate the small parameter €, while
maintaining the uniform bound (2:4]) assumed in Theorems2.Iland 23] This
is accomplished in the following lemma.

Lemma 10.2. Assume Q@ = B1(0) and introduce the coordinate transfor-
mation x — Z(x) = T. Define I'* as the restriction of the components of I'y
to B(0), transformed to Z-coordinates as scalars, T'*(Z) = T'y(x(Z)). Then,
I'; satisfies in T-coordinates

(i) = e I* (&), (10.11)
together with the bound
[T, d)[| Lo ) = [ITallzeer) + €lldla || oo ). (10.12)
where Q. = B1(0) and Q, = B.(0).

Proof. By the connection transformation law we have

0%° 1 Ox' Ox’ & o
Fi‘ g — — z)ii — = FZ‘ Uy, 1013
Ca)i = 5w (g g T + gage) = (T (10.13)
since % = eéij under the transformation #(x) = 2. It follows that for

Z € B1(0), we have component wise
(%) = € Dy(2(2)) = € I* (&)

To prove ([I0.I2]), observe that by construction of I'*, as the scalar trans-
formed components of the restriction of I',, to the ball of radius €, we have
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1Tl zee @) = ITzllzee (@), and by the chain rule we have [[dI™|[zoo(qr) =
€[|dTs|[ oo () since % = el. In combination, this gives (I0.I12]) and com-

pletes the proof. O

By (I0.12), and assuming without loss of generality that ¢ < 1, we find
that I'* satisfies the original uniform bound (2.4)),

1T, dT) || Lo gy < M.

We can thus construct solutions to the reduced RT-equations and apply
Theorem . T]in Z-coordinates, and obtain the uniform curvature bound (2.6])
in Z-coordinates, without ever scaling back to z-coordinates 2]

So now we can take the Z-coordinates to be the original x-coordinates,
and assume without loss of generality that the connection in z-coordinates
has the form

I, =el™, (10.14)
for some I'* satisfying
(0 dr*) | ) < M, (10.15)

and we assume without loss of generality that €, = B;(0). In light of
(I0I14), we introduce the scaling ansatz

J=1+¢u, B=c«¢a. (10.16)

Since we only need to prove existence of a solution to establish optimal con-
nection regularity via the RT-equations, assumption is made without
loss of generality. Note, the variables ¥ and y “inherit” their e-scaling from
B and J, c.f. Section 03] below. To derive the reduced RT-equations ex-
pressed in terms of the rescaled variables, we now substitute (I0.I4]) and
([I0.16) into (I0.2) - (10.4) and divide by e. This yields the following equiv-
alent set of equations:

Lemma 10.3. The reduced RT-equations 827)) - B28]) written in terms of
the rescaled connection (I014)) and rescaled variables (I016) are equivalent
to

_Au[¢] = Fu(uv a) [QS]’ (10'17)
(@, 09) 2 = Fa(u)[{]
{@ dohes = (10.18)

for any matriz valued 0-form ¢ € Wol’p*(Q), any vector valued 2-form 1 €
Wol’p*(ﬂ) and any vector valued function ¢ € Wol’p* (Q), where we define the

27A note might be in order here regarding our proof of Uhlenbeck compactness. In the
proof we implicitly assumed that there is a uniform € > 0 which applies uniformly to each
connection in the sequence. In the PropositionI0.11] below we show that € can be taken

to be on the order of %, and therefore independent of connections in the sequence.
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linear functionals
F,(u, a)[gb] = <F* d<;5>L2 + € <uT* d<;5>L2 + <a, ¢>L2’ (10.19)
Fo(u)] = (dT", div(¥)) » + € ((wdl™ + du AT"), div(y)) .. (10.20)

Proof. Substltutlng J =1+ eu and B = ea into (BZ7) and dividing by e,
we obtain

~tafg)] B

<du, d¢>L2
<(I + EU)'F*, d¢>L2 + <CL, ¢>L2
<F*, d¢>L2 + €<U'F*, d¢>L2 + <CL, ¢>L2

= Fu(u,a)[d]
which proves the equivalence between ([I0.2]) and (I0.I7). Similarly, substi-
tuting our scaling ansatz J = I 4+ eu and B = ea into ([828]), a division by €
gives

(@60)2 = ((edu AT* + (I + eu)-dT'™) c(i_v >
= (I, div()) 12 + e((du AT* + u-dl™), div())
= Fa(u)[¥]
as well as (@, dyp)r2 = 0, which proves the equivalence between (828 and

(I0.18). O

The existence result of Theorem [£.3]is a corollary of the following propo-
sition, the proof of which is topic of Sections [10.3] - 111

Proposition 10.4. Let T* dI'™* € L>®(Q) satisfy the bound (I0I5) and
let n < p < oco. Then, for every ¢ > 0 sufficiently small, there exists
u € WHP(Q) and a € LP(Q) which solve the e-rescaled reduced RT-equation
([0I7) - (OI8).

The proof of Proposition T0.4]is based on the iteration scheme introduced
in Section M0}, but adjusted to incorporate the small parameter e. The
resulting iteration scheme for the e-rescaled reduced RT-equations is intro-
duced in the next Section [[0.3l The proof of our main existence result, The-
orem [4.3] is completed in Section by applying Proposition [[0.4] together
with additional arguments to establish the integrability and invertability of
the Jacobian J = I + e, claimed in the theorem, as well as the uniform

bound (4.14]).

10.3. The iteration scheme in the e-rescaled variables. In this section
we define the iterates (ug,ay), k > 0, for approximating solutions of (I0.I7)-
(I0I8), and set up the framework for proving convergence of the scheme in
the appropriate Sobolev spaces for € sufficiently small. The iteration scheme
we introduce here differs from the iteration scheme in Section [I0.1] in that
it is adapted to the rescaled equations (I0.I7)-(I0.I8]). Existence at each
stage will be established in Lemma [I0.7] below. From here on we often omit
dependence of norms on Q, e.g., writing || - [|» for || - ||zr(q). We define now
the matrix valued 0-forms w41 and ax4q by induction as follows.
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To start the iteration, set
ug = ag = 0.

Given uj, € WP(Q) and aj, € LP(Q2) for k > 0, we then construct a partic-
ular matrix valued 0-form ay,1 € LP(€2) which solves

{mi,awm — Fy(u)[¢)],

N 10.21
<ak+17 d(10>L2 = 07 ( )

and satisfies the estimate
ak+1lle < Ol Fa(ug) lyy-1p, (10.22)

for some constant C' > 0 independent of k, where (I0.2I]) are taken in
the weak sense specified in Lemma [[0.3] Existence is established Lemma
[I0.7 and relies on the algorithm developed in Appendix [C] for constructing
particular solutions when regularity is too low to impose Dirichlet data in a
classical sense.

We next introduce the vector valued O-form U,y € LP(Q2) as a weak
solution of

d\IJk_H = (5(ka* — Q41 (10.23)
where Jy = I + euy, such that Uy, 1 meets the bound
[Whialle < Cl|Faluk)llw-10, (10.24)

for some constant C' > 0 independent of k. That is, ¥y, 1 € LP(Q)) meets
the bound ([I0.24]) and satisfies

—.

(Wpt1,60) 12 = Fu(uk, ar41)[4]; (10.25)
for any matrix-valued O-form ¢ € VVO1 P(2), where we set
Fy(ug, ap1)[@] = (JkD*, dd) 2 + (@i, 6) 2. (10.26)

—.

The definition in (I0.20)) is based on the product rule <<%> ,O) 2 = —(w,d) 12
for matrix valued 1-forms w € WHP((Q), established in the proof of Lemma
below. Because of this product rule it is convenient to interpret the
test forms in (I0.25]) and (I0.26]) as matrix valued 0-forms instead of vector
valued 1-forms. In Lemma [[0.5] below we show that the weak formulation of
(I0:27)) is equivalent to the strong formulation (I0.23)) in the case of smooth
solutions. Existence of Wy, also follows from Lemma [I0.7] by use of the
algorithm in Appendix [C|

We next define the vector valued O-form y1 € W2P(Q) as the solution

of
{Ayk—l—l =Wy, (10.27)

Yk+1 |8Q =0.

Similar to Lemma[I0.1] equations (I0.2]]), (I0.25]) and (I0.27]) again arrange
for the integrability of Jy11 = I + eug1.
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Finally, we define u;,; € WHP(Q) as the unique weak solution satisfying

— Augi1[@] = Fy(uk, ag+1)[4), (10.28)
for every matrix valued 0-forms ¢ € VVO1 P (Q), with Dirichlet boundary data

up+1loa = dyk+ileq- (10.29)

Equations (I0:21)) - (I0:29) define our iteration scheme. For completeness
we show in the next lemma that smooth solutions Wy, 1 of the weak equation

(I0.25) are indeed strong solutions of (I0.23]).

Lemma 10.5. Let ¥;1 € WHP(Q) be a vector valued 0-form, then W1

solves (I0.28) if and only if Vi1 solves (I0.23]).

Proof. We first prove the following statement: Let w € W1P(Q) be a matrix
valued 1-form and ¢ € VVO1 P (Q) a matrix valued O-form, then

(5w, §) 2 = —(w, do) 1. (10.30)
To prove ([I0.30), let w = w!,dz' and ¢ = ¢}, then

_%
Z dwt and dwt = (dw)Hdz” Za wh.dx”.
i=1,..,n
Using partial integration component wise, we compute

<(%>,$>L2 = Z/éw“qﬁ” dw—Z/awmqﬁ”d:ﬂ

Hsv5t

= - Z/ 57, algb,‘jdx = _<w7d¢>L27
JTR7%)

c.f. the definition of inner products on matrix and vector valued differential
forms (8.2]) and (84]). This proves the sought after equation (I0.30).
We now apply (I0.30) to prove Lemma 105 So assume ;. € WP(Q)

solves (I0.25]), that is,
(Ups1,00) 12 = (JT*, do) 12 + (ansi, o)z, (10.31)

for any matrix-valued O-form ¢ € WO1 P (©). From the partial integration
formula (8.7 for vector valued forms, we find that

(Wir1,00) 12 = —(dWhi1, ) 12, (10.32)
and by (I0.30), we have
(JT*, de) 12 = —(3(JRT™S, &) 1. (10.33)
Combining (10.32]) and (EIIBZI), we write (I0.31)) as
(@1, )1z = (00T — i) 6) .

and since this equation holds for any matrix valued 0-form ¢ € VVO1 P (Q),
we conclude by Riesz representation that the strong form (I0.23]) holds. The
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opposite implication is straightforward. This completes the proof of Lemma
10,9 U

The iteration scheme on which the existence theory for the reduced RT-
equations stated in Proposition [[0.4]is based, is defined in (I0.2]) - (I0.29]).
Our strategy for completing the proof of Proposition [[0.4lis to first state the
main technical lemmas regarding the iteration scheme being well-defined and
convergent, including elliptic estimate for differences of iterates to establish
convergence in suitable Sobolev spaces. The statement of these lemmas is
the topic of the next section.

10.4. Well-posedness and convergence of the iteration scheme. In
this section we state the main lemmas required for the proof of Proposition
0.4 and assuming these we give the proof of Proposition[I0.4l Proofs of the
supporting lemmas are postponed until Section 1] below. The first lemma
provides an apriori estimate for the source terms.

Lemma 10.6. Let T*,d[™* € L*°(Q) and assume u € WIP(Q) and a €
LP(Q), for n < p < oo, then there exists a constant Cs > 0 depending only
on Q,n,p, such that

[Fu(u, a) w10 < llallze + Cs (vol(Q) + € [Julle ) [T, dT™) || (10.34)
[Fa(@)llw-15 < Cs (vol(Q) + € [[uflwrs ) | (I, dL*) | oo (10.35)

Lemma [10.6] is proven in Section [[1.1] below. Our second lemma gives the
elliptic estimates required to establish that the iteration scheme is well-
defined.

Lemma 10.7. Assume u, € W'P(Q) is given, n < p < oo. Then there
exists agy1 € LP(Y) which solves (I021]), there exists the auziliary iterates
U1 € LP(Q) and ypyp1 € WP(Q) which solve (T02H) - (I0.27), and there
exists ugr1 € WHP(Q) which solves (I028)) with boundary data (I0.29). In
addition, the iterates satisfy the following elliptic estimates:

laktillr) < Ce l[Fa(ur)lw-10(), (10.36)
[Ursillr) < Ce l[Fulur, ag+1)llw-100) (10.37)
lyesillwee@) < Ce llFuluk, aks1)llw-10@) (10.38)
luktillwir@) < Ce [[Fulug, ak1)llw-1r0), (10.39)

for some constant C, > 0 depending only on n,p and §2.

The proof of Lemma [I0.7] given in Section IT.2] is based on the L? elliptic
estimate (B3]) of Theorem [B.I] and Gaffney’s inequality (C.3) of Theorem
Lemma [[0.7] directly implies the following corollary.

Corollary 10.8. The iteration scheme is well-defined.

28Note that the boundary data (I0.29) for J, i.e. J = dy on 92, does not enter estimate
(@039), since it can be bounded by || Fy(u, ak+1)|lw—1.0 (o) using (I038).
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Before we establish convergence of the iteration scheme, we show that
each Jacobian J, = I + € u; is integrable to coordinates for each k € N.
This is the subject of the next lemma, proven in Section [I1.4] below, which
extends Lemma [I0.1] to the low regularities here.

Lemma 10.9. Let up 1 € WHP(Q) be a solution of ([[0.28) with boundary
data ([0.29), and let yx 1 € W2P(Q) be a solution of ([0.2T). Then

dunt =0 (10.40)
in Q and Jyy1 = I 4 €ugq is the Jacobian of the coordinate transformation

T — T+ eYpy1(z).

We now discuss convergence of the iteration scheme. Lemma [I0.7] yields

a sequence of iterates (ug,ar)ren. To establish convergence of this sequence
in WHP x LP, we require estimates on the differences

ay = ap — ag—1 and  Up = up — up_1 (10.41)

in terms of the corresponding previous difference of iterates, az_7 and ug_1.
This is accomplished in the following lemma, proven in Section I1.3l The
proof of the lemma combines the elliptic estimates (I0.30) - (I0.37) with
suitable bounds on differences of source terms by previous differences of
iterates in the fashion of the estimates of Lemma

Lemma 10.10. Assume I'*, d['™ € L>®(R2), then
[ak+ille < € Cq [T, dI™) || Lo [[Tgllwre, (10.42)
[Trrzllwre < €Cq [|(TF, dI™) | Lo k][, (10.43)

where Cy = CsC.(1 4+ C,) > 0 depends only on n, p, 2, where Cs > 0 and
C. > 0 are the constants of Lemmas and [10.7 respectively.

Convergence of the iteration scheme will follow from Lemma [I0.10, because
(T, dI*) [ Lo () < M,

by ([I0.I5]). This is proven in the following proposition, which completes the

proof of Proposition [0.4] assuming Lemmas [[0.6] [[0.7] and I0.10] hold.

Proposition 10.11. Assume Lemmas[10.6, [10.7] and[10.10 hold. LetI'*,dI'* €
L>(Q) satisfy the initial bound [IOIH), ||(I'*,dl™)||ze < M for some con-
stant M > 0, and assume

1
—_— 10.44
0<e<CdM, (10.44)

where Cyq > 0 is the constant from Lemma[10.10. Then the sequence of iter-
ates (ug, ag)ren defined by ([02T) - (I029) converges in WHP(Q) x LP(12),

and the corresponding limits
u= lim u, € WhHP(Q),
k—o0

a= lim ap € LP(Q),
k—o0
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solve the reduced RT-equations (I0.17) - (I0.18) and satisfy the bound
lullwre @) + llallze@) < Co(M)[[(T, dT™) || Lo (o) (10.45)

for some constant Co(M) > 0 depending only on Q,n,p and M.

Proof. We prove Proposition I0. 1Tl under the assumption that Lemmas [10.6],

[M0.7 and D010 are valid, and postpone their proofs to Section M1l So by

Lemma [I0.7] there exist a sequence of iterates (ug). Given two such iterates

ug, u; € WHP(Q), (k > 1), estimate (I0.43) of Lemma [I0.10] in combination
with our incoming bound [|(T*, d[™*)||= < M, implies

k k
low —wllwis < 3 IGlwrs < JaTlwes Y (Cad),
G=1+1 j=l+1

By the bound ([I0.44]) on €, the above geometric series converges as k —
oo. This implies that (ug)ken is a Cauchy sequence in the Banach space
WHP(Q). Therefore, (ug)ren converges to some u in WHP(Q). Similarly,

(I0.42) together with the bound (I0.I5]) implies

k k
lar —aille < > NGl < @l Y (CaM),
j=I+1 j=l+1

which in light of (I0.44]) is a convergent geometric series, and we conclude
with convergence of (ay)ren to some a in the Banach space LP(€2).
The limit (u,a) solves (I0.I7) and (I0.I8]) because each term in the equa-

tions (I0.2I) and (I0.28]) converge to the corresponding terms in (I0.17])
and (I0.I8]) with respect to the LP-norm on 2. For example, using Holder

inequality we find from (T0.28) that
Aulg] + Fu(w,a)@] = lim (Aug[g] + Fulun, aen)[@]) =0,

which shows that u = klim uy is indeed a solution of (I0.IT)).
—00

To derive estimate (I0.45]), we use the bounds on source terms of Lemma
in combination with the above convergence (uy,ar) — (u,a). That is,
using that we initiated the iteration with ag = 0 and ug = 0, we find

o
lallzr = lla = aolly < llars1 — axllze + l|ar || zo-
k=1

Using first (I0.42]) and then (I0.43]) successively, we estimate the above sum
as

lallze <3 (e Cal|(0%,dr™)]| o) + [lan | o (10.46)
k=1

We now use the elliptic estimate (I0.36]) in combination with the bound
([I035) on F,(up) and ug = 0 to obtain

lla1]|Lr < Cevol(2)||(T*, dT™)|| Loo (10.47)
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Substituting this back into (I0.46]) and using (I0.I5]) to estimate ||(I"™*, dI™)|| oo
by M > 0, we obtain

o
k_l * *
lallre < (cev01(9)+ecd2(e Cq M) ) [[(T*, dT*) || o,
k=1
and our e-bound (I0.44]) implies the above infinite sum converges, so we
conclude that
lallr < Co(M)||(I, dI™)|| oo (10.48)
for some constant Cy(M) > 0 depending only on Q,n,p and M.
We now derive an estimate on u in a similar way. Using ug = 0, we begin
by writing
o0
lellwir = llu— wollwrr < 3 ks — wlhw + s,
k=1
and applying (I0.43)) together with our initial bound (I0.I5)) yields
[e.e]
k_l * *
lullwir < €Cay (eCaM)™ |(T*,dT7)|| o + [luallwrs,  (10.49)
k=1
where the sum is finite by our e-bound (I0.44]). Using the elliptic estimate
(I039) in combination with the bound (I0.34)) on F,(ug, a1), we obtain

lutllwie < Ce(llarllLe + vol(Q)) (T, dT7)|| o

(o.47)
< Ce(Ce + 1) vol(Q)[[(I, dT™)| oo -
Substituting this estimate into (I0.49)), we obtain the estimate
[ullwrr < Co(M) [[(TF, dT)|| Lo, (10.50)

for some constant Cy(M) > 0 depending only on Q,n,p and M. Adding
(I0:48) and (I0.50]) yields the sought after estimate (10.45]). O

Theorem [I0.11] is a refined restatement of Proposition I0.4] and thereby
completes the proof of Proposition [10.4] once we give the proofs of Lemmas

0.6l 10.7 and @0.I0L This is accomplished in Section [I1] below.

10.5. Proof of Theorem We now give the proof of our main existence
result, Theorem 3] assuming Proposition I0.11] and Lemma [I0.9] hold. So
given a weak solution u € W1P(Q) and a € LP(2) of the rescaled reduced
RT-equations (I0.I7) - (I0I8) constructed in Proposition [[0.11], we obtain
a solution J € W1P(Q) and B € LP(2) of the reduced RT-equations ([0.2)

- (I04) by setting

J=1+¢eu and B =ce¢a, (10.51)
as can be verified by inspection, c.f. our scaling ansatz (I0.16]) and Lemma
M03. It remains to prove that (J, B) satisfy estimate [£16] and that J is

integrable to coordinates as well as invertible for any € > 0 subject to some
upper bound depending only on 2,n,p and M.
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We first prove that J is invertible assuming e > 0 meets (10.44]) together

with the upper bound
1

S CnC (MM’
where Cjpy > 0 is the constant from Morrey’s inequality (Ad), Co(M) is
the constant from estimate (I0.45]) of Proposition I0.I1T], and M > 0 is our
incoming bound on ||(I',dD')||ze in (@I6). For this we use the following
lemma, which was proven in [22, Lemma 6.1].

(10.52)

Lemma 10.12. Let J = I +eu for some matriz valued 0-form u € W1P(Q),

p > n, and assume
1
0<e< ————, 10.53
20wl e (10.53)
where Cypy > 0 is the constant from Morrey’s inequality (A4). Then J is

invertible and there exists a matriz valued O-form u= € WP () such that
JV=T+eu (10.54)

and there exists a constant C_ > 0 depending only on 2, n,p such that
[u” lwir@) < C- [ullwreq)- (10.55)

To apply Lemma to the matrix valued 0-form u € WP(2) con-
structed in Proposition [[0.11] it suffices to show that the e-bound (10.52)
implies the e-bound (I0.53) of Lemma By estimate (10.453]) of Propo-
sition [[0.11] and our initial bound (I0.I6) on I'*, we find

[ullwrr) < Co(M)[|(T, dI7)|[ o) < Co(M) M,
which implies
1 < 1
20 Co(M)M — ZCMHUHWl,p’

and this shows that our e-bound ([0.52)) implies (I0.53). We conclude that
the Jacobian J = I + eu is invertible with J=1 € WiP(Q), c.f. (I0.54).
Moreover, by ([I0.54]) and (I0.55) it follows that

I =T wre) < eC—flullwrr@), (10.56)
where C_ > 0 is the constant from Lemma [[0.J2] which depends only on
Q.n,p.

We now prove estimate (LI6]). For this, observe first that by (I0.51]), we
have || — J||y1p = € ||u|ly1r and ||B||r» = €llal|z». Applying now estimate
(I0.45) of Proposition 011} we obtain

1 = T Hlwrw + 1L = Tllwrw + [ Bllwro < € (1 +C-)(lullwre + allze)

< Co(M)e|[(T*, dT) || oo ().
absorbing (1 + C_) > 0 into the constant Co(M) > 0. Now our scaling
assumption I'; = eI'™ in (I0.14) directly gives

1T = T e + I = Illwre@) + 1 Bllwie) < CM)|(Te, dl2)| (),
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which is the sought after estimate of Theorem [£.3]

We finally show that J = I + e u is indeed a Jacobian which is integrable
to coordinates. For this recall that by Lemma [I0.9 for each k& > 1, the
Jacobian Ji = I 4 € uy is integrable to coordinates, that is,

dJy =0 (10.57)
holds, c.f. ([0.40), where uj, 1 € WIP(Q) is defined by (I0.28) - (I0.29)

of the iteration scheme. By the convergence u, — u in WP as k — oo, it
follows that .J,, converges to J in WP as k — oo as well. Thus d.J;, converges
to d7 in LP, and this implies d7 = 0 by (I0ET). That is, J is integrable
to some coordinate system y. It then follows directly that gy defined by our
iteration scheme converges to some y in W2P((2), and that J is the Jacobian

of the coordinate transformation © — x + ey(x). This completes the proof
of Theorem .3 O

It remains only to prove Lemmas [[0.6] [0.7 and [[0.I0, used to prove
Proposition [[0.11], and to prove Lemma [I0.9] which together with Proposi-
tion [I0.11] was used to prove Theorem [£.3]

11. Proor or LEMMAS [10.6], I0.7] 10.9 anD D010

The proof of Theorem 3] in Section above followed from Lemma

10.91 and Proposition I0.11], which assumed Lemmas [[0.6] 00.7 and M0.10] to
be valid. In this section we prove these lemmas and thereby complete the
proof of Theorem [4.3]

11.1. Proof of Lemma (Estimate for the source terms). Recall
Lemma provides the basic estimates for the terms on the right hand
side of equations (I0.I7) - (I0.I8)). Lemma is required in the proofs of
Lemmas [0.7] and [0I0L So let I'*,dl'* € L>(R), and assume u € W1P(Q)
and a € LP(Q), for n < p < oo. Then Lemma states that (I0.34]) and

(I0:35) hold, namely
[Fu(u; a)llw-10 <llallze + Cs (vol(Q) + € Jlulle ) | (T, A7) || oo o)
[Fa(@)llw-10 <Cs (vol(Q) + € [[ullwrs ) | (T, dT) | oo 0,

where Cs > 0 is some constant depending only on Q, n, p, and where F,(u, a)

and Fy(u) are defined in (I0.19]) and (10.20]).

Proof. Recall that the operator norm on a linear functional F € W~1P(Q),
F: WP (Q) — R, is defined as

|F [l -1 = sup |F[g]], (11.1)
oeT

where

T= {6 Wi @) [¢llwro =1},
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and p* is the conjugate of p, % + 1% = 1. We first derive (I0.34]). For this,
recall the definition of F,(u,a) in (I0.19),
Fu(uu a) [¢] = <P*7 d¢>L2 + € <’LLP*, d¢>L2 + <CL, ¢>L27
for any matrix valued 0-form ¢ € VVO1 " (Q). From this together with (I,
we directly obtain that
[Fu(u, a)l[w-1p < Zul; (‘<F*’d¢>L2| +e [(wI™,do) o] + (o, ¢>L2|)’
€
(11.2)

We now estimate the right hand side of (I1.2]) term by term. In this proof
we use C' > 0 to denote a running constant depending only on §2,n,p. For
the first term we apply Holder’s inequality (A.6) to obtain

(T dp) | < CIT*||zolldg]| o

A

IN

C [T, dr)| L, (11.3)

for |2] = vol(€2), and where the last estimate follows from ||¢||1.,+ = 1 for
¢ € T. Using again Holder’s inequality and (I0.I5]), we estimate the second

term in (TT.2]) by

[(uT*,dg) o] < ClluT*|zo]ldg] e
C T [z flull e |
Clullze [T, dL)] oo (11.4)

VANV

and the third term by
[{a,d) 2| < Cllallzrldlle < Cllalze. (11.5)
Substituting (IL3]) - (IL5) into (I1.2)), we obtain
1Fu (s a)llw-10 < C (vol(Q) + € Jufl o) (T, dT)[[ Lo + Jlalr

which implies the sought after estimate (T0.34)).
We next prove ([I0.35]). The functional F, is defined in (I0.20) as

F,(u) <dI‘* Q >L2+e< udI‘*+du/\F*),c<1i_V(1/))>L2,
for any vector valued 2-form v € WO’ (Q), where
(div(®))" = Dt da'da
by (823]). Thus we have
Pl < sup (|<dr V() o] + €| ((wdl™ + du AT?), div()) 1] )

(11.6)
where 7 is now taken as the space of vector valued 2-forms in WO1 P (Q)
having unit length with respect to the WP -norm. Applying again Holder’s
inequality, we estimate the first term in (1.6 by

(A, div()) | < C AT 1o iv() ] e
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< Ol |z 19 [l
< CQIT, d)| Lo, (11.7)

since ||¢||yy1px = 1 for all ¢ € T. Likewise, we estimate the second term in
([I16) using Holder’s inequality by
[{(dl* + du AT giv()) o] < C [ludl + du AT, Iiv() e
<C (llull e lldT™ || oo + [ldull 2o [T || oo ) 19 e
<Clullwre [[(T*, dL™)|| Lo,
(11.8)

again using |[¢||y1p+ = 1. Substituting (IL7) and (IL8) into (II.6]), we
finally obtain

[Fa(w) w10 < C (vol(Q) + € [[ullyrp ) [|(T*, dT*) | Lo, (11.9)
which is the sought after estimate (I0.35]). This completes the proof. O

11.2. Proof of Lemma[10.7] (Well-posedness of the iteration scheme).
We now prove Lemma [I0. 7] regarding well-posedness of the iteration scheme.
For this, assume u; € WHP(Q) is given and let n < p < oo, n > 2. Lemma
M0.7 then states that there exists agy 1 € LP(2) which solves (I0.21]), there
exists Upy 1 € LP(Q) and yrr1 € W2P(Q) which solve (I0.25) - (I0.2T7),
and there exists upyq € WHP(Q) which solves (I0.28]) with boundary data

(I0:29), and these solutions satisfy the elliptic estimates (I0.36]) - (10.39),

laktillr) < Ce|[Fa(ur)lw-10(), (11.10)
Witillr) < Cel|Fulur, ars1)w-10 @), (11.11)
lyesillw2e@) < Ce l|Fuluk, aks1)llw-10@), (11.12)
luptillwie@) < Ce |[Fu(uk, ap1)llw-10(0) (11.13)

for some constant C, > 0 depending only on n,p and Q.

Proof. We begin by proving existence of a weak solution ayx41 to the first
order system (I0.21]), namely

{<m,aw>L2 — Fy(up)[¢)],

<ak+17 d‘P>L2 = 07

subject to the bound (I0.30]), by applying Proposition of Appendix
Proposition gives the existence of solutions to Cauchy Riemann type
systems in a scalar variable at low level of regularity a4 € LP(2). We
obtain such solutions by solving mollified equations with classical Dirich-
let data, and then taking the zero mollification limit to obtain solutions
ak+1 € LP(Q). (Note that axy1 € LP is too weak to impose Dirichlet data di-
rectly.) To start, note that the incoming assumption u;, € W1P(Q) together
with the source estimates of Lemma show that F,(uy) € WLP(Q),
which is the regularity assumed in Proposition We now show that each
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vector component of (I0.2I)) is a Cauchy Riemann type system in scalar
variables, each component satisfying the assumptions of Proposition
The right hand side of the second equation in (I0.21]) is zero, and hence
of the form assumed in Proposition To apply Proposition to the
first equation in (I0.21]), it suffices to show that there exists a vector valued
I-form w € W~1P(Q) such that F,(u) = dw in a weak sense, which then
also implies the standard consistency conditions dFy,(u) = 0 a weak sense.
This is accomplished in the next lemma.

Lemma 11.1. Assume u € WYP(Q) is given, then there exists a vector
valued 1-form w € W=IP(Q) such that F,(u) = dw in the weak sense

Fo(u)[p] = —wloy] for any vector valued 2-form ¢ € Wg’p*(Q). More-
over, dF,(u) = 0 holds in the weak sense that F,(u)[0p] = 0 for any vector
valued 3-form o € WZP™ (Q).

Proof. By definition (10.20), we have
Y] = (dU*, div()) 1, + € ((wdl* + du AT"), div(y))
<((I—|—eu) dl™* +d(I + eu) AT*), c(i_v >
for any vector valued 2-form ¢ € VVO1 P7(Q). Let I} denote a standard
mollifier of I'* € L>(£2) and u, a mollifier of u € W1P((), then Iy —T"in

L and dI'y, — dI'™ in L> as p — 0, while u, — u in WhP(Q) as p — 0. As
a consequence, setting

Folp] = lim <((I—|—eup) dly +d(I + eup) AT, ) M >

p—0
Hélder inequality (A.G) implies convergence
F(u] = lim F,[¢]. (11.14)

p—0

We now show that F,[d¢] = 0. For this we begin by using the Leibnitz rule
for differential forms (B.6]) to compute

Fly] = <d(([—|—€up %), div(y >

Application of the adjoint property ([8.24) gives
- %
Folv] = (@ (d((I + eu,) T)). )

L2
We now apply [B.12]) to commute d and cﬁ/, from which we obtain
s
Folwl = (do(I+eu,) T3, 0) |

_ <m,5¢>y, (11.15)

where the last equality follows from partial integration for differential forms
(B7Z). Now, since Iy — I'* in L and u, — u in WHP(Q) as p — 0, it
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follows that the expression on the right hand side converges in W~1?(Q)
and defines the vector valued 1-form w € W~1P(Q) as

_—
wfy] = lim <5((I + eup)-rp),5¢>L2.
Combining (IT.14)) with (II.I5]) imply that F,(u)[¢)] = w[09)] for any vector
valued 2-form ¢ € VVO2 P (Q), which is the sought after equation.

To prove the supplement, substitute ¢» = d¢ into (III5)), the identity
62 = 0 then gives us

R
F,l6¢] = <5((1 + eup)-FZ),55<,0>L2 —0,
which implies by (IT.I4) that
Fuwloe] = liy F,[67] = 0

for any vector valued 3-form ¢ € VVO2 P (Q) This proves Lemma[IT.Il O

By Lemma [IT.0] the desired condition dFy(u) = 0 holds for each vector
component in the weak sense, since there exists of a vector valued 1-form
w € W=HP(Q) such that F,(u) = dw. We conclude that Proposition
applies component wise and yields the existence of a solution ax,1 € LP(2)
to (I0:2I). Moreover, the solution constructed in Proposition meets the
LP-bound (C.14)), which by application to each vector component directly
implies the sought after LP-bound (I0.36]) on agy.

Next, we prove existence of a weak solution Uy, € LP(Q2) of (I0.25),
namely of

-,

(Uit1,00) 12 = Fy(ug, aps1)[@]

for any matrix-valued 0-form ¢ € VVO1 P (Q), subject to the LP bound ([0.24)
by applying Proposition [C.5], which is a version of Proposition applying
to the simpler case of O-forms. For this, we need to verify that each vector
component of (I0.25]) meets the consistency condition df = 0, in the weak
sense f(d¢) = 0, of Proposition [C.5] which is achieved in the next Lemma.

Lemma 11.2. Assume a1 € LP(Q) solves (IL21) for some uy, € WHP(Q),
then Fy, defined in (I0.29)), satisfies the weak consistency condition

Fy (ug, ag+1)[09] =0 (11.16)
for any vector valued 2-form 1) € Woz’p*(Q), (s0 Y]oa = 0 and 6v|sn = 0)B9
Proof. By (I0.20)), Fy is defined as

Py (ug, apy1)[0] = (™, dd) 2 + (m,E)m,

29Note, 01 is a vector valued 1-form, and any such form can always be interpreted as
a matrix valued O-form. So ¢ is an admissible argument for Fy.
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for matrix valued 0-forms ¢ € VVO1 7°(Q), where Jj, = I +eug. In order for Fy
to act on the vector valued 1-form § (¢fjd$i A dx? ) = (69)bdx”, we express
51 as the associated matrix valued O-form (v),, then

% N
Fy (ug, ap1)[09] = (JeI™, d(69)) 12 + (a1, 69) 2, (11.17)
where d(6) = 0;(d)Ldx’ is the exterior derivative of the matrix valued

0-form &, and where d1) denotes the original vector valued 1-form dy* =
(0v))dz”. The main technical step of this proof is to show by a mollification
argument that the first term on the right hand side of (ILIT) equals

(JeI*,d(09)) 2 = —< (Jk-dl“* +dJi A F*) , @(T/)»L? (11.18)
Assuming for the moment (IT.I8]) holds, we substitute J; = I 4 €uy to write

([I1I8) as

(L™ do0)) 2 = —(d, Qiv(9)) 1o = {(upedl” + dug AT), div(s) .
= (@il o)1, (11.19)

where the last equality follows from (I0.21]), the equation for agyi. Sub-
stituting (IT.I9]) into (ILIT7) gives the sought after consistency condition,
Fy(ug,ar41)[0¢] = 0 for any vector valued 2-form ¢ € Wol’p*(Q), which
completes the proof of Lemma once we prove equation (ILIS]) holds.

To verify (I1.18]), we consider a standard mollifier I'; of I'* together with
a mollifier (uy), of uk, as in the proof of Lemma [IT.Jl For ease of notation
we omit writing out the mollifier (uy), in the subsequent argument, that
is, whenever I'J appears we assume J; denotes the mollification (Jy), =
I + €(ug),. Now, since I'; — I' in L>(Q) and (ux), — u in WLP(Q), it
follows that

(A, d(59)) 2 = T (T, d(50)
Using the partial integration formula (8.7), we obtain
(JeL'p, d(0y)) 2 = —(6(JkIy), (04)) 2
= <5(kap3757/)>L2

where for the last equality we used the inner product identity (8.35]) for matrix

H
and valued forms, using again the notation d¢) = (6¢)bdz”. Applying now
partial integration (Iﬂ) for vector valued 1-forms, we get

(T d(5)) 12 = dmw )12,
and using (B.12]) to commute d and div as
do(Jx %) = div(d(J,I3)),
we find that
@(dukr*)) w>Lz
d(JxT), div(v) (11.20)

<JkFZ7d(5w)>L2 =
€& _
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H
using the adjoint property (8.24]) for div in the last step. Now, by the
Leibnitz rule, the L> convergence of I'; and dI'}, and the WP convergence
of (Ji)p, it follows that

A((J)oT5) = d(Ji)p AT + (i) ped% 228 ATy AT + Jj-dD?

converges in LP(€2). Thus the left and right hand sides in (IT.20) both
converge (as can be shown using Holder inequality) and yield

(T, d(00)) 12 = —((dJk AT™ + Jp-dD™), div(1))) o,

which is the sought after identity (II.I8]). This completes the proof of
Lemma [11.2] U

Lemma establishes the consistency condition required by Proposition
for existence of a solution to the first order Cauchy Riemann type sys-
tem. To apply Proposition and conclude with the sought after existence
of a vector valued O-form W,y € LP(Q) which solves (I0.25]), it remains
only to show that Fy(ug,ary1) € W1P(Q). For this, recall that by (I01.26]),
Fy is defined as

« sy
Fy(uk, ag41)[0] = (JkI'™, do) 2 + (ak+1, &) 2,
for any matrix valued 0-form ¢, where Ji = I + eug. Comparing this F;, in

(10.19),
Fu(u,a)lg] = (I + eu)T",do) 1, +(a,9) 2,

where ¢ € WHP(Q) can be any matrix valued 0-form, we conclude that

[ Fw (uk, aks1) lw-1e() = [[Fultr, ag41) lw-100)-
which is finite by the source estimate (10.34]) of Lemmal[l0.6l We can now ap-
ply Proposition (CH) and conclude with existence of a vector valued 0-form
Vi1 € LP(Q) which solves (I0.25) and satisfies the sought after estimate

(LIT).

We now prove the existence of a solution y;1 € W2P(2) to the Dirichlet

problem (I0.27),

Yk+1 |8Q = 07
together with the elliptic estimate (ITI2]). By Lemma [[0.6, F,(ug,ax+1)
is in W~5P(Q) and we can apply the basic existence result for the Poisson
equation with LP sources, Theorem [B.Il This yields the existence of a
solution y,,1 € W?2P(Q). To prove estimate (I0.39), we now apply the
elliptic estimate (B.4]) of Theorem [B.I] component wise to (I0.27)), which

gives us

{Ayk—l—l =Wy,

lvkt+illwze < Cl¥ktille)-
Using now estimate (I0.38) on [|Wy 41| zr(q), We obtain

lvk+1llwzr@ < Cl[Fuluk, ak+1)llw-100),
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where we have absorbed the constant from the estimate on ||[Uyq1||z» into
the universal constant C' > 0. This is the sought after estimate (I1.12]).

We now prove existence of a solution uz,; € WHP(Q) of ([0.28) with
boundary data (I0.29)), that is,

— Auga[@] = Fu(ug, a1)[9], (11.21)

for any matrix valued O-form ¢ € VVOl P°(Q)), and with Dirichlet bound-
ary data ury1log = dyriilog. By Lemma we have Fy(ug,axy1) €
W=LP(Q), so existence of a solution uy1 € WP(Q) of (TL2I) follows di-
rectly from Theorem [BJJl To prove estimate ([I0.37), we apply estimate
(B3) of Theorem [B.I] component wise to equation (IT.2I]) and obtain

uk+1llwrr) < C(\\Fu(ukaak+1)”wfl’p(ﬂ) + “dyk—i-luwlvp(ﬂ))’ (11.22)

where the second terms on the right hand side results from the boundary
data, ugy+1 = dyg1 on 0Q. Applying now estimate (IT.I2]) to bound the
boundary term by

ldyk+1llwrr) < lYr+1llwzr@) < O [Fu(uk, ag1)[lw-10()
we obtain
luks1llwir) < C | Fuluk, ak1) w100
which is the sought after estimate (I0.37]). We now choose the maximum

over all constants in the above estimates as the constant C, > 0 stated in
Lemma [I0.7l This completes the proof of Lemma [I0.71 O

11.3. Proof of Lemma (Bounds on differences of iterates).
We prove the closeness of subsequent iterates required to conclude with
convergence of the iteration scheme in the proof of Proposition TOTIIl So
assume I['*,dI™ € L*°(Q), and let C. > 0 denote the constant from the
elliptic estimates of Lemma [[0.7, which depends only on n, p, Q. Then, to
prove Lemma [[0.10] it suffices to show that differences of iterates satisfy

[aksillr < € Ce|[(T7, dI)| Lo [[Tr]lwe, (11.23)
[rrillwre < € Ce(l 4 Co) (T, dI7) | Lo [[ullwre, — (11.24)

for any £ € N. To prove Lemma [[0.I0] we require the following lemma
which gives bounds on differences of source terms,

Fa(uk) = Fa(uk) - Fa(uk—l)a

Fu(ug, ap+1) = Fuy(ug, aps1) — Fy(ug—1, ax),

which by linearity of F, and F}, is a straightforward modification of the proof
of Lemma

Lemma 11.3. Assume (uy,ay) are defined by the iteration scheme (I0.21)
- (I0:28), then the differences of source terms defined in (I125) satisfy

Bt are) |y -1 <ITTle + € R0 (0%, A0, (11.26)
Bl v <€ IRy [0, ) 1. (11.27)

(11.25)
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Proof. We prove the lemma by using linearity of the source terms F;, and
F, and following the steps in the proof of Lemma [10.6l In more detail, we
find from the definition of F,(u,a) in (I0I9]), that

Fu(Uk, ak+1)[¢] =€ <u_kr*7 d¢>L2 + <W+17 ¢>L27

for any matrix valued O-form ¢ € VVO1 P’ (Q). Following the steps in the proof
of Lemma [I0.6] then yields (IT.26]). Similarly, from the definition of F, in

(I020) that
Fulad)[0] = ¢ (@ dT* + dig AT*), div() o

for any vector valued 2-form v € WO1 P’ (Q), and following the steps in the
proof of Lemma [I0.6] gives us (IT.27]). This completes the proof of Lemma
113 O

Lemma [I0.10] now follows from the elliptic estimates (10.36]) and (10.39)
together with the bounds on differences of sources in Lemma [IT.3l That is,
by linearity of (I0.36]), we have

l@erillr) < CellFa(ur)llw-1r@)
(W) o P
< eC[mllwre I(TF, dI7)|| Lo (11.28)
Likewise, by linearity of (I0.39]), we find

[Terillwiv < CellFu(uk, aks1) lw-10(0)

(ITz6) o . .
< Ce (l@estllr + €l[axlloe [[(T*,dl*)| o)

(IT28)
< eCe(1+ Co) [urllwre (7, dI™)|[pe. (11.29)
This completes the proof of Lemma [I0.10l O

11.4. Proof of Lemma (Integrability of J). On smooth k-forms
the Laplacian acts component wise, (i.e., on components of matrix-, vector-
and differential forms separately), and the relation between vector and ma-
trix valued solutions of the Poisson equations in a classical sense is straight-

forward. That is, we have Au = Aw in a classical sense. This is used in
Lemma[I0.Ilto prove that the Jacobian J produced by the iteration scheme is

integrable to coordinates. The next lemma establishes the relation Au = Aw
for the weak Laplacian.

Lemma 11.4. Let u € W1P(Q) be a matriz valued 0-form, then
A(u)[¢] = Ad[d] (11.30)

for any matriz valued 0-form ¢ € Wol’p*(ﬂ).
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Proof. From the weak form of the Laplacian in (812]), using that éu = 0 and
du = Vu for matrix valued 0-forms, (where again Vu denotes the gradient
acting on each component of u), we find

—A(U) [¢] = <du7 d¢>L2 + <(5U, 6¢>L2 = <du7 d¢>L2
= (Vu, V)2 = Y (95u,0;0)12,
J
where the last equality follows from the definition in (814]), c.f. Lemma 82
Using now that for fixed j the inner product is invariant under vectorization
for matrix valued O-forms, c.f. (835]), we obtain

—A(g] = (V@ Ve,
Now, let u¢ be a standard mollification of u. Then u¢ — u in W1P(Q) as
€ — 0, which allows us to compute

—

—Aw)g] = (Vi V)
= —21_1)%< $>L2
= ll_I}g)((du d@L + (0’ 5>L2)
(did, dg) > + (5,66)
—Adlg).
This completes the proof. O

We now prove Lemma [I0.9] which states that
di) = 0, (11.31)

where uy1 € WHP(Q) is a solution of (I0.28) with boundary data (I0.29)).
Equation (IT.31]) implies directly that Jii1 = I + €ugyq is integrable to
coordinates. Moreover, Lemma [[0.9] states that Ji; is the Jacobian of the
coordinate transformation x — x + e ypy1(z), where yp 1 € W2P(Q) is the

solution of (I0.27]).

Proof of Lemma [10.9. The idea of proof is similar to that of Lemma [I0.1],
but adapted to the weak formulation of (I0.23]), to take into account the
regularity of ¥y € LP(Q) and ug4q € LP(2). That is, we need to show
that

A(urpyi — dyp+1) [6] =0, (11.32)

for any matrix valued 0-form ¢ € I/V0 "(€2). Assume for the moment (I1.32)
is true. Then, since ug1i — dyx+1 vanishes on 02 by the boundary condition

([I0:29), equation (I1.32]) implies that
Ukl — dygy1 =0 (11.33)
in Q, which is the sought after equation (I0.40]). Moreover, (IL.33]) directly
implies that
—
d(x + €eyry1) = Jrs1,



UHLENBECK COMPACTNESS AND OPTIMAL REGULARITY 79

where Jy+1 = I +€upy1. Thus Ji4q is in fact the Jacobian of the coordinate
transformation x — z+€yg11(x). This proves Lemma[l0.9 once we establish
([I132).

To prove (I1.32]), recall that Wy, satisfies (I0.25)),

(Cpy1,00) 12 = (SoT*, d) 2 + (arid, B 2, (11.34)
for any matrix-valued O-form ¢ € VVO1 P (Q), where J, = I + euy. Moreover,
Yrr1 € W2P(Q) solves

AYpr1 = Vi1, (11.35)
with boundary data yk+1|aﬂ =0, c.f. (I0.27]).

Combining (I1.34) and (IL.35), and using d?y;.1 = 0, we obtain from the
definition of the weak Laplacian in (812]) that

—.

—A(dyrs1) ] = (Sdyki1,06) 12 + (dyrr1,d6) o
= <6dyk+17 6?>L2
= <Ayk+175¢>L27 (1136)

since yg11 is a vector valued O-form, so that dyri1 = 0 and Aykq = (dd +
d0)yp+1 = 0dyg+1. Substituting now (IL30) for Ay, we write (IL30]) as

—.

_A(dyk+1)[¢] @ <¢,k+17 55>L2

T T do) e + @, B . (11.37)
Now, recall that ug,1 solves (I0.28]), that is,
- AUk+1[¢] = <Jk F*7d¢>L2 + <ak+17 ¢>L2’ (1138)

%
By definition of the inner products we have <ak+1, ¢>L2 = <ak+1, 10) >L2, c.f.

[RXE). Thus, (II.37) in combination with (IL38) gives us
A(dyr41) [0] = Auprr[9] (11.39)

for any matrix valued 0-form ¢ € VVO1 P (Q) Finally, applying Lemma [I1.4]
to the right hand side of (I1.39]), we obtain

A(dyks1)[¢] = Awii[4],
which directly gives the sought after equation (IT.32]). This completes the
proof of Lemma O

This finishes the proof of Theorem [2.1] and [2.3] thereby establishing opti-
mal regularity and Uhlenbeck compactness for L* connections.

APPENDIX A. SOBOLEV NORMS AND INEQUALITIES

We first give an overview of the norms used in this paper. These norms are
coordinate dependent, so we assume at the start a given coordinate system
x defined on an open set @ C M such that Q, = z(Q2) C R" is bounded. In
this paper we always write €2 instead of €2, when there is no confusion, c.f.
Section 2l In this section  always refers to {,. We denote by || - [[yym.r(q)
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the standard W™ P-norm, defined as the sum of the LP-norms of derivatives
from order zero up to m [II]. When applied to matrix or vector valued
differential forms w, ||wl/ymrQ) denotes the p-th root of the sum of the
p-th powers of the W""P-norms of all components, summed over all matrix
and differential form components for matrix valued differential forms, and
over all vector and differential form components for vector valued differential

forms. Specifically, for matrix valued k-form w = w,’filmikdxil A ... Ndz' we
define
lwP = Z ’wﬁzlzk P
[ ST 7
ey = 3 el sl = [ oo
12212} 7'17 Y Q
lollwme@y = > 10" WHLP(Q (A.1)

[1|<m

where 1 < p < oo, [ is a multi-index, so l = (I3, ...,1,), ||| =11 + ... + I,, and
dw = (0w, ...0p, w) taken component wise. Likewise, define the L>°-norm

lwllpeo@ = D> lwhs, =@, (A.2)

HyVyi1 el

and the L2-inner product on matrix valued forms w and wu,

o = [ (i) = [ S Wt (A3)

v,o=1141<...<i

c.f. (82), where tr() is the matrix trace and (- ; -) the matrix valued inner
product ([B.9), and where we integrate with respect to Lebesgue measure
in a fixed coordinate system z. By this we introduce the Hilbert-Schmidt
inner product on the matrix components of matrix valued differential forms.
When convenient we drop the dependence of the region €2 of norms, for
example, writing || - [|ym.r instead of || - [lyym.r(q)-

We now summarize the basic integral inequalities we apply in this paper,
see [11] for details. The space WP for p > n, is embedded in the space of
Hélder continuous functions C%%(Q2). Namely, for p > n Morrey’s inequality
gives

17l gny < Cal ooy, (A1)
where a = 1 — % and Cjy > 0 is a constant depending only on n, p and

[11] Morrey’s inequality (A.4]) extends unchanged to components of
matrix valued differential forms. By Morrey’s inequality we can estimate
products of WP functions f and g on bounded domains € as

I gllwre@) < Cullfllwre@)llgllwre@), (A.5)

30When applying (A4) for higher derivative estimates in Section Bl we often en-
counter C'yy multiplied by some positive combinatorial factor depending only on m which
we again denote by Cyy.
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by pulling L* norms of undifferentiated functions out of LP norms and
applying (A.4) to bound the resulting L> norms. This shows that W1?(Q)
is closed under multiplication on bounded domains.

To handle products in the RT-equations at the lowest order of regularity
we employ Holder’s inequality, which states

1fgllzr@) < 1 fllze@ gl @) (A.6)

where p and p* are conjugate exponents, i.e., % + ;z% = 1. Now, assuming
f,g € L**(Q), (A6) implies the estimate

1
Ifglo@ = FaPlIE )
A9) 1 1
< PN Ee g M1 2
= ||f||L2p(Q) HQHL?P(Q)a (A7)

which shows in particular that fg € LP(Q). Estimate (A7) allows us to
control the gradient product dJ~' Ad.J in (&I in the proof of Theorem F.T]
which is a key step in our analysis. Holder’s inequality (A.6l) and estimate
(A7) extend to matrix valued differential forms, only a little care must be
taken to handle index summation, for example,

14 Blloy = Y IA- Bl
v

< > IA8B e
v,

(1m0 (18 )
/"/7'/ /”’7'/
¢ (ML) (S IBEI o))
[T8%

[782
= ClAlle @Bl (A.-8)

for matrix valued 0-form A and matrix valued k-form B, where C' > 0 is a
constant depending only on n (just to compensate for the order of taking
roots and summation) and we omitted summation over form indices i1, ..., ik.
Similarly one obtains that

AN Bllpiq)
[ANA Bl o)

IN

CllAll e @) 1Bl Lo~ ()
C || All 2o () | Bl L2v () (A.9)

for A and B being general matrix valued differential forms.

<
<

ArPENDIX B. ErLiPTIC PDE THEORY

We now summarize the estimates we use from elliptic PDE theory. We
assume throughout that n < p < oo, n > 2 and that 2 C R” is a bounded
open domain, simply connected and with smooth boundary. Our estimates
are based on the following two theorems, which directly extend to matrix
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valued and vector valued differential forms since the Laplacian acts compo-
nent wise, c.f. Lemma That is, we take the weak Laplacian here as
Aul¢] = —(Vu, V)2 for scalar functions u € WHP(Q) and for test func-
tions ¢ € Wol’p* (Q), where Wol’p* (€) is the closure of C5°(€2) with respect to
the WP -norm (so ¢|sq = 0). Our first theorem is based on Theorem 7.2
n [25], but adapted to the case of solutions to the Poisson equation with
non-zero Dirichlet data.

Theorem B.1. Let Q C R" be a bounded open set with smooth boundary
0, assume f € W=LP(Q) and uy € WHP(Q)NCO(Q) forn < p < co. Then
the Dirichlet boundary value pmble

Aulg] = [fl], inQ (B.1)
u = wug on 0L, (B.2)

for any ¢ € Wol’p*(Q), has a unique weak solution u € WP (Q) with bound-
ary data u — ug € Wol’p(Q). Moreover, any weak solutiora u of BI) -
(B2) satisfies

lullwir) < C (1fllw-10@) + lluollwir) ; (B.3)

for some constant C' depending only on Q,n,p, and if f € LP(Q) and ug €
W2P(Q), then the solution u satisfies

lullwze@) < C (I1fllr@) + lluollw2r@)) - (B.4)

Proof. Theorem 7.2 in [25] yields existence of a unique solution u € WP ((2)
to (BJ) - (B2) satisfying estimate (B.3]) in the case of zero Dirichlet data,
i.e. when uy = 0 in Q. Note, Theorem 7.2 in [25] applies since the weak
Laplacian is a strongly uniformly elliptic operator in the sense of equation
(1.8) of [25, Def 1.3]>1 To extend this result to non-zero Dirichlet data, let
@ € WP(Q) be the solution of the Laplace equation A@ = 0 with boundary
data @ = ug on 0F2 in the sense that ug — u € Wol’p(Q); note that u can be
constructed via Green’s representation formula [12, Eqn. (2.21)] for Wlr-
data. Assume now w € WP is the solution of (B.I) with zero Dirichlet
data satisfying (B3), Aw = f in a weak sense and w € W,”(€2), which
exists by Theorem 7.2 in [25]. Then u = w + @ solves (B.]) - (B.2)), since
Au = Aw = f (in a weak sense) and u — ug € Wol’p(Q). To show that
estimate (B.3]) holds, we begin by using the triangle inequality twice to get

lullwrr < llwllwre + 1@ = wollwre + luollwre- (B.5)

3INote that u € Wl’p(Q) is Holder continuous by Morrey’s inequality (A.4), since we
assume here p > n. So boundary data can be assigned in the sense of continuous functions.

321t suffices to assume that u is regular enough to make sense of the weak formulation
of the Laplacian, for example, du, du € LP () for a differential form u, as in Section

33That in fact any such solution satisfies estimate (B3] follows from Theorem 6.1 in
[25], equation (6.2), where we can take C3 = 0 since A is strongly uniformly elliptic.
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We can now apply the established case of estimate (B.3]), for the case of zero
Dirichlet data, to the first two terms, since w, @ —ug € W'P(Q). This yields

lwllwir < Cllfllw-12(0), (B.6)

while the second term, using in addition that A(a — up) = Awup and that
”Auo”Wmfl,p(Q) < Huo”Wm+1,p(Q)7 is bounded by

[@—uollwrry < ClA(G—uo)llw-10(0)
< Clluollwir(q)- (B.7)

Substitution of estimates (B.6) and (B.7) into (B.3)) yields the sought after
estimate (B.3) in the general case of non-zero Dirichlet data. We proved
that there exists a solution to (B.) - (B.2)) which satisfies estimate (B.3]).
To complete the proof, note that estimate (B.4]) in the case of zero Dirich-
let data (ugp = 0) is already proven in [25] Thm 7.2], (c.f. Lemma 9.17 in
[12]). The case of estimate (B.4]) for non-zero Dirichlet data follows by an
argument analogous to (B.D) and (B.Z). Namely, let @ be the solution of
Au = 0 with boundary data uy — @ € Wol’p(Q), and let w € W2P(Q) be the
solution of Aw = f with w € VVO1 P(Q) established in [25, Thm 7.2]. Then
setting again u = w+ @ and applying estimate (B.4)) in the case of vanishing
Dirichlet data (y = 0) to w and % — ug yields the sought after estimate (B.4)):

lwllwze + || —uo|lw2r + [[uollw2e
C(Iflzr) + 1A(@ — uo)ll o)) + luollw2r )
C([Ifllzr) + luollwr ),

where C' > 0 was again used as a running constant. This completes the
proof of Theorem [B.1l O

[wllwzp ()

VAVANRVAN

We require the following interior elliptic estimates in the proof of Theorem
[ATlin Section[@in the case m = 0, and for higher regularities m > 1 to prove
Proposition Note that interior elliptic estimates usually are established
earlier in the development of elliptic PDE theory, but for completeness we
derive the interior estimate from (B.3)).

Theorem B.2. Let f € W™ LP(Q), form > 0 and n < p < oo. Assume
u is a weak solution of (B.I). Then u € W™HLP(Q') for any open set €
compactly contained in ) and there exists a constant C depending only on
Q,Q . m,n,p such that

[ullwm+1o9y < C(I1f lwm-10() + lullwne()- (B.8)

Proof. We only need to prove the case m = 0. The case for m > 1 can easily
be obtained by differentiating and applying the estimate for the case m = 0;
(c.f. Appendix A in [22].)

We apply estimate (B.3)) to ¢u where ¢ is a standard smooth cutoff func-
tion, ¢ = 11in ', ¢ = 0 on 9. Then

Apu) = pAu+ 2V - Vu + ulde = f. (B.9)
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Then applying (B.3]) together with the assumption that we have a solution
of the Poisson equation (B.I]), we have

lulwiey = loullwio@y < lloullwirg) < Clfllwirg) (B.10)
= Clgllc2 (Ifllw-1r@) + IVullw-100) + lullw-10@0) ;

from which (B.8]) follows, since by definition of Sobolev norms we have
IVullw-1p@) < llullee and [Jully-1p@) < |lullze. This completes the
proof. O

APPENDIX C. CAUCHY RIEMANN TYPE EQUATIONS AT LOW
REGULARITIES

In this appendix we prove Propositions and [C.5] which give existence
of weak solutions to Cauchy Riemann type equation for scalar valued differ-
ential forms, required in the proof of Lemma [I0.7] for well-posedness of the
iteration scheme. For this, in Theorems [C.1] and below, we first
collect the theorems from [6] regarding classical WP solutions of first order
Cauchy-Riemann type equations

du=f and du=0, in Q, (C.1)

where the Cartan algebra of differential forms is determined by the Euclidean
metric in R”. We extend these theorems in Proposition [C.4] and below
to prove existence of weak LP solutions, the lower regularity required for
well-posedness of our iteration scheme, in the special case when boundary
data is free to assign.

To begin, we state the following partial integration formula for non-zero
boundary data,

/Q(du,w>d:v+/g(u,5w>d:n:/E)Q(N/\u,w> :/m<u,zv-w>, (C.2)

where v is a k-form and w a (k + 1)-form, N denotes the outward-pointing
unit normal of 92 and N - w denotes the contraction of N and w, c.f.
Theorem 3.28 in [6], (and (86 for the case of vanishing boundary data).

We now state the basic elliptic estimate for (C.IJ), which mirrors estimate
(B.3) for the Poisson equation, the so-called Gaffney inequality, (c.f. The-
orem 5.21 in [6]). The Gaffney inequality shows that d and ¢ control all
derivatives of w.

Theorem C.1. (Gaffney Inequality): Let v € W™TLP(Q) be a k-form
form>0,1<k<n-—1andn > 2. Then there exists a constant C' > 0
depending only on 0, m,n,p, such that

(C.3)

The following special case of Theorem 7.4 in [6], provides the existence
theorem sufficient for our purposes, and contains a refinement of Gaffney’s

[wllpmtte@) < C(HduHWm,p(Q) + [0ulwmp () + HU”mele,p(aQ)).
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inequality (C.3]) for 1-forms and O-forms.

Theorem C.2. (i) Let f € W™P(Q) be a 2-form with df = 0, where m >
0, n > 2, 1< p < oco. Assume further that f = dv for some 1-form
v € WmP(Q) B Then there exists a 1-form u = u; dx® € W™HP(Q) which
solves

du=f and Ju=0 in £, (C.4)
together with the boundary condition
u-N=0 on 09, (C.5)

where N is the unit normal on 0Q and u- N = u;N*. Moreover, there exists
a constant C > 0 depending only on 2, m,n,p, such that

lullwmire) < Cllfllwmr@)- (C.6)

(i3) Let f € W™P(Q) be a 1-form with df = 0. Then there exists a 0-form
u € WmLP(Q) such that u solves du = f, has zero average Jqudz =0 and

satisfies estimate (C.G)).

Proof. Theorem and its proof are taken from [22], and the proof is in-
cluded for completeness, c.f. Theorem 2.4 in [22]. Part (i) is a special case
of Theorem 7.4 in [6] for 1-forms with zero boundary conditions. Namely,
our assumption df = 0 together with zero boundary data, (wp = 0, following
notation in [6]), directly gives condition (C1) of [6, Thm 7.4]. The first equa-
tion of condition (C2) of [6, Thm 7.4] follows trivially from our assumptions;
g =0 and wy = 0 in the notation of [6]. The second equation in (C2), that
Jo(f; ¥) = 0 for any harmonic form ¥ (i.e. §¥ = 0) with vanishing normal
components (i.e. N -¥ = 0) on the boundary (¥ € Hy in the notation
of [6]), follows by application of the integration by parts formula (C2]) for
differential forms to f = dv,

<f7 \II>L2 = _<U7 5\II>L2 + <U7 N - \IJ>L2 =0.
Theorem 7.4 in [6] now yields the existence of a solution u € W™ +1P(Q) to
(C.4) - (C.A) satistying estimate (C.6]).

Part (ii) of Theorem [C.2] can be thought of as a version of Theorem [6),
Thm 7.4], in the special case of 0-forms, which does not require condition
(C2) by abandoning boundary data. That is, we seek a 0-form u solving the
gradient equation du = f such that estimate (C.6l) holds. (No boundary data
is required for our purposes). To begin the proof, observe that a solution
u € WmHP(Q) of du = f, in the case m > 1, is given by the path integral

u(z) = /xf-df + u (.7)

along any differentiable curve connecting xg and x, where xy € € is some
point we fix, and the constant ug is the value of u at x, which is free to be

HMgince d? = 0, the assumption f = dv implies df = 0, and is a slightly stronger
assumption than df = 0, convenient for our purposes.
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chosen. Note, since df = 0, the integral (C.7) is path independent, as can
be shown by applying Stokes Theorem to integration of df over the region
enclosed by two curves connecting g and x. We now choose ug such that
the average of w is zero, fQ udr = 0. Then Poincaré’s inequality [12] Eqn.
(7.45)] implies that ||ul|zr) < C||fl|rrq) for a suitable constant C' > 0.
Thus, since [|dul|z») = ||fllzr(q) follows directly from du = f, we have

[ullwre) < CllfllLr@)- (C.8)

Estimate (C.6) follows by suitable differentiation of du = f and application
of estimate (C.8). Existence of a solution u to du = f in the case m = 0
follows again from (C.7) by mollifying f, and using that this mollification is
controlled by estimate (C.8)). This completes the proof of Theorem O

We finally require the so-called Hodge-Morrey decomposition, taken from
Theorem 6.12 in [6]:

Theorem C.3. (Hodge-Morrey decomposition): (i) Let ® € LP(2) be
a 1-form for 1 < p < oo. Then there exists 1-forms wy,ws € W2*P(Q) such
that

® =da+ 68+ h, (C.9)

where a = dwy and B = dws such that N/\a|8Q =0 and Nﬂ‘ag = 0, where
N is interpreted as either a 1-form or a vector normal to 052, and where h
is a harmonic 1-form in the sense that dh = 0 = 6h. Moreover, there exists
a constant C > 0 depending only on Q,n,p such that

lwillw2re @) + l[wellw2re@) + [hllr @) < ClI®l Lr()- (C.10)

(ii) Let & € LP(QQ) be a 0-form, 1 < p < oo, then there exist 0-forms
w € W2P(Q) and a constant ho such that

® = 68 + ho, (C.11)

where 8 = dw and N-ﬂ!ag =0, and exists a constant C > 0 depending only
on Q,n,p such that

lwllwzs < C[[®|zr- (C.12)

Proof. Part (i) of Theorem [C.3] is the case of Theorem 6.12 (iii) in [6] for
1-forms ®. Part (ii) follows from (iii) of |6, Thm 6.12] for O-forms @, by
observing that any harmonic O-form h is constant, (since dh = 0 is the
vanishing gradient condition for h), so h = ho O

350ne can understand Theorem (ii) quite easily from the point of view of the
Poisson equation. Namely the sought after function w is the solution to the Poisson
equation Aw = ® — hp with Neumann data N - dw = 0 on 0f2, where h¢ is a constant
chosen such that ® — hg satisfies the consistency condition fQ (® — ho)dz = 0 existence of
w, (required by the divergence theorem applies to the equation). The solution w is unique
up to addition by a constant, and we choose this constant for w to have zero average
fQ wdx = 0. Now, the Poincaré inequality implies the L”-norm of w to be bounded by the
L? norm of dw, and from this estimate (CI2]) follows from standard elliptic estimates.
(Compare also with Theorem 9.2 in [6] and its proof.)
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We are now prepared to establish the existence theorems for 1-forms and
0-forms required in our iteration scheme in Section IT1.2], Proposition [C.4land
[CH below. We begin with the case of 1-forms. That is, given f € W~1P(Q)
for 1 < p < oo, we prove existence of a 1-form a € LP()) which is a weak

solution
{d“ =/ (C.13)
da =0,

such that

lallzr < Cllfllw-1r (C.14)
for some constant C' > 0 depending only on n,p, 2. No boundary data is
imposed. Here a is a scalar valued 1-form and f a linear functional over
the space of 2-forms with components in Wol’p* Q), f: Wol’p*(Q) — R,
where VVO1 P7(Q) is the closure of C3°(Q) with respect to the WP -norm,
and where % + z% = 1. We refer to such a linear functional again as a 2-form
in W=1P(Q). Equations (C.I3) are interpreted in the following weak sense,

(a,00)2 = —f(¢)
{ o o — 0 (C.15)

for all 2-forms ¢ with components in VVO1 7" (€2) and all 0-forms 1 € VVO1 P(Q),
(so ¢lan = 0 and 9|gq = 0), where (-,-);2 denotes the standard L?-inner
product on differential forms.

Proposition C.4. Let f € WYP(Q) be a 2-form satisfying df = 0 in the
weak sense that f(0v) = 0 for all 3-forms 1 with components in Wg’p* (Q);
assume further that f = dv for some 1-form v € W~1P(Q) in the sense that
flo] = —v(0¢) for any 2-forms ¢ € Wol’p*(Q) Then there exists a solution
a € LP(Q) of (CIH) satisfying (CI4).

Proof. The proof consists of the following three steps: (1) Construct approx-
imate solutions af. (2) Derive an e-independent bound on the approximate
solutions which implies existence of a convergent subsequence. (3) Prove
that the limit of this convergent subsequence is a solution of (C.14]) which
satisfies estimate (C.13)).

To implement step (1), we mollify the functional f, that is, we introduce
f(z) = f(¢(- — x)), where ¢ = gpf.jda:i A da? is a 2-form with components
©f; € Cp°(€2) that are a standard mollifier function. So f© € C*°(Q2), and f*

converges to f in WP component-wise. For each € > 0, we now introduce

a® as the solution of
da® = f€
C.16

{(5@6 =0, ( )

36As in Theorem B8] assuming f = dv is a slightly stronger assumption than df = 0,
convenient in our proof of well-posedness of the iteration scheme, c.f. Lemma [I0.7]
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with boundary data N7 aj = 0 on 0f), where N is the outward pointing
unit normal of 9Q. The solution a® does indeed exist by Theorem (1),
since f€ = dv® for the 1-form v = v[p] € C°(£2). Namely, our assumption
fl#] = —v(0¢) for any 2-forms ¢ € Wol’p*(Q) implies that

fe=F(9) = —v[0p] = dv[p‘] = dvf,
by definition of the distributional derivative dv. Clearly, df¢ = d?v¢ = 0.
Thus Theorem (i) applies and yields a solution a¢ € W1P(Q) for each
€ > 0, establishing step (1).

To establish step (2), we now derive a uniform bound on ||a€||z» in order
to conclude convergence of a subsequence to the sought after solution a.
The uniform bound we derive can be thought of as a version of Gaffney’s
inequality at the lower level of LP regularity, when boundary data cannot

be imposed strongly. To begin, since the operator norm is equivalent to the
LP norm, we find that

la|[Lr = sup |(a®, @) 2], (C.17)
deF

where

F= {<1> € LV (Q) a 1-form with |||+ = 1}

is the space of test functions. Now, fix ® € F and apply the Hodge-Morrey
decomposition of Theorem [C.3] to write

& =da+ 08+ h, (C.18)

where a = dw; and B = dws for 1-forms wy,wy € W2P'(Q), such that
N A a‘ 90 =0and N -3 ‘ 90 = 0, and where h is a harmonic 1-form. Next,
applying the existence theory of Theorem [C.2] (ii), we define the O-form
U e WO1 P as a solution of
dVv = h (C.19)
which exists, since dh = 0 for h harmonic; no boundary data imposed. We
now substitute the decomposition (C.I8)) for ® to write (a, @) in (C.I7)
equivalently as
(aﬁ, (I)>L2 = <a€, (dOé + 06+ h)>L2
= (a,da)rz + (a,08) 2 + (a®, h) 2. (C.20)

Applying now the partial integration formula (C.2]) to each term, we obtain
(af,da) 2 = —(0a, a) 2 + (a N A a>L2(8Q) = —(6a“, )2, (C.21)

where the last equality follows from N A «f oo = 0, cf. Theorem [C3l
Similarly, partial integration together with N - ﬁ| an = 0 gives

<CL€,55>L2 = —<da€,,8>L2 + <CL€,N . 6>L2(6Q) = —<da€,,8>L2, (C22)

and by (C.19),
<CL€, h>L2 = <CL€, d\IJ>L2
= _<5a67 \II>L2 + <N -a, \IJ>L2(8Q)
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= —<5a6,\II>L2’ (023)

since N - af = 0 on 9N by assumption. Now, substituting (C.2)) - ([C.23)
into ([C:20)), and using that a¢ solves (C.I6]), we obtain

<a57(I)>L2 = _<5a67a>L2 - <daeaﬁ>L2 - <5a57 \I/>L2
= —(f"B)re- (C.24)
Now (C.24)) and the definition of the operator norm || - ||yy—1,» imply
(e, @)zl < (I Nw-1w Bl - (C.25)

By Theorem [C.3] we have 8 = dws so estimate (C.10Q) gives us

€10
1Bllwo = lldwallyroe < [lwallwzor < Ol (C.26)

where C' > 0 is some constant only depending on p, n, Q). Substituting (C.26))
into (C.25) and using that ||®||;,» = 1 for any ® € F, we obtain the estimate

(@ @) 2| < Cllfllw-1r < 2C(fllw-1s, (C.27)

for all € > 0 sufficiently small, since f¢ converges to f in W~ by standard
mollification. Finally, substituting (C.27) into (C.IT), we obtain the sought
after uniform bound

lallze < Cllfllw=1, (C.28)

where C' > 0 is some constant only depending on p,n, 2.

We now complete step (3). By (C.28)), ||a®||zr is bounded independent of
€, so the Banach Alaoglu Theorem implies convergence of a subsequence to
some differential form a € LP weakly in LP. We now show that this limit a
solves (C.13). For this, let €5 > 0 such that ¢, — 0 as kK — oo and assume
ar = a* is the convergent subsequence, so ap — a weakly in LP as k — oo.
By (C-2), we have for any ¢ and ¢ € WP () that

<d(15, ¢>L2 = _<a67 5¢>L27
<5a677/)>L2 = _<ae7d¢>L2' (029)
So using that ay, solves (CI6]), we write (C.29) as
(ag,00) 2 = —(f", @)
<ak7 d¢>L2 = 07
which converges to the sought after equation (C.I5). We conclude that a

is the sought after weak solution of (C.18)). Moreover, the sought after
estimate (C.14]) follows from the uniform bound (C.28)), since

(C.30)

lallr = sup [(a,9)| = lim sup |(ax, )]
weLp* k—oo weLp*
' =)
= Hm fagfle < Ol fflw-1s. (C.31)

This completes the proof of Proposition O
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Our final existence result for O-forms u is required to extend Theorem [C.2]
(i) to solutions in the space LP(£2). It is an extension of Poincaré’s Lemma
to linear functionals. We seek weak solutions u € LP(Q2) of the first order
equation

du = f, (C.32)
satisfying
ullr < ClIfllw-1s, (C.33)
for any 1-form f with components in W=1P(Q), where C' > 0 is a constant
depending only on n,p,§2. That is, we prove existence of weak solutions
u e LP(Q) of (C32) in the sense that

for any 1-form ¢ with components in Wy (Q) subject to estimate ((C.33).

Proposition C.5. Assume the 1-form f € W=1P(Q) satisfies df = 0 in the
sense that f(0¢) =0 for any 2-form ¢ with components in W02’p (). Then
there exists a solution u € LP(Q) of (C.34)) satisfying (C.33).

Proof. The proof is similar to that of Proposition[C.4], consisting of the same
three steps. To begin with the first step, we mollify the functional f, setting
again f¢(z) = f(¢°(-—x)), where ¢ € C5°(Q) is a 1-form whose components
are standard mollifier functions. So f¢ € C*°(Q), and f¢ converges to f in
W=LP component wise. For each ¢ > 0, we have df¢ = —f(dp) = 0 by
assumption. Thus Theorem (74) applies, and yields the existence of a
0-form u¢ € W1P(Q) solving
du = f°€ (C.35)
such that u¢ has zero average, fQ utdx = 0.
In the next step we derive a uniform bound on ||u||z». That is, we express
the LP-norm in terms of the operator norm,

[ullze = sup [(u, ®) 2], (C.36)
PeF

where
F= {CD € LP"(Q) a function with || @+ = 1}

is the space of test functions and (-,-);2 denotes the standard L? inner
product. We fix some ® € F and apply the Hodge-Morrey decomposition
in Theorem (ii) to write

® =65 + h, (C.37)
where 3 = dw for some 0-form w € W?P" () and N-ﬁ!aﬂ = 0. From (C37)
we find that

<u6’q)>L2 = <u6756>L2 + <u€7 h0>L2 = <u6756>L27
since (uf, hg)r2 = ho fw ufdr = 0 by our zero average assumption on uf.
Integration by parts (C.2)) gives further

(W, @) = —(du,B)p2 + (U, N - B)r2p0) = (f,08)r2, (C.38)
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where the last equality follows by substituting (C.32)) for u¢ and N-8|sq = 0.
From (C.38]) and the definition of the operator norm || - ||j-1,», we obtain

[(u @) 2] < [ llw-re 1Bllwra (C.39)

Using now that 8 = dw in combination with estimate (C.12]) of the Hodge-
Morrey decomposition, we obtain

1Bllwres < llwllyzee < Cl2 Lo, (C.40)

for some constant C' > 0 only depending on p, n, ). Substituting now (C.40)
into (C.39) and using that ||®||;,» = 1 for any ® € F, we obtain the uniform
bound

[(u, @) 2| < Cl[fllw-1p <20 fllw-1r, (C.41)

for all € > 0 sufficiently small, because f¢ converges to f in WL by
standard mollification. Finally, substituting (C.41]) into (C.36]), we obtain
the sought after uniform bound

[ullze < Cllfllw-1s, (C.42)

where C' > 0 is some constant only depending on p,n, ).

The uniform bound (C.42]) implies the existence of a subsequence which
converges to some function u € LP(Q) subject to the LP-bound (C.33]), and
an argument similar to that of step (3) in the proof of Proposition shows
that u solves (C.35]). This completes the proof of Proposition O

APPENDIX D. A LEMMA USED IN THE PROOF OF THEOREM (1]

For completeness we prove the following technical lemma which was used
in the proof of Lemma above. The point was that J”¢ can be taken as
test function in the same space as the test function ¢ used in the argument.
It suffices to prove the lemma for products ¢J instead of J7 ¢, since only
regularity of components is at issue here.

Lemma D.1. Let J € WY2P(Q) for p > n > 2, and assume J is invertible
with inverse J~1 € WL (Q). Then ¢J € Wol’p*(Q) for any ¢ € Wol’p* (Q),
and for every v € Wi (Q) there exists some ¢ € WP (Q) such that
¢ = ¢J. That is, J- Wy (Q) = WP (Q).

Proof. Solet J € WH2P(Q) for p > n. We first show that ¢.J € Wol’p*(Q) for
any ¢ € VVO1 P (). To begin, observe that by the Leibniz rule, we obtain

[0l = oS [|Lor + [[d(@)| Lo
< @l por + ld- Tl o= + [l dT || o~ (D.1)

(Note that d is simply the gradient for the matrix valued 0-forms J and ¢.)
By Morrey’s inequality the first term in (D.]) can be bounded as

1]l Lo < Cllll Lo 1] oo < CllBl Lo [[ Tl
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and similarly

|do- Tl por < ||| ov
So we only have to show that the third term in (D.J) is bounded to prove
that ¢.J € VVO1 P (Q). For this, we apply Holder’s inequality as in (A.8) to
estimate

lodJ|P,. < /Q P 4T dx < C ||| 6"

Iwre-

Lo [1dTP”

(D.2)

2p,
Lp*
where ¢ is the conjugate exponent of i—’f resulting from Holder’s inequality,

%—i— g—; =1, and C' > 0 denotes a running constant depending only on Q, n, p.

Observe now that by (AJ]) we have ||[¢P"||,, < 16]]% - and ||dJ|P* L2 <
\dJ HIE;,,, so substitution into (D.2]) gives
¢ d || < Clléll Lo [|dT || 2o (D.3)

We conclude that to prove ¢J € I/VO1 P (Q), it suffices to show that ¢ €
Wol’p*(Q) implies ||@]|;qp* to be finite. For this, we apply the Sobolev
embedding Theorem for bounded domains, which states that W1?"(Q) C

L%(Q) Thus the boundedness of ||¢|| ;4 follows from the Sobolev em-
bedding Theorem, as long as

*

np

qp* < ; (D.4)
n — px
c.f. [1I]. To verify (D.4)), we first compute that
2
__= D.5
1=3 (D.5)
as follows: Inserting into the defining identity % + % = 1 that p* = 1%
; _ 2= _ 2 _ 2

and solving for ¢, we find that ¢ = DT~ 7T, = 5 where the
last equality follows from the identity p* = p%l =1+ ﬁ. To continue,

we substitute (D.5) into the left hand side of (D.4]), and show that (D.4)
holds if and only if 2p > n. For this, note first that p* = 1% € (1,2)
and recall that n > 2. Son —p* > 0 and 3 — p* > 0, which allows us

to write (D.4]) equivalently as p%zf : > n, and using that p* = -+ we find

-1
that this is equivalent to 2p > n. Since we assumed that p > n,p we verified
(D.4) and thereby proved that the Sobolev embedding Theorem implies that
oJ € VVO1 P (Q) for any ¢ € VVO1 P (Q) This proves the forward implication
of Lemma [D.11

To prove the backward implication, that for every y € I/VO1 P’ (Q) there
exists a ¢ € Wol’p* () such that ¢ = ¢J, we make the ansatz ¢ = ¢.J L.
Since J~' € W12(Q) by assumption, we use the forward implication of

Lemma [D.] to conclude that ¢ = ¢ J ™! € Wol’p* (Q), while ¢J = 9 holds
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trivially. This proves the backward implication and completes the proof of
Lemma [D.11 O
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