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We present the authors’ new theory of the
RT-equations (‘regularity transformation’ or
‘Reintjes–Temple’ equations), nonlinear elliptic partial
differential equations which determine the coordinate
transformations which smooth connections Γ to
optimal regularity, one derivative smoother than
the Riemann curvature tensor Riem(Γ ). As one
application we extend Uhlenbeck compactness from
Riemannian to Lorentzian geometry; and as another
application we establish that regularity singularities
at general relativistic shock waves can always be
removed by coordinate transformation. This is based
on establishing a general multi-dimensional existence
theory for the RT-equations by application of elliptic
regularity theory in Lp spaces. The theory and results
announced in this paper apply to arbitrary L∞

connections on the tangent bundle TM of arbitrary
manifolds M, including Lorentzian manifolds of
general relativity.

1. Introduction
Although the Einstein equations of general relativity
(GR) are covariant, solutions are constructed in coordi-
nate systems in which the PDEs take on a solvable form.

2020 The Author(s) Published by the Royal Society. All rights reserved.
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A very first question in GR is then, which properties of the space–time represent the true
geometry, and which are merely anomalies of the coordinate system? In particular, does a solution
of the Einstein equations exhibit its optimal regularity in the coordinate system in which it is
constructed [1,2]? At the low regularity of GR shock waves this goes to the question as to whether
space–time singularities are essential or removable. Since coordinate systems define the local
property of space–time, the coordinates in which the metric is most regular determine the degree
to which the physics in curved space–time corresponds locally to the physics of Special Relativity.
It turns out that the problem of optimal regularity, the problem of constructing coordinates in
which a connection is one derivative more regular than the curvature,1 is intimately related to
Uhlenbeck compactness.

In this paper, we present the authors’ new theory of the RT-equations (the ‘regularity
transformation’ equations or ‘Reintjes–Temple’ equations [4–6]), a system of nonlinear elliptic
partial differential equations which determines the local coordinate transformations which
smooth a connection Γ to optimal regularity, one derivative smoother than the Riemann
curvature tensor Riem(Γ ). The RT-equations apply to general connections Γ (with or without
torsion) on the tangent bundle TM of arbitrary n-dimensional manifolds M, including
Lorentzian manifolds of GR. The RT-equations are elliptic regardless of metric signature because
they are constructed within the Euclidean Cartan algebra of differential forms associated with
arbitrary coordinate systems, independent of any space–time metric. A fully multi-dimensional
existence theory for the RT-equations has now been established by application of elliptic
regularity theory in Lp spaces, and this is precisely what is needed to extend Uhlenbeck
compactness from Riemannian to Lorentzian geometry. By this, Uhlenbeck compactness and
optimal regularity are pure logical consequences of nothing more or less than the rule which
defines how connections transform from one coordinate system to another.

In this exposition of our theory, we derive the RT-equations, and present two existence
theorems for the RT-equations together with the Uhlenbeck compactness theorems they imply.
(1) If Γ , Riem(Γ ) ∈ Wm,p, then solutions to the RT-equations exist and furnish Wm+2,p coordinate
transformations which smooth Γ to Wm+1,p for m ≥ 1, p > n. (2) If Γ , Riem(Γ ) ∈ L∞, then for any
p > n, solutions to the RT-equations exist and furnish coordinate transformations in W2,2p which
smooth Γ to W1,p.2 The latter demonstrates that regularity singularities do not exist at GR shock
waves, and gives the first proof that metrics in weak solutions of the Einstein–Euler equations
constructed by the Glimm scheme are one derivative more regular than previously known—
regular enough to admit geodesics and locally inertial frames. The proofs of existence of solutions
to the RT-equations within the above regularity classes is based on an iteration scheme which
provides a numerical algorithm for smoothing connections to optimal regularity. To give the
flavour of the proofs, we outline the argument in case (1), the case when existence and regularity
follow from standard elliptic PDE theory without the need to modify and re-interpret the RT-
equations (cf. [5,6]). In words, a crinkled map of space–time (i.e. one for which the metric is
non-optimal) can always be smoothed by coordinate transformation, and we have an algorithm
for doing it.

Solutions of the Einstein equations which exhibit non-optimal metric regularity are well
known and play an important role in the subject of GR shock waves [1,2,7–10], and this was
the starting point of the authors’ investigations. But the problem of the optimal regularity
of connections is a much larger issue. Non-optimal metrics and connections, with or without
symmetries, exist as a direct consequence of Riemann’s construction of a curvature tensor out

1We say a connection (and its metric in the case of metric connections) exhibits optimal regularity in a given coordinate system
if the connection is one (and the metric two) derivatives more regular than its Riemann curvature tensor (cf. definition 2.1
below). This notion requires of course a choice of scale to measure the derivative, like Cm, Cm,α or Wm,p [3]. For convenience,
we here use the Sobolev space Wm,p of functions with m derivatives in Lp. Note, our main concern is the gain of one derivative
because this suffices for Uhlenbeck compactness, not the level of p. By definition, a metric is always one order more regular
than its connection, and a connection is at most one derivative more regular than its Riemann curvature tensor.
2The space Wm,p(Ω) is the Banach space of functions u ∈ Lp(Ω) such that all weak derivatives up to order m also lie in Lp(Ω),
with norm ‖u‖Wm,p =

∑
|β|≤m ‖Dβu‖Lp , where β denotes the standard multi-index (cf. [3, ch. 5.2]).
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of second derivatives of the metric. Indeed, if in a given coordinate system a metric exhibits
optimal regularity in the sense that it is two derivatives more regular than its Riemann curvature,
then coordinate transformations with Jacobians one derivative less regular than the metric will
in general, by the tensor transformation law, lower the regularity of the metric by one order
but preserve the regularity of the curvature, the latter because it is a tensor already one order
less regular than the Jacobian. Similarly, since the transformation law for connections involves
derivatives of the Jacobian, if we start with a connection Γ of optimal regularity in the sense
that its components are one derivative more regular than Riem(Γ ) in a given coordinate system,
then coordinate transformations by Jacobians in the same regularity class as Γ will transform Γ

to non-optimal regularity; i.e. the transformation will maintain the regularity of the components
of Riem(Γ ), but will lower the regularity of the components of Γ by one derivative, down to
the regularity of Riem(Γ ). The question we raise and answer here is whether this can always be
reversed.

That is, if a connection on the tangent bundle of a manifold is non-optimal in the sense
that it is less than one derivative more regular than its curvature in some given coordinate
system, can it always be smoothed to optimal regularity by a ‘singular’ coordinate transformation
which removes irregularities in the highest order derivatives of the connection, but preserves
the regularity of the curvature? Or is non-optimality a geometric property of connections on
manifolds? Naively, it appears that not all connections could be smoothed to optimal regularity
because the curvature does not involve all of the derivatives of the connection, only the
Curl. Nevertheless, Uhlenbeck proved that for connections on vector bundles over Riemannian
manifolds (with positive definite metric) all derivatives are bounded by the curvature in Coulomb
gauge. This is the basis of Uhlenbeck compactness (cf. [11], topic of the 2019 Abel prize and
2007 Steele prize). Uhlenbeck compactness in [11] led to important applications in Riemannian
geometry (cf. [12,13]). However, how to extend optimal regularity and Uhlenbeck compactness in
general, from Riemannian geometry to the semi-Riemannian geometry of physics, has long been
an open problem.3 By the RT-equations, it is now clear that metric signature is of no relevance
to the problem of optimal regularity and Uhlenbeck compactness—they follow just from the
transformation law for connections.

The RT-equations are defined in terms of the Cartan algebra of differential forms associated
with a coordinate system x in which the components Γ i

jk(x) of the connection Γ are assumed to
be given. In this sense, the RT-equations are not defined invariantly. Recall that in differential
geometry, the exterior derivative d is defined invariantly, independent of metric, but the co-
derivative δ and Laplacian &= dδ + δd must be defined in terms of an inner product induced
on the Cartan algebra by some underlying metric [16]. Since the Riemann curvature tensor only
involves derivatives of the connection through the metric-independent exterior derivative d, it
follows that if the components of the curvature and connection in a given coordinate system have
the same regularity, then dΓ has that regularity, and the co-derivative δΓ (associated with the
Euclidean coordinate metric) encodes the derivatives not directly controlled by the curvature
(by Gaffney’s inequality (7.19)). Our idea, then, is that to get the classical Laplacian into the
RT-equations, we introduce the Euclidean metric in x-coordinates as an auxiliary Riemannian
structure, in place of, say, the invariant Lorentzian metric in the case of GR. We then take δ to be
the co-derivative of that Euclidean metric, which implies &= dδ + δd is the classical (Euclidean)
Laplacian. By this, the RT-equations are elliptic and the leading order operators are d, δ and & in
every coordinate system. The right-hand side of the RT-equations is nonlinearly coupled through
operations defined on the Euclidean Cartan algebra (cf. §4).

We now compare this to Uhlenbeck’s method in [11]. Uhlenbeck’s compactness theorem,
theorem 1.5 of [11], applies to Riemannian metrics, and is based on establishing a uniform
bound on the components of a connection in Coulomb gauge, the Coulomb gauge providing

3The first optimal regularity result in Lorentzian geometry is due to Anderson [14]. Anderson’s results are based on using
harmonic coordinates on the Riemannian hypersurfaces of a given foliation of space–time, and establish curvature bounds for
vacuum space–times and certain matter fields when the Riemann curvature is in L∞, under further assumptions. A similar
result for vacuum space–times was proven in [15].
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a coordinate system arranged to satisfy δΓ = 0 to bound the derivatives uncontrolled by the
curvature. This works when δ is taken to be the co-derivative of the invariant Cartan algebra
of the underlying Riemannian metric of the connection Γ . Uhlenbeck compactness in Coulomb
gauge then follows from a uniform bound on the curvature. To illustrate the heart of the issue
in [11], taking δ of Riem(Γ ) = dΓ + Γ ∧ Γ , when δΓ = 0, results in an equation of (essentially)
the form &Γ = δ Riem(Γ ), where &= dδ + δd is the Laplace–Beltrami operator of the underlying
(positive definite) Riemannian metric up to lower order corrections; so by elliptic regularity, a
sequence of connections Γi with Riem(Γi) uniformly bounded in Lp will be uniformly bounded in
W1,p in Coulomb gauge, for p < ∞. Sobolev compactness then implies a subsequence converges
in Lp in Coulomb gauge. The important difference is that the Coulomb gauge condition δΓ = 0
requires that δ and Γ both be associated with the same Riemannian metric. In the Lorentzian
case, Uhlenbeck’s argument leads to a hyperbolic equation in Coulomb gauge, and obtaining
optimal regularity from a hyperbolic equation is problematic (cf. discussion in §9). Alternatively,
the RT-equations are constructed from the co-derivative δ of the Cartan algebra induced by an
auxiliary Euclidean metric, so in general one cannot expect a gauge in which δΓ = 0. Our result
can be viewed as establishing the existence of a coordinate transformation under which δΓ has the
same regularity as dΓ , so Gaffney’s inequality implies optimal regularity without requiring the
more constraining Coulomb condition δΓ = 0. Our analysis does not assume optimal regularity
of the connection at the start (cf. theorem 1.3 of [11] which assumes Γ ∈ W1,p without estimate),
but establishes optimal regularity assuming the connection is estimated in the same space as
the curvature. Uhlenbeck’s theorem applies to connections on vector bundles over Riemannian
base manifolds, and our theorem extends this to arbitrary base manifolds in the case of tangent
bundles. We currently work on extending this to general vector bundles over arbitrary base
manifolds.

Our theorems on regularizing non-optimal solutions of the Einstein equations in GR provide
a completely general four dimensional theory, but as an application they also establish for the
first time that non-optimal solutions of the Einstein equations constructed by the Glimm scheme
in space–times with symmetry are one order more regular than previously known. Shock waves
are the lowest regularity solutions of the Einstein equations which incorporate realistic perfect
fluid sources. Shock waves are fundamental because they introduce time irreversibility, increase
of entropy and dissipation into the evolution of GR perfect fluids without violating causality, and
without the need to introduce a consistent relativistic theory of viscosity and heat conduction
[17]. The first existence theory by the Glimm scheme was given in [8], and this could only be
accomplished in standard Schwarzschild coordinates (SSC), coordinates in which the metric is
always non-optimal as a consequence of the link between the radial coordinate and the area of
the spheres of symmetry.4 Thus the gravitational metric is only Lipschitz continuous (C0,1) at
shock waves in SSC, even though both the connection and curvature tensor of such solutions
stay bounded in L∞. It has been an open question as to whether such C0,1 metrics can always
be smoothed one order to optimal metric regularity by coordinate transformation. This question
is deeply related to the existence and regularity of locally inertial coordinate systems, and thus
to the local correspondence of GR with the physics of Special Relativity. For example, Hölder
continuity for the connection is required to prove existence of geodesics by Peano’s theorem,
and optimal connection regularity W1,p for p > n gives Hölder continuity of the connection at
shocks by Morrey’s inequality. In [9], the authors conjectured that if such coordinate systems do
not exist, then shock wave interactions create a new kind of singularity in GR which the authors
termed regularity singularity (see also [18,19]), a point in space–time at which the metric connection
fails to have optimal regularity in any coordinate system. The results in this paper imply that no
regularity singularities exist in GR for L∞ curvature.

4The fact that there exist non-optimal coordinate systems in which the Einstein equations are simple enough to implement
a Glimm type analysis is serendipitous, but we emphasize that non-optimal coordinates play no special role in spherical
symmetry—they exist simply because the curvature involves second derivatives of the metric, but transforms as a tensor.
See also [7] for non-optimal solutions in space–times with different symmetries.
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The question as to the existence of such smoothing transformations is surprisingly subtle. The
Riemann normal construction is not sufficient to smooth a metric and its connection to optimal
regularity, and the construction itself is problematic for Lipschitz (C0,1) metrics. At smooth, non-
interacting shock surfaces, a now classical result of Israel shows that transformation to Gaussian
normal coordinates at the surface suffices to smooth a C0,1 metric to C1,1 at the shock when the
connection and the curvature are discontinuous but bounded across the shock surface [1]. But
for more general shock wave interactions, the only result we have since Israel is due to Reintjes
[18], who proved that the gravitational metric can always be smoothed one order to C1,1 in a
neighbourhood of the interaction of two shock waves from different characteristic families, in
spherically symmetric space–times. Reintjes’ procedure for finding the local coordinate systems
of optimal regularity is orders of magnitude more complicated than the Riemann normal, or
Gaussian normal construction process. The coordinate systems of optimal C1,1 regularity are
constructed in [18] by solving a non-local PDE highly tuned to the structure of the interaction.
Trying to guess the coordinate system of optimal smoothness a priori, for example harmonic
or Gaussian normal coordinates [20], did not work. In Reintjes’ construction, several apparent
miracles happen in which the Rankine–Hugoniot jump conditions come in to make seemingly
over-determined equations consistent, but at this stage, the principle behind what PDEs must be
solved to smooth the metric in general, or when this is possible, appears entirely mysterious.

The authors’ current point of view on the question of regularity singularities began with
the formulation of the Riemann-flat condition in [21], a necessary and sufficient condition for the
existence of a coordinate transformation which smooths a connection in L∞ to C0,1. The Riemann-
flat condition is the condition that there should exist a symmetric (1, 2)-tensor Γ̃ , one order
smoother than the connection Γ , such that Riem(Γ − Γ̃ ) = 0, remarkable because it is a geometric
condition on Γ̃ alone, independent of the coordinate transformation that smooths the metric.
Since Γ and Γ − Γ̃ have the same singular set (shock set), at first we thought the Riemann-flat
condition was telling us that to smooth an L∞ shock wave connection one needed to extend the
singular shock set to a flat connection by some sort of Nash embedding theorem. Our point of
view changed again with the successful idea that we might derive a system of elliptic equations
equivalent to the Riemann-flat condition, which resulted in the RT-equations, equations (2.1)–(2.4)
below.

Finally, we comment on the issue of geometric invariance. The ellipticity of the RT-equations
is an invariant property in the sense that a different version of them is expressed in terms of
the Euclidean Laplacian in every coordinate system. They are not tensorial, but from an analytic
point of view this is a virtue. The fact that the theory of the RT-equations employs no special
coordinate gauge means the resulting Uhlenbeck compactness theorem applies to approximate
solutions constructed in any coordinate system, making it inherently useful for analysis, which
is virtually always accomplished in coordinate systems, not invariantly. By generality of the
theorem, the approximating connections need not even be metric. To compare, the Einstein
equations transform between coordinate systems in such a way that they appear simpler in certain
canonical gauges—the RT-equations are equally simple in all gauges.

To place the RT-equations into the context of ‘geometry’, note that if the atlas of a manifold is
sufficiently regular, then the regularities of the metric, connection and curvature are the same
in every coordinate system (making regularity ‘geometric’); but if the regularity of the atlas
is suitably low to allow the possibility of lifting or lowering the regularity of the metric and
connection while maintaining the regularity of the curvature, then ‘regularity’, as well as ‘optimal
regularity’, are coordinate dependent notions. Thus one could view the RT-equations as providing
a low regularity coordinate transformation which lifts the regularity of non-optimal connection
components to optimal regularity, one order of derivative above the curvature, but once lifted,
restricting to the smooth atlas then makes regularity, and optimal regularity, a coordinate
independent ‘geometric’ property. This dependence of regularity and optimal regularity on the
atlas and coordinate system holds at every level of derivative, in every regularity class, and the
only difference between one regularity and another (say W1,p versus L∞) is the issue of solving
the RT-equations.
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In this paper, we summarize the proofs in the case Γ , dΓ ∈ Wm,p, m ≥ 1, p > n, the lowest
regularity in which the RT-equations can be introduced, and existence and regularity established
by standard elliptic regularity theory in Lp spaces without the need to modify and re-interpret the
equations. We refer the reader to [6] for our extension of the W1,p existence theory to the case Γ ,
dΓ ∈ L∞ based on what we call the reduced RT-equations, a modified version of the RT-equations
amenable to analysis in L∞. We do not discuss the reduced RT-equations here, but state our results
for L∞ connections in [6] as theorems 2.7 and 2.8 in the end of §2.

In §2, we state our main theorems in terms of the Euclidean Cartan algebra of differential
forms summarized in §4. Applications of our Uhlenbeck compactness theorem and of our optimal
regularity result to GR are presented in §3. The Riemann-flat condition is introduced in §5, and is
the starting point for deriving the RT-equations in §6. The existence theory for the RT-equations is
presented in §7. The uniform bounds on connections of optimal regularity, from which Uhlenbeck
compactness is deduced, are established in §8. Section 9 contains a discussion of non-optimal
solutions in the context of the initial value problem in GR.

2. Statement of results
Our first theorem establishes the equivalence of the Riemann-flat condition with the solvability
of the RT-equations. Our second theorem gives an existence theorem for the RT-equations in the
case Γ , dΓ ∈ Wm,p (and hence Riem(Γ ) ∈ Wm,p), for m ≥ 1, p > n. Combining the two theorems,
we conclude in theorem 2.5 that any such connection can be mapped locally to optimal regularity
by a coordinate transformation, demonstrating that regularity singularities do not exist when Γ
and dΓ are in Wm,p, m ≥ 1, p > n. This is case (1) of the Introduction. The gain of one derivative
then suffices to conclude with Uhlenbeck compactness in theorem 2.6 below for the case m ≥ 1,
p > n. In theorems 2.7 and 2.8 we state our optimal regularity and Uhlenbeck compactness results
for the case of L∞ connections, the low regularity class of GR shock waves. This is case (2) of
the Introduction. By Γ , dΓ ∈ Wm,p we mean the component functions of Γ and dΓ are in Wm,p in
some given, but otherwise arbitrary, coordinate system x (m ≥ 0 and p > n, including p = ∞).

We begin by giving our definition of optimal regularity. Because the problem of optimal
regularity is local, without loss of generality, we restrict to a single coordinate chart x defined
on some open set in M with image Ω ⊂ Rn open and bounded with smooth boundary.

Definition 2.1. Let Γ ≡ Γ
µ
νρ denote the components in x-coordinates of a connection defined on

the tangent bundle TM of a manifold M. Assume further that each component of its Riemann
curvature tensor Riem(Γ ) is in Wm,p(Ω) for some m ≥ 0, p ≥ 1, but is no smoother in the sense that
Riem(Γ ) is not in Wm′,p(Ω) for any m′ > m. We say Γ has optimal regularity in x-coordinates if
Γ ∈ Wm+1,p(Ω), one order smoother than Riem(Γ ).

Again, our main concern is not the level of p, but the gain of one derivative from m to m + 1
because this suffices for Uhlenbeck compactness and to recover the basic structure of space–time
at GR shock waves.

To state the first theorem, view Γ ≡ Γ
µ
νkdxk as a matrix valued 1-form defined in x-coordinates.

The RT-equations depend on Γ and the coordinate system x in which the components of Γ
are given. The unknowns in the RT-equations are Γ̃ , J, A, taken to be matrix valued differential
forms defined on the coordinate system x as follows: let J ≡ Jµν denote the Jacobian of the sought
after coordinate transformation which smooths the connection, viewed as a matrix-valued 0-
form; let Γ̃ ≡ Γ̃

µ
νkdxk be an unknown tensor one order smoother than Γ (as required for the

Riemann-flat condition Riem(Γ − Γ̃ ) = 0) viewed as a matrix-valued 1-form; and let A ≡ Aµ
ν be

an auxiliary matrix valued 0-form introduced to impose Curl(J) = 0, the integrability condition
for the Jacobian.

Theorem 2.2. Assume Γ ≡ Γ
µ
νk are the components in x-coordinates of a connection on TM of manifold

M, defined on Ω ⊂ Rn open and bounded with smooth boundary. Assume that Γ ∈ Wm,p(Ω) and dΓ ∈
Wm,p(Ω) for m ≥ 1, p > n, p < ∞. Then the following equivalence holds:
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Assume there exists J ∈ Wm+1,p(Ω) invertible, Γ̃ ∈ Wm+1,p(Ω) and A ∈ Wm,p(Ω) which solve the
elliptic system

&Γ̃ = δdΓ − δ
(
d(J−1) ∧ dJ

)
+ d(J−1A), (2.1)

&J = δ(J · Γ ) − 〈dJ; Γ̃ 〉 − A, (2.2)

dA =
−→
div
(
dJ ∧ Γ

)
+

−→
div
(
J dΓ

)
− d

(−−−−→
〈dJ; Γ̃ 〉

)
, (2.3)

δA = v, (2.4)

with boundary data
Curl(J) ≡ ∂jJ

µ
i − ∂iJ

µ
j = 0 on ∂Ω , (2.5)

where v ∈ Wm−1,p(Ω) is some vector valued 0-form free to be chosen. Then for each q ∈Ω , there exists a
neighbourhoodΩ ′ ⊂Ω of q such that J is the Jacobian of a coordinate transformation x → y onΩ ′, and the
components of Γ in y-coordinates are in Wm+1,p(Ω ′).

Conversely, if there exists a coordinate transformation x → y with Jacobian J = ∂y/∂x ∈ Wm+1,p(Ω)
such that the components of Γ in y-coordinates are in Wm+1,p(Ω), then there exists Γ̃ ∈ Wm+1,p(Ω) and
A ∈ Wm,p(Ω) such that (J, Γ̃ , A) solve (2.1)–(2.5) in Ω for some v ∈ Wm−1,p(Ω).

Equations (2.1)–(2.4) are the RT-equations, a system of elliptic equations associated with each
coordinate system x which we consider fixed from now on. To derive the RT-equations, we
develop a Euclidean Cartan algebra of differential forms associated with coordinate system x,
summarized in §4. The starting point for this Cartan calculus is to take the Euclidean metric
in x-coordinates as an auxiliary metric in terms of which we introduce the Euclidean Laplacian
&≡ dδ + δd and the Euclidean co-derivative δ, and because of this, the RT-equations are elliptic.
Here A, the vectorization of A, is the vector valued 1-form defined by A ≡ Aµ

i dxi, so dA = Curl(A).

The operations ·, −→
div and 〈·; ·〉 are defined in terms of the Cartan algebra as well. Equation (2.3)

is obtained by setting d of the vectorized right-hand side of (2.2) equal to zero, thus the identity
dJ = Curl(J) implies that (2.3) is equivalent to the integrability condition Curl(J) = 0 for the Jacobian
(cf. [4]). The first two terms on the right-hand side of (2.3) result from identity (4.12) proven below.
It is by this identity that seemingly uncontrolled terms involving δΓ can be re-expressed in terms
of the more regular dΓ , resulting in a fortuitous gain of one derivative required for the whole
theory to work.

The derivation of the RT-equations in §6 shows that if Γ̃ satisfies the Riemann-flat condition,
there exists J and A such that (J, Γ̃ , A) solve the RT-equations with the regularities required in
theorem 2.2. The converse is more subtle. The following lemma is the main step in the proof
of the converse, i.e. the forward implication of theorem 2.2, that existence for the RT-equations
implies existence of local coordinate transformations which smooth the connection Γ to optimal
regularity.

Lemma 2.3. Let Γ , dΓ ∈ Wm,p(Ω) be given, for m ≥ 1, p > n, p < ∞. Assume (J, Γ̃ , A) solves the
RT-equations (2.1)–(2.4), then

Γ̃ ′ ≡ Γ − J−1dJ (2.6)

solves the Riemann-flat condition Riem(Γ − Γ̃ ′) = 0, and Γ̃ ′ has the regularity of Γ̃ .

To explain, the solution (Γ̃ , J, A) of the RT-equations has the correct regularity and produces
the correct Jacobian J, but not the correct Γ̃ because Γ̃ might not satisfy the Riemann-flat
condition. The miracle of lemma 2.3 is that Γ̃ ′ (which solves the Riemann-flat condition) is defined
in terms of Γ and J alone, but also solves the RT-equations for the same J and thereby inherits the
optimal regularity of Γ̃ due to cancellations between J−1dJ and Γ . The mapping from Γ̃ to Γ̃ ′ is a
gauge transformation in the sense that Γ̃ ′ again solves the RT-equations, but for different matrix
valued 0-form A′ in place of A. The gauge freedom, i.e. the freedom to assign v, is a propitious
feature of the RT-equations. In particular, equation (2.1) was obtained by augmenting the first
order Riemann-flat condition to a first order Cauchy–Riemann type system, and then extending
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the solution space by replacing this with the implied second order Poisson type equation (2.1),
without imposing the nonlinear boundary data required to recover solutions of the original
Cauchy–Riemann equations (cf. [4, §3.1]). By lemma 2.3 we recover the Riemann-flat condition
from the second order system by use of the gauge freedom in the equations, without having to
solve the original first-order system.

To state our theorems regarding existence, optimal regularity and Uhlenbeck compactness, we
introduce the shorthand notation

‖(Γ , dΓ )‖Wm,p(Ω) ≡ ‖Γ ‖Wm,p(Ω) + ‖dΓ ‖Wm,p(Ω). (2.7)

The following theorem states the first existence result for the RT-equations.

Theorem 2.4. Assume the components of Γ ,dΓ ∈ Wm,p(Ω) for m ≥ 1, p > n ≥ 2, p < ∞, in some
coordinate system x. Then for each q ∈Ω there exists a solution (Γ̃ , J, A) of the RT-equations (2.1)–(2.4)
with boundary data (2.5) defined in a neighbourhood Ωq of q such that Γ̃ ∈ Wm+1,p(Ωq), J ∈ Wm+1,p(Ωq)
invertible and A ∈ Wm,p(Ωq). Moreover, if M ≥ 0 is a constant such that ‖(Γ , dΓ )‖Wm,p(Ω) ≤ M, then there
exists a constant C(M) > 0 such that

‖I − J‖Wm+1,p(Ωq) + ‖Γ̃ ‖Wm+1,p(Ωq) + ‖A‖Wm,p(Ωq) ≤ C(M) ‖(Γ , dΓ )‖Wm,p(Ωq), (2.8)

where I is the identity, and both Ωq and C(M) depend only on M,Ω , m, n, p.5

As an immediate corollary of theorems 2.2 and 2.4, we deduce the optimal regularity theorem
in case (1) of the Introduction.

Theorem 2.5. Assume the components of Γ , dΓ ∈ Wm,p(Ω) for m ≥ 1, p > n ≥ 2, in x-coordinates,
such that ‖(Γ , dΓ )‖Wm,p(Ω) ≤ M for some constant M ≥ 0. Then for each q ∈Ω there exists a coordinate
transformation x → y defined in a neighbourhoodΩq of q (depending only on M,Ω , m, n, p), with Jacobian
J ∈ Wm+1,p(Ω), such that the components of Γ in y-coordinates, Γy ≡ Γ

γ
αβ (y), are in Wm+1,p(Ω ′

q) for any
Ω ′

q compactly contained in Ωq, and Γy satisfies the uniform bound

‖Γy‖Wm+1,p(Ω ′
q) ≤ C(M)‖(Γ , dΓ )‖Wm,p(Ωq), (2.9)

where C(M) > 0 is some constant depending only on Ωq, Ω ′
q, M, m, n, p.

Estimate (2.9) extends Uhlenbeck’s curvature estimate, theorem 1.3 (ii) of [11], to connections
on tangent bundles of arbitrary manifolds, including semi-Riemannian and Lorentzian manifolds,
above the threshold m ≥ 1, p > n. We outline the proof of theorem 2.4 below, and refer to [5] for
further details. For the proof, we introduce an iteration scheme designed to apply the linear
theory of elliptic regularity in Lp spaces. A key insight for the proof was to augment the RT-
equations by ancillary elliptic equations in order to convert the non-standard boundary condition
Curl(J) = 0 in (2.5), which is of neither Neumann nor Dirichlet type, into Dirichlet data for J at each
stage of the iteration (cf. [5]). By this, the iteration scheme can be defined and bounds sufficient
to imply convergence in the requisite spaces can be proven, by applying standard existence
theorems regarding elliptic regularity in Lp spaces for the linear Poisson equation, to each iterate
[22]. The regularity Γ , Riem(Γ ) ∈ Wm,p, m ≥ 1, p > n, is a natural threshold, because this is the
lowest regularity that implies Γ , Riem(Γ ) are Hölder continuous by Morrey’s inequality (cf. (7.21)
below). This is used in the proof of convergence of the iteration scheme to control the nonlinear
products on the right-hand side of the RT-equations by point-wise estimates. We now state the
Uhlenbeck compactness theorem for case (1) of the Introduction, which results from the uniform
bound (2.9).

Theorem 2.6. Assume Γi ≡ (Γi)σµν are the x-components of the i-th connection in a sequence of
connections {Γi}i∈N on the tangent bundle TM of an n-dimensional manifold M, all given in a fixed

5Sobolev norms ‖ · ‖Wm,p are understood to be taken on all components of matrix or vector valued differential forms, and then
summed.
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coordinate system x on Ω . Let m ≥ 1, p ∈ (n, ∞) and n ≥ 2. Assume that in x-coordinates Γi, dΓi ∈
Wm,p(Ω) satisfy the uniform bound

‖(Γi, dΓi)‖Wm,p(Ω) ≤ M, (2.10)

for some constant M > 0 independent of i ∈ N. Then for every q ∈Ω there exists a neighbourhood Ω ′ ⊂Ω

of q, and a subsequence of Γi (also denoted by Γi), for which the following holds:

(i) There exists for each Γi a coordinate transformation x → yi(x) defined on Ω ′, such that the
components Γyi ≡ (Γi)yi of Γi in yi-coordinates exhibit optimal regularity, Γyi ∈ Wm+1,p(Ω ′), with
uniform bounds Wm+1,p(Ω ′) of the form (2.9).

(ii) The yi-components Γyi , taken as functions of x, also exhibit optimal regularity Γyi (x) ≡
(Γi)yi (yi(x)) ∈ Wm+1,p(Ω ′), with uniform bounds (2.9) in Wm+1,p(Ω ′).

(iii) The transformations x → yi(x) are uniformly bounded in Wm+2,p(Ω ′), and converge to a
transformation x → y(x), weakly in Wm+2,p(Ω ′), strongly in Wm+1,p(Ω ′).

(iv) Main conclusion: There is a subsequence of Γyi which converge to some Γy(x), weakly in
Wm+1,p(Ω ′), strongly in Wm,p(Ω ′). Moreover, letting Γx denote the weak limit of the non-
optimal Γi in Wm,p(Ω ′) in x-coordinates, then the limit Γy is the connection Γx transformed
to y-coordinates.

Theorem 2.6 is a consequence of the uniform bound (2.9) and application of the Banach Alaoglou
compactness theorem in Wm+1,p, together with the uniform bound (2.8), required to conclude
the existence of a convergent subsequence of yi (see [6] for a careful proof). We now state our
optimal regularity and Uhlenbeck compactness theorems for case (2) of the Introduction, the case
Γ , dΓ ∈ L∞(Ω), the low regularity associated with GR shock waves [6].

Theorem 2.7. Assume Γ , dΓ ∈ L∞(Ω) in x-coordinates, and let M ≥ 0 be a constant with
‖(Γ , dΓ )‖L∞(Ω) ≤ M. Then, for any p < ∞ and for each q ∈Ω , there exists a coordinate transformation
x → y defined in a neighbourhoodΩq of q (depending only on M,Ω , n, p), with Jacobian J ∈ W1,2p(Ωq) such
that the components of Γ in y-coordinates, Γy ≡ Γ

γ
αβ (y), are in W1,p(Ω ′

q) for any Ω ′
q compactly contained

in Ωq, and Γy satisfies the uniform bound

‖Γy‖W1,p(Ω ′
q) ≤ C(M) ‖(Γ , dΓ )‖L∞(Ωq), (2.11)

where C(M) > 0 is some constant depending only on Ωq, Ω ′
q, M, m, n, p.

As for theorem 2.6, estimate (2.11) on Γy provides the uniform bound required to conclude
with compactness by applying the Banach Alaoglu theorem in W1,p, which gives the following.

Theorem 2.8. Assume {Γi}i∈N is a sequence of connection components in x-coordinates such that
‖(Γi, dΓi)‖L∞(Ω) ≤ M. Then, for any p ∈ (n, ∞), points (i)–(iv) of theorem 2.6 hold for m = 0, but with
W2,2p convergence of a subsequence of {yi}i∈N.

Theorems 2.6 and 2.8 extend Uhlenbeck’s compactness theorem for connections on vector
bundles over Riemannian manifolds [11] to connections on tangent bundles of arbitrary
(differentiable) manifolds, including Lorentzian manifolds of relativistic physics. Note that
Uhlenbeck’s theorem in [11] assumes a uniform bound on the curvatures Riem(Γi) together with
the assumption that Γi is in the space of optimal regularity one derivative smoother than Riem(Γi)
without an estimate. Our compactness results assume a uniform bound on Riem(Γi), do not
assume that Γi have optimal regularity, but require that Γi be uniformly bounded in the same
space as the curvature Riem(Γi). See [6] for a discussion of this point.

Finally note, assuming Γ , Riem(Γ ) ∈ L∞, theorem 2.7 establishes optimal regularity Γ ∈ W1,p,
which suffices to establish Uhlenbeck compactness and to construct geodesic curves and locally
inertial frames for GR shock waves and GR [6]. However, it is still open as to whether such L∞

connections can be smoothed to Lipschitz continuity (W1,∞ ≡ C0,1), since p = ∞ is a singular case
of elliptic regularity theory. That is, there exist solutions of the Poisson equation which fail to be
two derivatives more regular than their L∞ sources (cf. [4]).
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For a careful proof of theorems 2.7 and 2.8, see [6]; the main ideas of proof are presented here
in the case Γ , dΓ ∈ Wm,p, m ≥ 1, p > n.

3. Applications to general relativity
The Einstein equations G = κT of general relativity are covariant tensorial equations defined
independent of coordinates. The unknowns in the equations are the gravitational metric tensor
g coupled to the variables which determine the sources in T. The existence of solutions, a priori
estimates, and regularity results for the Einstein equations are established by PDE methods upon
choosing a suitable coordinate system (or gauge condition) in which the Einstein equations take
on a solvable form [20].

(a) Application of Uhlenbeck compactness to the Einstein equations
The difficult part in a convergence proof for a PDE existence theory is typically the problem
of establishing a uniform bound on the highest order derivatives, sufficient to apply Sobolev
compactness. For connections, Uhlenbeck compactness tells us that it is enough to establish
a bound on just the Riemann curvature, not all highest order derivatives. As an application
of Uhlenbeck compactness, we have the following corollary of theorem 2.8 which provides a
new compactness theorem applicable to vacuum solutions of the Einstein equations when Γ ,
Riem(Γ ) ∈ L∞.

Corollary 3.1. Let gi be a sequence of Lipschitz continuous metrics given in some coordinate system x,
and let Γi denote the Christoffel symbol of gi for each i ∈ N. Assume that each gi is an approximate solution
of the vacuum Einstein equations in the sense that in x-coordinates limi→∞ ‖Ric(gi)‖L∞ = 0. Assume
further that there exists some constant M > 0 such that

‖gi‖L∞ + ‖Γi‖L∞ + ‖Weyl(gi)‖L∞ ≤ M, (3.1)

where the norms are taken in x-coordinates and Weyl(gi) denotes the Weyl curvature tensor of gi. Assume
| det(gi)| is uniformly bounded away from zero and let p > n. Then there exists a subsequence of (gi)i∈N
which converges in x-coordinates component-wise and weakly in W1,p to some metric g solving the vacuum
Einstein equations, Ric(g) = 0, and satisfying the bound (3.1). Furthermore, by theorem 2.7, there exists a
coordinate transformation x → y in W2,2p which lifts the components of g to W2,p and these are the W2,p

limits of gyi , the components of gi in optimal coordinates yi as in (ii) of theorem 2.6.

Proof. Since the Ricci tensor together with the Weyl tensor comprise the Riemann curvature
tensor, theorem 2.8 applies and yields existence of a convergent subsequence of gyi , the
components of gi in coordinates yi of optimal regularity expressed as functions over x-coordinates
(as in (ii) of theorem 2.6). The convergence gyi → gy is weakly in W2,p and strongly W1,p.
The resulting strong convergence of the connections Γyi together with Ric(Γ ) being linear in
derivatives of Γ implies that one can pass the weak limit through the curvature to show that
Ric(gi) converges to Ric(g) weakly in Lp and conclude that Ric(g) = 0, since limi→∞ ‖Ric(gi)‖L∞ = 0.
See [6] for a detailed proof and a refined statement. !

Note that without theorem 2.8, the uniform L∞ bound on a sequence of metric connections
and their curvatures would only imply weak Lp convergence of a subsequence of the metric
connections and curvatures. But one cannot in general pass weak limits through nonlinear
functions like products [23, ch. 16]. As a result, even though the Ricci tensor would correctly
converge to zero, the limit Ricci tensor would in general not be the Ricci tensor of the limit
connection, and thus the limit metric would in general fail to be a solution of the vacuum Einstein
equations. Corollary 3.1 leads one to anticipate that existence theorems for the Einstein equations
might be easier to prove in coordinate systems in which the metric is non-optimal, because
in coordinates where the metric is one order less smooth, the equations need impose fewer
constraints and controlling the Weyl curvature tensor suffices for iteration schemes to converge.
This is the case for the solutions we now consider in §3b.
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(b) Optimal regularity in spherically symmetric space–times
The existence theory based on Glimm’s method in [8] establishes (weak) shock wave solutions
of the Einstein Euler equations, which couple the unknown metric gij to the unknown density ρ,
pressure p and velocity u of a perfect fluid via Tij = (ρ + p)uiuj + pgij in G = κT. The space–time
metrics of these solutions are non-optimal with curvature in L∞, but optimal metric regularity
would be required to introduce locally inertial frames and geodesic curves by standard method.
In this section, we introduce a corollary of theorems 2.5 and 2.7 which establishes for the first
time that solutions of the Einstein equations constructed in SSC (which have a long history in
GR), including the Lipschitz continuous metrics associated with shock waves in [8], can always be
smoothed to optimal regularity by coordinate transformation. The result applies at every level of
regularity, but we state the result here at the low regularity of GR shock waves, Γ , Riem(Γ ) ∈ L∞.

For this consider, a metric in SSC

ds2 = −B(t, r) dt2 + dr2

A(t, r)
+ r2 dΩ2, (3.2)

for which the Einstein equations take on a very simple form, with the first three equations being

− rAr + (1 − A) = κBT00r2, (3.3)

At = κBT01r (3.4)

and r
Br

B
− 1 − A

A
= κ

A2 T11r2. (3.5)

From (3.3) to (3.5), we find that the metric can generically be only one level more regular than the
curvature tensor, at every level of regularity, and is hence non-optimal. (See [8] for the full system
of equations.) An application of theorem 2.7 to spherically symmetric solutions in SSC is the
following result which establishes that shock wave solutions of the Einstein equations constructed
by the Glimm scheme are one order more regular than previously known [8].

Corollary 3.2. Let T ∈ L∞ and assume g ≡ (A, B) is a (weak) solution of the Einstein equations in SSC
satisfying g ∈ C0,1 and hence Γ ∈ L∞ in an open set Ω . Then for any p > 4 and any q ∈Ω there exists
a coordinate transformation x → y defined in a neighbourhood of q, such that, in y-coordinates, g ∈ W2,p,
Γ ∈ W1,p.

Proof. In SSC the Ricci and Riemann curvature tensors have the same regularity (as can be
verified using Mathematica). So T in L∞ implies dΓ in L∞, and theorem 2.7 implies the corollary.

!

4. Euclidean Cartan calculus for matrix valued di(erential forms
Our motivation in [4] for introducing matrix valued differential forms begins by expressing the
Riemann curvature tensor as matrix valued 2-form,

Riem(Γ ) = dΓ + Γ ∧ Γ , (4.1)

interpreting the connection Γ as the matrix valued 1-form Γ
µ
ν ≡ Γ

µ
νi dxi. By a matrix valued

differential k-form A we mean an (n × n)-matrix whose components are k-forms over the
space–time region Ω ⊂ Rn, and we write

A ≡
∑

i1<···<ik

Ai1···ik dxi1 ∧ · · · ∧ dxik , (4.2)

for (n × n)-matrices Ai1···ik , assuming total anti-symmetry in the indices i1, . . . , ik ∈ {1, . . . , n}.
The wedge product of A with a matrix valued l-form B = Bj1···jl dxj1 ∧ · · · ∧ dxjl is then defined by

A ∧ B ≡ 1
l!k!

Ai1···ik · Bj1···jl dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl , (4.3)
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where ‘·’ denotes standard matrix multiplication. So Γ ∧ Γ in (4.1) is non-zero, unless all
component matrices mutually commute (which would suffice for Γ being a 1-form). We introduce
the matrix valued inner product

〈A; B〉µν ≡
∑

i1<···<ik

Aµ
σ i1···ik Bσν i1···ik , (4.4)

which is a matrix valued version of the Euclidean inner product of k-forms, and the Hodge star
operator ∗ by

A ∧ (∗B) ≡ 〈A; B〉 dx1 ∧ · · · ∧ dxn. (4.5)

The exterior derivative is defined as

dA ≡ ∂lA[i1···ik]dxl ∧ dxi1 ∧ · · · ∧ dxik , (4.6)

the co-derivative as the (k − 1)-form

δA ≡ (−1)(k+1)(n−k) ∗
(
d(∗A)

)
, (4.7)

and the Laplace operator as

&≡ δd + dδ. (4.8)

The derivative operations (4.6), (4.7) and (4.8) act on matrix components separately and behave
like the analogous operations on scalar valued differential forms. In particular, cf. theorem 3.7 in
[16], & acts component-wise as the Euclidean Laplacian,

(&A)µ
νi1···ik =&

(
Aµ
νi1···ik

)
=

n∑

j=1

∂j∂j
(
Aµ
νi1···ik

)
. (4.9)

We convert matrix valued differential forms to vector valued forms as follows. We let an arrow
over a matrix valued 0-form A denote the conversion of A into its equivalent vector valued 1-form,
i.e.

A ≡ Aαi dxi, (4.10)

where α labels the components of the vector. By this, we express the integrability condition for
the Jacobian J as dJ = 0, since

Curl(J) ≡ 1
2
(
Jαi,j − Jαj,i

)
dxj ⊗ dxi = Jαi,jdxj ∧ dxi = d(Jαi dxi) ≡ dJα .

Moreover, for a matrix valued k-form A, we define the operation

−→
div(A)α ≡

n∑

l=1

∂l
(
(Aαl )i1,...,ik

)
dxi1 ∧ · · · ∧ dxik , (4.11)

which creates a vector valued k-form. The operations (4.10)–(4.11) are meaningful when the
dimension of the matrices equals the dimension of the physical space. For the proof of
theorems 2.2 and 2.4, we extend in [4] various identities of classical Cartan calculus to the setting
of matrix valued differential forms. The key identity required to close the RT-equations within the
appropriate regularity classes is the identity

d
(−−−−→
δ(J · Γ )

)
=

−→
div

(
dJ ∧ Γ

)
+

−→
div

(
J · dΓ

)
, (4.12)

which applies to matrix valued 1-forms Γ and matrix valued 0-forms J (cf. [4] for proofs). This
identity has no analogue for classical scalar valued differential forms.
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5. The Riemann-,at condition
To begin, consider the transformation law for a connection

(J−1)k
α

(
∂jJαi + Jβi Jγj Γ

α
βγ

)
= Γ k

ij , (5.1)

where Γ k
ij denotes the components of the connection in xi-coordinates, Γ αγβ denotes its components

in yα-coordinates and Jαi ≡ ∂yα/∂xi. Assume now that Γ k
ij ∈ Wm,p(Ω), Γ αγβ ∈ Wm+1,p(Ω) and Jαi ∈

Wm+1,p(Ω), for m ≥ 1. In other words, assume the Jacobian J smooths the connection Γ k
ij by one

order. For these given coordinates x and y, we introduce

Γ̃ k
ij ≡ (J−1)k

αJβi Jγj Γ
α
βγ , (5.2)

which defines a field in x-coordinates. By imposing that Γ̃ k
ij should transform as a (1, 2)-tensor,

(5.2) defines a tensor Γ̃ . Now, (5.1) can be written equivalently as

(J−1)k
α ∂jJαi = (Γ − Γ̃ )k

ij, (5.3)

which we interpret as a condition on the fields J and Γ̃ in x-coordinates. To obtain the Riemann-
flat condition from (5.3), observe that adding a tensor to a connection yields another connection,
so (5.3) is the condition that J transforms the connection Γ − Γ̃ to zero. This implies that Γ − Γ̃

is a Riemann-flat connection, Riem(Γ − Γ̃ ) = 0. We conclude that the existence of a coordinate
transformation x → y which lifts the connection regularity by one order implies the Riemann-flat
condition, that is, the condition that there exists a symmetric (1, 2)-tensor Γ̃ one order more regular
than Γ such that Riem(Γ − Γ̃ ) = 0. The following theorem records several further equivalences
which, in particular, imply that the inverse implication is also true.

Theorem 5.1. Let Γ k
ij be a symmetric6 connection in Wm,p(Ω) for m ≥ 1 and p > n (in coordinates xi).

Then the following statements are equivalent:

(i) There exists a coordinate transformation xi → yα with Jacobian J ∈ Wm+1,p(Ω) such that Γ αβγ ∈
Wm+1,p(Ω) in y-coordinates.

(ii) There exists a symmetric (1, 2)-tensor Γ̃ ∈ Wm+1,p(Ω) and a matrix field J ∈ Wm+1,p(Ω) solving

J−1 dJ = Γ − Γ̃ (5.4)

and
Curl(J)αij ≡ Jαi,j − Jαj,i = 0. (5.5)

(iii) There exists a symmetric (1, 2) tensor Γ̃ ∈ Wm+1,p(Ω) such that Γ − Γ̃ is Riemann-flat:
Riem(Γ − Γ̃ ) = 0.

(iv) There exists a symmetric (1, 2)-tensor Γ̃ ∈ Wm+1,p(Ω) which, when viewed as a matrix valued
1-form in x-coordinates, solves

dΓ̃ = dΓ +
(
Γ − Γ̃

)
∧
(
Γ − Γ̃

)
. (5.6)

Proof. Note that (5.4) is a restatement of (5.3) in the formalism of matrix valued differential
forms, and (5.5) is the condition that J is integrable to define a coordinate system (cf. [21]). This
shows that (i) and (ii) are equivalent and that (ii) implies (iii). The equivalence of (iii) and (iv)
follows from the expression of the Riemann tensor as a matrix valued 2-form in (4.1). Finally, the
implication (iii) to (i) is proved in [21] when Γ ∈ L∞ and Γ̃ , J ∈ C0,1. The more regular case here,
Γ ∈ Wm,p and Γ̃ , J ∈ Wm+1,p, follows by the analogous argument without mollification. !

By theorems 5.1 and 2.2, existence for the RT-equations is equivalent to the Riemann-flat
condition. Thus, as an immediate application of theorems 2.2 and 2.4, we obtain the following
analogue of a Nash-type embedding theorem for connections with discontinuities in the m’th
derivatives.
6We remark that our main results in §2 do not require assuming symmetry of Γ or Γ̃ .
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Corollary 5.2. If Γ , Riem(Γ ) ∈ Wm,∞(Ω) (so Γ ∈ Wm,p
loc for p > n, and Γ can be taken to have bounded

discontinuities in the m’th derivatives), for m ≥ 0, then in a neighbourhood of each point inΩ there exists a
Riemann-flat connection Γ̂ (namely, Γ̂ = Γ − Γ̃ ′), which contains discontinuities in the m’th derivatives
at the same locations as Γ , and these discontinuities are the same to within the addition of a continuous
function.

For example, for BV m’th derivatives, the flat connection Γ̂ would have the same jumps at all
jump discontinuities of Γ [23,24]. Theorem 5.1 implies that to prove optimal regularity it would
suffice to construct a Nash-type extension of the singular set of Γ to a Riemann-flat connection.
Establishing optimal regularity by the RT-equations turns out to be more feasible.

6. Proof of theorem 2.2
We begin by outlining the ideas and steps in the derivation of the RT-equations set out in
detail in [4]. The idea is that by theorem 5.1 the Riemann-flat condition Riem(Γ − Γ̃ ) = 0 gives
the equation (5.6), namely, dΓ̃ = dΓ + (Γ − Γ̃ ) ∧ (Γ − Γ̃ ), which we view as an equation for Γ̃ .
This can be augmented to a first order system of Cauchy–Riemann equations by addition of
an equation for δΓ̃ with arbitrary right-hand side. But to obtain a solvable system, we couple
this Cauchy–Riemann system in the unknown Γ̃ to equation (5.4), namely J−1dJ = Γ − Γ̃ , for the
unknown Jacobian J. But equations (5.6) and (5.4) are not independent, since both are equivalent
to the Riemann-flat condition. To obtain two independent equations, we employ the identity
dδ + δd =& to derive two semi-linear elliptic Poisson equations, one for &Γ̃ and one for &J. This
results in the two second order equations (2.1)–(2.2), which closes in (J, Γ̃ ) for fixed A upon setting
δΓ̃ = J−1A. The equations are formally correct at the levels of regularity sufficient for J and Γ̃ to be
one order smoother than Γ , consistent with known results on elliptic smoothing by the Poisson
equation in Lp-spaces [3,16,22].

To impose the integrability condition for J, we use the freedom in δΓ̃ to interpret A as a variable
on the right-hand side of (2.1) and (2.2), and impose Curl(J) = 0 by asking that A solve the equation
obtained by requiring d of the vectorized right-hand side of the J equation (2.2) to equal zero.
When taking d of the right-hand side of (2.2), we encounter the term d(

−−−−→
δ(J · Γ )) which seems to

involve uncontrolled derivatives on Γ , hence one derivative too low to get the required regularity
A ∈ Wm,p.7 But, surprisingly, this term can be re-expressed in terms of dΓ by the fortuitous identity
(4.12), so this term is in fact one order smoother than it initially appears to be. (This confirms that
our assumptions need only control dΓ in Wm,p, but not the complementary derivatives δΓ , which,
by (7.19), measure the derivatives not controlled by dΓ .) This gives (2.3). The final form of the RT-
equations is then obtained by augmenting (2.1)–(2.3) by equation (2.4). This represents the ‘gauge
freedom’ to impose δA = v. This completes the derivation of the RT-equations and establishes the
backward implication in theorem 2.2.8

We now outline the proof of the forward implication in theorem 2.2, namely, that a solution
of the RT-equations produces a Jacobian J which lifts Γ to optimal regularity. So assume (J, Γ̃ , A)
solves the RT-equations. We first show that J is integrable to coordinates. If J is a solution of (2.2)
and A solves (2.3)–(2.4) with boundary data (2.5), then, as shown in [4],&(dJ) = 0 inΩ . Thus, since
dJ is assumed to vanish on ∂Ω by (2.5), it follows that the harmonic form dJ is zero everywhere
in Ω , so J is integrable to coordinates. To complete the forward implication, note that Γ̃ need
not satisfy the Riemann-flat condition because the RT-equations have a larger solution space than
the first-order equations from which they are derived. So we define Γ̃ ′ ≡ Γ − J−1 dJ, which meets

7Note, A ∈ Wm,p is needed for (2.1)–(2.2) to imply the required regularity for (J, Γ̃ ).
8One might wonder why we were not able to obtain an equation for the coordinate transformation y directly, so that the
simpler dy = J would replace the integrability condition Curl(J) = 0. This is because, starting with the Riemann-flat condition
Riem(Γ − Γ̃ ) = 0, the gauge freedom enters through the freedom to impose δΓ̃ , and this expresses itself in the additional
variable A on the right-hand side of equation (2.1). To close the system, we then need a differential equation for A, which
naturally comes from Curl(J) = dJ = 0 by setting d of the vectorized right-hand side of (2.2) equal to zero, leading to the
equation (2.3) for A. Thus to obtain a closed solvable system, we are essentially forced to impose the integrability condition
on J in the form CurlJ = 0.
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the Riemann-flat condition by (5.4). But an additional argument is required to show that Γ̃ ′, like
Γ̃ , is indeed one level smoother than Γ , as stated in lemma 2.3. For this, we use (2.1)–(2.2) to
show &Γ̃ ′ ∈ Wm−1,p(Ω) (by deriving equation (4.32) in [4]), so that standard estimates of elliptic
regularity theory imply the desired smoothness Γ̃ ′ ∈ Wm+1,p(Ω ′) on any compactly contained
subset Ω ′ of Ω (cf. [4]). This establishes the forward implication in theorem 2.2.

In summary, we start with two equivalent first-order equations, one for dΓ̃ and one for dJ,
both equivalent to the Riemann-flat condition. Out of these we create two independent nonlinear
Poisson equations in Γ̃ and J which have a larger solution space. The resulting system has the
freedom to impose an auxiliary solution A through the gauge freedom to impose δΓ̃ . Since
the solution space is larger, not all solutions of the RT-equations provide a Γ̃ which solves
the Riemann-flat condition, but given any solution (Γ̃ , J, A) of (2.1)–(2.5), we show that there is
enough freedom in A so that there always exists A′ such that (Γ̃ ′, J, A′) solves the RT-equations
with Γ̃ ′ = Γ − J−1 dJ. Then Γ̃ ′ meets the Riemann-flat condition by construction, and J is the
Jacobian of a coordinate transformation which takes Γ to optimal regularity.

7. Proof of theorem 2.4
The biggest challenge of this research programme was to discover a system of nonlinear equations
for optimal regularity, the RT-equations, and formulate them so that existence of solutions to the
nonlinear equations could be deduced from known theorems of elliptic regularity theory. The
existence proof in [5], which we outline in this section, was the first to demonstrate that obtaining
optimal regularity by the RT-equations works. The extension of this existence theory to include
L∞ connections in [6] then demonstrates that the method of obtaining optimal regularity via the
RT-equations is efficient enough to remove apparent singularities in such connections.

The strategy of proof here is to deduce convergence of an iteration scheme for approximating
the nonlinear equations, from two standard theorems on the Dirichlet problem (stated below) of
the linear theory of elliptic PDEs in Lp spaces [3,16,22]. To begin, we rewrite the RT-equations
(2.1)–(2.4) in the following compact form:

&Γ̃ = F̃(Γ̃ , J, A), (7.1)

&J = F(Γ̃ , J) − A, (7.2)

dA = dF(Γ̃ , J) (7.3)

and δA = v, (7.4)

where F(Γ̃ , J) is the vectorization of F(Γ̃ , J) and where

F̃(Γ̃ , J, A) ≡ δdΓ − δ
(
d(J−1) ∧ dJ

)
+ d(J−1A) and F(Γ̃ , J) ≡ δ(J · Γ ) − 〈dJ; Γ̃ 〉

(so dF(Γ̃ , J) equals the right-hand side of (2.3); cf. the derivation of (3.40) in [4]). Note (7.3)–(7.4)
take the Cauchy–Riemann form dA = f , δA = g. The consistency conditions df = 0, δg = 0 are met,
since the right-hand side of (7.3) is exact and since δv = 0 holds as an identity for 0-forms.

To handle the nonlinearities in (7.1)–(7.4), we introduce a small parameter ε > 0 below by using
the freedom to restrict to small neighbourhoods, and then apply linear elliptic estimates in Lp

spaces to establish convergence at the sought after levels of regularity for sufficiently small ε > 0.
But we still have the problem of how to handle the non-standard boundary condition (2.5), which
is neither Neumann nor Dirichlet data for (7.2). We now introduce an equivalent formulation
of the boundary condition (2.5) for (7.2), which has the advantage that it reduces to standard
Dirichlet data for J at each stage of the iteration scheme below. For this, observe that (7.3) implies
the consistency condition d(F(Γ̃ , J) − A) = 0, so that one can solve

{
dΨ = F(Γ̃ , J) − A,

δΨ = 0,
(7.5)
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for a vector valued 0-form Ψ (cf. theorem 7.4 in [16]). Next, let y be any solution of

&y =Ψ . (7.6)

We now claim that in place of the Poisson equation (2.2) for J with the boundary condition (2.5),
it suffices to solve (2.2) with boundary data

J = dy on ∂Ω . (7.7)

To see this, write&dy = d&y = dΨ = F − A =&J, which uses that, after taking vec on both sides of
the J-equation (2.2), the operation vec commutes with & on the left-hand side of (2.2) because the
Laplacian acts component-wise. Thus, &(J − dy) = 0 in Ω and J − dy = 0 on ∂Ω , which implies
by uniqueness of solutions of the Laplace equation that J = dy in Ω . Since second derivatives
commute, we conclude that dJ = Curl(J) = 0 in Ω , on solutions of (2.2) with boundary data (7.7),
as claimed. The point of using (7.7) in place of (2.5) is that (7.7) is standard Dirichlet data for J in
the following iteration scheme.

We now discuss the iteration scheme introduced in [5] for approximating solutions of the
RT-equations (7.1)–(7.4). To start, assume a given connection Γ ∈ Wm,p defined in x-coordinates
on a bounded and open set Ω ⊂ Rn with smooth boundary. We take v = 0 in (2.4) to fix the
freedom to choose v ∈ Wm−1,p(Ω). For the existence proof, we define a sequence of differential
forms (Ak, Γ̃k, Jk) in Ω , and prove convergence to a solution (A, Γ̃ , J) of (7.1)–(7.4) with boundary
data (2.5) in the limit k → ∞. Define the iterates (Ak, Γ̃k, Jk) by induction as follows. To start, take
J0 to be the identity matrix and set Γ̃0 = 0. Assume then Γ̃k and Jk are given for some k ≥ 0. Define
Ak+1 as the solution of {

dAk+1 = dF(Γ̃k, Jk),

δAk+1 = 0,
(7.8)

for Ak+1 · N = 0 on ∂Ω , where N is the unit normal vector of ∂Ω which is multiplied by the matrix
Ak+1. To introduce the Dirichlet data for Jk+1, we first define the auxiliary variables ψk+1 and yk+1,
as the solutions of {

dΨk+1 = F(Γ̃k, Jk) − −−→
Ak+1,

δΨk+1 = 0,
(7.9)

with boundary data Ψk+1 · N = 0 on ∂Ω and

&yk+1 =Ψk+1 with yk+1(x) = x on ∂Ω . (7.10)

Now define Jk+1 to be the solution of the following standard Dirichlet boundary value problem:

&Jk+1 = F(Γ̃k, Jk) − −−→
Ak+1, with

−−→
Jk+1 = dyk+1 on ∂Ω ; (7.11)

and define Γ̃k+1 as the solution of9

&Γ̃k+1 = F̃(Γ̃k, Jk, Ak+1), with Γ̃k+1 = 0 on ∂Ω . (7.12)

To prove that there exists a well-defined sequence of iterates (Jk, Γ̃k, Ak)k∈N and establish
convergence, we introduce a small parameter ε > 0. For this, let Γ ∗ be a connection in x-
coordinates satisfying

‖(Γ ∗, dΓ ∗)‖Wm,p(Ω) ≡ ‖Γ ∗‖Wm,p(Ω) + ‖dΓ ∗‖Wm,p(Ω) = C0 ≤ M, (7.13)

for m ≥ 1 and some constant C0 > 0 independent of ε. To introduce the small parameter assume
that Γ scales with ε > 0 according to

Γ = εΓ ∗. (7.14)

Note that assumptions (7.13) and (7.14) can be made without loss of generality regarding the
local problem of optimal metric regularity. To see this assume that Ω is a ball of radius 1. Then

9Note, since we only need to construct a particular solution, essentially any boundary condition could be chosen for (7.9),
(7.10) and (7.12). Note also that the definitions of Ak+1, Ψk+1 and yk+1 do not require the previous iterates Ak , Ψk and yk .
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given any connection Γ ′(y) ∈ Wm,p(Ω) with ‖(Γ ′, dΓ ′)‖Wm,p(Ω) ≤ M, we can define Γ ∗(x) as the
restriction of Γ ′ to the ball of radius ε with its components transformed as scalars to the ball
of radius 1 by the transformation y = εx. We then define Γ (x) as the connection resulting from
transforming Γ ′(y) as a connection under the coordinate transformation y = εx. This establishes
the scaling (7.14) together with the bound ‖(Γ ∗, dΓ ∗)‖Wm,p(Ω) ≤ M, which for ease of presentation
we take here as the equality in (7.13) in terms of C0 > 0. We conclude that, given any connection
Γ ′, local existence of a solution of the RT-equations with Γ = Γ ′ follows from the existence of a
solution of the RT-equations with Γ = εΓ ∗ and (7.13)–(7.14) for some ε > 0. Thus, without loss of
generality, we assume (7.14); cf. [5] for details.

To incorporate ε into the RT-equations, we assume the scaling ansatz

Jk = I + ε J∗k , Γ̃k = ε Γ̃ ∗
k , Ak = εA∗

k , uk ≡ (J∗k , Γ̃ ∗
k ), ak ≡ A∗

k . (7.15)

Substituting (7.14) and (7.15) into the RT-equations (7.1)–(7.4) for v ≡ 0 and dividing by ε > 0, we
obtain the following equivalent set of equations:

&u = Fu(u, a), and

{
da = Fa(u),

δa = 0,
(7.16)

where

Fu(u, a) ≡
(

δdΓ ∗ − δd
(
J−1 · dJ∗

)
+ d(J−1a)

δΓ ∗ + ε δ(J∗ · Γ ∗) − ε 〈dJ∗; Γ̃ ∗〉 − a

)

, (7.17)

Fa(u) ≡
−→
div

(
dΓ ∗)+ ε

−→
div

(
J∗ · dΓ ∗)+ ε

−→
div

(
dJ∗ ∧ Γ ∗)− ε d

(−−−−−→
〈dJ∗; Γ̃ ∗〉

)
. (7.18)

Under assumption (7.14), the iterates defined by (7.8)–(7.12) generate corresponding iterates
(uk, ak) which successively solve (7.16), as well as iteratesΨ ∗

k = (1/ε)Ψk and y∗
k = (1/ε)yk. It remains

to prove that (uk, ak) and (Ψ ∗
k , y∗

k ) are well defined and converge for ε sufficiently small. We state
the results in two theorems.

Theorem 7.1. Assume (uk, ak) ∈ Wm+1,p(Ω) × Wm,p(Ω). Then (uk+1, ak+1) is well-defined and
bounded in the same Sobolev space for ε > 0 sufficiently small.

Proof. This is implied by the following two well-known theorems from linear elliptic PDE
theory,10 which both extend component-wise to matrix and vector valued differential forms. (The
possibility that we might reduce the existence theory to these two theorems was the guiding
principle in the formulation of the RT-equations.) !

Theorem (Cauchy–Riemann). Let f ∈ Wm,p(Ω) be a 2-form with df = 0 and let g ∈ Wm,p(Ω) be a
0-form with δg = 0, where m ≥ 0, n ≥ 2. Then there exists a 1-form u = ui dxi ∈ Wm+1,p(Ω) which solves
du = f and δu = g in Ω with boundary data u · N = 0 on ∂Ω . Moreover, there exists a constant Ce > 0
depending only on Ω , m, n, p, such that

‖u‖Wm+1,p(Ω) ≤ Ce

(
‖f‖Wm,p(Ω) + ‖g‖Wm,p(Ω) + ‖u0‖

Wm+ p−1
p ,p(∂Ω)

)
. (7.19)

Theorem (Poisson). Let f ∈ Wm−1,p(Ω) and u0 ∈ Wm+(p−1)/p,p(∂Ω) both be scalar functions, and
m ≥ 1. Then there exists u ∈ Wm+1,p(Ω) which solves the Poisson equation &u = f with Dirichlet data
u|∂Ω = u0. Moreover, there exists a constant Ce > 0 depending only on Ω , m, n, p such that

‖u‖Wm+1,p(Ω) ≤ Ce

(
‖f‖Wm−1,p(Ω) + ‖u0‖

Wm+ p−1
p ,p(∂Ω)

)
. (7.20)

Namely, putting (uk, ak) into the right-hand side of (7.16), using Morrey’s inequality to estimate quadratic
terms by the supnorm times appropriate Sobolev bounds, we obtain bounds of Fa(u) and Fu(u, a) in suitable

10See theorem 7.4 in [16] and theorems 9.19 in [22] respectively.
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Sobolev norms. (Morrey’s inequality states that, when p > n, functions f ∈ Wm,p(Ω) satisfy

‖f‖C0,α (Ω) ≤ CM‖f‖W1,p(Ω), (7.21)

where α ≡ 1 − n/p and CM > 0 is a constant depending only on n, p andΩ ; cf. [3, ch. 5].) Combining these
bounds with the above elliptic estimates (7.19) and (7.20) generates estimates for ak+1 ∈ Wm,p(Ω), Ψ ∗

k+1 ∈
Wm,p(Ω), y∗

k+1 ∈ Wm+2,p(Ω) and then uk+1 ∈ Wm+1,p(Ω), in terms of (uk, ak), for ε > 0 sufficiently small.
For details see [5].

Theorem 7.2. There exists (u, a) such that the sequence (uk, ak)k∈N converges to (u, a) in Wm+1,p(Ω) ×
Wm,p(Ω) as k → ∞, and (u, a) solves (7.16).

Proof. In order to establish convergence of the sequence of iterates (uk, ak)k∈N in Wm+1,p(Ω) ×
Wm,p(Ω), we require estimates on the differences ak ≡ ak − ak−1 and uk ≡ uk − uk−1, in terms
of the corresponding differences of source terms, Fu(uk, ak+1) ≡ Fu(uk, ak+1) − Fu(uk−1, ak) and
Fa(uk) ≡ Fa(uk) − Fa(uk−1). Combining the elliptic estimate (7.19) and (7.20) with source estimates
(for which we use that Wm,p is closed under multiplication when m ≥ 1 and p > n, by Morrey’s
inequality), the main estimate proven in [5] is the following Sobolev space estimate which holds
for ε > 0 sufficiently small.

Lemma 7.3. Assume ε ≤ min(ε(k), ε(k − 1)), where ε(k) ≡ 1/4CM‖uk‖Wm+1,p and CM > 0 is the
constant from Morrey’s inequality, which only depends on n, p,Ω . Then

‖uk+1‖Wm+1,p ≤ CeCu(k)
(
ε ‖uk‖Wm+1,p + ‖ak+1‖Wm,p

)
(7.22)

and
‖ak+1‖Wm,p ≤ ε CeCa(k) ‖uk‖Wm+1,p , (7.23)

where Ce > 0 is the constant resulting from applying (7.19) and (7.20) and

Cu(k) ≡ C(M)
(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p + ‖ak+1‖Wm,p

)
(7.24)

and
Ca(k) ≡ C(M)

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p

)
, (7.25)

for some constant C(M) > 0 only depending on m, n, p,Ω and M.

We now establish the induction hypothesis controlling the growth of the iterates allowed by
(7.22)–(7.23) due to nonlinearities, and bound the iterates in the appropriate Sobolev spaces.

Lemma 7.4. For some k ∈ N, assume the induction hypothesis

‖uk‖Wm+1,p(Ω) ≤ 4 C0C2
e . (7.26)

Let Ce > 1 and set ε1 ≡ min(1/(4C2
e C(M)(1 + 2CeC0 + 4C2

e C0)), 1/16CMC0C2
e ). If ε ≤ ε1, then, for each

l ∈ N, we have ε1 ≤ ε(k + l) and the iterates satisfy ‖ak+l‖Wm,p ≤ 2C0Ce and ‖uk+l‖Wm+1,p ≤ 4C0C2
e .

Combining the induction assumption (7.26) with our estimates (7.22)–(7.23) to control the
nonlinearities, we prove in [5] that for ε ≤ ε1 the estimate

‖uk+1‖Wm+1,p + ‖ak+1‖Wm,p ≤ ε C(M)‖uk‖Wm+1,p (7.27)

holds for some constant C(M) > 0 which depends only on m, n, p, Ω and M. In the final step,
assuming ε ≤ min(ε1, 1

C ), we use a geometric sequence argument to show that (uk, ak)k∈N is a
Cauchy sequence in the Banach space Wm+1,p(Ω) × Wm,p(Ω) which then implies convergence to
a solution to (u, a) of (7.16).11

11Note, convergence of ψ∗
k and y∗

k follows directly from the convergence of ak and uk , because the auxiliary iterates ψ∗
k and

y∗
k are only coupled to the equations for ak and uk through the boundary data in (7.11), which we estimate using the ‘Trace

Theorem’ together with elliptic estimates and bounds on the nonlinear sources in terms of uk (cf. [5]).
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We now prove the curvature bound (2.8). By lemma 7.4, using also the convergence of uk to u
in Wm+1,k and convergence of ak to a in Wm,k, we find

‖u‖Wm+1,p ≤ 4 C0C2
e and ‖a‖Wm,p ≤ 2C0Ce. (7.28)

Now, by our scaling ansatz (7.15) we have J = I + εJ∗, Γ̃ = εΓ̃ ∗ and A = εa, and thereby (I − J, Γ̃ ) =
εu. So, using that εC0 = ‖(Γ , dΓ )‖Wm,p(Ω) by (7.14) and (7.13), the bounds in (7.28) imply the sought
after estimate (2.8). This completes the proof of theorem 2.4 (see [5] for details). !

Note, the iteration scheme converges without the need to restrict to a subsequence, and
thereby supplies an explicit numerical algorithm for constructing coordinate systems of optimal
regularity.

8. Proof of theorem 2.5
The optimal regularity result of theorem 2.5 is a direct consequence of theorems 2.2 and 2.4. Only
estimate (2.9) of theorem 2.5 requires a proof at this point. For this consider, the equation

&Γ̃ ′ =&Γ̃ − d
(
〈dJ−1; dJ〉 + J−1〈dJ;Γ − Γ̃ 〉

)
, (8.1)

which is derived in [4] (cf. equation (4.32) of [4]). (Note, equation (8.1) yields &Γ̃ ′ ∈ Wm−1,p(Ω)
in the proof of theorem 2.2.) We denote with Ω the domain in which a solution (J, Γ̃ , A) exists
by theorem 2.5. Combining now standard elliptic estimates for the Euclidean Laplacian in (8.1)
with estimates for the nonlinear right-hand side of (8.1), employing Morrey’s inequality and the
resulting closedness of Wm,p under multiplication, one obtains the estimate

‖Γ̃ ′‖Wm+1,p(Ω ′) ≤ C(M)
(
‖Γ̃ ‖Wm+1,p(Ω) + ‖I − J−1‖Wm+1,p(Ω)‖I − J‖Wm+1,p(Ω)

+ ‖J−1‖Wm+1,p(Ω)‖I − J‖Wm+1,p(Ω)
(
‖Γ ‖Wm,p(Ω) + ‖Γ̃ ‖Wm,p(Ω)

))
, (8.2)

for every compactly contained subset Ω ′ of Ω , where here and subsequently we denote with
C(M) > 0 a universal constant depending only on Ω ′, Ω , p, n, m and the initial bound M. Now,
by lemma 6.1 in [5], we have ‖I − J−1‖Wm+1,p(Ω) ≤ C(M)‖I − J‖Wm+1,p(Ω). Recalling that ε C0 =
‖(Γ , dΓ )‖Wm,p(Ω) by assumption (7.13), estimate (2.8) of theorem 2.4 thus gives us

‖Γ̃ ‖Wm+1,p(Ω) + ‖I − J‖Wm+1,p(Ω) + ‖I − J−1‖Wm+1,p(Ω) ≤ ε C(M)C0. (8.3)

From (8.3), since ε > 0 meets the upper bound ε ≤ ε1 of lemma 7.4, we directly obtain the bounds

‖J−1‖Wm+1,p(Ω) ≤ C(M) and ‖J‖Wm+1,p(Ω) ≤ C(M). (8.4)

Now substituting (8.3), (8.4) and ε C0 = ‖(Γ , dΓ )‖Wm,p into (8.2), we obtain the estimate

‖Γ̃ ′‖Wm+1,p(Ω ′) ≤ C(M) ‖(Γ , dΓ )‖Wm,p(Ω). (8.5)

By (5.2), the connection in y-coordinates is (Γy)αβγ = Jαk (J−1)i
β (J−1)j

γ Γ̃
′k

ij , so

‖Γy‖Wm+1,p(Ω ′) ≤ CM‖Γ̃ ′‖Wm+1,p(Ω ′)‖J−1‖2
Wm+1,p(Ω ′)‖J‖Wm+1,p(Ω ′), (8.6)

by Morrey’s inequality (7.21). Estimating the right-hand side in (8.6) by (8.5) and (8.4) gives the
sought after estimate (2.9) and completes the proof of theorem 2.5. !

9. Discussion of the Cauchy problem in general relativity
We now discuss the difficulties one encounters when trying to smooth non-optimal connections to
optimal regularity using hyperbolic PDE methods in the 3 + 1 formulation of the Cauchy problem
in GR. The 3 + 1 framework derives regularity of a solution from the regularity of Cauchy data
by PDE methods, assuming a gauge condition [20]. The gauge condition determines a coordinate
system in which the regularity of the space–time metric can be measured. The current 3 + 1
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hyperbolic PDE methods for the Einstein equations require the assumption that the induced
metric be one derivative more regular than the second fundamental form (or alternatively that
the second fundamental form must be one order more regular than the curvature [25]), and
deduce from this that the space–time metric has the regularity of the induced metric given on the
Cauchy surface [20]. The second fundamental form accounts for the embedding of the induced
metric, and correspondingly its formula involves the connection coefficients from the ambient
space–time, so the second fundamental form, in general, inherits the regularity of the space–
time connection. Thus to use the 3 + 1 framework to regularize a non-optimal metric by one
order (when its connection has the same regularity as the curvature), one has to find a gauge
condition and a Cauchy surface such that the induced metric and induced second fundamental
form both have one more order of regularity than they exhibited in the original non-optimal
space–time coordinate system. The difficulty is that although the induced metric is positive
definite, and might be regularized using harmonic coordinates for that metric, the fact that the
formula for the second fundamental form involves the space–time connection means the problem
of regularizing the second fundamental form on a Cauchy hypersurface in a coordinate gauge
that also regularizes the metric on that surface appears formidable. Moreover, all of this has to
be accomplished while coupling the hyperbolic equations to the matter model, and hyperbolic
PDEs at low regularities are difficult (e.g. the deep analysis in [25] required a thousand pages to
complete just the vacuum case).12

We conclude that the 3 + 1 framework will estimate a non-optimal solution as being one order
less regular than it really is, unless a procedure is given for finding a gauge condition and a
Cauchy surface such that the induced metric and induced second fundamental form both have
one more order of regularity than they exhibit in the original non-optimal space–time coordinate
system. Without such a procedure, the Cauchy problem estimates non-optimal solutions as one
order less regular than they really are, and in this sense, the Cauchy problem is incomplete in
each Sobolev space. Uhlenbeck’s methods in [11] are based on elliptic estimates derived from a
Laplace–Beltrami type operator of a positive definite metric in Coulomb gauge. Making the same
ideas work to obtain the results in [11] using the wave operator associated with the Laplace–
Beltrami operator of Lorentzian metrics in harmonic coordinates is problematic because of the
need to regularize initial data required for the evolution.

In summary, our results are independent from, do not compete with, and complement the
body of literature on the GR Cauchy problem because we establish that non-optimal solutions
can always be regularized to meet the assumptions required for the second fundamental form
in 3 + 1 formulations of the initial value problem. In our theory optimal regularity is obtained
by coordinate transformations constructible by explicit algorithms for generating solutions of the
elliptic RT-equations, for general L∞ connections on the tangent bundle of arbitrary manifolds,
regardless of matter sources, regardless of symmetries, and regardless of metric signature. This
does not follow from the current technology of the Cauchy problem in GR even in the case
of vacuum, essentially because those methods derive regularity of solutions from the induced
metric (or curvature) and induced second fundamental form on Cauchy surfaces, starting with the
assumption that the induced metric is one derivative more regular than the second fundamental
form, and for non-optimal connections, they are both one order below optimal.

10. Concluding remarks
A major problem in mathematical physics is how to extend the estimates obtained by elliptic
methods in Riemannian geometry (e.g. Uhlenbeck’s papers [11,26], topic of the 2019 Abel Prize
and 2007 Steele Prize) to the Lorentzian setting of physics. Uhlenbeck’s results (theorems 1.3
and 1.5 of [11]) use the elliptic Laplace–Beltrami operator of an underlying Riemannian metric

12Referees requested that we address the issue as to whether the recent resolution of the L2-boundedness conjecture in vacuum
space–times [25] has implications to the problem of optimal regularity. First, the L2 theory in [25] neither addresses nor
identifies the problem of optimal regularity. The L2 theorem as stated in theorem 1.6 of [25] assumes a weak solution of the
vacuum Einstein equations, together with assumptions regarding the restriction of the solution to a Cauchy surface, and
from this deduces regularity of the space–time curvature. So theorem 1.6 of [25], being based on the 3 + 1 formulation of
the Cauchy problem in GR, requires the assumption that the second fundamental form be one order more regular than the
curvature on that Cauchy surface, which is not true for non-optimal solutions. Finally, the L2 theorem applies currently only to
vacuum space–times, while our results apply to general L∞ connections on tangent bundles of arbitrary manifolds, regardless
of matter sources, symmetries or metric signature, a setting even more general than GR.
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to estimate the associated connection as one derivative above the curvature, by eliminating
uncontrolled derivatives in the connection via transformation to Coulomb gauge. The extra
derivative then yields Uhlenbeck’s celebrated compactness result. A dominant point of view
seems to be that to extend the Riemannian methods of [11,27] to the Lorentzian case, one must
derive results from the nonlinear wave equation in harmonic type coordinates, analogous to
these elliptic methods of Riemannian geometry. However, the RT-equations introduced here show
that, associated with any connection on the tangent bundle of an arbitrary manifold, there exists
an elliptic system entirely different from the Laplace–Beltrami based elliptic system, and this
system also lifts the regularity of the connection one order above the curvature—but it applies
to metric connections associated with Riemannian, Lorentzian and semi-Riemannian metrics
alike, independent of metric signature. Our take on this is that the hyperbolic PDE approach
is too complicated, and the elliptic RT-equations are simpler, essentially because extracting
regularity from initial data in a hyperbolic problem is entirely different from extracting regularity
from source terms in elliptic problems.13 We propose the RT-equations to bridge the gap in
analysis between Riemannian and Lorentzian geometry, by extending elliptic regularity theory
to semi-Riemannian manifolds without requiring the assumption of positive-definiteness.
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