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A PARADIGM FOR TIME-PERIODIC SOUND WAVE
PROPAGATION IN THE COMPRESSIBLE EULER EQUATIONS*

BLAKE TEMPLE! AND ROBIN YOUNG*

Abstract. We formally derive the simplest possible periodic wave structure consistent with
time-periodic sound wave propagation in the 3 X 3 nonlinear compressible Euler equations. The
construction is based on identifying the simplest periodic pattern with the property that compression
is counter-balanced by rarefaction along every characteristic. Our derivation leads to an explicit
description of shock-free waves that propagate through an oscillating entropy field without breaking
or dissipating, indicating a new mechanism for dissipation free transmission of sound waves in a
nonlinear problem. The waves propagate at a new speed, (different from a shock or sound speed),
and sound waves move through periods at speeds that can be commensurate or incommensurate
with the period. The period determines the speed of the wave crests, (a sort of observable group
velocity), but the sound waves move at a faster speed, the usual speed of sound, and this is like a
phase velocity. It has been unknown since the time of Euler whether or not time-periodic solutions
of the compressible Euler equations, which propagate like sound waves, are physically possible, due
mainly to the ubiquitous formation of shock waves. A complete mathematical proof that waves with
the structure derived here actually solve the Euler equations exactly, would resolve this long standing
open problem.
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1. Introduction. Since Euler derived the equations in 1752, it has been an open
problem whether or not time periodic solutions of the compressible Euler equations
exist, and what the nature of their structure is if they do exist. Euler’s derivation
established the theory of music and sound when he linearized the equations and ob-
tained the same wave equation in the pressure that his colleague D’Alembert had
obtained several years earlier to describe the vibrations of a string. Yet to this day
it is still unknown whether or not the fully nonlinear equations support time-periodic
solutions analogous to the sinusoidal oscillations of the linear theory [3]. After Rie-
mann demonstrated in 1858 that shock waves can form in smooth solutions of the
equations, most experts have believed that time periodic solutions of the compress-
ible Euler equations, (that propagate like sound waves), were not mathematically
possible due to the formation of shock waves, [24]'. The basic intuition is that, when
a periodic wave is nonlinear, each period will decompose into a rarefactive region,
(characteristics spreading out in forward time), and a compressive region, (character-
istics impinging in forward time), and in the compressive part the “back will catch
up to the front”, causing it to break, (something like a wave breaking on the beach),
forming a shock-wave; then the wave amplitude will decay to zero by shock-wave
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IThere are trivial time periodic solutions that represent entropy variations which, in the absence
of dissipative effects, are passively transported. There is no nonlinear sound wave propagation in
these solutions. When we speak of time periodic solutions, we always mean with nonlinear wave
propagation.
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dissipation. Entropy strictly increases in time like a Liapunov function when shock-
waves are present, so the presence of shock-waves is inconsistent with time periodic
evolution. This intuition was partially validated in the definitive work of Glimm and
Lax [9], which established that when temperature or entropy is assumed constant,
solutions of the resulting 2 x 2 system, starting from periodic initial data, must form
shock waves and decay, by shock wave dissipation, at rate 1/¢.

The idea that time periodic solutions were possible for sound wave propagation
through an oscillatory entropy field was kindled by work of Majda, Rosales and Schon-
beck [19, 20, 21], and Pego [22], who found periodic solutions in asymptotic models of
the compressible Euler equations®. Our work here was motivated by our own earlier
work [33, 28, 27] on existence of solutions and [34, 35, 37] on model problems, and by
the numerical work of Rosales, Shefter and Vaynblat [25, 31], who produced detailed
numerical simulations of the Euler equations and asymptotic models starting from
space-periodic initial data. These studies indicate that periodic solutions of the 3 x 3
compressible Euler equations do not decay like the 2 x 2 p-system, and presented
observations about the possibility of periodic, or quasi-periodic attractor solutions.

In this paper we (formally) derive the simplest wave pattern consistent with the
condition that compression and rarefaction are in balance along every characteristic.
To start we prove that nonlinear simple waves can change from Compressive (C)
to Rarefactive (R), and back again, upon interaction with an entropy jump. We
then formally classify “consistent” configurations of R’s and C’s with the idea of
locating the simplest periodic pattern for which compression and rarefaction are in
balance. From this we produce the simplest (formal) nontrivial wave configuration
that balances compression and rarefaction along every characteristic. In this simplest
pattern, the solution oscillates in space between two different entropy levels, and each
backward and forward characteristic passes through four different compressions and
four different rarefactions, crossing eight entropy levels, before it periodically returns
to its initial state?.

The authors believe that the connection between long time existence of dissipation
free sound wave transmission, and the combinatorial problem of balancing compres-
sion and rarefaction along all characteristics is new, and will lead to interesting wave
structures more complicated than the simplest structure derived here. Moreover, we
conjecture that a solution of compressible Euler, starting from space-periodic initial
data, will in general decay in time to a time periodic, or perhaps quasi-periodic solu-
tion, that balances compression and rarefaction along characteristics, and will not in
general decay to the constant state average in each period as in [9)].

In [29] we describe and solve the linearized problem associated to nonlinear pe-
riodic solutions having the structure described here and recast the fully nonlinear
existence problem as a perturbation problem. We then characterize the spectrum of
the linearized operator, and show that it is invertible and diagonal on the complement
of its kernel, which is one-dimensional. In [30], we further reduce the problem to an
Implicit Function Theorem with small divisors. We also show that periodic solutions
with the wave structure derived here exist to within arbitrarily high Fourier mode
cutoff. Taken all together, we believe this constitutes what we might call a “physical”

2See [13, 12, 16, 17] for blowup results insufficient to rule out periodic solutions, and [10, 11] for
an example of a periodic solution in a quasilinear system.

3The discontinuities at the entropy jumps are time-reversible contact discontinuities which, unlike
shock waves, are allowable in time-periodic solutions because they entail no dissipation, or gain of
entropy, c.f. [26].
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proof that periodic solutions having the wave structure we have identified exist?.

In Section 2 we introduce the compressible Euler equations, review the Lagrangian
formulation of the equations, and introduce new variables z and m useful for the
subsequent analysis. In Section 3 we define Compression (C') and Rarefaction (R)
along a characteristic in a general solution, and show that the R/C character does
not change when the entropy is constant. In Section 4 we analyze the interaction
of simple waves with a single entropy discontinuity, and show that there are exactly
twelve different possible R/C patterns that characterize such interactions, and in
eight of these cases one of the nonlinear waves changes its R/C character across the
interaction. Our analysis shows that the R/C pattern of an interaction is uniquely
determined by the signs of the t-derivatives of the Riemann invariants of the nonlinear
waves on either side of the entropy discontinuity. Of the 16 possible labellings of
forward and backward waves in and out of an interaction by labels of R and C, we
show that precisely four of these cannot be realized in an actual solution: these are
the cases in which both back and forward waves change their R/C character at one
such interaction, which cannot happen. The result is that one family of nonlinear
waves can change from compressive to rarefactive, or vice versa, upon interaction
with an entropy discontinuity, only in the presence of a wave of the opposite family
that transmits its R/C character through the discontinuity. Explicit inequalities on
the derivatives of the Riemann invariants on either side of the entropy discontinuity
are derived that determine the R/C character of all the waves in and out of the
interaction. The results are recorded in Figures 4 and 5, distinguished by whether the
entropy increases or decreases across the entropy jump.

In Section 5 we use the results of Section 4 to construct the simplest global periodic
pattern of R/C-wave interactions consistent with the tables of R/C interactions at
the entropy levels, and consistent with the condition that R’s and C’s are balanced
along every backward and forward characteristic. We then show that this pattern
is consistent with a nontrivial global periodic structure of states. We conclude with
Figures 7 and 9, which provide a detailed picture, or “cartoon”, of a solution consistent
with this global periodic structure. Concluding comments are made in Section 6.

2. The compressible Euler equations. The compressible Euler equations de-
scribe the time evolution of the density p, velocity u = (u!,u?, u?) and energy density
E of a perfect fluid under the assumption of zero dissipation and heat conduction,

pi + div[pu] = 0, (1)
(pu')e + div]putu] = ~Vp, )
Ey 4+ div[(E + p)u] = 0,. (3)

where E = %pu2 + pe is the sum of the kinetic energy %pu2, and specific internal
energy e, and p is the pressure. An equation of state relating p, p and e is required
to close the system, and we assume the equation of state for a polytropic, or gamma
law gas,

cr S
e=c. T = —= exp{CT}, (4)
de

4We draw the analogy with the regular and Mach reflection wave patterns, for which a complete
mathematical proof remains an open problem.
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Here 7 = 1/p is the specific volume, S is the specific entropy determined by the second
law of thermodynamics

de = TdS — pdr, (6)

and -y denotes the adiabatic gas constant, equal to the ratio ¢,/c, of specific heats,
[4, 26]. The system of compressible Euler equations with the polytropic equation
of state is fundamental to mathematics and physics, and can be derived from first
principles. The gamma law relations (4) and (5) follow directly from the equipartition
of energy principle and the second law of thermodynamics for a molecular gas, leading
to

v =1+2/3r, (7)

where r is the number of atoms in a molecule [15]. Equations (1)-(3) with (4), (5)
are the starting point for the nonlinear theory of sound waves, and can be regarded
as the essential extension of Newton’s laws to a continuous medium.

For shock-free solutions, using (6), the energy equation (3) can be replaced by
the adiabatic constraint

(pS); + div(pSu) = 0, (8)

which expresses that specific entropy is constant along particle paths [26].
For sound wave propagation in one direction, the equations reduce to the 3 x 3
system

pr+ (pu)e =0, (9)
(pu): + (pu® 4+ p)e = 0, (10)
Ei+ (E+p)u)e =0; (11)

and letting = denote the material coordinate,

7= / p de, (12)

we obtain the equivalent Lagrangian equations

Tt — Ug = Oa (13)
uy +pg =0, (14)
E; + (up), = 0. (15)

In the Lagrangian frame the adiabatic constraint (8) reduces to
St = 07 (16)

which on smooth solutions can be taken in place of (15), c.f. [4, 26]. Henceforth, we
base our analysis on the Lagrangian equations.

The Lagrangian system (13)-(15) has three characteristic families, and we refer to
the waves in these families as 1-, 2- and 3-waves, ordered by wave speed. The 1- and 3-
families are genuinely nonlinear, and we alternatively refer to waves in these families
as backward (or “—”) and forward (or “47) waves, respectively. The Lagrangian
spatial coordinate x moves with the fluid, so in Lagrangian coordinates backward
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waves always propagate at negative speed, and forward waves with positive speed.
The 2-wave family consists of the linear family of contact discontinuities which we
refer to as entropy waves, (or O-waves). These entropy waves are passively transported
with the fluid, and so are stationary in the Lagrangian framework. In general, the
nonlinear waves can compress into shock waves in forward time, but because shock
waves are incompatible with periodic propagation, we restrict our attention only to
smooth simple waves, c.f. [26, 12, 14].
The thermodynamic relation (6) implies

0
= =T 1
€s aSe(Tv S) ) ( 7)
0
er = —e(7,8) = —p, (18)
or
and our assumption (4) yields a general polytropic equation of state of form
p=Kr e, (19)
with
R
= +1. (20)

Here R and ¢, are defined via the ideal gas relations,
pr = RT, (21)
e=c,T, (22)

and K is a constant determined by the choice of zero state of S [4, 15, 26]. The
(Lagrangian) sound speed is then given by

c=+—pr = \/KVT_%HeS/ZCT. (23)

We now introduce the variables m and z in favor of .S and 7, where

m = e3/%r (24)
and
o 0WEKY o
z= Cdr = PyT*Tl, (25)
s m v—1
where we have used (23) and (24). It now follows that
r=K.2 v, (26)
9 2
p=K,m 271, (27)
c=c(z,m) = Kcmz%i, (28)
where K., K, and K. are constants given by
20 /KA\ 7T
K, = < 7) : (29)
v—1
K,=KK.", (30)
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Note that (24) and (25), together with the chain rule, imply that

dr m

== e )
Op B
&(z,m) = mec, (33)
Op _
P (emy =2, (39)

For C! solutions, the Lagrangian equations (13)-(16) transform into the quasilinear
system

%+ —uy =0, (35)
m

ug + mezy + 2£mz =0, (36)
m

my =0, (37)

where we have taken (37) in place of (16), valid for smooth solutions.

When either entropy or temperature are assumed constant, the entropy waves are
frozen out, and the Lagrangian form of the Euler equations (9)-(11) reduces to the
2 x 2 p-system (13), (14), with S = const., p = p(p), c.f. [26]. In Section 3 below
we assume S = const. and show that for the resulting p-system the nonlinear waves
cannot change their R/C-character under any sort of wave interaction. (This is the
basis for the 1/t decay rate obtained in [9].)

3. Rarefactive and compressive simple waves. Recall that a simple wave
in a two-dimensional spacetime region (x,t) €  C R? is a solution whose image is
locally one-dimensional: that is, the values U(z,t) lie on a curve, which is necessarily
the integral curve of the corresponding eigenvector of the flux matrix.

It is well known that entropy does not change across back and forward simple
waves [26], so in order to study rarefactive and compressive simple waves, in this
section we assume that S, and hence m, are constant. In this case, system (35)-(37)
reduces to

2t Sy =0, (38)
m
ug +mezy = 0. (39)
Let U denote the vector of states
U=(z,u).

The Riemann invariants associated with system (38)-(39) are

r=u—mz, (40)

s=u+mz, (41)
which satisfy

e —cry =0, (42)

st + ¢s, = 0. (43)
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u

Fic. 1. Riemann invariant coordinates.

Since the transformation 7 — z encapsulates the nonlinearity of the Riemann invari-
ants, using (40), (41) we can identify the (z,u) and (r, s)-planes. In (z,u)-space the
r-axis is upward with slope —m and the s-axis is upward with slope m, as drawn in
Figure 1.

From (42), along backward simple waves the characteristics satisfy

dx
_— = —C7 44
pr (44)
and r = const. along the characteristic, while s is constant along an opposite charac-
teristic that passes through the wave. Thus, if subscripts L, R refer to states on the
left and right of a backward simple wave, respectively, then
Sr = SL,
ug —ur = m(zr — zg). (45)

Similarly, along forward simple waves the forward characteristics satisfy
dx
— =g, 46
- (46)
the Riemann invariant s = const. along the characteristic, r is constant along an

opposite characteristic that passes through the wave, and across a forward simple
wave we have,

Sr = 5L,
ur —ur =m(zg — 2). (47)
Letting A and B denote the states ahead of and behind the wave, respectively,
(so A = L for a backward wave, A = R for a forward wave), both (45) and (47) reduce
to the single condition
Sr=SL,
ur —up =m(za — 2p), (48)
valid for all simple waves.
A simple wave is rarefactive (R) or compressive (C') according to whether the

sound speed ¢ decreases or increases from ahead (A) to behind (B) the wave, respec-
tively. Since de/dz > 0, it follows that in all cases a simple wave is rarefactive or
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compressive according to

Rarefactive iff z4 > zp,

Compressive iff zp > z4. (49)

Note that we allow z4 = zp in both Compressive and Rarefactive waves, so that
constant states can be treated as both rarefactive and compressive. The following
proposition now states that the R/C character of a simple wave cannot be altered by
interaction of waves at a constant entropy level:

ProrosiTION 1. When simple waves interact at a constant entropy level, the
R/C character of back/forward nonlinear waves is preserved across the interaction.

To see this, note that it follows from (38), (39) that when waves interact, char-
acteristics bend but states change linearly in the (z,u)-plane, or equivalently in
the (r,s)-plane of Riemann invariants. This is made precise in the following
North/South/East/West (NSEW) lemma, c.f. [38, 36].

LEMMA 2. Consider two simple waves, separated by constant states at timet = 0,
that begin interacting at time t = t1 > 0, interact for time t1 < t < ta, and then
separate from the interaction at time t = to. Let Uy and Ug denote the left most
and right most constant states, and let Ug and Uy denote the intermediate constant
states before and after interaction. Then the following relations hold:

ugp —uy =m(zg — z2n), (50)
uny —uw = m(zw — 2n), (51)
up —us = m(zs — zg), (52)
us —uw = m(zs — zw). (53)

Proof. The interaction is depicted in Figure 3, but without the entropy jump.
The lemma follows directly from our expression (48) for all simple waves. O

By eliminating  from (50)-(53), we see that the change in z across the backward
and forward waves is the same before and after interaction, (e.g. zg — 2y = 25 — 2w,
etc.). In particular, Lemma 2 implies that the z-strength and the R/C character of
simple waves is not changed across an interaction, and the Proposition follows at once.

More generally, the local R/C character of a general smooth solution can be
determined from the partial derivatives r; and s;, as follows. Since r is constant along
backward characteristics, r; gives the change in r across the backward wave as time
increases (measured along the opposite characteristic on which s = const.). Since

Oc s—r
—_— d p—
8z>0 and =z o

(54)

the sign of r, determines whether ¢ increases or decreases across the backward wave,
and thus determines whether the backward wave is compressive or rarefactive. If
ry > 0, then ¢ decreases from ahead to behind across the backward wave, so the wave
is rarefactive, and if r; < 0 the backward wave is compressive. Similarly, if s; > 0,
the forward wave is compressive, while if s; < 0, it is rarefactive. This then motivates
the following definition:
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DEFINITION 3. The local R/C character of a general smooth interacting solution
is defined (pointwise) by:

Forward R iff s; <0, (55)
Forward C' iff s; >0, (56)
Backward R iff r; >0, (57)
Backward C iff r <O0. (58)

Again, the definition allows both R and C' to apply to constant states. Figure 2
depicts these regions in the (2, %) tangent plane. The following theorem makes precise
the statement that rarefaction and compression is preserved for smooth solutions when
the entropy is constant.

THEOREM 4. For smooth solutions of the compressible Fuler equations at a con-
stant entropy level, the local R/C character does not change along back and forward
characteristics.

Proof. Consider a characteristic in a smooth solution at a constant entropy level.
Assume without loss of generality that it is a forward characteristic. Draw a charac-
teristic diamond in an e-neighborhood of the given characteristic, and apply NSEW
Lemma to see that the mapping of values of s along the transverse back characteristic
at the start of the original characteristic, to values of s along the back characteristic
at the end, is 1 — 1 and onto in some € neighborhood. Thus the monotonicity of
s along the back characteristic transverse to the original characteristic is preserved
along the original characteristic. Since characteristics always have non-zero speed, it
follows directly that this monotonicity is preserved in the ¢ direction as well, thereby
proving the theorem. O

Fic. 2. R/C character as determined by derivatives of the Riemann coordinates.

4. The R/C structure of wave interactions at an entropy discontinuity.
We now use (55)-(58) together with the Rankine-Hugoniot jump conditions to deter-
mine necessary and sufficient conditions for a nonlinear wave to change its R/C' value
at an entropy jump. So consider the interaction of smooth simple waves at a zero
speed discontinuity in the entropy that separates constant entropy states Sy, and Sg.
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The Rankine-Hugoniot jump conditions® for discontinuous solutions of (13)-(15) are

ofo] = —[ul,
olu] = o], (59)
o[B] = [up),

where ¢ is the speed of the discontinuity, and as usual, square brackets around a
quantity denote the jump, [f] = fr — fr. For zero speed entropy waves o = 0, (59)
is equivalent to [u] = 0 = [p]. Thus, using (27) we rewrite the entropy jump as

Uy = UR, (60)
-1
ZR = ZL, (TrLL) i , (61)
mp
and so, by (28), also
.
=
MRZR = ML2L (:;;) , (62)
1
. (”“) . (63)
mpg

Now consider the interaction of two smooth simple waves at an entropy discon-
tinuity separated by constant entropy values Sy and Sgi. Assume that the nonlinear
waves are separated before time t; > 0 and after time t5 > t;. Let Uy and Ug
denote the left (West) most and right (East) most constant states, and let Ugr, Usgr
and Unp,Ungr denote the intermediate states between the waves on the left and right
side of the discontinuity, at times ¢ < ¢; (South) and ¢ > t5 (North); that is, before
and after interaction, respectively, as depicted in Figure 3. Now let UL (¢) and Ug(t)
denote the values of U = (z,u) on the left and right sides of the entropy jump, re-
spectively. Then the interaction occurs for ¢; < ¢ < t5, and at the discontinuity we
have UL(tl) =Ugy, UL(tQ) = Upny, and UR(tl) = Ugg, UR(tQ) =Upng.

Fi1c. 3. Two waves crossing at an entropy jump: when the forward wave changes from R to C,
the backward wave cannot.

5For weak solutions the Rankine-Hugoniot jump conditions for (13)-(15) are equivalent to the
Rankine-Hugoniot jump conditions for the original Euler equations, c.f. [26, 32]
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By (55)-(58), the backward wave will change its R/C value at the entropy jump
iff the sign of 7 = 4 — m2 changes across the jump, and the forward wave will change
R/C character at the entropy jump iff the sign of § = @+ mZ changes sign across the
jump. But by (60), (62), we have

ur(t) = ur(t), (64)

mprzr(t) = n’mzﬂlﬁ)qf-j"7 (65)

where

qf = (mR) . (66)

mr

Thus, for example, a backward wave changes from C to R across the entropy jump
iff 7, = ur —mpZ, <0 and g = g — mprzZr > 0, which in light of (64), (65) is
equivalent to quL,éL < 4y < mrzr. That is, we can determine the R/C changes
across the entropy jump from inequalities on the time derivative of the solution at the
left hand side of the entropy jump alone. Doing this in all cases yields the following
theorem. For notation let, for example, R} — C.f, mean that the + (forward) wave
changes from rarefactive (R) to compressive (C) in forward time across the entropy
jump; and for example, C;, — R, means that the — (backward) wave changes from
compressive to rarefactive in forward time across the entropy jump, c.f. Figure 3. We
then have the following theorem:

THEOREM 5. A nonlinear wave changes its R/C value at an entropy jump when
one of the following inequalities hold:

Ry, — Co it qfimpzp <ip <mpzp, (67)
Cin — Ry it mpip <ip <qfmpir, (68)
Rf, — Cl, iff —qfimpiy <ip < —mpi, (69)
Ct — RY, iff  —mpip <ip < —qfmrir. (70)

Now note that dividing the inequalities in (67)-(70) through by %, we obtain
bounds on the derivative ‘é—;‘ = ’ZL—E on the left hand side of the entropy jump that
determine exactly when a wave changes its R/C character. Of course, the inequalities
change depending on whether 2 < 0 or 2 > 0.

More generally, consider the lines through the origin of slope +m, and +q¢¥mp,
in the (27, ur)-plane. These determine the boundaries between eight angular wedges,
in each of which the R/C character of the interactions is constant. That is, the R/C
character of incoming and outgoing waves on both sides of the jump are determined
in each of these wedges. There are two cases, depending on whether ¢¥ given by (66)
is smaller or larger than unity, which is just whether m; < mgr or my > mpg. In
other words, the eight angular regions in the (Z,)-plane, determine the signs of the
derivatives of the Riemann invariants 7 and s uniquely on both sides of the entropy
jump. The signs of 7 and $ in each region are determined by inequalities similar to
(67)-(70) that follow from the relations between (u, z) and (r,s) together with the
jump relations (64), (65). These regions, together with the R/C character of the
interactions in each region, are diagrammed for the cases my < mgr and mgr < mg in
Figures 4 and 5, respectively.
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]

gt my, W aFmy,

F1G. 4. Tangent space showing the possible R/C wave structures when mp < mg.

Each separate region in Figures 4 and 5 is labeled by a box containing four values
among R and C that label the R/C value of the wave in the corresponding position
in Figure 3. For example, the upper right hand value of R/C corresponds to the
outgoing forward wave, and the lower right hand value in each box corresponds to
the incoming backward wave, etc. We will refer to the interaction types in Figures 4
and 5 by the circled numbers and letters that appear in each region of the diagrams.
Interactions in which there is an R/C' change along one of the diagonals are labeled
with numbers (numbers 1 — 4 appear in Figure 4, clockwise; numbers 5 — 8 appear in
Figure 5, counterclockwise), while the interactions in which there is no R/C' change
along a diagonal are labeled with letters W, X, Y, Z.

Note that only twelve of the sixteen possible assignments of R/C to the four
entries of the box actually appear in some region. The ones that do not appear are
exactly the cases in which both the forward and backward waves change their R/C
values simultaneously at the interaction. From this we conclude that this type of
interaction is not possible; i.e., a wave can change its R/C value only if a wave from
the opposite nonlinear family transmits its R/C value through the interaction at the
same time. This reflects the fact that the inequalities (67)-(70) are mutually exclusive:
that is, at most one of them can hold.

5. The simplest periodic structure. Using Figures 4 and 5, and after some
work, we find the simplest periodic array of R’s and C’s consistent with the condition
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F1G. 5. Tangent space showing the possible R/C wave structures when mp > mpg.

that there is an equal number of R’s and C’s along every (characteristic) diagonal,
and such that at the center of every box of R’s and C’s we obtain a consistent label for
a box associated with some interaction diagrammed in Figure 4 or 5. This simplest
formal pattern is diagrammed in Figure 6, and is based on two alternating entropy
levels. To interpret Figure 6, note that the darker vertical lines represent the entropy
jumps in the (x,t)-plane, and at this stage the backward and forward “characteristics”
are formally represented as moving at constant speed £1 through the centers of the
circles.

Two alternations of entropy, yielding four separate entropy levels, are depicted
in Figure 6. The number in the circle at the center of each R/C box in Figure 6,
agrees with the number that labels the corresponding interaction in Figure 4 or 5.
Consistent with our results of Section 4, the boxes of Figure 4 or 5 in which R or C
change along a diagonal, labeled with numbers, appear only at the entropy jumps. For
the wave interaction boxes at constant entropy, away from the entropy jumps, (labeled
by letters), both R and C are transmitted along back/forward characteristics through
the diagonals of the box. Figure 6 depicts one tile of a periodic configuration, and this
tile repeats with a one-half period shift in space for every time period. To generate the
tiling, slide the bottom left corner of the tile, (labeled by the shaded circled number 1),
up and to the right until it is aligned with the corresponding shaded circled number 1
in the middle of the top of the tile. It is not difficult to see that this motion generates
a periodic structure. The “characteristics” in Figure 6, regarded as the diagonal lines
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F1G. 6. The simplest R/C pattern consistent with Figures 4 and 5, in which R and C are in
balance along every + and — characteristic.

that pass through the centers of circled labels, are labeled with R’s and C’s according
to whether a real characteristic would be rarefactive or compressive at the circled
interaction, and the superscript + is appended to identify back/forward directions,
respectively. Note that each + “characteristic” diagonal traces four R’s and four
(s, each at a constant entropy level, before returning to its starting value. (By this
count we identify R’s and C’s on opposite sides of lettered interactions at constant
entropy.) Note that the half period shift contributes to mixing of R’s and C’s along
characteristic diagonals.

We now argue that the R/C pattern in Figure 6 is consistent with a global
periodic structure of states and characteristics in the (x, t)-plane, such that the actual
compression and rarefaction of the characteristics in the (z, t)-plane is consistent with
the R/C pattern of Figure 6. One can see how to accomplish this once one notices
that the ordering of the wave interaction types in time along the left and right sides
of each entropy jump in Figure 6, is consistent with derivatives going around an
(approximately) elliptical shaped curve that cycles once around every time period.
The direction of rotation in (z,u)-space is reversed on opposite sides of each entropy
level, but the rotation direction is the same on the left and right sides of each entropy
jump. Such elliptical shaped curves would have maximum and minimum values of r
and s once in each period, and in an actual solution, these would mark the boundaries
between the rarefactive and compressive regions of the solution. Putting this together,
we are led to the “cartoon” of a time periodic solution depicted in Figures 7 and 8. The
depiction of several tiles set within the global periodic structure is given in Figure 9.

Figure 7 gives a detailed picture of a proposed periodic solution that produces the
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Fic. 7. The characteristic structure of our time-periodic solutions in the (z,t)-plane.
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R/C pattern of Figure 6. The letters and numbers in Figure 7 give the (z,t) positions
of the approximate corresponding states labeled in Figure 8, these states becoming
exact as the solution at each entropy level tends to a constant state. Figure 9 depicts
the periodic tiling of the (z,t)-plane obtained by extending Figure 7 periodically®.

61n fact, we originally constructed Figures 7-8 from the pattern of Figure 6 alone. However, in our
forthcoming paper [29], we derive exact formulas for solutions of the linearized problem that generates
Figures 7 and 8 ezactly, and show that the nonlinear problem can be recast as a perturbation from
these.
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F1G. 8. Ellipses showing periodicity in the (z,u)-plane.

Figures 7-9 strongly indicate the consistency of the periodic pattern displayed, but
of course the actual existence of a periodic solution like this that solves the Euler
equations exactly, remains to be proven.

In Figure 7, the vertical lines mark the entropy jumps, and the solutions on
the left and right of one entropy jump are labeled U \ U , and labeled U | U on
the other, respectively. The solution alternates between two different entropy values
m < m. The wider entropy level depicted in Figure 7 corresponds to the smaller
value m, where, consistent with (63), we have depicted characteristics with faster
speeds. The diagonal lines rising to the left and right through the entropy levels
mark the back and forward characteristics, respectively. The thicker characteristics
mark the maximum and minimum values of r and s at each entropy level, these
values propagating along back and forward characteristics, respectively. We call these
the max /min characteristics. In an actual solution, the back characteristics would be
rarefying where 7t > 0 and compressing where r; < 0, while the forward characteristics
would be compressing where s; < 0 and rarefying where s; > 0, but our cartoon in
Figure 7 depicts a linearized version of a solution in which characteristics are drawn
with the constant speed on each entropy level, c.f. (55)-(58). Note that it is the
disconnections between max/min characteristics at the entropy jumps that produces
the regions where characteristics change from R to C, or vice versa. The solution is
consistent with elliptical shaped curves in (z,u)-space defining values of the solution
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+~

Fic. 9. A single tile set within the global periodic structure of the (z,t)-plane.

on each side of the entropy jumps, depicted in Figure 8. The tangents of slope +m

and £+ in Figure 8 label the max/min values of r = const. and s = const. at

-plane, while Figures 4 and

)

Z,u

(
5 show the (tangent) (Z,)-plane. Thus, e.g., the arc 1-2 in the bottom left ellipse

each entropy level. Note that Figure 8 shows the

mpg. Again, we show in [29]

that Figure 8 is exact for the linearized problem in which wave speeds are assumed
constant on each entropy level, which is the limit of small perturbations of a piecewise

constant solution.

corresponds to region 6 in Figure 5, with mp,
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The letters and numbers in Figure 8 label the (z,u)-state values at the corre-
sponding locations along the vertical entropy jumps labeled in Figure 7. Note that
the numbers increase consecutively in forward time along the forward characteristics
in Figure 7, and the letters increase consecutively in forward time along the back-
ward characteristics. The minimum, maximum value of r occurs along the backward
min, max characteristic labeled by letters a and e, respectively; and the minimum,
maximum value of s occurs along the forward min, max characteristic labeled by
numbers 1 and 5, respectively. Letters and numbers are adorned with "| “and " | " at
the left and right sides of the ™ | m and m | ™ entropy jumps, respectively. The
maz/min letters and numbers determine state values across the entropy jumps via
the jump conditions (64), (65). The remaining lettered and numbered states in Fig-
ures 7, 8 are determined by characteristic connections across entropy levels, (r and s
are constant along backward and forward characteristics, respectively), and the jump
relations across the entropy jumps. That all states lie exactly on the elliptical curves
of Figure 8 assumes that Figure 7 really is a consistent solution. As we have noted,
we show in [29] that Figure 8 is correct in the limit of constant wave speeds at each
entropy level, but in an actual solution the states in Figure 8 would lie on curves
that are perturbations of true ellipses. Note that we imposed the labeling condition
that letters and numbers would increase by one at entropy jumps along characteristics
moving forward in time. Thus one can trace the evolution of the states along a char-
acteristic by following the consecutive numbers/letters around the elliptical curves of
Figure 9. One can also verify that the corresponding labels moving vertically along
one side of an entropy jump traverse the elliptical curves of Figure 8 in clockwise
or counterclockwise order. This is then a consequence of the pattern, and strongly
indicates the consistency of the pattern with an actual solution. Moreover, the fact
that the elliptical curves are traversed in opposite directions in the (z,u)-plane on
opposite sides of the same entropy level is consistent with the assumption that back
and forward max/min characteristics cross exactly once in each level, so the evolution
creates an inversion of the curve at each level. In [29] we will see that this corresponds
to a quarter period evolution of an exact periodic elliptical solution of the linearized
problem.

Note that in Figure 7 the speed of the wave crests is determined by the speed of
the maxz/min characteristics, which is interpreted as the speed of the period. This
is slower than the speed of the characteristics (the sound speed), due to the fact
that corresponding characteristics are disconnected at each entropy jump, and always
jump up in forward time. Thus the speed of the period, which is the effective speed
of these waves, is subsonic. We have thus identified two distinct wavespeeds in our
solution: the speed of the period, which is like a group velocity, and the characteristic
speed, which is like a phase velocity. To our knowledge, this is the first time such
a phenomenon has been identified in a purely quasilinear hyperbolic system. The
corresponding supersonic waves having the structure of our solutions appear to be
ruled out by the asymmetries in Figures 3,4 with respect to mg < mp and mgr > myp,.

Note also that in Figure 7 we have depicted the traces of the max/min charac-
teristics joining every four entropy levels. This is a simplifying assumption that need
not hold in a general periodic solution having the R/C structure of Figure 6. The
effect of this merging of max/min characteristics every four entropy levels is to par-
tition the solution into four regions of rarefaction and four regions of compression in
each period of each entropy level. By propagating these regions forward in time along
characteristics, we see that each such region cycles upward through four consecutive
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regions of rarefaction and four consecutive regions of compression before returning to
its original position in the tile. This makes for a clear image of how the solution in
Figure 7 is propagating.

F1G. 10. A periodic pattern incorporating compression and rarefaction.

The “solution” diagrammed in Figures 7, 8 is a cartoon only because the wave
speeds are not propagating at the exact speed of an exact state assigned to the solu-
tion, and the actual values in the solution will depend on the time periodic elliptical
shaped curve along an entropy level that can serve as an initial condition for the
subsequent evolution in space by (35)-(37). In Figure 7, the characteristic speeds
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Fi1a. 11. The global nonlinear periodic structure in the (x,t)-plane.

are drawn as constant in each entropy level. We show in [29] that this is exact for
the linearized problem. But in a nonlinear problem, the back characteristic speeds
would be compressive/rarefactive between the max/min and min/max back charac-
teristics, respectively, and forward characteristics would be compressive/rarefactive
between max/min and min/max characteristics, respectively. To further demonstrate
the consistency of this periodic pattern, in Figures 10 and 11 we have drawn a periodic
pattern respecting the overall structure of Figures 7 and 8, but such that it correctly
reflects the compression and rarefaction of characteristics in each entropy level.

Figures 10 and 11 are only cartoons because wave speeds are not propagating
at the exact speed of the state assigned to the solution. However, the fact that
such a cartoon can be drawn as exactly periodic for a consistent choice of wave
speeds that correctly reflect compression and rarefaction, the fact that rarefaction
and compression is balanced along every characteristic in the diagram?” and the fact
that there are so many degrees of freedom in the drawing that can be changed while
preserving this periodic structure, convinces us that true time periodic solutions of
(35)-(37) exhibiting this structure, actually exist. A complete mathematical proof of
this is the subject of the authors’ ongoing research.

6. Conclusion. It is the conjecture of the authors that a large class of solutions
of the compressible Euler equations starting from space periodic initial data, will
ultimately decay in time to a solution that balances compression and rarefaction along
characteristics, like the solutions constructed here. We conceive of the mechanism that
drives this as follows: if the initial data is not perfectly tuned to a given initial entropy
profile, then in general shock-waves will form, thereby introducing new entropy states.

7Also, these diagrams represent small perturbations of a linearized solution that exhibits the
structure exactly [29].
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The entropy field will then evolve in time as the shock-waves interact and dissipate
entropy, and the solution will decay until it finds a balance between compression
and rarefaction along characteristics, analogous to what we found here. We expect
that there is a rich, and yet to be found, mathematical structure that describes, in
patterns of R’s and C’s, all of the ways that a nonlinear periodic solution can balance
compression and rarefaction along characteristics, the solutions presented here being
the simplest. If correct, this raises a host of fascinating questions, the first one being
how to give a mathematically complete proof that solutions with this global nonlinear
structure do indeed solve the Euler equations exactly.

In [29] we describe and solve the linearized problem associated to nonlinear peri-
odic solutions having the structure described in this paper. We prove that the periodic
solutions with this structure are isolated in a one-mode kernel of the linearized op-
erator, and completely characterize the spectrum. In particular, we show that the
linearized operator is bounded, invertible and diagonal on the complement of its ker-
nel, with inverse bounded on all but a sparse set of modes associated to small divisors.
In [30], we show that a Liapunov-Schmidt decomposition reduces the problem to an
Implicit Function Theorem for an invertible (non self-adjoint) operator having small
divisors. In addition, we prove that periodic solutions with the wave structure de-
rived here exist to within arbitrarily high Fourier mode cutoff. Taken all together, we
believe this constitutes what we might call a “physical” proof that periodic solutions
having the wave structure we have identified exist. The main technical obstacle to
a complete proof is the existence of resonances and small divisors for periodic solu-
tions in a quasi-linear hyperbolic problem®, which to our understanding, is beyond the
present limits of mathematical technology, c.f. [7, 1], and [23, 5, 2, 39] for applications
to semi-linear problems. However, in our view, the history of KAM theory indicates
that one can only expect that these technical difficulties can be overcome.

If these periodic structures are realized in exact solutions of the compressible Euler
equations, one can ask, is there a sense in which they are stable? Will nearby space
periodic data decay to nearby time periodic solutions? Are there periodic solutions
that are stable within the class of smooth solutions? Do there exist quasi-periodic
solutions, and would these be attractors for other solutions with more general data?
We believe the phenomenon of balancing compression and rarefaction is stable even
if individual solutions are not. If solutions are unstable, could this herald the on-
set of chaotic or turbulent behavior? Perturbation of unstable rest points leads to
bifurcation, period doubling, and the onset of chaos in dynamical systems, so could
these simplest periodic wave structures be a doorway to the study of similar compli-
cated phenomena in the compressible Euler equations? Are there counterexamples?
Is the theory of approximate characteristics developed to prove decay to shock-waves,
N-waves and solutions of the Riemann problem in compactly supported solutions,
sufficient to prove decay to periodic solutions? Is there a Glimm type potential in-
teraction term that measures the degree to which compression and rarefaction is not
balanced at a given time, (something like the potential in the method of re-orderings,
[33, 28]), that could estimate the evolution of a small perturbation from periodic data
[8, 6, 18, 26]? Estimating how such a potential evolves might control the potential
for future shock-wave production. One advantage here is that the total entropy is
non-increasing, so there is a priori control over the evolving entropy profile.

It is our view that the work here provides a paradigm for how, when entropy

8These arise in the spectrum of the linearized operator for reasons analogous to the inability to
bound irrational maps of the circle away from rational numbers, [29].
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variations are present, nonlinear sound waves can get into configurations of balancing
compression and rarefaction, and thereby prevent the 1/t attenuation rate of shock-
wave dissipation from taking hold. This implies that signals can propagate much
further than the theory has suggested so far, and this applies not only to weak waves,
but to strong waves too. According to folklore in the subject of conservation laws,
the then unexplained attenuation in sonar signals during World War II was later
explained by the 1/t decay rate due to shock-wave dissipation proved in [9]. This
analysis neglected entropy variations. Could it be that when temperature and entropy
variations are present, sound waves can travel much further without dissipation by
finding a configuration that balances compression and rarefaction like the waves we
construct here? For example, in turbulent air, sound seems to carry further, and it is
well known that whales can communicate over very long distances. Could this kind
of long distance signaling be taking advantage of the phenomenon described here? In
principle, this is a testable hypothesis, as, for example, there is a difference in speed
between the periodic shock-free waves constructed here and the classical sound and
shock speeds.
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