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Abstract. We show that the regularity of the gravitational metric tensor in spher-
ically symmetric spacetimes cannot be lifted from C0,1 to C1,1 within the class of
C1,1 coordinate transformations in a neighborhood of a point of shock wave inter-
action in General Relativity, without forcing the determinant of the metric tensor
to vanish at the point of interaction. This is in contrast to Israel’s Theorem [5]
which states that such coordinate transformations always exist in a neighborhood
of a point on a smooth single shock surface. The results thus imply that points of
shock wave interaction represent a new kind of singularity for perfect fluids evolving
in spacetime, singularities that make perfectly good sense physically, that can form
from the evolution of smooth initial data, but at which the spacetime is not locally
Minkowskian under any coordinate transformation. In particular, at such singu-
larities, delta function sources in the second derivatives of the gravitational metric
tensor exist in all coordinate systems of the C1,1 atlas, but due to cancelation, the
curvature tensor remains uniformly bounded.

1. Introduction

The guiding principle in Albert Einstein’s pursuit of general relativity was the prin-
ciple that spacetime should be locally inertial 1. That is, an observer in freefall through
a gravitational field should observe all of the physics of special relativity, except for
the second order acceleration effects due to spacetime curvature (gravity). But the
assumption that spacetime is locally inertial is equivalent to assuming the gravita-
tional metric tensor g has a certain level of smoothness around every point. That is,
the assumption that spacetime is locally inertial at a spacetime point p assumes the
gravitational metric tensor g is smooth enough so that one can pursue the construction
of Riemann Normal Coordinates at p, coordinates in which g is exactly the Minkowski
metric at p, such that all first order derivatives of g vanish at p, with all second order
derivatives of g bounded in a neighborhood of p. The nonzero second derivatives are
then a measure of spacetime curvature. However, the Einstein equations are a system
of partial differential equations (PDE’s) for the metric tensor g coupled to the sources,
and the PDE’s by themselves determine the smoothness of the gravitational metric

The ideas and methods presented here are the creation of Moritz Reintjes. The detailed proofs
are due to him and can be found in his doctoral thesis [8], which was supervised by Blake Temple.
Both authors were partially supported by second author’s NSF Grant, where the problem was first
proposed.

1Also referred to as locally Lorentzian or locally Minkowskian.
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tensor by the evolution they impose. Thus the condition on spacetime that it be lo-
cally inertial at every point cannot be assumed at the start, but must be determined
by regularity theorems for the Einstein equations.

This issue becomes all the more interesting when the sources of matter and energy
are modeled by a perfect fluid, and the resulting Einstein-Euler equations form a sys-
tem of PDE’s for the metric tensor g coupled to the density, velocity and pressure
of the fluid. It is well known that the evolution of a perfect fluid governed by the
compressible Euler equations leads to shock wave formation from smooth initial data
whenever the flow is sufficiently compressive.2 At a shock wave, the fluid density, pres-
sure and velocity are discontinuous, and when such discontinuities are assumed to be
the sources of spacetime curvature, the Einstein equations imply that the curvature
must also become discontinuous at shocks. But discontinuous curvature by itself is not
inconsistent with the assumption that spacetime be locally inertial. For example, if
the gravitational metric tensor were C1,1, (differentiable with Lipschitz continuous first
derivatives, [11]), then second derivatives of the metric are at worst discontinuous, and
the metric has enough smoothness for there to exist coordinate transformations which
transform g to the Minkowski metric at p, with zero derivatives at p, and bounded
second derivatives as well, [11]. Furthermore, Israel’s theorem, [5], (see also [11]) as-
serts that a spacetime metric need only be C0,1, i.e., Lipschitz continuous, across a
smooth single shock surface, in order that there exist a C1,1 coordinate transforma-
tion that lifts the regularity of the gravitational metric one order to C1,1, and this
again is smooth enough to ensure the existence of locally inertial coordinate frames
at each point. In fact, when discontinuities in the fluid are present, C1,1 coordinate
transformations are the natural atlas of transformations that are capable of lifting the
regularity of the metric one order, while still preserving the weak formulation of the
Einstein equations, [11]. It is common in GR to assume the gravitational metric tensor
is at least C1,1. For example, the C1,1 regularity of the gravitational metric is assumed
at the start in singularity theorems of Hawking and Penrose, [4]. However, in Standard
Schwarzschild Coordinates3 (SSC) the gravitational metric will be no smoother than
C0,1, if a discontinuous energy momentum tensor in the Einstein equations is present,
c.f. [3].

In this paper we prove there do not exist C1,1 coordinate transformations that can
lift the regularity of a gravitational metric tensor from C0,1 to C1,1 at a point of shock
wave interaction in a spherically symmetric spacetime in GR, without forcing the de-
terminant of the metric tensor to vanish at the point of interaction. Consequently,
solutions of the Einstein equations cannot be continued as C1,1 solutions beyond the
first point of shock wave interaction, in any coordinate system. This is in contrast to
Israel’s Theorem [5] which states that such coordinate transformations always exist
in a neighborhood of a point on a smooth single shock surface. It follows that solu-
tions of the Einstein equations containing single smooth shock surfaces can solve the
Einstein equations strongly, (in fact, pointwise almost everywhere in Gaussian normal
coordinates), but this fails to be the case at points of shock wave interaction, where

2Since the Einstein curvature tensor G satisfies the identity Div G = 0, the Einstein equations
G = κT imply Div T = 0, and so the assumption of a perfect fluid stress tensor T automatically
implies the coupling of the Einstein equations to the compressible Euler equations Div T = 0.

3It is well known that a general spherically symmetric metric of form ds2 = −A(t, r)dt2+B(t, r)dr2+
E(t, r)dtdr + C(t, r)2dΩ2 can be transformed to SSC in a neighborhood of a point where ∂C

∂r
"= 0, c.f.

[15]
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the Einstein equations can only hold weakly in the sense of the theory of distributions.
The results thus imply that points of shock wave interaction represent a new kind of
singularity in General Relativity that can form from the evolution of smooth initial
data, that correctly reflects the physics of the equations, but at which the spacetime is
not locally Minkowskian under any C1,1 coordinate transformation. At such singulari-
ties, delta function sources in the second derivatives of the gravitational metric tensor
exist in all coordinate systems of the C1,1 atlas, but due to cancelation, the curvature
tensor remains uniformly bounded.

To state the main result precisely, we consider spherically symmetric spacetime
metrics gµν which solve the Einstein equations in SSC, where the metric takes the
form

ds2 = gµνdxµdxν = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2, (1.1)

where either t or r can be taken to be timelike, and dΩ2 = dϑ2 + sin2(ϑ)dϕ2 is the
line element on the unit 2-sphere, c.f. [12]. In Section 2 we make precise the definition
of a point of regular of shock wave interaction in SSC. Essentially, this is a point
in (t, r)-space where two distinct shock waves enter or leave the point p at distinct
speeds, such that the metric is Lipschitz continuous, the Rankine Hugoniot (RH) jump
conditions hold across the shocks [10], and the SSC Einstein equations hold weakly in
a neighborhood of p and strongly away from the shocks. The main result of the paper
is the following theorem, (c.f. Definition 3.1 and Theorem 7.1 below):

Theorem 1.1. Assume p is a point of regular shock wave interaction in SSC. Then
there does not exist a C1,1 regular coordinate transformation4, defined in a neighborhood
of p, such that the metric components are C1 functions of the new coordinates and such
that the metric has a nonzero determinant at p.

The proof of Theorem 1.1 is constructive in the sense that we characterize the Jaco-
bians of coordinate transformations that smooth the components of the gravitational
metric in a deleted neighborhood of a point p of regular shock wave interaction, and
then prove that any such Jacobian must have a vanishing determinant at p itself.
Because the metric becomes singular at p whenever C1 regularity is forced upon it,
we refer to points of regular shock wave interaction as regularity singularities. The
numerical explorations in [14] strongly indicate that such singularities can form out
of smooth initial data within a finite time just as with fluids governed by the special
relativistic Euler equations, but we know of no complete mathematical proof of this
fact.

Our assumptions in Theorem 1.1 apply to the upper half (t ≥ 0) and the lower
half (t ≤ 0) of a shock wave interaction (at t = 0) separately, suitable for the initial
value problem, and also general enough to include the case of two timelike5 interacting

4The atlas of C1,1 coordinate transformations is generic for lifting metric regularity at shock waves
in General Relativity, because C2 coordinate transformations preserve the metric regularity, (c.f.
Section 5), while a C1,α atlas seems to be appropriate only for metric tensors in C0,α. The C1,1 atlas
is natural because it preserves the weak formalism that derives from the quasilinear structure of the
Einstein-Euler equations, a property we expect cannot be met by any atlas less regularity than C1,1,
(e.g., a C0,1 atlas with resulting discontinuous metric components). Given this, points of regular shock
wave interaction in SSC represent regularity singularities in the sense that they are points where the
gravitational metric is less regular than C1 in any coordinate system that can be reached within the
C1,1 atlas.

5In fact the theorem applies to non-null surfaces that can be regularly parameterized by the SSC
time or radial variable, c.f. Theorem 7.1 below.
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shock waves of opposite families6 that cross at the point p, but also general enough to
include the cases of two outgoing shock waves created by the focusing of compressive
rarefaction waves, or two incoming shock waves of the same family that interact at
p to create an outgoing shock wave of the same family and an outgoing rarefaction
wave of the opposite family, c.f. [10]. In particular, our framework and our theorems
are general enough to incorporate and apply to the shock wave interaction which was
numerically simulated in [14].

Historically, the issue of the smoothness of the gravitational metric tensor across
interfaces began with the C0,1 matching of the interior Schwarzschild solution to the
vacuum across an interface, followed by the celebrated work of Oppenheimer and Sny-
der [9] who gave the first dynamical model of gravitational collapse. In [11], Smoller
and Temple extended the Oppenheimer-Snyder model to a C0,1 shock wave interface
that allowed for nonzero pressure. In his celebrated 1966 paper [5], Israel gave the
definitive conditions for C0,1 matching of gravitational metrics at smooth interfaces,
by showing that if the second fundamental form is continuous across a single smooth
interface, then the RH jump conditions also hold, and Gaussian normal coordinates
smooth the metric to C1,1 and thereby provides a locally inertial coordinate system.
In [3] Groah and Temple addressed these issues rigorously in the first general existence
theory for shock wave solutions of the Einstein-Euler equations. In coordinates where
their analysis is feasible, SSC, the gravitational metric was Lipschitz continuous at
shock waves, but could be no smoother, and it has remained an open problem as to
whether the weak solutions constructed by Groah and Temple could be smoothed to
C1,1 by coordinate transformation, like the single shock surfaces addressed by Israel.
The results in this paper resolve this issue by proving definitively that the weak solu-
tions constructed by Temple and Groah cannot be smoothed within the class of C1,1

coordinate transformations when they contain points of shock wave interaction.
As a final comment, we note that although points of shock wave interaction are

straightforward to construct for the relativistic compressible Euler equations in flat
spacetime, to our knowledge there is no rigorous mathematical construction of an
exact solution of the Einstein equations containing a point of shock wave interaction,
where two shock waves cross in spacetime. But all the evidence indicates that points
of shock wave interaction exist, have the structure we assume in SSC, and in fact
cannot be avoided in solutions consisting of, say, an outgoing spherical shock wave
(the blast wave of an an explosion) evolving inside an incoming spherical shock wave
(the leading edge of an implosion). The existence theory of Temple and Groah [3]
lends strong support to this claim by establishing existence of weak solutions of the
Einstein-Euler equations in spherically symmetric spacetimes. The theory applies to
arbitrary numbers of initial shock waves of arbitrary strength, existence is established
beyond the point of shock wave interaction, and the regularity assumptions of our
theorem are within the regularity class to which the Groah-Temple theory applies.
All of this is substantiated by the recent work of Vogler and Temple which gives a
numerical simulation of a class of solutions in which two shock waves emerge from a
point of interaction, and the numerics demonstrate that the structure of the emerging
shock waves meets all of the assumptions of our theorem at the point of interaction.
Taken on whole, we interpret this as definitive physical proof that points of shock wave
interaction exist in GR, and meet the regularity assumptions of our theorem. Given

6Two shock waves typically change their speeds discontinuously at the point of interaction, c.f. [10]
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this, the conclusion of our theorem is that points must exist where the gravitational
metric tensor cannot be smoothed from C0,1 to C1,1 by coordinate transformation.

In Section 2 we begin with preliminaries. In section 3 we set out the framework of
shock waves in GR, and define what we call a point of regular shock wave interaction
in SSC. In Section 4 we give a precise sense in which a function is said to be C0,1 across
a hypersurface, and we introduce a canonical form for such functions, which isolates
the Lipschitz regularity from the C1 regularity in a neighborhood of the hypersurface.

In Section 5 we derive conditions on the Jacobians of general C1,1 coordinate trans-
formations necessary and sufficient to lift the regularity of a metric tensor from C0,1

to C1 at points on a shock surface. The result is a canonical form for the Jacobians of
all coordinate transformations that can possibly lift the regularity of the gravitational
metric tensor to C1.

In Section 6, we give a new constructive proof of Israel’s theorem for spherically
symmetric spacetimes, by showing directly that the Jacobians expressed in our canon-
ical form do indeed smooth the gravitational metric to C1,1 at points on a single
shock surface. The essential difficulty is to prove that the freedom to add an arbi-
trary C1-function to our canonical form, is sufficient to guarantee that we can meet
the integrability condition on the Jacobian required to integrate it up to an actual
coordinate system. The main point is that this is achievable within the required C1

gauge freedom if and only if the RH jump conditions and the Einstein equations hold
at the shock interface, [10].

The main step towards Theorem 1.1 is then achieved in Section 7 where we prove
that at a point of regular shock wave interaction in SSC there exists no coordinate
transformations of the (t, r)-plane that lift the metric regularity to C1. The essential
point is that the C1 gauge freedom in our canonical forms cannot satisfy the inte-
grability condition on the Jacobians, without forcing the determinant of the Jacobian
to vanish at the point of interaction. In section 8 we extend this result to the full
spacetime atlas of coordinate transformations that allow changes of angular variables
as well as (t, r), thereby proving Theorem 1.1. In the final section 9, we we show that
Theorem Theorem 1.1 implies the non-existence of locally inertial frames at points of
regular shock wave interaction. Since we do not know how to make mathematical and
physical sense of coordinate transformations less regular than C1,1 in general relativity,
we conclude that points of shock wave interaction represent a new kind of regularity
singularity in spacetime.

2. Preliminaries

In General Relativity, the gravitational field is described by a Lorentzian metric
g of signature (−1, 1, 1, 1) on a four dimensional spacetime manifold M . We call
M a Ck-manifold if it is endowed with a Ck-atlas, a collection of four dimensional
local diffeomorphisms that are Ck regular from M to R4. A composition of two local
diffeomorphisms x and y of the form x◦y−1 is refered to as a coordinate transformation.
In this paper we consider C1,1-manifolds, since this low level of regularity offers a
generic framework to address shock wave solutions of the Einstein-Euler equations.

We use standard index notation for tensors whereby indices determine the coordinate
system, (e.g., T µ

ν denotes a (1, 1)-tensor in coordinates xµ and T i
j denotes the same

tensor in coordinates xj), and repeated up-down indices are assumed summed from
0 to 3. Under coordinate transformation, tensors transform by contraction with the
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Jacobian

Jµ
j =

∂xµ

∂xj
, (2.1)

Jj
ν denotes the inverse Jacobian, and indices are raised and lowered with the metric

and its inverse gij , which transform as bilinear forms,

gµν = J i
µJj

νgij , (2.2)

c.f. [15]. We use the fact that a matrix of functions Jµ
j is the Jacobian of a regular

local coordinate transformation if and only if the curls vanish, i.e.,

Jµ
i,j = Jµ

j,i and Det
(

Jµ
j

)

%= 0, (2.3)

where f,j = ∂f
∂xj denotes partial differentiation with respect to the coordinate xj and

Det
(

Jµ
j

)

denotes the determinant of the Jacobian.

The time evolution of a gravitational field in general relativity is governed by the
Einstein equations [1]

Gij + Λgij = κT ij, (2.4)

a system of 10 second order partial differential equations that relate the metric tensor
gij to the undifferentiated sources T ij through the Einstein curvature tensor

Gij = Rij −
1

2
Rgij , (2.5)

a tensor involving second derivatives of g. Here Λ is the cosmological constant, (our
results apply to a vanishing as well as a non-vanishing cosmological constant), κ = 8π

3 G
is the coupling constant which incorporates Newton’s gravitational constant G and the
speed of light c, and T ij is the stress energy tensor.

We assume throughout that T ij is the stress tensor for a perfect fluid,

T ij = (p + ρ)uiuj + pgij, (2.6)

where ρ is the energy density, ui the 4-velocity, and p the pressure. Conservation of
energy and momentum enter the Einstein equations through,

T ij
;j = 0 . (2.7)

which reduces to the relativistic compressible Euler equations in flat spacetime, and
follows from the divergence free property of the Einstein equations, Gij

;j = 0 a property
built into G at the start as an identity following from the Bianchi identities of geometry.
Here as usual, semicolon denotes covariant differentiation v;j = v,j + Γi

ljv
l, where Γi

lj

denote the Christoffel symbols or connection coefficients associated with metric g, c.f.
[15].

System (2.4) and (2.7) forms the coupled Einstein-Euler equations, a system of
second order differential equations for the unknown metric gij , and unknown fluid
variables ρ, p and uj . For example, imposing an equation of state p = p(ρ) closes the
system, yielding a set of fourteen differential equations in fourteen unknowns. In special
relativity the spacetime metric is taken to be gij ≡ ηij where ηij = diag(−1, 1, 1, 1)
is the Minkowski metric, in which case (2.7) reduces to the relativistic compressible
Euler equations, a system of conservation laws in which it is well known that shock
waves form out of smooth initial data whenever the flow is sufficiently compressive,
(see [10] or [7]). Shock waves are discontinuous solutions that only solve the Euler
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equations weakly, in a distributional sense. Across a smooth shock surface Σ, the
Rankine-Hugoniot jump conditions hold,

[T µν ]nν = 0, (2.8)

where [f ] = fL−fR denotes the jump from right to left (wrt r) in function f across Σ,
and nν is the surface normal. In particular, for smooth shock surfaces, the jump con-
ditions (2.8) are equivalent to the shock wave solution satisfying the weak formulation
of (2.7) across Σ, c.f. [10].

For many astrophysical processes it makes sense to assume the spacetime is spher-
ically symmetric, by which we mean a Lorentz manifold admitting two Killing vector
fields that give rise to coordinates in which the metric takes the simplified form

ds2 = −Adt2 + Bdr2 + 2Edtdr + CdΩ2 , (2.9)

where the coefficients A, B, C and E depend only on t and r, and dΩ2 is the line
element on the unit 2-sphere, [15] . In this case we often suppress the dependence
on φ and θ, and refer to the spacetime parameterized by the variables t and r as the
(t, r)-plane.

In a spherically symmetric spacetime with ∂C
∂r %= 0, one can always transform to

Standard Schwarzschild Coordinates (SSC), where the metric takes the form [15],

ds2 = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2. (2.10)

The Einstein equations for a metric in SSC are given by

Br + B
B − 1

r
= κAB2rT 00 (2.11)

Bt = −κAB2rT 01 (2.12)

Ar − A
1 + B

r
= κAB2rT 11 (2.13)

Btt − Arr + Φ = −2κABr2T 22 , (2.14)

with

Φ = −
BAtBt

2AB
−

B2
t

2B
−

Ar

r
+

ABr

rB
+

A2
r

2A
+

ArBr

2B
.

The first three Einstein equations in SSC play a crucial role in the method we develop

in this paper, and it is straightforward to read off from the first three equations that
the metric cannot be any smoother than Lipschitz continuous if the matter source is
discontinuous, for example, T ij ∈ L∞, and in this paper we make the assumption
throughout that the gravitational metric is Lipschitz continuous. This provides a
consistent framework to address shock waves in GR, in agreement with the theory
and examples of shock wave solutions to the coupled Einstein-Euler equations, see for
instance [11] or [3].

Lipschitz continuity arises naturally in the general problem of matching two space-
times across a hypersurface, as first considered by Israel in [5]. Israel proved the rather
remarkable result that whenever a metric is Lipschitz continuous (C0,1) across a smooth
single shock surface Σ, there always exists a coordinate transformation defined in a
neighborhood of Σ, that smooths the components of the gravitational metric to C1,1.
The precise result is that the gravitational metric is smoothed to C1,1 in Gaussian
Normal Coordinates if and only if the second fundamental form of the metric is con-
tinuous across the surface. The latter is an invariant condition meaningful for metrics
Lipschitz continuous across a hypersurface, and is often referred to in the literature as
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the junction condition, c.f. [15]. In [11], Smoller and Temple showed that in spherically
symmetric spacetimes, the junction conditions hold across radial surfaces if and only
if the single

[

T ij
]

ninj = 0, implied by (2.8), holds. Thus, for example, single radial
shock surfaces can be no smoother than Lipschitz continuous in SSC coordinates, but
can be smoothed to C1,1 by coordinate transformation. However, it has remained an
open problem whether or not such a theorem applies to the more complicated C0,1 SSC
solutions proven to exist [3]. Our purpose here is to show that such solutions cannot
be smoothed to C1 in a neighborhood of a point of regular shock wave interaction, a
notion we now make precise.

3. A point of regular shock wave interaction in SSC

In this paper we restrict attention to radial shock waves, hypersurfaces Σ locally
parameterized by

Σ(t, ϑ, ϕ) = (t, x(t), ϑ, ϕ), (3.1)

and across which T in (2.6) is discontinuous. 7 For such hypersurfaces in SSC, the
angular variables play a passive role, and the essential issue regarding smoothing the
metric components by C1,1 coordinate transformation lies in the atlas of coordinate
transformations acting on the (t, r)-plane alone. (The main issue is to prove theorems
6.1 and 7.1 for (t, r)-transformations. In section 8 we discuss the straightforward
extension to the full atlas of transformations that include the angular variables.) Thus
we introduce γ, the restriction of a shock surface Σ to the (t, r)-plane,

γ(t) = (t, x(t)), (3.2)

with normal 1-form
nσ = (ẋ,−1). (3.3)

For radial shock surfaces (3.1) in SSC, the RH jump conditions (2.8) take the simplified
form

[

T 00
]

ẋ =
[

T 01
]

, (3.4)
[

T 10
]

ẋ =
[

T 11
]

. (3.5)

Now suppose two timelike shock surfaces Σi are parameterized in SSC by

Σi(t, θ, φ) = (t, xi(t), θ, φ) i = 1, 2. (3.6)

Let γi(t) denote their corresponding restrictions to the (t, r)-plane,

γi(t) = (t, xi(t)), (3.7)

with normal 1-forms
(ni)σ = (ẋi,−1), (3.8)

and use the notation that [f ]i(t) = [f(γi(t))] denotes the jump in the quantity f across
the surface γi(t).

For our theorem it suffices to restrict attention to the lower or upper part of a shock
wave interaction that occurs at t = 0. That is, in either the lower or upper half plane

R
2
− = {(t, r) : t < 0} ,

7Note that if t is timelike, then all timelike shock surfaces in SSC can be so parameterized. Our
subsequent methods apply to spacelike and timelike surfaces alike, (inside or outside a black hole, c.f.
[12]), in the sense that t can be timelike or spacelike, but without loss of generality and for ease of
notation, in the remainder of this paper we restrict to timelike surfaces parameterized as in (3.1).
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or
R

2
+ = {(t, r) : t > 0} ,

respectively, whichever half plane contains two shock waves that intersect at p with
distinct speeds. (We denote with R2

± the closure of R2
±.) Thus, without loss of gener-

ality, let γi(t) = (t, xi(t)), (i = 1, 2), be two shock curves in the lower (t, r)-plane that
intersect at a point (0, r0), r0 > 0, i.e.

x1(0) = r0 = x2(0). (3.9)

With this notation, we can now give a precise definition of what we call a point of
regular shock wave interaction in SSC. By this we mean a point p where two distinct
shock waves enter or leave the point p with distinct speeds. The structure makes pre-
cise what one would generically expect, namely, that the metric is a smooth solution of
the Einstein equations away from the interacting shock curves, the metric is Lipschitz
continuous and the RH jump conditions hold across each shock curve, and derivatives
are continuous up to the boundary on either side. In particular, the definition reflects
the regularity of shock wave solutions of the coupled Einstein-Euler equations consis-
tent with the theory in [3] and confirmed by the numerical simulation in [14]. Without
loss of generality we assume a lower shock wave interaction in R2

−.

Definition 3.1. Let r0 > 0, and let gµν be an SSC metric in C0,1
(

N ∩ R2
−

)

, where

N ⊂ R2 is a neighborhood of a point p = (0, r0) of intersection of two timelike shock
curves γi(t) = (t, xi(t)) ∈ R2

−, t ∈ (−ε, 0). Assume the shock speeds ẋi(0) = lim
t→0

ẋi(t)

exist and are distinct, and let N̂ denote the neighborhood consisting of all points in
N ∩ R2

− not in the closure of the two intersecting curves γi(t). Then we say that p is
a point of regular shock wave interaction in SSC if:

(i) The pair (g, T ) is a strong solution of the SSC Einstein equations (2.11)-(2.14)
in N̂ , with T µν ∈ C0(N̂ ) and gµν ∈ C2(N̂ ).

(ii) The limits of T and of metric derivatives gµν,σ exist on both sides of each shock
curve γi(t) for all −ε < t < 0.

(iii) The jumps in the metric derivatives [gµν,σ ]i(t) are C1 function with respect to t
for i = 1, 2 and for t ∈ (−ε, 0).

(iv) The limits
lim
t→0

[gµν,σ ]i(t) = [gµν,σ ]i(0)

exist for i = 1, 2.
(v) The metric g is continuous across each shock curve γi(t) separately, but no better

than Lipschitz continuous in the sense that, for each i there exists µ, ν such that

[gµν,σ ]i(ni)
σ %= 0

at each point on γi, t ∈ (−ε, 0) and

lim
t→0

[gµν,σ]i(ni)
σ %= 0.

(vi) The stress tensor T is bounded on N ∩ R2
− and satisfies the RH jump conditions

[T νσ]i(ni)σ = 0

at each point on γi(t), i = 1, 2, t ∈ (−ε, 0), and the limits of these jumps exist up
to p as t → 0.
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4. Functions C0,1 across a hypersurface

In this section we give a precise definition which isolates the C0,1 regularity of a
function to a hypersurface, and use this to derive a canonical form for such functions.

Definition 4.1. Let Σ be a smooth (timelike) hypersurface in some open set N ⊂ Rd.
We call a function f “Lipschitz continuous across Σ”, (or C0,1 across Σ), if f ∈
C0,1(N ), f is smooth8 in N \ Σ, and limits of derivatives of f exist and are smooth
functions on each side of Σ separately. We call a metric gµν Lipschitz continuous
across Σ in coordinates xµ if all metric components are C0,1 across Σ.

The main point of the above definition is that we assume smoothness of f , (or gµν),
away and tangential to the hypersurface Σ. Note that the continuity of f across Σ
implies the continuity of all derivatives of f tangent to Σ, i.e.,

[f,σ]vσ = 0, (4.1)

for all vσ tangent to Σ. Moreover, Definition 4.1 allows for the normal derivative of f
to be discontinuous, that is,

[f,σ]nσ %= 0, (4.2)

where nσ is normal to Σ with respect to some (Lorentz-) metric gµν defined on N .
We can now clarify the connections between the Einstein equations and the RH jump

conditions (3.4), (3.5) for SSC metrics only C0,1 across a hypersurface. So consider
a spherically symmetric spacetime metric (1.1) given in SSC, assume that the first
three Einstein equations (2.11)-(2.13) hold, and assume that the stress tensor T is
discontinuous across a smooth radial shock surface described in the (t, r)-plane by
γ(t) as in (3.1)-(3.3). To this end, condition (4.1) across γ applied to each metric
component gµν in SSC (2.10) reads

[Bt] = −ẋ[Br], (4.3)

[At] = −ẋ[Ar]. (4.4)

On the other hand, the first three Einstein equations in SSC (2.11)-(2.13) imply

[Br] = κAB2r[T 00], (4.5)

[Bt] = −κAB2r[T 01], (4.6)

[Ar] = κAB2r[T 11]. (4.7)

Now, using the jumps in Einstein equations (4.5)-(4.7), we find that (4.3) is equivalent
to the first RH jump condition (3.4),9 while the second condition (4.4) is independent
of equations (4.5)-(4.7), because At does not appear in the first order SSC equations
(2.11)-(2.13). The result, then, is that in addition to the assumption that the metric
be C0,1 across the shock surface in SSC, the RH conditions (3.4) and (3.5) together
with the Einstein equations (4.5)-(4.7), yield only one additional condition over and
above (4.3) and (4.4), namely,

[Ar] = −ẋ[Bt] . (4.8)

The RH jump conditions together with the Einstein equations will enter our method
in Section 5-7 only through the three equations (4.8), (4.3) and (4.4).

8For us, “smooth” means enough continuous derivatives so that smoothness is not an issue. Thus
here, f ∈ C2(N \ Σ) suffices.

9This observation is consistent with Lemma 9, page 286, of [11], where only one jump condition
need be imposed to meet the full RH relations.
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The following lemma provides a canonical form for any function f that is Lipschitz
continuous across a single shock curve γ in the (t, r)-plane, under the assumption that
the vector nµ, normal to γ, is obtained by raising the index in (3.3) with respect to a
Lorentzian metric g that is C0,1 across γ. (Note that by Definition 4.1, nµ varies C1

in directions tangent to γ, and we suppress the angular coordinates.)

Lemma 4.2. Suppose f is C0,1 across a smooth curve γ(t) = (t, x(t)) in the sense of
Definition 4.1, t ∈ (−ε, ε), in an open subset N of R2. Then there exists a function
Φ ∈ C1(N ) such that

f(t, r) =
1

2
ϕ(t) |x(t) − r| + Φ(t, r), (4.9)

where

ϕ(t) =
[f,µ]nµ

nσnσ
∈ C1(−ε, ε), (4.10)

and nµ(t) = (ẋ(t),−1) is a 1-form normal to the tangent vector vµ(t) = γ̇µ(t). In
particular, it suffices that indices are raised and lowered by a Lorentzian metric gµν

which is C0,1 across γ.

In words, the canonical form (4.9) separates off the C0,1 kink of f across γ from
its more regular C1 behavior away from γ: The kink is incorporated into |x(t) − r|,
ϕ gives the smoothly varying strength of the jump, and Φ encodes the remaining C1

behavior of f . I.e., ϕ gives the strength of the jump because upon taking the jump
in the normal derivative of f across γ, the dependence on Φ cancels out. Note finally
that the regularity assumption on the metric across γ is required for ϕ(t) to be well
defined in (4.10), and also to get the C1 regularity of nσnσ tangent to γ. In Section
6 below we prove Israel’s Theorem for a single shock surface by constructing a C1,1

coordinate transformation using 4.9 of Lemma 4.2 as a canonical form for the Jacobian
derivatives of the transformation.

In Section 7 we need a canonical form analogous to (4.9) for two shock curves, but
such that it allows for the Jacobian to be in the weaker regularity class C0,1 away from
the shock curves. To this end, suppose two timelike shock surfaces described in the
(t, r)-plane by, γi(t), such that (3.6)-(3.9) applies. To cover the generic case of shock
wave interaction, we assume each γi(t) is smooth away from t = 0 with continuous
tangent vectors up to t = 0, and it suffices to restrict to lower shock wave interactions
in R2

−.

Corollary 4.3. Let γi(t) = (t, xi(t)) be two smooth curves defined on I = (−ε, 0),
some ε > 0, such that the limits lim

t→0−
γi(t) = (0, r0) and ẋi(0) = lim

t→0−
ẋi(t) both exist

for i = 1, 2. Let f be a function in C0,1(N ∩ R2
−) for N a neighborhood of (0, r0) in

R2, so that f meets condition (4.1) on each γi. Then there exists a C0,1 function Φ
defined on N ∩ R2

−, such that

[Φt]i ≡ 0 ≡ [Φr]i, i = 1, 2, (4.11)

and

f(t, r) =
1

2

∑

i=1,2

ϕi(t) |xi(t) − r| + Φ(t, r), (4.12)

for all (t, r) in N ∩ R2
−, where

ϕi(t) =
[f,µ]in

µ
i

nµ
i niµ

∈ C0,1(I). (4.13)
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In particular, ϕi has discontinuous derivatives wherever f◦γi does, and again it suffices
that indices are raised and lowered by a Lorentzian metric gµν which is C0,1 across each
γi.

5. A Necessary and Sufficient Condition for Smoothing Metrics

In this section we derive a necessary and sufficient pointwise condition on the Jaco-
bians of a coordinate transformation that it lift the regularity of a C0,1 metric tensor
to C1,1 in a neighborhood of a point on a single shock surface Σ. In the next section
we use this condition to prove that such transformations exist in a neighborhood of a
point on a single shock surface, and in the section following that we use this pointwise
condition on each of two intersecting shock surfaces to prove that no such coordinate
transformation exists in a neighborhood of a point of shock wave interaction.

We begin with the transformation law

gαβ = Jµ
αgµνJν

β , (5.1)

for the metric components at a point on a hypersurface Σ for a general C1,1 coordinate
transformation xµ → xα, where, as customary, the indices indicate the coordinate
system. Let Jµ

α denote the Jacobian of the transformation

Jµ
α =

∂xµ

∂xα
.

Assume now, that the metric components gµν are only Lipschitz continuous with re-
spect to xµ across Σ. Then differentiating (5.1) in the direction w = wσ ∂

∂xσ we obtain

[gαβ,γ ]wγ = Jµ
αJν

β [gµν,σ ]wσ + gµνJµ
α [Jν

β,σ ]wσ + gµνJν
β [Jµ

α,σ]wσ , (5.2)

where [f ] denotes the jump in the quantity f across the shock surface Σ. Thus, since
both g and Jµ

α are in general Lipschitz continuous across Σ, the jumps appear only on
the derivatives. Equation (5.2) gives a necessary and sufficient condition for the metric
g to be C1,1 in xα coordinates. Namely, taking w = ∂

∂xσ , (5.2) implies that [gαβ,γ ] = 0
for every α, β, γ = 0, ..., 3 if and only if

[Jµ
α,γ ]Jν

βgµν + [Jν
β,γ ]Jµ

αgµν + Jµ
αJν

β [gµν,γ ] = 0 . (5.3)

Note that if the coordinate transformation is C2, so that Jµ
α is C1, then the jumps

in J vanish, and (5.2) reduces to

[gαβ,γ ]wγ = Jµ
αJν

β [gµν,σ ]wσ,

which is tensorial because the non-tensorial terms cancel out in the jump [gαβ,γ ]. Since
tensor transformations preserve the zero tensor, it is precisely the lack of covariance
in (5.2) for C1,1 transformations that provides the necessary degrees of freedom, (the
jumps [Jµ

α,γ ] in the first derivatives of the Jacobian), that make it possible for a Lips-
chitz metric to be smoothed by coordinate transformation at points on a single shock
surface, illustrating that there is no hope of lifting the metric regularity by coordinate
transformations that are C2.

Equation (5.3) is linear in the jumps in the derivatives of the Jacobians, and our
intention is to use this to solve for the [Jµ

α,γ ] associated with a given C1,1 coordinate
transformation. To this end, suppose we are given a single radial shock surface Σ in
SSC locally parameterized by

Σ(t, θ, φ) = (t, x(t), θ, φ) . (5.4)
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For such a hypersurface in Standard Schwarzschild Coordinates (SSC), the angular
variables play a passive role, and the essential issue regarding smoothing the metric
components by C1,1 coordinate transformation, lies in the atlas of (t, r)-coordinate
transformations. Thus we restrict to the atlas of (t, r)-coordinate transformations for
a general C0,1 metric in SSC, c.f. (2.10). The following lemma gives the unique solution
[Jµ

α,γ ] of (5.3) for (t, r)-transformations of C0,1 metrics g in SSC.

Lemma 5.1. Let

gµν = −A(t, r)dt2 + B(t, r)dr2 + r2dΩ2 ,

be a given metric expressed in SSC, let Σ denote a single radial shock surface (5.4)
across which g is only Lipschitz continuous. Then the unique solution [Jµ

α,γ ] of (5.3)
which satisfies the integrability condition, (c.f. (2.3)),

[Jµ
α,β] = [Jµ

β,α] , (5.5)

is given by:

[J t
0,t] = −

1

2

(

[At]

A
J t

0 +
[Ar]

A
Jr

0

)

; [J t
0,r] = −

1

2

(

[Ar]

A
J t

0 +
[Bt]

A
Jr

0

)

[J t
1,t] = −

1

2

(

[At]

A
J t

1 +
[Ar]

A
Jr

1

)

; [J t
1,r] = −

1

2

(

[Ar]

A
J t

1 +
[Bt]

A
Jr

1

)

[Jr
0,t] = −

1

2

(

[Ar]

B
J t

0 +
[Bt]

B
Jr

0

)

; [Jr
0,r] = −

1

2

(

[Bt]

B
J t

0 +
[Br]

B
Jr

0

)

[Jr
1,t] = −

1

2

(

[Ar]

B
J t

1 +
[Bt]

B
Jr

1

)

; [Jr
1,r] = −

1

2

(

[Bt]

B
J t

1 +
[Br]

B
Jr

1

)

. (5.6)

(We use the notation µ, ν ∈ {t, r} and α, β ∈ {0, 1}, so that t, r are used to denote
indices whenever they appear on the Jacobian J .)

Proof: Equation (5.3) as an inhomogeneous 6 × 6 linear system in eight unknowns
[Jµ

α,γ ]. Imposing the integrability condition in the form of (5.5) gives two additional
equations which complete (5.3) to an 8×8 system which is uniquely solvable for [Jµ

α,γ ].
The result is a purely algebraic system whose unique solution (5.6) we obtain by a
lengthy calculation aided by MAPLE, (c.f. [8] for details.) !

Condition (5.3) is a necessary and sufficient condition for [gαβ,γ ] = 0 at a point on
a smooth single shock surface. Because Lemma 5.1 tells us that we can uniquely solve
(5.3) for the Jacobian derivatives, it follows that a necessary and sufficient condition for
[gαβ,γ ] = 0 is also that the jumps in the Jacobian derivatives be exactly the functions
of the jumps in the original SSC metric components recorded in (5.6). In light of this,
Lemma 5.1 immediately implies the following corollary:

Corollary 5.2. Let p be a point on a single smooth shock curve γ, and let gµν be a
metric tensor in SSC, which is C0,1 across γ in the sense of Definition 4.1. Suppose
Jµ

α is the Jacobian of an actual coordinate transformation defined on a neighborhood
N of p. Then the metric in the new coordinates gαβ is in C1,1(N ) if and only if Jµ

α

satisfies (5.6).10

10Note that to lift the metric regularity, the Jacobian must mirror the regularity of the metric in
order to compensate for all discontinuous first order derivatives of the metric by its own discontinu-
ous first order derivatives. This explains why only C1,1 transformations can possibly lift the metric
regularity from C0,1 to C1,1, and C1,α does not suffice for α "= 1.
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We conclude that (5.6) is a necessary and sufficient condition for a coordinate trans-
formation to lift the regularity of an SSC metric from C0,1 to C1,1 at a point on a single
smooth shock surface. The condition relates the jumps in the derivatives of the Ja-
cobian to the jumps in the metric derivatives across the shock. This establishes the
rather remarkable result that there is no algebraic obstruction to lifting the regularity
in the sense that the jumps in the Jacobian derivatives can be uniquely solved for in
terms of the jumps in the metric derivatives, precisely when the integrability condition
(5.5) is imposed. The condition is a statement purely about spherically symmetric
spacetime metrics in SSC coordinates because neither the RH conditions nor the Ein-
stein equations have yet been imposed. But we know by Israel’s theorem that the RH
conditions must be imposed to conclude that smoothing transformations exist. The
point then, is that to prove the existence of coordinate transformations that lift the
regularity of SSC metrics to C1,1 at p ∈ Σ, we must prove that there exists a set of
functions Jµ

α defined in a neighborhood of p, such that (5.6) holds at p, and such that
the integrability condition (2.3), (required for Jµ

α to be the Jacobian of a coordinate
transformation), holds in a whole neighborhood containing p. In the next section we
give an alternative proof of Israel’s Theorem by showing that such Jµ

α always exist in a
neighborhood of a point p on a smooth single shock surface, and the following section
we prove that no such functions exist in a neighborhood of a point p of shock wave
interaction, unless Det (Jµ

α ) = 0 at p.

6. Metric Smoothing on Single Shock Surfaces and a Constructive
Proof of Israel’s Theorem

We have shown in Corollary 5.2 that (5.6) is a necessary and sufficient condition on a
Jacobian derivative Jµ

α for lifting the SSC metric regularity to C1,1 in a neighborhood
of a shock curve. We now address the issue of how to obtain such Jacobians of actual
coordinate transformations defined on a whole neighborhood of a shock surface. For
this we need to find a set of functions Jµ

α that satisfies (5.6), and also satisfies the
integrability condition (2.3) in a whole neighborhood. In this section we show that this
can be accomplished in the case of single shock surfaces, thereby giving an alternative
constructive proof of Israel’s Theorem for spherically symmetric spacetimes:

Theorem 6.1. (Israel’s Theorem) Suppose gµν is an SSC metric that is C0,1 across
a radial shock surface γ in the sense of Definition 4.1, such that it solves the Einstein
equations (2.11) - (2.14) strongly away from γ, and assume T µν is everywhere bounded
and in C0 away from γ. Then around each point p on γ there exists a C1,1 coordinate
transformation of the (t, r)-plane, defined in a neighborhood N of p, such that the
transformed metric components gαβ are C1,1 functions of the new coordinates, if and
only if the RH jump conditions (3.4), (3.5) hold on γ in a neighborhood of p.

The main step is to construct Jacobians acting on the (t, r)-plane that satisfy the
smoothing condition (5.6) on the shock curve, the condition that guarantees [gαβ,γ ] = 0.
The following lemma gives an explicit formula for functions Jµ

α satisfying (5.6). The
main point is that, in the case of single shock curves, both the RH jump conditions
and the Einstein equations are necessary and sufficient for such functions Jµ

α to exist.

Lemma 6.2. Let p be a point on a single shock curve γ across which the SSC metric
gµν is Lipschitz continuous in the sense of Definition 4.1 in a neighborhood N of p.
Then there exists a set of functions Jµ

α ∈ C0,1(N ) satisfying the smoothing condition
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(5.6) on γ ∩ N if and only if (4.8) holds on γ ∩ N . Furthermore, all Jµ
α that are in

C0,1(N ) and satisfy (5.6) on γ ∩ N are given by

J t
0(t, r) =

[Ar]φ(t) + [Bt]ω(t)

4A ◦ γ(t)
|x(t) − r| + Φ(t, r)

J t
1(t, r) =

[Ar]ν(t) + [Bt]ζ(t)

4A ◦ γ(t)
|x(t) − r| + N(t, r)

Jr
0 (t, r) =

[Bt]φ(t) + [Br]ω(t)

4B ◦ γ(t)
|x(t) − r| + Ω(t, r)

Jr
1 (t, r) =

[Bt]ν(t) + [Br]ζ(t)

4B ◦ γ(t)
|x(t) − r| + Z(t, r) , (6.1)

for arbitrary functions Φ, Ω, Z, N ∈ C0,1(N ), where

φ = Φ ◦ γ, ω = Ω ◦ γ, ν = N ◦ γ, ζ = Z ◦ γ . (6.2)

Moreover, each arbitrary function U = Φ,Ω, Z or N satisfies

[Ur] = 0 = [Ut]. (6.3)

Proof: Suppose there exists a set of functions Jµ
α ∈ C0,1(N ) satisfying (5.6), then

their continuity implies that tangential derivatives along γ match across γ, that is

[Jµ
α,t] = −ẋ[Jµ

α,r] (6.4)

for all µ ∈ {t, r} and α ∈ {0, 1}. Imposing (6.4) in (5.6) and using (4.3) - (4.4) yields
(4.8).

To prove the opposite direction it suffices to show that all t and r derivatives of Jµ
α ,

defined in (6.1), satisfy (5.6) for all µ ∈ {t, r} and α ∈ {0, 1}. This follows directly
from (4.3), (4.4) and (4.8), upon noting that (6.2) implies the identities

φ = J t
0 ◦ γ, ν = J t

1 ◦ γ, ω = Jr
0 ◦ γ, ζ = Jr

1 ◦ γ . (6.5)

This proves the existence of functions Jµ
α satisfying (5.6). Applying (the one shock

version of) Corollary 4.3 (which allows Φ to have the lower regularity Φ ∈ C1,1 but
imposes the jumps (7.4) along γ), confirms that all such functions can be written in
the canonical form (6.1). !

To complete the proof of Israel’s Theorem, we must prove the existence of coordinate
transformations xµ → xα that lift the C0,1 regularity of gµν to C1,1. It remains, then,
to show that the functions Jµ

α defined above in ansatz (6.1) can be integrated to
coordinate functions, i.e., that they satisfy the integrability condition (2.3) in a whole
neighborhood. This is accomplished in the following two lemmas.

Lemma 6.3. The functions Jµ
α defined in (6.1) satisfy the integrability condition (2.3)

if an only if the free functions Φ,Ω, N and Z satisfy the following system of two PDE’s:

(α̇|X| + Φt) (β|X| + N) + Φr (ε|X| + Z) − (α|X| + Φ)
(

β̇|X| + Nt

)

(6.6)

−Nr (δ|X| + Ω) + fH(X) = 0

(

δ̇|X| + Ωt

)

(β|X| + N) + Ωr (ε|X| + Z) − (ε̇|X| + Zt) (α|X| + Φ) (6.7)

−Zr (δ|X| + Ω) + hH(X) = 0 ,
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where X(t, r) = x(t) − r, H(·) denotes the Heaviside step function,

α =
[Ar]φ(t) + [Bt]ω(t)

4A ◦ γ(t)
; β =

[Ar]ν(t) + [Bt]ζ(t)

4A ◦ γ(t)
;

δ =
[Bt]φ(t) + [Br]ω(t)

4B ◦ γ(t)
; ε =

[Bt]ν(t) + [Br]ζ(t)

4B ◦ γ(t)
; (6.8)

and

f = (βδ − αε) |X| + αẋN − βẋΦ+ βΩ− αZ

h = (βδ − αε) ẋ|X| + δẋN − εẋΦ+ εΩ− δZ , (6.9)

where, α, β, δ and ε are C1 functions of t and f and h are in C0,1.

The proof of Lemma 6.3 follows by substituting ansatz (6.1) into the integrability
condition (2.3)and identifying the terms in the resulting first order differential equa-
tions for Jµ

α . (For details see [8].)
The proof of Israel’s Theorem is complete once we prove the existence of solutions

Φ,Ω, N and Z of (6.6), (6.7) that are C0,1, such that they satisfy (6.3). For this
it suffices to choose N and Z arbitrarily, so that (6.6), (6.7) reduces to a system of
2 linear first order PDE’s for the unknown functions Φ and Ω. The condition (6.3)
essentially imposes that Φ,Ω, N and Z be C1 across the shock γ. Since (6.6), (6.7) are
linear equations for Φ and Ω, they can be solved along characteristics, and so the only
obstacle to solutions Φ and Ω with the requisite smoothness to satisfy the condition
(6.3), is the presence of the Heaviside function H(X) on the right hand side of (6.6),
(6.7). Lemma 6.3 thus isolates the discontinuous behavior of equations (6.6), (6.7) in
the functions f and h, the coefficients of H. Israel’s theorem is now a consequence
of the following lemma which states that these coefficients of H(X) vanish precisely
when the RH jump conditions hold on γ. (See [8] for details.)

Lemma 6.4. Assume the SSC metric gµν is C0,1 across γ and solves the first three
Einstein equations strongly away from γ. Then the coefficients f and g of H(X) in
(6.6), (6.7) vanish on γ if and only if the RH jump conditions (2.8) hold on γ.

We can now complete the proof of Israel’s Theorem. Assuming that the Einstein
equations hold strongly away from the shock curve (in fact, it suffices to assume that
only the first three equations hold), we have that there exist functions Jµ

α satisfying
the smoothing condition (5.6) if and only if the RH jump conditions hold (c.f. Lemma
6.2). Furthermore, by lemmas 6.3 and 6.4, a solution to the integrability condition
with the required regularity holds if and only if the RH jump conditions hold (in the
sense of (4.8)). Thus, under the assumption that the Einstein equations hold strongly
away from γ, we can integrate the Jacobians Jµ

α to coordinate functions that smooth
the metric g to C1,1 if and only if the RH jump conditions hold. This completes the
proof of Theorem 6. !

7. Shock Wave Interactions as Regularity Singularities in GR -
Transformations in the (t, r)-Plane

The main step in the proof of Theorem 1.1 is to prove that there do not exist C1,1

coordinate transformations of the (t, r)-plane in a neighborhood of a point p of regular
shock wave interaction in SSC that lifts the regularity of the metric g from C0,1 to C1,1

in a neighborhood of p. We then prove in Section 8 that no such transformation can
exist within the full C1,1 atlas that transforms all four variables of the spacetime, i.e.,
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including the angular variables. We formulate the main step precisely for lower shock
wave interactions in R2

− in the following theorem, which is the topic of this section.
A corresponding result applies to upper shock wave interactions in R2

+, as well as two
wave interactions in a whole neighborhood of p.

Theorem 7.1. Suppose that p is a point of regular shock wave interaction in SSC,
in the sense of Definition 3.1, for the SSC metric gµν . Then there does not exist a
C1,1 coordinate transformation xα ◦ (xµ)−1 of the (t, r)-plane, defined on N ∩R2

− for a
neighborhood N of p in R2, such that the metric components gαβ are C1 functions of
the coordinates xα in N∩R2

− and such that the metric has a non-vanishing determinant
at p, (that is, such that lim

q→p
Det (gαβ(q)) %= 0).11

In the remainder of this section we outline the proof of Theorem 7.1, which mir-
rors the constructive proof of Israel’s Theorem 6.1 in that it uses the extension (7.1)
of ansatz (6.1) to construct all C1,1 coordinate transformations that can smooth the
gravitational metric to C1,1 in a neighborhood of a point p of regular shock wave inter-
action. The negative conclusion is then reached by proving that any such coordinate
transformation must have a vanishing Jacobian determinant at p. But now, to prove
non-existence, we must show the ansatz (7.1) is general enough to include all C0,1

Jacobians that could possibly lift the regularity of the metric. For this we use condi-
tion (5.6) to construct a canonical form for the Jacobians in a neighborhood of p, that
generalizes (6.1) to the case of two shock curves, with the weaker assumption of C0,1

regularity on the functions Φ, Ω, Z, N . We conclude the proof by showing that this
canonical form is inconsistent with the assumption that Det (gαβ) %= 0 at p, by using
the continuity of the Jacobians up to p.

To implement these ideas, the main step is to show that the canonical form 4.12
of Corollary 4.3 can be applied to the Jacobians Jµ

α in the presence of a shock wave
interaction. The result is recorded in the following lemma:

Lemma 7.2. Let p be a point of regular shock wave interaction in SSC in the sense
of Definition 3.1, corresponding to the SSC metric gµν defined on N ∩R2

−. Then there

exists a set of functions Jµ
α ∈ C0,1(N ∩ R2

−) satisfying the smoothing condition (5.6)
on γi ∩N , i = 1, 2, if and only if (4.8) holds on each shock curve γi ∩N . In this case,

all Jµ
α in C0,1(N ∩ R2

−) assume the canonical form

J t
0(t, r) =

∑

i

αi(t) |xi(t) − r| + Φ(t, r),

J t
1(t, r) =

∑

i

βi(t) |xi(t) − r| + N(t, r),

Jr
0 (t, r) =

∑

i

δi(t) |xi(t) − r| + Ω(t, r),

Jr
1 (t, r) =

∑

i

εi(t) |xi(t) − r| + Z(t, r) , (7.1)

where

αi(t) =
[Ar]i φi(t) + [Bt]i ωi(t)

4A ◦ γi(t)
,

11Note that Theorem 1.1 states the non-existence of coordinates on an entire neighborhood N of
p in R

2, but here we have prove the stronger result that such coordinates do not exist on the upper
or lower half planes separately.
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βi(t) =
[Ar]i νi(t) + [Bt]i ζi(t)

4A ◦ γi(t)
,

δi(t) =
[Bt]i φi(t) + [Br]i ωi(t)

4B ◦ γi(t)
,

εi(t) =
[Bt]i νi(t) + [Br]i ζi(t)

4B ◦ γi(t)
, (7.2)

with
φi = Φ ◦ γi, ωi = Ω ◦ γi, ζi = Z ◦ γi, νi = N ◦ γi , (7.3)

and where Φ,Ω, Z,N ∈ C0,1(N ∩ R2
−) have matching derivatives on each shock curve

γi(t),
[Ur]i = 0 = [Ut]i , (7.4)

for U = Φ,Ω, Z,N , t ∈ (−ε, 0).

The essence of the canonical form (7.1) is that the jumps in derivatives across
the shock waves have been taken out of the functions Φ,Ω, Z,N in (7.4). We now
have a canonical form for all functions Jµ

α that meet the necessary and sufficient
condition (5.6) for [gαβ,γ ] = 0. However, for Jµ

α to be proper Jacobians that can
be integrated to a coordinate system, we must use the free functions Φ,Ω, Z,N to
meet the integrability condition (2.3). To finish the proof of Theorem 7.1, we show
that, as a consequence of (7.4), (that is, the free functions are C1 regular at the shocks),
the Jacobian determinant Det Jµ

α must vanish at the point of shock interaction, which
then implies Det (gαβ) = 0.

Thus, using the canonical form (7.1) restricted to the shock curve and taking the
determinant of the resulting Jµ

α leads directly to

Det (Jµ
α ◦ γi(t)) =

(

J t
0J

r
1 − J t

1J
r
0

)

|γi(t) = φi(t)ζi(t) − νi(t)ωi(t). (7.5)

Since Jµ
α is continuous, we obtain the same limit t → 0 for i = 1, 2,

lim
t→0+

Det (Jµ
α ◦ γi(t)) = φi(0)ζi(0) − νi(0)ωi(0) = φ0ζ0 − ν0ω0. (7.6)

Therefore, the final step in the proof of Theorem 7.1 is the following lemma:

Lemma 7.3. Let p ∈ N be a point of regular shock wave interaction in SSC in the
sense of Definition 3.1. Then if the integrability condition

Jµ
α,β = Jµ

β,α (7.7)

holds in N ∩ R2
− for the functions Jµ

α defined in (7.1), (so that Φ, Ω, N and Z satisfy
(7.4)), then

1

4B

(

ẋ1ẋ2

A
+

1

B

)

[Br]1[Br]2 (ẋ1 − ẋ2) (φ0ζ0 − ν0ω0) = 0. (7.8)

Proof: Substituting the Jµ
α in (7.1) into (7.7) gives equations (6.6), (6.7) except that

we now sum over two shock curves instead of one. The difference is the appearance of
additional mixed terms in the coefficients f and h of the discontinuous terms multiply-
ing the Heaviside function H(X). The proof is accomplished by showing that, unlike
f and g in (6.6), (6.7), these mixed terms do not vanish by the jump conditions for
the Einstein equations alone. Finally, a lengthy calculation to evaluate the limit t → 0
demonstrates that imposing the condition that these additional mixed terms should
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vanish, which is necessary for (7.4) to hold, implies the final equation (7.8). (See [8]
for details.) !

To finish the proof of Theorem 7.1, observe that the first three terms in (7.8) are
nonzero by our assumption that shock curves are non-null, and have distinct speeds
at t = 0. Thus (7.8) implies

Det Jµ
α (p) = (φ0ζ0 − ν0ω0) = 0, (7.9)

as claimed. !

In summary, we remark that at first there appears to be more than enough freedom
to choose the free functions Φ,Ω, Z,N in the canonical form of Lemma 7.2, to arrange
for the discontinuous term in the integrability condition to vanish, (just as in Lemma
6.2, the main step leading to Israel’s Theorem). This together with the fact that the
derivatives of Jµ

α are uniquely solvable in condition (5.6), lead us to believe until the
very end that one could construct coordinates in which gαβ was C1,1. But at the very
last step, taking the limit to the point p of shock wave interaction, we find that the
condition (7.4), expressing that [gαβ,γ ] vanishes at shocks, has the effect of freezing
out all the freedom in Φ,Ω, Z,N , thereby forcing condition (7.9), implying that the
determinant of the Jacobian must vanish at p. The answer was not apparent until the
very last step, and thus we find the result quite remarkable and surprising.

8. Shock Wave Interactions as Regularity Singularities in GR -
the Full Atlas

For the proof of Theorem 1.1, we have established the nonexistence of C1,1 coordi-
nate transformations in the (t, r)-plane that can map a C0,1 regular SSC metric gµν

over to a C1,1 metric gαβ . It remains to extend this result to the full atlas of coordi-
nate transformations that depend on all four coordinate variables, including the SSC
angular variables. In this section we outline the proof, (see [8] for details).

So assume for contradiction there exist coordinates xj in which the metric gij is C1.
In general gij is not of the box diagonal form (2.9), however, one can always transform
back to a metric gαβ in box diagonal form (c.f. [15] chapter 13). The point is now that
this transformation is in C2, since Killing’s equation

Xi,j + Xj,i = Γk
ijXk,

yields a C1 regular Killing vector field X, provided gij is in C1, which if integrated up
to coordinates yields a C2 coordinate transformation. Therefore the resulting metric
in box diagonal form gαβ is C1 regular. Now gαβ can be taken over to SSC by a
C1,1 coordinate transformation, which, together with its inverse, act only on the (t, r)
variables. This contradicts Theorem 7.1, and completes the proof of Theorem 1.1.

9. The Loss of Locally Inertial Frames

Finally we discuss the non-existence of locally inertial frames around a point of
regular shock wave interaction. This is in surprising contrast to the case of points
on single shock surfaces for which locally inertial coordinate frames always exist, (c.f.
[11]). To start, we clarify what we mean by a locally inertial frame:

Definition 9.1. Let p be a point in a Lorentz manifold and let xj be a coordinate
system defined in a neighborhood of p. We call xj a locally inertial frame around p if
the metric gij in those coordinates satisfies:
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(i) gij(p) = ηij, ηij = diag(−1, 1, 1, 1),
(ii) gij,l(p) = 0 for all i, j, l ∈ {0, ..., 3},
(iii) gij,kl are bounded in every compact neighborhood of p. 12

When the metric components gij satisfy (1)-(3) at point p, we say gij is locally
Minkowskian (or locally flat or locally inertial) at p. By Theorem 1.1, there exist
second order derivatives of the metric which are pointwise unbounded in every neigh-
borhood of p. Therefore, the following Corollary is a straightforward consequence of
Theorem 1.1:

Corollary 9.2. Let p be a point of regular shock wave interaction in SSC in the sense
of Definition 3.1. Then there does not exist a C1,1 coordinate transformation such that
the resulting metric gij is locally Minkowskian around p.

10. Conclusion

Our results show that points of shock wave interaction give rise to a new kind of
singularity which is different from the well known singularities of GR. The famous
examples of singularities in GR are either non-removable singularities beyond phys-
ical spacetime, (for example the center of the Schwarzschild and Kerr metrics, and
the Big Bang singularity in cosmology where the curvature cannot be bounded), or
else they are removable in the sense that they can be transformed to locally iner-
tial points of a regular spacetime under coordinate transformation, (for example, the
apparent singularity at the Schwarzschild radius, the interface at vacuum in the in-
terior Schwarzschild, Oppenheimer-Snyder [9], Smoller-Temple shock wave solutions
[13, 12], and any apparent singularity at smooth shock surfaces that become regular-
ized by Israel’s Theorem, [5, 11]). In contrast, points of regular shock wave interaction
are non-removable singularities that propagate in physically meaningful spacetimes in
GR, such that the curvature is uniformly bounded, but the spacetime is essentially not
locally inertial at the singularity. For this reason we call these regularity singularities.

Since the gravitational metric tensor is not locally inertial at points of shock wave in-
teraction, it begs the question as to whether there are general relativistic gravitational
effects at points of shock wave interaction that cannot be predicted from the compress-
ible Euler equations in special relativity alone. Indeed, even if there are dissipativity
terms, like those of the Navier Stokes equations,13 which regularize the gravitational
metric at points of shock wave interaction, our results assert that the steep gradients
in the derivative of the metric tensor at small viscosity cannot be removed uniformly
while keeping the metric determinant uniformly bounded away from zero, so one would
expect the general relativistic effects at points of shock wave interaction to persist. We
thus wonder whether shock wave interactions might provide a physical regime where
new general relativistic effects might be observed. Said differently, a regularity singu-
larity is not hidden behind an event horizon, so it is a sort of counterexample to the

12This condition ensures that the physical equations in GR (which are tensorial) differ from the
corresponding equations in flat Minkowski space by only gravitational effects, i.e., effects that are
second order in the metric derivatives. In most of the literature on GR, (c.f. [4]), the gravitational
metric is assumed to be at least C1,1, (c.f. [4]), which then directly implies condition (3) of Definition
9.1. At this stage it is not clear to the authors whether or not there exist coordinates that could play
a (physically satisfying) role as locally inertial frames by satisfying (1)-(2), but not (3).

13The issue of how to incorporate a relativistic viscosity that meets the speed of light bound is
problematic, [15].
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cosmic censorship conjecture in the sense that it gives rise to unbounded second order
metric derivatives, which by themselves might yield physically measurable effects that
resemble some effects of unbounded curvature.
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