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OUR PROGRAM

• To Explicitly Construct...  

• To Understand the Structure of...  

• To Give a Mathematical Proof of Existence of...  

Time-Periodic Solutions
of the

 Compressible Euler Equations
 

(Unpublished--Work in Progress)

• Q1:  By what wave propagation mechanism are 
time-periodic/shock-free solutions possible?  

• Q2:  What is the simplest possible structure?  

· · ·



---Our Answer---
The simplest global periodic structure in the xt-plane



Our answerOur answer



The Difficulty in a Nutshell

τt − ux = 0
ut + px = 0

St = 0

• The compressible Euler Equations in Lagrangian Coordinates: 
3-coupled nonlinear conservation laws---

• Basic warmup problem:  scalar Burgers Equation:

ut + uux = 0

∇(1,u)u(x, t) = 0

“u=const. along lines of speed u”

“inconsistent with time-periodic evolution”

ut +
1
2
(u2)x = 0



The Problem:

• Basic warmup problem:  scalar Burgers Equation:

ut + uux = 0

“inconsistent with time-periodic evolution”

0

t

x

2ππ

Rarefactive Compressive

End of classical solutiont =

Shock-wave



Why we are interested in time-periodic 
solutions of compressible Euler...

• Historically ---The equations were derived by Euler in 1752 as a model for sound wave 
propagation. 

•  A first question:  Do the nonlinear equations support oscillatory solutions analogous to 
the linearized theory of sound?

• Riemann had the equations and the problem...

• For most of the last 250 years, experts thought time-periodic solutions were not possible 
due to shock-wave formation...

•  Scientifically ---Time-periodic solutions represent dissipation free long distance signaling. 

• Could the structure of periodic solutions supply a new paradigm for how sound waves, 
and other nonlinear waves, really propagate?

• Such waves represent physical waves that travel at a new speed, different from the 
sound and shock speeds.

• From a PDE point of view ---The mechanism requires at least three coupled PDE’s

•  C.f. work on periodic solutions of the scalar nonlinear Schroedinger Eqn, and scalar 
nonlinear wave equation.

• Issues of resonances and small divisors analagous to KAM theory arises.

• Diophantime equations and probability theory are involved.

• Bifurcation theory ---the bifurcation aspects of the problem have the potential to open the 
door to all the issues tied to bifurcation theory, such as chaos, period-doubling, etc.

• Intellectual interest ---our approach is to guess the solution structure by heuristic 
reasoning based on nonlinear waves...and this is prerequisite for a rigorous 
mathematical analysis.
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I.  The Compressible 
Euler Equations



The Compressible Euler Equations

• System (Ma), (Mo), (En) describes the time 
evolution of a compressible fluid...   

ρt + div[ρu] = 0

(ρui)t + div[ρuiu] = −∇p

Et + div[(E + p)u] = 0

(Mo)

(En)

(Ma)

• 5-equations with 6-unknowns   

An equation of state is required to close the system:

e = energy
mass =specific internal energy

E = energy
vol = ρe + 1

2ρu2=total energy

p=pressure

u = (u1, u2, u3)=velocity

ρ = mass
vol =density

(ρ, u1, u2, u3, p, e)



The Entropy:

• Time-irreversibility is measured by the entropy, which 
evolves according to a derived conservation law:

(Ma),(Mo),(En)        (Ent)

(ρS)t + div(ρSu) = 0 (Ent)

S = entropy
mass =specific entropy

Second Law of 
Thermodynamics

+( )

•  The specific entropy     is a state variable obtained 
by integrating the second law of thermodynamics

dS =
de

T
− p

dτ

T
(2nd Law)

τ = 1/ρ = specific volume

•  A consequence is the “adiabatic constraint”

S



(ρui)t + div[ρuiu] = −∇p

• On smooth solutions:

Euler { (ρui)t + div[ρuiu] = −∇p

ρt + div[ρu] = 0ρt + div[ρu] = 0

Et + div[(E + p)u] = 0 (ρS)t + div(ρSu) = 0

• When shocks are present:

Euler {ρt + div[ρu] = 0

(ρui)t + div[ρuiu] = −∇p

Et + div[(E + p)u] = 0

+

The Entropy:

• Total entropy is strictly increasing in time when shocks 
are present.

(ρS)t + div(ρSu) > 0



• Conclude:  The compressible Euler equations describe the 
time evolution of a perfect fluid in the limit that all 
dissipative forces (like friction and heat conduction) are 
neglected.

• Nevertheless:  There is a canonical dissipation 
present at the zero dissipation limit,  and this is 
encoded in the rate of increase of the entropy at 
shock waves:

Smooth Solution

(time-irreversible)

(time-reversible)

Shock Wave Discontinuity

t



Strict Liapunov Function

•Conclude:  When shock waves are 
present,  the Entropy is a

Time-periodic solutions of the 
compressible Euler equations must be

Shock-Free



 -Dimensional Wave Propagation:

• For wave propagation in                 :

(Mo)

(En)

(Ma)ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

x-direction

• 3-conservation laws with a derived (convex) 
entropy:   

Euler {
(ρS)t + (ρSu)x = 0 (Ent)

• 5-unknowns   

An equation of state relating                 is required 
to close the system.

1

(ρ, p, e, S)

(ρ, p, e, S, u)

Et + {(E + p)u}x = 0



• The equation of state for a non-interacting gas composed 
of molecules can be derived from first principles using 
only the equipartition of energy principle and the second 
law of thermodynamics,  and leads to the fundamental 
relation for a                ,  or                 :                    

p = − ∂e
∂τ (S, τ)

r= number of atoms in a molecule

γ = 1 + 2/3r = adiabatic gas constant

where:

• It follows that:

e = cτT = cτ

(
1
τ

)γ−1

exp

{
S

cτ

}

γ-law gaspolytropic

γ= ratio cp/cv of specific heats (measurable)

The Polytropic Equation of State



Assuming:

• Smooth, 1-D motion

• polytropic equation of state

The Euler equations are equivalent to: 

τt − ux = 0
ut + px = 0

St = 0

System closes with the    -law relation

p = Kτ−γeS/cτ

• Three coupled nonlinear equations in the 
three unknowns

(Mo)

(Ma)

(Ent)

The Euler system in Lagrangian coordinates 
(relative to a frame moving with the fluid)

γ

(τ, u, S)



• Note:  when S=cost, solution reduces to the 
2x2 p-system, a system in which there is 
sound wave propagation in forward and back 
directions

 

τt − ux = 0
ut + px = 0

St = 0
(Mo)

(Ma)

(Ent)

• 3x3 Lagrangian equations:

τt − ux = 0
ut + p(τ, S)x = 0

• Sound waves:                                sound speed

c =
√
−pτ =

√
Kγτ−

γ+1
2 eS/2cτ . (1)

dx
dt = ±c c=



•Note:   there are trivial time-periodic 
solutions that correspond to an entropy  
gradient passively transported with the 
fluid. 

By  “time-periodic solutions”,  we 
always mean non-trivial solutions 
with sound-wave propogation

p(ρ0(x), S0(x)) = p0

S(x, 0) ≡ S0(x), ρ(x, t) ≡ ρ0(x)

u ≡ u0 = const., p ≡ p0 = const.

• Such solutions transmit no sound-waves



•Note:  linearizing about a constant state

Linearized theory of sound

ρtt − c2ρxx = 0

ρ = ρ0

S = S0

u = 0

equations reduce to the wave equation



II.  History/Prior Results

Periodic solutions of
Compressible Euler



• 1687-- Principia/ Newton attempted to give a continuum version 
of his laws of motion in order to derive the speed of sound from 
first principles.

• 1749-- D'Alembert introduced the linear wave equation to 
describe displacements of a vibrating string.

• The wave equation is the basic equation in which all waves 
propagate at the same speed, and so it was natural to conjecture 
that sinusoidal oscillations in the air might account for sound 
waves.  But D'Alembert had no physical derivation of this from 
first principles.  

• 1752-- Euler (building on work of Bernoulli) completed Newton’s 
program by deriving the fully nonlinear theory of sound waves 
from first principles.

• Euler showed that asymptotically, in the limit of weak signals, the 
compressible Euler equations reduce to the wave equation in the 
density,  thus demonstrating that sound waves could be described 
by periodic sinusoidal oscillations in the density.

• This established the framework for the (linear) theory of sound.

• Ref: D. Christodoulou, ETH Zurich, 2006/Bulletin, Oct. 2007.

History/Background



• The first question to ask after Euler is: 

Do the fully nonlinear equations admit 
time-periodic, oscillatory solutions that 
propagate information like the linear sound 
waves of the wave equation?

• For most the last 250 years experts have 
generally thought that such time periodic 
solutions did not exist, due to the phenomenon 
of shock wave formation...

History/Background



• 1857-- Riemann showed that shock-wave 
discontinuities can form from smooth solutions 
of the compressible Euler equations. 

Introduced Riemann invariants and the 
Riemann problem to continue the solutions 
past the time of shock formation

History/Background

Riemann, B. Uber die Fortpfanzung ebener Luftwellen von endlicher Schwingungswete,
Abhandlungen der Gesellshaft der Wissenshaften zu Gottingen, Mathematisch-
physikalishe Klasse, Vol. 8, 43 (1858-59)

•  After Reimann... 

• Shock-waves became the cental issue in the 
study of the compressible Euler equations...



• 1964-- Lax proved finite time blow-up in derivatives for 2x2 
systems for which the nonlinear fields are “genuinely nonlinear” 

like the p-system. 

History/Background

• 1970-- Glimm and Lax give definitive result for 2x2 systems---
shocks must form from periodic initial data for the 2x2 p-system

P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic par-
tial differential equations, Jour. Math. Physics, Vol. 5, pp. 611-613 (1964).

J. Glimm, P.D. Lax, Decay of solutions of systems of nonlinear hy-
perbolic conservation laws, Memoirs Amer. Math Soc. 101(1970).

Lax's argument is sufficient to imply blow-up in the 
derivative for space-periodic solutions of the p-system 
thereby implying the formation of shock-waves---
inconsistent with time-periodic evolution. 

Thm:  Solutions of the p-system starting from space 
periodic initial data (small in      ) must form shock-waves 
and decay in the total varation norm at rate ate 1/t. 

L∞



• 1974-97  Blow-up results that extend Lax’s result to 
3x3 systems were not sufficient to rule out the 
possibility of time- periodic sound wave propagation in 
the compressible Euler equations...

F. John, Formation of singularities in one-dimensional wave propagation,
Comm. Pure Appl. Math., Vol. 27, pp. 377-405 (1974).

T.P. Liu, Development of singularities in the nonlinear waves for quasi-linear
hyperbolic partial differential equations, J. Diff. Eqns, Vol. 33, pp. 92-111
(1979).

Li Ta-Tsien, Zhou Yi and Kong De-Xing, Global classical solutions for gen-
eral quasilinear hyperbolic systems with decay initial data, Nonlinear. Analysis.,
Theory., Methods. and Applications., Vol. 28, No. 8, pp. 1299-1332 (1997).

History/Background



• 1975-- Jim Greenberg produced an example 
of a time-periodic solution in a 2x2 genuinely 
nonlinear system--

The example required a degeneracy in wave 
speeds not present in compressible Euler 



• 1984-88-- The idea that time periodic solutions may exist was 
kindled by work of Majda, Rosales and Schonbeck:

History/Background

A. Majda and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic
waves I. A single variable, Stud. in Appl. Math., 22, pp. 149-179 (1984).

A. Majda, R. Rosales and M.Schonbeck, A canonical system of integrodiffer-
ential equations arising in resonant nonlinear acoustics, Stud. in Appl. Math.,
79, pp. 205-262 (1988).

• 1988-- Pego produced a periodic solution to an asymptotic 
model

R.L. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics,
Studies in Appl. Math., Vol. 79, pp. 263-270 (1988).



• 1996-99-- Rosales and two students, Shefter and 
Vaynblat, produced detailed numerical 
simulations of the Euler equations starting from 
periodic initial data, and these numerical studies 
indicated that periodic solutions of the 3x3 
compressible Euler equations do not decay like 
the 2x2 p-system, and they made observations 
about the possibility of periodic, or quasi-
periodic attractor solutions.

History/Background

M. Shefter and R. Rosales, Quasi-periodic solutions in weakly nonlinear gas
dynamics, Studies in Appl. Math., Vol. 103, pp. 279-337 (1999).

D. Vaynblat, The strongly attracting character of large amplitude nonlinear
resonant acoustic waves without shocks. A numerical study. M.I.T. Dissertation,
(1996).



• Authors work:   how  Lie Bracket effects in the full 3x3 
Euler system can fundamentally alter wave interactions

• Warmup problems suggesting that periodic solutions 
may exist were investigated by Young

B. Temple, R. Young, The large time existence of periodic solutions for the
compressible Euler equations, Contemporanea Mathematica, Proceedings of the
Fourth International Workshop on Partial Differential Equations, IMPA, Brazil,
July, 1995.

B. Temple, R. Young, The large time stability of sound waves, Commun.
Math. Phys, Vol. 179, 417-466 (1996).

R. Young, Periodic solutions for conservation laws, Contemp. Math., Vol.
225, pp. 239-256 (2000).

R. Young, Sustained solutions for conservation laws, Commun. PDE, Vol.
26, pp. 1-32 (2001).

History/Background



• CONCLUDE:  Until now, we do not understand the 
structure of time periodic solutions, nor the 
mechanism that can prevent shock formation.  

• Moreover, it is difficult to numerically simulate time-
periodic solutions by starting with general space 
periodic data and running the solution until the 
shock-wave dissipation resolves itself into a periodic 
configuration...

• ...Errors are difficult to control in large time 
simulations...

• ...  Shock-waves alter the entropy field, and so the 
background entropy field remains unknown until 
the shock-wave dissipation is done.  The final 
entropy field to which a general time periodic 
solution will decay is then pretty much impossible 
to predict, and hence difficult to simulate without 
understanding the mechanism for periodic wave 
propagation at the start.



Compressive 
and 

Rarefactive waves

III.   



τt − ux = 0
ut + px = 0

St = 0

• The system supports 3  Wave Families 
determined by the eigenfamilies         of      :

λ1 = −c λ2 = 0 λ3 = c

1-waves 2-waves 3-waves

• Sound speed: c =
√
−pτ =

√
Kγτ−

γ+1
2 eS/2cτ . (1)

Ut + F (U)x = 0

dF




τ
u
S





t

+




−u
p
0





x

= 0

(λi, Ri)

Lagrange equations
 as a 

System of Conservation Laws



Ut + F (U)x = 0

(λi, Ri)

Ut + dF · Ux = 0

• Assume that          is a (smooth) eigen-field 
for      :dF

Let      denote an integral curve of  vector field

(dF − λiI) Ri = 0

Ri Ri

Letting states    on      propagate with speed                     
defines a 1-parameter family of simple waves                     

RiU

Ri

U

x

t

λi(U)

dx

dt
= λi(U0)

U0

Ri(U0)

U(x, t) = U0

Simple Waves

• nxn system of conservation laws:



Letting states     on      propagate with speed        
defines a 1-parameter family of simple waves                     

RiU

Ri

U

x

t

λi(U)

dx

dt
= λi(U0)

U0

Ri(U0)

U(x, t) = U0

I.e., assume λ(x, t) satisfies λ = const. along dx
dt = λ.

∇(x,t)λ ⊥ curve dx
dt = λ − λt

λx
= λ

Ut + dF · Ux = U ′λt + dF · U ′λx = λx

(
dF −

(
− λt

λx

))
U ′ = 0

Then U(λ(x, t)) satisfies



• The three Characteristic families of Euler:

λ1 = −c λ2 = 0 λ3 = c

3-waves

• Three eigen-families of 

Ut + F (U)x = 0




τ
u
S





t

+




−u
p
0





x

= 0




τ
u
S





t

=




0 −1 0
pτ 0 pS

0 0 0








τ
u
S





x

= 0

Ut + dF · Ux = 0

dF

R1 =




1
c
0



 R3 =




1
−c
0



R2 =




−pS/pτ

0
1





2-waves1-waves

c =
√
−pτ =

√
Kγ

(
1
τ

) γ+1
2

eS/2cτ



λ1 = −c λ2 = 0 λ3 = c

3-waves

• Three eigen-families of        ...dF

R1 =




1
c
0



 R3 =




1
−c
0



R2 =




−pS/pτ

0
1





2-waves1-waves

Conclude:  

S is constant through 1,3-waves

u, p are constant through 2-waves



• 3 characteristic families associated with          : 

1-waves
(back)

2-waves
3-waves

(forward)
dx

dt
= λ1 = −c

dx

dt
= λ3 = c

dx

dt
= λ2 = 0

1-waves2-waves3-waves

Linearly
Degenerate

Genuinely
Nonlinear

Genuinely
Nonlinear

∇R2
λ2 ≡ 0∇R1

λ1 > 0 ∇R3
λ3 > 0

(λi, Ri)



• The 2-field             is Linearly Degenerate: 

2-contact discontinuity

(λ2, R2)

∇R2
λ2 ≡ 0

2-waves can be rescaled into time-reversible 
contact discontinuities

SL SR

Conclude:   time-periodic solutions allow for
discontinuities in entropy S

dx

dt
= λ2 = 0



rt − crx = 0
st + csx = 0

Riemann Invariants

At constant entropy:

S = const.

(r, s)

τt − ux = 0
ut + px = 0

St = 0

s ≡ const. along 3-characteristics
r ≡ const. along 1-characteristics

r = u−
∫ ∞

τ
cdτ =

(
2
√

Kγ

γ − 1

) (
1
τ

) γ−1
2

eS/2cτ

s = u +
∫ ∞

τ
cdτ =

(
2
√

Kγ

γ − 1

) (
1
τ

) γ−1
2

eS/2cτ

Problem: r and s depend on the entropy S



• Change Variables:

zt + c
mux = 0

ut + mczx + 2 p
mmx = 0

mt = 0

 re-scales the entropy m S

z  re-scales the specific vol. τ = 1/ρ

(τ, u, S) (z, u,m)

• The transformed Euler equations:

m = eS/2cτ

z =
∫ ∞

τ

c

m
dτ =

(
2
√

Kγ

γ − 1

) (
1
τ

) γ−1
2

A Convenient Change of  Variables



•At each constant value of the entropy, the 
system reduces to a transformed version 
of the 2x2 p=system that depends on 
the entropy through variable m:

zt + c
mux = 0

ut + mczx + 2 p
mmx = 0

mt = 0

zt + c
mux = 0

ut + mczx = 0

S=const.



r = u−mz

s = u + mz

rt − crx = 0
st + csx = 0

zt + c
mux = 0

ut + mczx = 0

• In terms of the Riemann invariants    and    :

     depend on entropy      independent of entropy 

•Conclude:  Equations in          isolate the 
dependence on    in coefficients

(z, u) (r, s)

(z, u)
S

r s



Riemann invariant coordinates in         -plane 

sr

u

z

Slope=mSlope=−m

m = eS/2cτ

Relationship Between Coordinates

(z, u)



Compressive and Rarefactive Waves 
(R/C)

Consider 1,3-waves at constant entropy S:

Definition: The R/C character of a wave in a general
smooth solution is defined (pointwise) by:

Forward R iff st ≤ 0,

Forward C iff st ≥ 0,

Backward R iff rt ≥ 0,

Backward C iff rt ≤ 0.

3-wave ≡ “forward”-wave

1-wave ≡ “backward”-wave



Theorem:   R/C character is preserved along 
backward and forward characteristics

at constant entropy:

Forward-R
 Wave

Backward-C 
Wave

x

t



r = r1

r = r2

r = r2

r = r1

Proof:  Direct consequence of... when S=Const...

s ≡ const. along 3-characteristics
r ≡ const. along 1-characteristics

Sign {rt} is constant
along 1-characteristics

s = s1

s = s2

s = s1

s = s2

x

t

Sign {st} is constant
along 3-characteristics

∣∣dx
dt

∣∣ = c > 0



Correctness of Definition of R/C

• C.f.  the sound speed:

c = Kcmz
γ+1
γ−1 = Kcm

−2
γ−1 (s− r)

γ+1
γ−1

∂c

∂s
> 0

• Conclude:  (R=Rarefactive, C=Compressive)

Forward R iff st ≤ 0,

Forward C iff st ≥ 0
Backward R iff rt ≥ 0,

Backward C iff rt ≤ 0

x

t

x

t

λ = +c increasesλ = −c increases

− ∂c
∂r > 0

E.g., R ≡ wave speed increases from left to right across the wave



The R/C character of a wave 
CAN CHANGE

 at an entropy jump...

For Example:

x

t

mL mR

3-wave (+)1-wave (-)
2-wave



The R/C character of a wave 
CAN CHANGE

 at an entropy jump...

For Example:

x

t
R−out

C+
in R−in

R+
out

mL mR



The R/C character of a wave 
CAN CHANGE

 at an entropy jump...

For Example:

x

t
R−out

C+
in R−in

R+
out

(zR(t), uR(t))
(zL(t), uL(t))

mL mR



For Example:

x

t

R−out

C+
in R−in

R+
out

(zR(t), uR(t))
(zL(t), uL(t))

The Rankine-Hugoniot jump conditions characterize 
how R/C changes at an entropy jump...

qR
L =

(
mR

mL

) 1
γ



To see this:

uL(t) = uR(t)

mLzL(t) = mRzR(t)qL
R

[F]=0

Ranking-Hugoniot

qL
R =

(
mL

mR

) 1
γ

cR = cLqL
R

σ[u] = [F ]

σ = 0



WE HAVE: the backward wave will change its
R/C value at the entropy jump iff the sign of

ṙ = u̇−mż

changes across the jump, and the forward wave will
change R/C character at the entropy jump iff the
sign of

ṡ = u̇ + mż

changes sign across the jump.

THEREFORE: a backward wave changes from C
to R across the entropy jump iff

ṙL = u̇L −mLżL < 0

and
ṙR = u̇R −mRżR > 0.



I.E. by R-H

uR(t) = uL(t),

mRzR(t) = mLzL(t)qR
L ,

where

qR
L =

(
mR

mL

) 1
γ

I.e., by R-H:

SO IT FOLLOWS THAT:

ṙL = u̇L −mLżL < 0 and ṙR = u̇R −mRżR > 0

is equivalent to

qR
LmLżL < u̇L < mLżL.



CONCLUDE: we can determine the R/C changes
across the entropy jump from inequalities on the
time derivative of the solution at the left hand side
of the entropy jump alone. Doing this in all cases
yields the following theorem.

Tangent space showing all possible R/C wave structures when

mL < mR



Tangent space showing all possible R/C wave structures when

mL > mR



Example:

x

t

R−out

C+
in R−in

R+
out

(zR(t), uR(t))
(zL(t), uL(t))

mL < mR mL > mR



• Note:  All 16 possible interaction squares 
appear EXCEPT ones where R/C value of 
both waves change simultaneously:

R R

CC

R

R C

C

R

R

C

C

RR

C CNot possible:

• CONCLUDE:  A wave in one family can 
change its R/C value only in the presence 
of a wave of the opposite family that 
transmits its R/C value



•Note:   There is a LR-asymmetry:                  

mL > mR

are different from the squares for

The interaction squares for

mL < mR mL > mR

mL < mR

mL > mR



IV.  The Simplest Possible Periodic 
Structure that Balances 

Compression and Rarefaction



We we say that a periodic pattern 
of R’s and C’s is

CONSISTENT 

(1)  R/C is balanced along every 
1,3-characteristic

(2)  The interaction squares at entropy jumps  

IF:

DEFN:   

 are consistent with squares
  in the                              R/C diagrams, 

respectively

mL > mR, mL > mR

mL > mR, mL > mR



The simpest consistent R/C pattern

“Extend periodically”

m m mm

m > m



Each number above is consistent with the 
numbered interaction below

m mm m

m = mL > mR = mm = mL < mR = m

m > m



Each 1,3-characteristic traverses 8-C’s and 
8-R’s before returning 



Each 1,3-characteristic traverses 8-C’s and 
8-R’s before returning 

The lettered interactions at constant 
entropy jump transmit R/C 

1,3-characteristics traverse 4-C’s and 4-R’s before
returning 

Identifying these



Inspection of the change in         along 
the axes indicates that the solution is 
consistent with elliptical rotation of 
the solution along the entopy jumps

This leads to the following consistent 
cartoon of the simplest possible 

periodic solution

u̇, ż



The simplest possible periodic structure
m > m

m m mmmm m m m m



Labeling the states along the entropy 
jumps and plotting them according to 
the change in          indicates that the 
solution is consistent with elliptical 
rotation of the solution along the 

entopy jumps

u̇, ż



Labeling the states by numbers and letters
m m m m

m > m

x

t



Ellipses showing periodicity in (z,u)-plane



Edit

The global nonlinear periodic structure



End 
First
Talk



Time-Periodic Solutions
of the

 Compressible Euler 
Equations-II

 

Blake Temple
University of California, Davis

Robin Young
University of Massachusetts, Amherst

· · ·



Outline

I.  The Compressible Euler Equations

II.  History/Prior Results for the Problem

III.  Compressive and Rarefactive Waves

IV.  The Simplest Possible Periodic Structure that 
Balances Compression and Rarefaction

VI.  Exact Linearized Solutions Exhibiting the  
Simplest Periodic Structure

VII.  Isolating Solutions in the Kernel of the 
Linearized Operator

VIII.  Resonances, Small Divisors and Eigenvalues of 
the Linearized Operator

X.  The Bifurcation Equation

 IX.  The Liapunov-Schmidt Method

XI.  The Auxiliary Equation

V.  The Nonlinear Eigenvalue Problem
         Perturbation of Linear Problem≈



The simplest possible global nonlinear 
periodic structure

m > m

m m mmmm m m m m

Recall:



• Change Variables:

 re-scales the entropy m S

z  re-scales the specific vol. τ = 1/ρ

(τ, u, S) (z, u,m)

• The transformed Euler equations   m=const:

m = eS/2cτ

z =
∫ ∞

τ

c

m
dτ =

(
2
√

Kγ

γ − 1

) (
1
τ

) γ−1
2

Recall:    A Convenient Change of  Variables

zt + c
mux = 0

ut + mczx = 0



 
Simplest Periodic Structure 
that balances compression 

and rarefaction along 
characteristics

OBSERVATIONS-- regarding the

TO START



•Recall:   There is an LR-asymmetry:                  

differ from squares for

Interaction squares for

mL < mR mL > mR

mL < mR

mL > mR



Max/Min Characteristics 
always jump 

UP 
going 

The 1,3-wave crests are
SUBSONIC

NOT    
SUPERSONIC

OUTWARD

LR-asymmetry



The 1,3-Max/Min-Characteristics jump UP going 
OUTWARD           SUBSONIC



The speed of the wave crests is 
like an effective 

“Group-Velocity”

The characteristic=sound speed like a 
“Phase-Velocity”

Max/Min-Characteristics jump UP

Group-Velocity < Phase-Velocity

.....



Edit

x0 L

= speed of the wave crests<speed of the sound waves =

t

vpvg

vg =
L

Tg
< vp =

L

Tp

Tg

Tp



Note:  The simplest periodic R/C 
pattern is a cartoon that could 

be realized in a periodic solution 
in different ways: 



OBSERVE:   The simplest periodic structure    

(1)  Periodicity in space 

imposes two special symmetries:

(2)  Max/Min-characteristics JOIN UP

These are conditions imposed on the 
tiling that defines the periodic structure 

in xt-space    



0

2π

x

t

Tile
{

Time period

Space period

{

The solution will be periodic in space iff    

the time shift is commensurate with 2π

Space-periodic tiling    

∆t = π

Eg.  



0

2π

x

t

Time period {

Quasi-periodic in space    

∆t = α · 2π
α irrational

then solution will be quasi-periodic in space     

If the time shift is in-commensurate with 2π

Eg.  



{
Space period

Time 
period{

(1)  Simplest structure is space-periodic

t

x



t

t

x

(1)  Simplest structure is space-periodic



Edit

(2) In the simplest periodic structure

t

x

Max/Min-characteristics JOIN UP



The speed of the wave crests is 
like an effective 

“Group-Velocity”

The characteristic=sound speed like a 
“Phase Velocity”

 
That Max/Min Characteristics 

Join Up  

 
Group Velocity 

is commensurate with
Phase Velocity 



When max/min characteristics join up    
vp vgis commensurate with 

0

2π

t

Tile Tile

Tile

Tile

Tile

x
L

Tp = 2πm

Tg = 2πn

E.g.

vp

vg
=

(L/2πm)
(L/2πn)

=
n

m



V. The nonlinear 
eigenvalue problem
as a perturbation 

of a linear problem
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the Linearized Operator

X.  The Bifurcation Equation

 IX.  The Liapunov-Schmidt Method

XI.  The Auxiliary Equation

V.  The Nonlinear Eigenvalue Problem
         as a Perturbation of Linear Problem



Consider first the 
“Linearized Problem”
in which wave speeds 
are constant at each 

entropy level

This is the limit as the 
states at each entropy 
level oscillate near a 

constant state

........



The periodic structure for the
LINEARIZED PROBLEM



Labeling the states in xt-space



Corresponding states in (z,u)-plane
lie on ellipses



this picture is
EXACT

and use this to set up a perturbation 
problem for the nonlinear problem

FIRST GOAL:   show that in the linearized case



The Nonlinear Problem 

CONSIDER AGAIN: 



{
Space period

Time 
period{

(1)  Simplest structure is space-periodic

t

x



t

t

x

(1)  Simplest structure is space-periodic



Inspection of the periodic structure indicates:

m > m

m = m

m = m

m = m(1)         Nonlinear evolution at             

(2)          Jump from                to

(3)          Nonlinear evolution at

(4)          Jump from                 to

(5)         Half period shift 

m = m

m = m

J :

J−1 :

S :

E :

E :

m = m

• Solution jumps between two entropy levels                  

• Starting with time-periodic “initial data” U(t) at 
x=0,  solution evolves through five operations 
before periodic return:



AGAIN:  The half period shift 

IMPOSES a SYMMETRY



I.e.

m = m

m = m

m = m(1)        Nonlinear evolution at             

(2)       Jump from                 to

(3)        Nonlinear evolution at

(4)          Jump from                 to

(5)       Half period shift 

m = m

m = m

J :

J−1 :

S :

E :

E :

m = m

x

t
{
Time 

period

Space period

{
m m mmm mmm m m



N
NJ J−1

{U(t)
U(t){

J J−1

S

The periodicity condition

S · J 1 · E · J · E [U(·)] = U(·)

EE



•Note:   The half period shift     ensures 
solution is periodic in space            

0

2π

x

t

Tile

{
Time period

Space period

{
S

S

∆t = π

• If     were incommensurate with     , then the 
solution will be only quasi-periodic in space. 
S π



0

2π

x

t

Time period {

 Quasi-periodic in space    

∆t = α · 2π
α irrational

 Our constructions appear robust enough to 

S

S

The speed of the tile is the “group 
velocity”, determined by ( (

construct linearized solutions for any shift

S

SIDE COMMENT



N
NJ J−1

{U(t)
U(t){

J J−1

S

We restrict to the simplest 
periodicity condition

EE

S · J−1 · E · J · E [U(·)] = U(·)



A periodic tile in xt-space: 

t
2π



Label the stages of      evolution by ·ˇ ˆ̃ *

U∗(t)Û(t)Ũ(t)Ǔ(t)U̇(t)
t

U(x, t) = (z(x, t), u(x, t))

2π

U(t) = (z(t), u(t))

2π-periodic

U(·)

“initial data”



Label the stages of      evolution by ·ˇ ˆ̃ *

U∗(t)Û(t)Ũ(t)Ǔ(t)U̇(t)
t

U̇(t) = U(t)Ũ(t) = J [Ǔ(t)]

U∗(t) = J−1[Û(t)] U#(t) = S[U∗(t)]

U(x, t) = (z(x, t), u(x, t))

2π

U(t) = (z(t), u(t))

2π-periodic

U(·)

“initial data”

Ǔ(t) = E [U̇(t)]Û(t) = E [Ũ(t)]



Let       be the starting point for
 evolution in 

Non-dimensionalize the Problem

Choose base states                  

With corresponding sound speed                  

c0 = c(z0, m0) = Kcmz
γ+1
γ−1

x0

x

m0, z0, u0



Dimensionless Variables

Give time and space the same dimension by defin-
ing y through the relation

Define the dimensionless variables

y − y0 =
x− x0

c0

Equations convert to the dimensionless form

wy + σ(w)vt = 0
vy + σ(w)wt = 0

σ(w) = w−d d ≡ γ + 1
γ − 1

w =
z

z0

v =
u− u0

m0z0

m ≡ m0



To see this... m ≡ m0

w =
z

z0

v =
u− u0

m0z0

z = z0w

u = u0 + m0z0v

zt − c
m0

ux = 0
ut + m0czx = 0

z0wt + c
m0

m0z0vx = 0
m0z0vt + m0cz0wx = 0

∂

∂x
=

∂y

∂x

∂

∂y
=

1
c0

∂

∂y
y − y0 =

x− x0

c0

wy + σ(w)vt = 0
vy + σ(w)wt = 0

σ(w) = w−d

wt +
(

c
c0

)
vy = 0

vt +
(

c
c0

)
wy = 0

c = Kcmz
γ+1
γ−1



Conclude:    The nonlinear evolution equations take 
the non-dimensional form:

where:

wy + σ(w)vt = 0
vy + σ(w)wt = 0

d ≡ γ + 1
γ − 1σ ≡ σ(w) = w−d

The equations are independent of base states!

I.e., independent of

Remarkable Fact:

m0, z0, u0



The Transformed Problem

The mapping x→ y, x→ θ, x→ θ

θ =
c(z0)

x

θ =
x

c(z0)



The Transformed Problem

Periodic tile consisting of two constant entropy
levels m, m in the (y, t)-plane



The Transformed Problem

J

S · J−1 · E(θ) · J · E(θ) [V (·)] = V (·)

V (t)

E(θ) E(θ)

J J−1

S

2π

“initial 
data”

· ˇ ˆ˜ *



The Nonlinear Evolution Operator

wy + σ(w)vt = 0
vy + σ(w)wt = 0

DEFINE: 

to be evolution by system  

starting from “initial data”  

V (y, ·) = E(y)[V (·)]

[0, y]through interval 

V (0, t) = V (t)



The R-H Jump Conditions in 
(w,v)-Coordinates

Theorem: R-H Jump Conditions in 
(w,v)-variables 

at an entropy jump are:

w = w

m
d−1
d+1 v = m

d−1
d+1 v

.....
COROLLARY: In (w, v)-coordinates, w and σ(w)
are continous while v is discontinuous at entropy
jumps



The R-H Jump Conditions in 
(w,v)-Coordinates

[u] = mz0v −mz0v = 0

Theorem: R-H Jump Conditions in 
(w,v)-variables 

at an entropy jump are:

w = w

m
d−1
d+1 v = m

d−1
d+1 v

Proof: R-H in (z,u)-coordinates are...

from which it follows by substitution.

[p] = m2zd+1 −m2zd+1 = 0

.....



The Entropy Jump Operator
in (w,v)-coords

where 

and       is the reverse jump  

Theorem:      encodes the R-H jump from 
entropy level      on left to        on right     

J =
(

m

m

) d−1
d+1

V = (w, v)

m m
J

J−1

Define: the entropy jump operator J
acting on V (·) pointwise by

J
[

w
v

]
=

(
1 0
0 J

) [
w
v

]



where 

 

J =
(

m

m

) d−1
d+1

V = (w, v)

Define: the entropy jump operator J
acting on V (·) pointwise by

J
[

w
v

]
=

(
1 0
0 J

) [
w
v

]

 

  NOTE:         is LINEAR       J

The Entropy Jump Operator
in (w,v)-coords



The Shift Operator

Define the shift operator S
acting on V by

SV (t) = V (t + π)

  

  NOTE:         is LINEAR       S



The Transformed Problem

Periodic tile consisting of two constant entropy
levels m, m in the (y, t)-plane



Label the stages of       evolution by ·ˇ ˆ̃ *

2π-periodic

· ˜ ˆ**
V̌ (t) V̂ (t)Ṽ (t) V ∗(t)V̇ (t)

ˇ
V (t) = (v(t), w(t))

V (y, t) = (v(y, t), w(y, t))

2π

m m

V (·)

Periodic tile consisting of two constant entropy
levels m, m in the (y, t)-plane



Label the stages of       evolution by ·ˇ ˆ̃ *

2π-periodic

· ˜ ˆ**
V̌ (t) V̂ (t)Ṽ (t) V ∗(t)V̇ (t)

ˇ
V (t) = (v(t), w(t))

V (y, t) = (v(y, t), w(y, t))

2π

m m

V (·)

V ∗(t) = J−1[V̂ (t)]

Ṽ (t) = J [V̌ (t)] V̇ (t) = V (t)V̂ (t) = E(θ)[Ṽ (t)] V̌ (t) = E(θ)[V̇ (t)]

V #(t) = S[V ∗(t)]



2π-periodic

· ˜ ˆ**
V̌ (t) V̂ (t)Ṽ (t) V ∗(t)V̇ (t)

ˇ
V (t) = (v(t), w(t))

2π

m m

V ∗(t) = J−1[V̂ (t)]

Ṽ (t) = J [V̌ (t)] V̇ (t) = V (t)V̂ (t) = E(θ)[Ṽ (t)] V̌ (t) = E(θ)[V̇ (t)]

V #(t) = S[V ∗(t)]

V #(t) = N [V̇ (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V̇ (t)]

“initial data”



The Periodicity Condition for 
the Nonlinear Problem 

in 
V=(w,v)-space

N [V̇ (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V̇ (t)] = V̇ (t)

N ≡ S · J−1 · E(θ) · J · E(θ)



THEOREM: For fixed positive real numbers θ, θ and J , define the nonlinear
operator N ≡ N (θ, θ, J) by

N ≡ S · J−1 · E(θ) · J · E(θ),

and let V (t) = (w(t), v(t)) denote any smooth solution of

N V (·) = V (·),

that satisfies the average one and zero average conditions

w0 ≡
1
2π

∫ 2π

0
w(t)dt = 1,

and

v0 ≡
1
2π

∫ 2π

0
v(t)dt = 0,

respectively. Then given any base state U0 = (z0, u0) and entropy state m,
there is a periodic solution U(x, t) = (z(x, t), u(x, t), determined uniquely by
V (t), with average values

1
2π

∫ 2π

0
z(0, t)dt = z0,

and

1
2π

∫ 2π

0
u(0, t)dt = u0.



Conclude:  wlog we can assume

w0 ≡
1
2π

∫ 2π

0
w(t)dt = 1

v0 ≡
1
2π

∫ 2π

0
v(t)dt = 0

“Proof”:   define

z = wz0

u = u0 + mz0v

and substitute...



V #(t) = N [V̇ (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V̇ (t)]

2π-periodic

· ˜ ˆ**
V̌ (t) V̂ (t)Ṽ (t) V ∗(t)V̇ (t)

ˇ
V (t) = (v(t), w(t))

2π

m m

“initial data”

WLOG  assume σ0 ≡ σ(w0) = σ(1) = 1



For the Linearized Problem
take:  

σ0 ≡ 1

(I.e., linearize around the nonlinear 
solution that takes constant states

at each entropy level.)  



C.f. The Nonlinear/Linearized Problem:

The Nolinear Problem:

The Linearized Problem:

Evolution by  

Evolution by  

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (y, ·) = E(y)[V (·)]
wy + σ(w)vt = 0
vy + σ(w)wt = 0

V (y, t) = L(θ)[V (t)]
wy + vt = 0
vy + wt = 0
σ(w0) = σ(1) = 1

N [V (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V ] = V (t)



The L^2-Space

Define:  the space of periodic functions
 even in w, odd in v

V (t) =
[

w(t)
v(t)

]

∆ = ⊕+∞
n=0∆n

∆n =
{

V (t) =
[

an cos nt
bn sinnt

]
: an, bn ∈ R

}



LEMMA: If V (t) = (w(t), v(t)) ∈ ∆ is 2π-periodic,
sufficiently smooth and sufficiently small, then both
M [V (·)] (t) and N [V (·)] (t) are well defined smooth
functions, and

N [V (·)] (y) ∈ ∆M [V (·)] (y) ∈ ∆ and

for all 0 ≤ y ≤ θ + θ

E.g.              denotes the function 
y-units through the evolution of             

N [V (·)] (y)

N



PROOF: By the regularity of smooth solutions for the 2 × 2 systems of conserva-
tion laws, together with the fact that J and S are linear operators, it follows that
M [V (·)] (t) and N [V (·)] (t) are well defined functions in Ck or Hs for V (t) sufficiently
small in Ck or Hs, respectively, s, k ≥ 2, (c.f. Majda, Theorem 2.2, page 46). Thus
to verify the zero average in v, it suffices to show that for such V (t) = V (0, t) in the
domain of M and N , if V (y, t) = (w(y, t), v(y, t)) is even in w and odd in v at y = 0,
then it is even in w and odd in v for all 0 ≤ y ≤ θ + θ, where

V (y, t) =

8
<

:

E(y)V (·), 0 < y < θ,
E(y − θ)JE(θ)V (·), θ < y < θ + θ,
SJ−1E(θ)JE(θ)V (·), y = θ + θ.

But the property even in w odd in v is clearly preserved by operators J , J−1 and S,
so it suffices to show that even in w odd in v is preserved by the nonlinear evolution E .
Since solutions of the equations defining E are invariant under the mapping w(y, t)→
w(y,−t) and v(y, t)→ −v(y,−t), we can extend a solution V (y, t) from t ≥ 0 to t ≤ 0
by the reflection

V (y,−t) = (w(t),−v(t)).

By the uniqueness of continuous solutions for smooth initial data, we need only show
that the matched solution is continuous at t = 0 to conclude it is unique, and hence
even in w odd in v by construction. Continuity in w at t = 0 is guaranteed by
w(t) = w(−t). For continuity of v at t = 0, we need to show that v(y, 0) = 0 for all
0 ≤ y ≤ θ + θ. For this the only real issue is to show that the nonlinear evolution in
(w, v) preserves v(y, 0) = 0. To verify this, transform the (w, v) equations to Riemann
invariant coordinates r = v − w, s = v + w, leading to the equivalent system

ry − σrt = 0,

sy + σst = 0.

It follows that r, s are constant along characteristics dt/dy = −σ, dt/dy = σ, respec-
tively. Tracing the characteristics back from point (w(y, 0), v(y, 0) to points (w(0,±t), v(0,±t))
and using even in w odd in v at y = 0 gives

v(y, 0) + w(y, 0) = −v(0, t) + w(0, t),

v(y, 0)− w(y, 0) = v(0, t)− w(0, t),

which upon adding leads to v(y, 0) = 0 as claimed. !



The Perturbation Problem:

Fε = Gε − I

Gε[V ] =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}

Define:

where

so

F(ε, V ) ≡ Fε[V ] = Gε[V ]− V

=
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
− V



Proof:

Gε[V ] =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
= V

N
[(

1
0

)
+ εV

]
=

(
1
0

)
+ εV

Fε[V ] = 0

LEMMA 1: If V ∈ ∆ solves

Fε[V ] = 0

for ε "= 0, then

W =

(
1
0

)
+ εV

defines a periodic solution of the nonlinear
compressible Euler equations.



Proof  (Formally):

Gε[V ] =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
= V

F(ε, V ) = Gε[V ]− V =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
− V

= M[V ]− V + O(ε2)

}
Tends to evolution at            

with error
σ = 1

O(ε2)

LEMMA 2: In the limit ε → 0 we recover the
linear problem:

lim
ε→0
Gε[V ] =M[V ],



VI.    Exact Linearized 
Solutions Exhibiting 

the Simplest Periodic 
Structure



Recall: 

∆ = ⊕+∞
n=0∆n

∆n =
{

V (t) =
[

an cos nt
bn sinnt

]
: an, bn ∈ R

}

Evolution by  

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (y, t) = L(θ)[V (t)]
wy + vt = 0
vy + wt = 0

THEOREM: The linearized operatorM satisfies

M : ∆→ ∆

Moreover, each ∆n is an invariant subspace forM

M : ∆n → ∆n

V (t) = (w, v)



THEOREM: Assume that J > 1, θ > 0, θ > 0 and

θ + θ < π.

Then V (t) = (q1 cos t, q2 sin t) ∈ ∆1 is a solution of M[V ] = V
if and only if

J = cot(θ/2) cot(θ/2)

and q = (q1, q2) ∈ Span {q}, where

q = (cos(θ/2),− sin(θ/2)).

Furthermore, if q̇ = q, then also

q̌ = (cos(θ/2), sin(θ/2))
q̃ = (cos(θ/2), J sin(θ/2))

= ρ(cos(π/2− θ/2), sin(π/2− θ/2)),
q̂ = (− cos(θ/2), J sin(θ/2))

= ρ(− cos(π/2− θ/2), sin(π/2− θ/2)),
q∗ = (− cos(θ/2), sin(θ/2) = −q,

where we have set ρ = ‖q̃‖.



Proof:

Consider first linear evolution:

Evolution by  

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (y, t) = L(θ)[V (t)]
wy + vt = 0
vy + wt = 0V (t) = (w, v)

V (t) ∈ ∆ V (t) =
∞∑

n=0

(
wn cos nt
vn sin nt

)

V (y, t) =
∞∑

n=0

(
wn(y) cos nt
vn(y) sin nt

)
∈ ∆ ∀y ∈ [0, θ]

Look for a solution:  



Plug

∞∑

n=0

w′
n(y) cos nt + nv′n(y) cos nt = 0

∞∑

n=0

v′n(y) sinnt− nw′
n(y) sinnt = 0

wy + vt = 0
vy + wt = 0

V (y, t) =
∞∑

n=0

(
wn(y) cos nt
vn(y) sin nt

)

into

(
wn(y)
vn(y)

)
= R(ny)

(
wn(0)
vn(0)

)

(
wn

vn

)′
+ n

[
0 1
−1 0

] (
wn

vn

)
= 0

(
wn(y)
vn(y)

)
= e

−ny

2

4 0 1
−1 0

3

5 (
wn(0)
vn(0)

)

Conclude:  counterclockwise rotation      
represents        in the n’th F-mode

R(nθ)
L(θ)



Consider next the linear jump operator:

Conclude:      represents      in the n’th F-mode

Then 

J =
(

m

m

) d−1
d+1

V = (w, v)J
[

w
v

]
=

(
1 0
0 J

) [
w
v

]

V (y, t) =
∞∑

n=0

(
wn(y) cos nt
vn(y) sin nt

)

J [V (y, t)] =
∞∑

n=0

(
wn(y) cos nt
J vn(y) sin nt

)

J : D

(
wn(y)
vn(y)

)
=

(
wn(y)
J vn(y)

)
D =

(
1 0
0 J

)

D J



Consider next the linear shift operator:

Conclude:  multiplication by         represents      
in the n’th F-mode

Then 

 

V = (w, v)

 

V (y, t) =
∞∑

n=0

(
wn(y) cos nt
vn(y) sin nt

)

S[V (y, t)] =
∞∑

n=0

[
wn(y) cos (nt + nπ)
vn(y) sin (nt + nπ)

]
=
∞∑

n=0

(−1)n

(
wn(y) cos nt
vn(y) sin nt

)

S : S

(
wn(y)
vn(y)

)
= (−1)n

(
wn(y)
vn(y)

)

(−1)n S

S[V (t)] = V (t + π)



CONCLUDE:  the linear operator
          is represented by matrix multiplication

 in each F-mode:

Conclude:        represents       in the n’th F-mode

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (t) =
∞∑

n=0

(
wn cos nt
vn sin nt

)

(
wn

vn

) !→ (−1)n · D−1 · R(nθ) · D · R(nθ) ·
(

wn

vn

)
≡Mn

(
wn

vn

)

M

R(nθ) =
(

cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)
= R(θ)n D =

(
1 0
0 J

)

Mn M

Mn = (−1)n · D−1 · R(nθ) · D · R(nθ)



AS A RESULT:  The condition for periodicity in the 
n’th F-mode is:

Mn

(
wn

vn

)
=

(
wn

vn

)

(−1)n · D−1 · R(nθ) · D · R(nθ) ·
(

wn

vn

)
=

(
wn

vn

)

THUS: we look for values of (θ, θ, J) such that
the corresponding operatorM isolates a periodic
solution in the 1-mode; I.e. we find q = (q1, q2) =
(w1, v1) such that

(1)

(2)

M1q = q

Mn

(
w
v

)
!=

(
w
v

)
for all

(
w
v

)
∈ R2



THUS: we look for values of (θ, θ, J) such that
the corresponding operatorM isolates a periodic
solution in the 1-mode; I.e. we find q = (q1, q2) =
(w1, v1) such that

(1)

(2)

M1q = q

Mn

(
w
v

)
!=

(
w
v

)
for all

(
w
v

)
∈ R2

FOR PART (1).....



THEOREM: Assume that J > 1, θ > 0, θ > 0 and

θ + θ < π.

Then V (t) = (q1 cos t, q2 sin t) ∈ ∆1 is a solution of M[V ] = V
if and only if

J = cot(θ/2) cot(θ/2)

and q = (q1, q2) ∈ Span {q}, where

q = (cos(θ/2),− sin(θ/2)).

Furthermore, if q̇ = q, then also

q̌ = (cos(θ/2), sin(θ/2))
q̃ = (cos(θ/2), J sin(θ/2))

= ρ(cos(π/2− θ/2), sin(π/2− θ/2)),
q̂ = (− cos(θ/2), J sin(θ/2))

= ρ(− cos(π/2− θ/2), sin(π/2− θ/2)),
q∗ = (− cos(θ/2), sin(θ/2) = −q,

where we have set ρ = ‖q̃‖.



· ˜ ˆ**
V̌ (t) V̂ (t)Ṽ (t) V ∗(t)V̇ (t)

ˇ2π

m m

q̇ q̌ q̃ q̂ q∗

RECALL.....



• Edit

The states q̇, q̌, q̃, q̂, q∗ for q ∈ ∆1

w

v

You can solve for q geometrically:



Linear solutions should perturb to exact 
solutions of the nonlinear problem

CHECK:  The solution in the 1-mode kernel has 
the structure that balances compression and 

rarefaction in the nonlinear problem



COMMENT:  For more general 
shift operators our solutions will 
not stay in      , so we cannot 
reduce linear evolution to 
rotation directly.  But we show 
that in complex Fourier space, 
l inear evolution can be 
represented by rotations.  

Thus the construction should 
apply to  general shifts and 
multiple entropy jumps.

∆
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THUS: we look for values of (θ, θ, J) such that
the corresponding operatorM isolates a periodic
solution in the 1-mode; I.e. we find q = (q1, q2) =
(w1, v1) such that

(1)

(2)

M1q = q

Mn

(
w
v

)
!=

(
w
v

)
for all

(
w
v

)
∈ R2

It Remains to Verify (2).....



J = cot
(
θ/2

)
cot (θ/2) (∗∗)

THEOREM: Let

E ≡
{
Θ = (θ, θ) : θ, θ > 0, 0 < θ + θ < π

}
.

Then there exists a subset E∗ of full measure in E
such that, if Θ ∈ E∗, then Θ is non-resonant in
the sense that if J is given in terms of Θ by (**),
then the eigenvalues λ±n − (−1)n of the linearized
operatorM− I are nonzero for all n ≥ 2.
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We now impose a further
symmetry and use this to
obtain explicit bounds for
the eigenvalues of Mn.



THEOREM: Assume the symmetric case,

θ = θ ≡ θ, 0 < θ < π/2.

Then there is a set of full measure A ⊂ (0, π/2)
such that, if θ ∈ A, then there is a positive con-
stant C and exponent r ≥ 1 such that the eigen-
values of the linearized operatorM−I satisfy the
estimate

|λ±n − (−1)n| ≥ C

nr
,

for all n ≥ 2. In particular, if π−2θ
2π is the irrational

root of a quadratic equation, we can take r = 1.



•“Proof”:   Define the transformation

φ =
π − θ + θ

2

ψ =
π − θ − θ

2

And apply the theory of Liouville numbers in 
transformed variables assuming                 ... θ = θ = θ



•“Proof”:   That is, we first prove

|λ±n − (−1)n| ≥ C

nr
iff | sin(nψ)| ≥ C

nr

Choose q = n:
∣∣∣∣
nψ

π
− p

∣∣∣∣ >
C

nr−1

for all n, p ∈ Z.

Theorem: If ξ = ψ/π is NOT a Liouville
Number, then ∃C > 0, r ≥ 2 such that

∣∣∣∣ξ −
p

q

∣∣∣∣ >
C

qr

for all p/q ∈ Q.
(Non-Liouville numbers form a set of full measure)



•“Proof”:   So...
∣∣∣∣
nψ

π
− p

∣∣∣∣ >
C

nr−1

Dist
{

nψ

π
, Z

}
>

C

nr−1

Theorem: If ξ is the irrational root of a rational
quadratic polynomial, we can take r = 2 (best case)

|λ±n − (−1)n| ≥ C

n

|λ±n − (−1)n| ≥ C

nr−1
,

|sin nψ| >
C

nr−1
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Numerical Plot of First 50 Eigenvalues–Case θ != θ
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Bifurcation to Nonlinear Solutions

It remains to prove that the linearized 
solutions perturb to solutions of the 
nonlinear equations.

Liapunov-Schmidt decomposes the 
nonlinear problem by coordinates 
natural for the linearized problem: 



Picture:   L-S Decomposition

P ≡ Projection onto R

Decompose the nonlinear problem by the RANGE R
and KERNEL K of the LINEAR OPERATOR M− I:

I − P ≡ Projection onto R⊥

⊕ ⊕

(I − P)Fε[X · Z + WX(ε)]

PFε[X · Z + WX(ε)]

Z

WX(ε)

!→

!→

Bifurcation Equation

Auxiliary Equation

R⊥

R

K

K⊥



Liapunov-Schmidt Decomposition

AUXILIARY EQUATION: P · Fε[X · Z + WX(ε)] = 0

For each X ∈ R and Z ∈ K solve uniquely for WX(ε):

GIVEN: WX(ε) solve uniquely for X(ε):

BIFURCATION EQUATION: (I − P)Fε[X(ε) · Z + WX(ε)] = 0

P ≡ Projection onto R

Fε[X(ε) · Z + WX(ε)] = 0

THEREBY OBTAIN solution to the nonlinear problem:

ε > 0

Decompose the nonlinear problem by the RANGE R
and KERNEL K of the LINEAR OPERATOR M− I:

Z ∈ K
I − P ≡ Projection onto R⊥

{
WX(ε) ∈ K⊥

}
"−→ P · Fε[X · Z + WX(ε)] ∈ R



We have solved the Bifurcation Equation:

The map is 1-1 invertible, but the 
eigenvalues are not bounded away from 
zero, which leads to issues of small-
divisors analogous to KAM theory.

It remains to prove that the linearized 
solutions perturb to solutions of the 
nonlinear equations.   By Liapunov-Schmidt 
we can reduce the problem to solving the 
so-called auxiliary equation

It remains to solve the Auxiliary Equation:

AUXILIARY EQUATION: P · Fε[X · Z + WX(ε)] = 0

CONCLUSION

{
WX(ε) ∈ K⊥

}
"−→ P · Fε[X · Z + WX(ε)] ∈ R



We are currently working on this!

NOTE:  If the eigenvalues were uniformly 
bounded away from zero, the standard 
Implicit Function Theorem for Banach 
Spaces would directly apply.

NOTE: The Auxiliary Equation poses an 
abstract Implicit Function Theorem 
problem:  “Everything special” about the 
periodic problem has been removed at 
this stage.



From:  Nonlinear Functional Analysis, Deimling

E. Zehnder, Generalized implicit function theorems
with applications to some small divisor problems ,
Comm. Pure Appl. Math., Vol. 28, pp. 91-140 (1975).

Ref’s:



Other References:

W.Craig and G. Wayne, Newton’s method and periodic
solutions of nonlinear wave equations, Comm. on Pure
Appl. Math., Vol 66, pp. 1409-1498 (1993).

R.Hamilton, The Inverse Function Theorem of Nash
and Moser, Bull. Am. Math. Soc. Vol. 7,(1982).
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Edited Slides



Why we are interested in time-periodic 
solutions of compressible Euler...

• Historically ---The equations were derived by Euler in 1752 as a model for sound wave 
propagation. 

•  A first question:  Do the nonlinear equations support oscillatory solutions analogous to 
the linearized theory of sound?

• Riemann had the equations and the problem..

• For most of the last 250 years, experts thought time-periodic solutions were not possible 
due to shock-wave formation...

•  Scientifically ---Time-periodic solutions represent dissipation free long distance signaling. 

• Could the structure of periodic solutions supply a new paradigm for how sound waves, 
and other nonlinear waves, really propagate?

• Such waves represent physical waves that travel at a new speed, different from the 
sound and shock speeds.

• From a PDE point of view ---The mechanism requires at least three coupled PDE’s

•  C.f. work on periodic solutions of the scalar nonlinear Schroedinger Eqn, and scalar 
nonlinear wave equation.

• Issues of resonances and small divisors analagous to KAM theory arises.

• Diophantime equations and probability theory are involved.

• Bifurcation theory ---the bifurcation aspects of the problem have the potential to open the 
door to all the issues tied to bifurcation theory, such as chaos, period-doubling, etc.

• Intellectual interest ---our approach is to guess the solution structure by heuristic 
reasoning based on nonlinear waves...and this is prerequisite for a rigorous 
mathematical analysis.



History-References

• 1752-- Preliminary version of his equations presented to the 
Berlin Academy.

• 1757-- The general compressible Euler equations first 
appeared in published form: 

• 1772-- “[Euler] studied compressible flows in the linear 
approximation, treating the generation and propagation of 
sound waves’’  ([Chr]) 

Euler, L. Principes generaux du mouvement des fluides, Mémoires
de L’Academie des Sciences de Berlin, Vol. 11, pp. 274-315 (1757)

Euler, L. Sectio quarta de motu aeris in tubis, Novi Commentarii
Academiae Scientiarum Petropolitanae, Vol. 16, pp. 281-425 (1772)

“...the system of equations at the time of Euler, which consisted 
of the momentum equations together with the equation of 
continuity, was underdetermined except in the incompressible 
limit.  The additional equation was supplied by Laplace in 1816 in 
the form of what was later to be called the adiabatic condition, 
and allowed him to make the first correct calculation of the 
speed of sound.” ([Chr]) 



• 1857-- Riemann showed that shock-wave discontinuities 
can form from smooth solutions of the compressible 
Euler equations. 

Introduced Riemann invariants and the Riemann problem 
to continue the solutions past the time of shock formation

(Riemann incorrectly used the adiabatic constraint instead 
of the energy equation for the weak formulation.) 

• 1865-- “Clausius introduced the concept of entropy 
into theoretical physics” ([Chr])

(Since periodic solutions do not involve shocks, 
the equations and the problem appear to have 
been fully available to Riemann) 

History/Background

Riemann, B. Uber die Fortpfanzung ebener Luftwellen von endlicher Schwingungswete,
Abhandlungen der Gesellshaft der Wissenshaften zu Gottingen, Mathematisch-
physikalishe Klasse, Vol. 8, 43 (1858-59)

Clausius, R. Über verschiedene fü die Anwendung bequeme Formen der Haupt-
gleichungen der mechanischen Wärmetheorie, Annalen der Physik und Chemie,
Vol. 125, pp. 353-400, (1865)
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Solutions at two constant entropy levels m, m in the (y, t)-plane

m m
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