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1. Abstract

We introduce a new asymptotic ansatz for spherical perturbations of
the Standard Model of Cosmology (SM) which applies during the p = 0
epoch, and prove that these perturbations trigger instabilities in the SM
on the scale of the supernova data. These instabilities create a large,
central region of uniform under-density which expands faster than the
SM, and this central region of accelerated uniform expansion introduces
into the SM precisely the same range of corrections to redshift vs lu-
minosity as are produced by the cosmological constant in the theory of
Dark Energy. A universal behavior is exhibited because all sufficiently
small perturbations evolve to a single stable rest point. Moreover, we
prove that these perturbations are consistent with, and the instability
is triggered by, the one parameter family of self-similar waves which the
authors previously proposed as possible time-asymptotic wave patterns
for perturbations of the SM at the end of the radiation epoch. Using
numerical simulations, we calculate the unique wave in the family that
accounts for the same values of the Hubble constant and quadratic
correction to redshift vs luminosity as in a universe with seventy per-
cent Dark Energy, ΩΛ ≈ .7. A numerical simulation of the third order
correction associated with that unique wave establishes a testable pre-
diction that distinguishes this theory from the theory of Dark Energy.
This explanation for the anomalous acceleration, based on instabilities
in the SM together with simple wave perturbations from the radiation
epoch that trigger them, provides perhaps the simplest mathematical
explanation for the anomalous acceleration of the galaxies that does
not invoke Dark Energy.
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2. Introduction

In this announcement we accomplish the program set out by the
first two authors in [23, 18, 19], to evolve a one parameter family of
GR self-similar waves which the authors identified as canonical pertur-
bations of the Standard Model of Cosmology (SM)1 during the radi-
ation epoch of the Big Bang, up through the p = 0 epoch to present
time, with the purpose of investigating a possible connection with the
observed anomalous acceleration of the galaxies, [18, 11]. Our anal-
ysis is based on the discovery of a closed ansatz for perturbations of
the SM during the p = 0 epoch of the Big Bang which triggers insta-
bilities that create unexpectedly large regions of accelerated uniform
expansion within Einstein’s original theory without the cosmological
constant. We prove that these accelerated regions introduce precisely
the same range of corrections to redshift vs luminosity as are produced
by the cosmological constant in the theory of Dark Energy. A universal
behavior is exhibited because all sufficiently small perturbations tend
time asymptotically to a single stable rest point where the spacetime is
Minkowski. Based on this, we accomplish our initial program by prov-
ing that these perturbations are consistent with, and the instability is
triggered by, the one parameter family of self-similar waves proposed
by the authors in [18] as possible time-asymptotic wave patterns for
perturbations of the SM at the end of the radiation epoch. By numer-
ical simulation we identify a unique wave in the family that accounts
for the same values of the Hubble constant and quadratic correction
to redshift vs luminosity as are implied by the theory of Dark Energy
with ΩΛ ≈ .7. A numerical simulation of the third order correction
associated with that unique wave establishes a testable prediction that
distinguishes this theory from the theory of Dark Energy, (see Figure
1 below). The result is an alternative, testable mathematical explana-
tion for the anomalous acceleration of the galaxies that does not invoke
Dark Energy, and is based upon the identification of a new instability
of the SM on the scale of the supernova data, and a family of simple
wave perturbations that trigger it.

1Assuming the so-called Cosmological Principle, that the universe is uniform
on the largest scale, the evolution of the universe on that scale is described by a
Friedmann spacetime, [24], which is determined by the equation of state in each
epoch. In this paper we let SM denote the approximation to the Standard Model
of Cosmology without Dark Energy given by the critical k = 0 Friedmann universe

with equation of state p = c2

3 ρ during the radiation epoch, and p = 0 thereafter,

(c.f. the ΛCDM model with Λ = 0, [11]).



3

Most of the expansion of the universe before the pressure drops to
p ≈ 0, is governed by the radiation epoch, a period in which the evolu-
tion is described by the equations of pure radiation. These equations
take the form of the relativistic p-system of shock wave theory, and
for such highly nonlinear equations, one expects complicated solutions
to become simpler. A rigorous theory in one space dimension shows
that solutions decay to a concatenation of simple waves, solutions along
which the equations reduce to ODE’s, [10, 5, 19]. Based on this, to-
gether with the fact that large fluctuations from the radiation epoch
(like the baryonic acoustic oscillations) are typically spherical, [11], the
authors began the program in [23] by looking for a family of spherically
symmetric solutions that perturb the SM during the radiation epoch
when the equation of state p = c2

3
ρ holds, and on which the Einstein

equations reduce to ODE’s. In [18, 19], we identified a unique family
of such solutions which we refer to as a-waves, parameterized by the
so called acceleration parameter a > 0, normalized so that a = 1 is the
SM. This family of waves was first discovered from a different point of
view in the profoundly interesting paper [1] by Cahill and Taub,2 and is
the only known family of solutions which both (1) perturb Friedmann
spacetimes, and (2) reduce the Einstein equations to ODEs, [1, 19, 2].
Since when p = 0, under-densities relative to the SM are a natural
mechanism for creating anomalous accelerations, (less matter present
to slow the expansion implies a larger expansion rate, [11]), we restrict
to the perturbations a < 1 which induce under-densities relative to the
SM, [18, 19]. This requires that we abandon the Cosmological Principle
on the scale of these perturbations.

Thus our starting hypothesis is that the anomalous acceleration of
the galaxies is due to a local under-density relative to the SM, on the
scale of the supernova data [4], created by a perturbation that has de-
cayed (locally near the center) to an a-wave, a < 1, by the end of the
radiation epoch.3 We prove the following: (i) The SM is unstable to
perturbation by a-waves; (ii) A small under-density created by an a-
wave at the end of radiation, triggers the formation of a large region of

2Our hypotheses here are consistent with, but different from, the so-called self-
similarity hypothesis, (c.f. [2]), and a similar proposal therein to explain voids
between galaxies. As far as we know, our’s is the first attempt to connect this
family of waves with the anomalous acceleration.

3Since time asymptotic wave patterns for the p-system typically involve multiple
simple waves, we make no hypothesis regarding the space-time far from the center
of the a-wave, taking the secondary waves as unknown. This is consistent with,
but modifies the self-similarity hypothesis in [2], and the under-density theories
proposed and cited in [4].
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accelerated expansion which extends further and further outward from
the center, becoming more flat and more uniform, as time evolves; (iii)
Neglecting errors in the density of fourth order in fractional distance
to the Hubble Length, this extended region moving outward from the
center evolves according to an autonomous system of two ODE’s, and
is described by a solution trajectory that starts near a classic unstable
saddle rest point corresponding to the SM at the end of radiation, and
evolves to a nearby stable rest point where the metric is Minkowski.
During this evolution, the quadratic correction to redshift vs luminos-
ity (as measured near the center) assumes precisely the same range of
values as Dark Energy theory. That is, letting

H d` = z +Qz2 + Cz3 +O(z4) (2.1)

denote the relation between redshift factor z and luminosity distance d`
at a given value of the Hubble constant H as measured at the center4,
the value of the quadratic correction Q increases from the SM value
Q = .25 at the end of radiation, to the value Q = .5 as t→∞. This is
precisely the same range of values Q takes on in Dark Energy theory
as the fraction ΩΛ of Dark Energy to classical energy increases from its
value of ΩΛ ≈ 0 at the end of radiation, to ΩΛ = 1 as t → ∞. This
holds for any a < 1 near a = 1, and for any value of the cosmological
constant Λ > 0, assuming only that a and Λ both induce a negligibly
small correction to the SM value Q = .25 at the end of radiation.5

These results are recorded in the following theorem. Here we let
present time in a given model denote the time at which the Hubble
constant H (as defined in (2.1)) reaches its present measured value
H = H0, this time being different in different models.

Theorem 1. Let t = t0 denote present time in the wave model and
t = tDE present time in the Dark Energy 6 model. Then there exists a
unique value of the acceleration parameter a = 0.99999959 ≈ 1− 4.3×
10−7 corresponding to an under-density relative to the SM at the end
of radiation, such that the subsequent p = 0 evolution starting from
this initial data evolves to time t = t0 with H = H0 and Q = .425,

4For the FRW spacetime, Q is determined by the value of the so-called deceler-
ation parameter q, and C is determined by the jerk j, c.f., [11].

5We qualify with this latter assumption only because, in Dark Energy theory,
the value of ΩΛ is small but not exactly equal to zero at the end of radiation; and
in the wave theory, the value of Q jumps down slightly below Q = .25 at the end
of radiation before it increases to Q = .5 from that value as t→∞.

6By the Dark Energy model we refer to the critical k = 0 Friedmann universe
with cosmological constant, taking the present value ΩΛ = .7 as the best fit to the
supernova data among the two parameters (k,Λ),[13, 14].
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in agreement with the values of H and Q at t = tDE in the Dark
Energy model. The cubic correction at t = t0 in the wave theory is then
C = 0.359, while Dark Energy theory gives C = −0.180 at t = tDE.
The times are related by t0 ≈ 1.45 tDE.

We emphasize that t0, Q and C in the wave model, are determined
by a alone. Indeed, the initial data at the end of radiation, which de-
termines the p = 0 evolution, depends, at the start, on two parameters:
the acceleration parameter a of the self-similar waves, and the initial
temperature T∗ at which the pressure is assumed to drop to zero. But
our numerics show that the dependence on the starting temperature
is negligible for T∗ in the range 3000oK ≤ T∗ ≤ 9000oK, (the range
assumed in cosmology, [11]). Thus for the temperatures appropriate
for Cosmology, t0, Q and C are determined by a alone.

A measure of the severity of the instability created by the a = a
perturbation of the SM, is quantified by the numerical simulation. For
example, comparing the initial density ρwave for a = a at the center
of the wave, to the corresponding initial density ρSM in the SM at the
end of radiation t = t∗, gives ρwave

ρSM
≈ 1 − (7.45) × 10−6 ≈ 1. During

the p = 0 evolution, this ratio evolves to a seven-fold under-density in
the wave model relative to the SM by present time, i.e., ρwave

ρSM
= 0.146

at t = t0.
Note that in principle adding acceleration to a model should increase

the expansion rate H and consequently the age of the universe, because
it then takes longer for the Hubble constant H to decrease to its present
small value H0. Incorporating Dark Energy taking ΩΛ = .7 increases
the age tSM = .96×1010yr of SM by about 45% to tDE = 1.39×1010yr,
and the wave theory increases it by another 45% to t0 = 2.03× 1010yr.

Our wave theory is based on the self-similarity variable ξ = r/ct < 1,
which measures the fractional distance from the center ξ = 0 to the
Hubble length at time t.7 We show below (c.f. Section 3.3), that if
we neglect errors O(ξ4), and then further neglect small errors between
the wave metric and the Minkowski metric (which tend to zero, at that
order, with approach to the stable rest point, c.f. (iii) above), and
also neglect errors due to relativistic corrections in the velocities of the
fluid relative to the center (where the velocity is zero), the resulting
spacetime is, like a Friedmann spacetime, independent of the choice
of center. Thus the central region of approximate uniform density at
present time t = t0 in the wave model extends out from the center

7Here we let t and r denote time and radial coordinates in Standard
Schwarzschild Coodinates (SSC) in which r is arclength distance at fixed t,
[24, 16, 19]
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r = 0 at t = 0 in SSC, to radial values r small enough so that the
fractional distance to the Hubble length ξ = r/ct0 satisfies ξ4 << 1.
We conclude that since the age of the universe t0 in the wave model is
about twice as old as in the SM without DE, it follows that the central
region of uniform acceleration in the wave model would be about twice
as large as the SM age tSM would predict.

The cubic correction C to redshift vs luminosity is a verifiable predic-
tion of the wave theory that distinguishes it from Dark Energy theory.
In particular, C > 0 in the wave model and C < 0 in the Dark Energy
model implies that the cubic correction increases the right hand side
of (2.1), (i.e., increases the discrepancy between the observed redshifts
and the predictions of the SM) far from the center in the wave theory,
while it decreases the right hand side of (2.1) far from the center in
the Dark Energy theory. Now the anomalous acceleration was origi-
nally derived from a collection of data points, and the ΩΛ ≈ .7 critical
FRW spacetime is obtained as the best fit to Friedmann spacetimes
among the parameters (k,Λ). We understand that the current data is
sufficient to provide a value for Q, but not C, [9]. It is not clear to
the authors whether or not there are indications in the data that could
distinguish C < 0 from C > 0.

3. Presentation of Results

We summarize the sections of our forthcoming paper which brings
our identified one parameter family of GR a-waves up through the p = 0
epoch of the Big Bang to present time. We quantify the quadratic
corrections Q implied in (2.1) by these perturbations to SM near the
center, and compare the results with Dark Energy theory.

We begin by recalling that a-waves form a 1-parameter family of
spherically symmetric solutions of the Einstein equations G = κT that
depend only on the self-similarity variable ξ = r/t, and exist when

p = c2

3
ρ. They reduce to the critical SM Friedmann spacetime for pure

radiation when a = 1. In contrast, when p = 0, only the SM p = 0,
k = 0 Friedmann spacetime can be expressed in this self-similar form.
Our expansion of the time independent self-similar waves during the
radiation epoch in powers of ξ calculated in [19] has led us to the dis-
covery of a new time dependent asymptotic ansatz for corrections to the
standard model, that depend on (t, ξ), and close at order ξ4 under the
p = 0 evolution. This ansatz is sufficiently general to incorporate ini-
tial data from the self-similar waves at the end of radiation, and hence
the evolution of these waves into time dependent solutions during the
p = 0 epoch. In this paper we deduce the evolution of the corrections



7

induced by a-waves at the end of radiation from the phase portrait of
these asymptotic equations. In fact, our main result, that an insta-
bility in the SM can create the anomalous acceleration of the galaxies
without Dark Energy, applies not just to perturbations by a-waves,
but to any perturbation consistent with our asymptotic ansatz at the
end of radiation, so long as the perturbation lies within the domain
of attraction of the stable rest point to which the perturbation a = a
evolves.

In Sections 3.1-3.3 we derive an alternative formulation of the p = 0
Einstein equations in spherical symmetry, introduce our new asymp-
totic ansatz for corrections to the SM, use the exact equations to derive
equations for the corrections, and use these to characterize the instabil-
ity. In Section 3.4 we derive the correct redshift vs luminosity relation
for the SM including the corrections. In Section 3.5 we introduce a
gauge transformation that converts the a-waves at the end of radiation
into initial data that is consistent with our ansatz. In Section 3.6 we
present our numerics that identifies the unique a-wave a = a in the
family that meets the conditions H = H0 and Q = .425 at t = t0, and
explain our predicted cubic correction C = 0.359. In Section 3.7 we
discuss the uniform space-time created at the center of the perturba-
tion. Concluding remarks are given in Section 4. Details are omitted
in this announcement. We use the convention c = 1 when convenient.

3.1. The p = 0 Einstein Equations in Coordinates Aligned with
the Physics. In this section we introduce a new formulation of the
p = 0 Einstein equations that describe outwardly expanding spherically
symmetric solutions. We do not employ co-moving coordinates, [4], but
rather use ξ as a spacelike variable because it is better aligned with
the physics. That is, our derivation starts with metrics in Standard
Schwarzschild Coordinates (SSC), where the metric takes the canonical
form,

ds2 = −B(t, r)dt2 +
1

A(t, r)
dr2 + r2dΩ2, (3.2)

but our subsequent analysis is done in (t, ξ) coordinates, where ξ =
r/t. Our starting point is the observation that the SSC metric form is
invariant under transformations of t, and there exists a time coordinate
in which SM is self-similar in the sense that the metric components
A,B, the velocity v and ρr2 are functions of ξ alone. This self-similar
form exists, but is different for p = c2

3
ρ and p = 0, [2, 20]. Taking

p = 0, letting v denote the SSC velocity and ρ the co-moving energy
density, and eliminating all unknowns in terms of v and the Minkowski
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energy density T 00
M = ρ

1−( vc )
2 , (c.f. [7]), the locally inertial formulation

of the Einstein equations G = κT introduced in [7] reduce to

(κT 00
M r

2)t +
{√

AB v
r

(κT 00
M r

2)
}
r

= −2
√
AB v

r
(κT 00

M r
2) ,(

v
r

)
t
+ r
√
AB

(
v
r

) (
v
r

)
r

= −
√
AB

{(
v
r

)2
+ 1−A

2Ar2

(
1− r2

(
v
r

)2
)}

,

rA
′

A
=
(

1
A
− 1
)
− 1

A
κT 00

M r
2,

rB
′

B
=
(

1
A
− 1
)

+ 1
A

(
v
c

)2
κT 00

M r
2,

where prime denotes d/dr. Note that the 1/r singularity is present in
the equations because incoming waves can amplify without bound. We
resolve this for outgoing expansions by assuming w = v/ξ is positive

and finite at r = ξ = 0. Making the substitution D =
√
AB, taking

z = κT 00
M r

2 as the dimensionless density, w = v
ξ

as the dimensionless

velocity with ξ = r/t and rewriting the equations in terms of (t, ξ), we
obtain

tzt + ξ {(−1 +Dw)z}ξ = −Dwz,

twt + ξ (−1 +Dw)wξ = w −D
{
w2 + 1−ξ2w2

2A

[
1−A
ξ2

]}
ξAξ = (A− 1)− z
ξDξ
D

= (A− 1)− (1−ξ2w2)
2

z.

That is, since the sound speed is zero when p = 0, w(t, 0) > 0 restricts
us to expanding solutions in which all information from the fluid prop-
agates outward from the center. (Cusp singularities in the velocity at
r = 0 in SSC are regularized in co-moving coordinates, [19].)

3.2. A New Ansatz for Corrections to SM. We introduce the
following ansatz for corrections to SM near ξ = 0 that involves only
even powers of ξ, where we can interpret ξ = r/ct ≡ r/t as a measure
of the fractional distance to the Hubble length, [19, 20]:

z(t, ξ) = zSM(ξ) + ∆z(t, ξ) ∆z = z2(t)ξ2 + z4(t)ξ4 (3.3)

w(t, ξ) = wSM(ξ) + ∆w(t, ξ) ∆w = w0(t) + w2(t)ξ2 (3.4)

A(t, ξ) = ASM(ξ) + ∆A(t, ξ) ∆A = A2(t)ξ2 + A4(t)ξ4 (3.5)

D(t, ξ) = DSM(ξ) + ∆D(t, ξ) ∆D = D2(t)ξ2 (3.6)
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where zSM , wSM , ASM , DSM are the expressions for the unique self-
similar representation of the SM when p = 0, given by, [20],

zSM(ξ) = 4
3
ξ2 + 40

27
ξ4 +O(ξ6), wSM(ξ) = 2

3
+ 2

9
ξ2 +O(ξ4), (3.7)

ASM(ξ) = 1− 4
9
ξ2 − 8

27
ξ4 +O(ξ6), DSM(ξ) = 1− 1

9
ξ2 +O(ξ4).(3.8)

This gives

z(t, ξ) =

(
4

3
+ z2(t)

)
ξ2 +

{
40

27
+ z4(t)

}
ξ4 +O(ξ6),

w(t, ξ) =

(
2

3
+ w0(t)

)
+

{
2

9
+ w2(t)

}
ξ2 +O(ξ4).

We prove the equations close within this ansatz, at order ξ4 in z and
order ξ2 in w, with errors O(ξ6) in z and O(ξ4) in w. Moreover, the im-
portance of this ansatz is that corrections satisfying the ansatz induce
an instability in the SM by creating a uniform spacetime of density
ρ(t), constant at each fixed t, out to errors of order O(ξ4). That is,
since the ansatz,

z(ξ, t) = κρ(t, ξ)r2 +O(ξ4) =

(
4

3
+ z2(t)

)
ξ2 +O(ξ4), (3.9)

neglecting the O(ξ4) error gives κρ = (4/3 + z2(t))/t2, a function of
time alone. For the SM, z2 ≡ 0 and this gives κρ(t) = (4/3) t−2, which
is the exact evolution of the density for the SM Friedmann spacetime
with p = 0 in co-moving coordinates, [16]. For the evolution of our
specific under-densities in the wave theory, we show z2(t) → −4/3 as
the solution tends to the stable rest point, implying that the instability
creates an accelerated drop in the density in a large uniform spacetime
expanding outward from the center. (See Section 3.7 below.)

3.3. Asymptotic equations for Corrections to SM. Substituting
the ansatz (3.3)-(3.6) for the corrections into the Einstein equations
G = κT , and neglecting terms O(ξ4) in w and O(ξ6) in z, we obtain
the following closed system of ODE’s for the corrections z2(τ)), z4(τ),
w0(τ), w2(τ), where τ = ln t, 0 < τ ≤ 11. (Introducing τ renders the
equations autonomous, and solves the long time simulation problem.)
Letting prime denote d/dτ , the equations for the corrections reduce to
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the autonomous system

z′2 = −3w0

(
4

3
+ z2

)
, (3.10)

w′0 = −1

6
z2 −

1

3
w0 − w2

0, (3.11)

z′4 = 5

{
2

27
z2 +

4

3
w2 −

1

18
z2

2 + z2w2

}
(3.12)

+5w0

{
4

3
− 2

9
z2 + z4 −

1

12
z2

2

}
,

w′2 = − 1

10
z4 −

4

9
w0 +

1

3
w2 −

1

24
z2

2 +
1

3
z2w0 (3.13)

+
1

3
w2

0 − 4w0w2 +
1

4
w2

0z2.

We prove that for the equations to close within the ansatz (3.3)-(3.6), it
is necessary and sufficient to assume the initial data satisfies the gauge
conditions

A2 = −1

3
z2, A4 = −1

5
z4, D2 = − 1

12
z2. (3.14)

We prove that if these constraints hold initially, then they are main-
tained by the equations for all time. Conditions (3.14) are not invariant
under time transformations, even though the SSC metric form is invari-
ant under arbitrary time transformations, so we can interpret (3.14),
and hence the ansatz (3.3)-(3.6), as fixing the time coordinate gauge
of our SSC metric. This gauge agrees with FRW co-moving time up to
errors of order O(ξ2).

The autonomous 4 × 4 system (3.10)-(3.13) contains within it the
closed, autonomous, 2 × 2 sub-system (3.10), (3.11). This sub-system
describes the evolution of the corrections (z2, w0), which we show in
Section 3.4 determines the quadratic correction Qz2 in (2.1). Thus the
sub-system (3.10), (3.11) gives the corrections to SM at the order of
the observed anomalous acceleration, accurate within the central region
where errors O(ξ4) in z and orders O(ξ3) in v = w/ξ can be neglected.
The phase portrait for sub-system (3.10), (3.11) exhibits an unstable
saddle rest point at (z2, w0) = (0, 0) corresponding to the SM, and a
stable rest point at (z2, w0) = (−4/3, 1/3). These are the rest points
referred to in the introduction. From the phase portrait, (see Figure 1),
we see that perturbations of SM corresponding to small under-densities
will evolve away from the SM near the unstable manifold of (0, 0), and
toward the stable rest point. By (3.7) and (3.8), A2 = 4/9, D2 = 1/9
at (z2, w0) = (−4/3, 1/3), so by (3.8) the metric components A and



11

B are equal to 1 + O(ξ4), implying the metric at the stable rest point
(−4/3, 1/3) is Minkowski up to O(ξ4). Thus during evolution toward
the stable rest point, the metric tends to flat Minkowski spacetime with
O(ξ4) errors.

3.4. Redshift vs Luminosity Relations for the Ansatz. In this
section we obtain formulas for Q and C in (2.1) as a function of the
corrections z2, w0, z4, w2 to the SM, we compare this to the values of Q
and C as a function of ΩΛ in DE theory, and we show that remarkably,
Q passes through the same range of values in both theories.

Recall that Q and C are the quadratic and cubic corrections to red-
shift vs luminosity as measured by an observer at the center of the
spherically symmetric perturbation of the SM determined by these cor-
rections.8 The calculation requires taking account of all of the terms
that affect the redshift vs luminosity relation when the spacetime is
not uniform, and the coordinates are not co-moving.

The redshift vs luminosity relation for the k = 0, p = σρ, FRW
spacetime, at any time during the evolution, is given by,

Hd` =
2

1 + 3σ

{
(1 + z)− (1 + z)

1−3σ
2

}
, (3.15)

where only H evolves in time, [8]. For pure radiation σ = 1/3, which
gives Hd` = z, and when p = σ = 0, we get, (c.f. [19]),

Hd` = z +
1

4
z2 − 1

8
z3 +O(z4). (3.16)

The redshift vs luminosity relation in the case of Dark Energy theory,
assuming a critical Friedmann space-time with the fraction of Dark
Energy ΩΛ, is

Hd` = (1 + z)

∫ z

0

dy√
E(y)

, (3.17)

where

E(z) = ΩΛ(1 + z)2 + ΩM(1 + z)3, (3.18)

and ΩM = 1 − ΩΛ, the fraction of the energy density due to matter,
(c.f. (11.129), (11.124) of [8]). Taylor expanding gives

Hd` = z +
1

2

(
−ΩM

2
+ 1

)
z2 +

1

6

(
−1− ΩM

2
+

3Ω2
M

4

)
z3 +O(z4), (3.19)

8The uniformity of the center out to errors O(ξ4) implies that these should be
good approximations for observers somewhat off-center with the coordinate system
of symmetry for the waves.
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where ΩM evolves in time, ranging from ΩM = 1 (valid with small errors
at the end of radiation) to ΩM = 0 (the limit as t→∞). From (3.19)
we see that in Dark Energy theory, the quadratic term Q increases
exactly through the range

.25 ≤ .Q ≤ 5, (3.20)

and the cubic term decreases from −1/8 to −1/6, during the evolution
from the end of radiation to t → ∞, thereby verifying the claim in
Theorem 1. In the case ΩM = .3, ΩΛ = .7, representing present time
t = tDE in Dark Energy theory, this gives the exact expression,

H0d` = z +
17

40
z2 − 433

2400
z3 +O(z4), (3.21)

verifying that Q = .425 and C = −.1804, as recorded in Theorem 1.
In the case of a general non-uniform spacetime in SSC, the formula

for redshift vs luminosity as measured by an observer at the center is
given by, (see [8]),

d` = (1 + z)2re = t0(1 + z)2ξe

(
te
t0

)
, (3.22)

where (te, re) are the SSC coordinates of the emitter, and (0, t0) are the
coordinates of the observer. A calculation based on using the metric
corrections to obtain ξe and te/t0 as functions of z, and substituting
this into (3.22), gives the following formula for the quadratic correction
Q = Q(z2, w0) and cubic correction C = C(z2, w0, z4, w2) to redshift
vs luminosity in terms of arbitrary corrections w0, w2, z2, z4 to SM. We
record the formulas in the following theorem:

Theorem 2. Assume a GR spacetime in the form of our ansatz (3.3)-
(3.6), with arbitrary given corrections w0(t), w2(t), z2(t), z4(t) to SM.
Then the quadratic and cubic corrections Q and C to redshift vs lumi-
nosity in (2.1), as measured by an observer at the center ξ = r = 0 at
time t, is given explicitly by

Hd` = z

{
1 +

[
1

4
+ E2

]
z +

[
−1

8
+ E3

]
z2

}
+O(z4), (3.23)

where

H =

(
2

3
+ w0(t)

)
1

t
,

so that

Q(z2, w0) =
1

4
+ E2, C(w0, w2, z2, z4) = −1

8
+ E3, (3.24)



13

where E2 = E2(z2, w0), E3 = E3(z2, w0, z4, w2) are the corrections to
the p = 0 standard model values in (3.16). The function E2 is given
explicitly by

E2 =
24w0 + 45w2

0 + 3z2

4(2 + 3w0)2
. (3.25)

The function E3 is defined by the following chain of variables:

E3 = 2I2 + I3, (3.26)

I2,3 = J2 +
9w0

2(2 + 3w0)
, J3 + 3

[
−1 +

(
8− 8J2 + 3w0 − 12J2w0

2(2 + 3w0)2

)]
,

J2 =
1

4

{
1− 1 + 9K2(

1 + 3
2
w0

)2

}
,

J3 =
5

8

{
1−

1− 18
5
K2 − 81

5
K2

2 + 9
5
w0 + 27

5
K3 + 81

10
Q3w0(

1 + 3
2
w0

)4

}
,

K2,3 =
2

3
w0 +

1

2
w2

0 −
1

12
z2,

2

9
w0 + w2

0 +
1

2
w3

0 + w2 −
1

18
z2 −

1

3
z2w0.

From (3.25) one sees that Q depends only on (z2, w0), Q(0, 0) = .25,
(the exact value for the SM), Q(−4/3, 1/3) = .5, (the exact value
for the stable rest point), and from this it follows that Q increases
through precisely the same range (3.20) of DE, from Q ≈ .25 to Q = .5,
along the orbit of (3.10), (3.11) that takes the unstable SM rest point
(z2, w0) = (0, 0) to the stable rest point (z2, w0) = (−4/3, 1/3), (c.f.
Figure 1).

3.5. Initial Data from the Radiation Epoch. In this section we
compute the initial data for the p = 0 evolution from the restriction of
the one parameter family of self-similar a-waves to a constant temper-
ature surface T = T∗ at the end of radiation, and convert this to initial
data on a constant time surface t = t∗, these two surfaces being dif-
ferent when a 6= 1.9 We then must define a gauge transformation that
converts the resulting initial data to equivalent initial data that meets
the gauge conditions (3.14). (Recall that condition (3.14) fixes a time
coordinate, or gauge, for the underlying SSC metric associated with

9In [19] the authors derived a system of ODE’s on which the SSC equations

reduce to ODE’s in the variable ξ when p = c2

3 ρ, and extracted from this the one
parameter family of a-waves. In this section we use the expansions of a-waves into
powers of ξ computed in [19]. Interestingly, there are no self-similar perturbations
of the SM corresponding to a-waves when p = 0, c.f. [20, 2].
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our ansatz, and the initial data for the a-waves is given in a different
gauge because time since the big bang depends on the parameter a, as
well as on the pressure, so it changes when p drops to zero.) The equa-
tion of state of pure radiation is derived from the the Stefan-Boltzmann
Law, which relates the initial density ρ∗ to the initial temperature T∗
in degrees Kelvin by

ρ∗ =
asc

4
T 4
∗ , (3.27)

where as is the Stefan-Boltzmann constant, [12]). According to cur-
rent theories in cosmology, (see e.g. [12]), the pressure drops precipi-
tously to zero at a temperature T = T∗ somewhere between 3000oK ≤
T∗ ≤ 9000oK, corresponding to starting times t∗ roughly in the range
10, 000yr ≤ t∗ ≤ 30, 000yr after the Big Bang. We make the assump-
tion that the pressure drops discontinuously to zero at some tempera-
ture T∗ within this range. That our resulting simulations are numer-
ically independent of starting temperature, (c.f. Section 3.6), justifies
the validity of this assumption. Using this assumption, we can take
the values of the a-waves on the surface T = T∗ as the initial data for
the subsequent p = 0 evolution. Using the equations we convert this to
initial data on a constant time surface t̄ = t̄∗, where t̄ is the time coor-
dinate used in the self-similar expression of the a-waves which assumes
p = c2

3
ρ. Our first theorem proves that there is a gauge transformation

t̄→ t which converts the initial data for a-waves at the end of radiation
at t̄ = t̄∗, to initial data that both meets the assumptions of our ansatz
(3.3)-(3.6), as well as the gauge conditions (3.14).

Theorem 3. Let t̄ be the time coordinate for the self-similar waves
during the radiation epoch, and define the transformation t̄→ t by

t = t̄+
1

2
q(t̄− t̄∗)2 − tB, (3.28)

where q and tB are given by

tB = t̄∗(1−
1

5

(
1 + a2

1.3− a2

)
, (3.29)

q =
a2

2(1 + a2)
. (3.30)

Then upon performing the gauge transformation (3.28), the initial data
from the a-waves at the end of radiation t̄ = t̄∗, meets the conditions
for the ansatz (3.3)-(3.6), as well as the gauge conditions (3.14).

Our conclusions are summarized in the following theorem:
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Theorem 4. The initial data for the p = 0 evolution determined by the
self-similar a-wave on a constant time surface t = t∗ with temperature
T = T∗ at r = 0, is given as a function of the acceleration parameter a
and the temperature T∗, by

z2(t∗) = ẑ2, z4(t∗) = ẑ4 + 3ŵ0

(
4
3

+ ẑ2

)
γ,

w0(t∗) = ŵ0, w2(t∗) = ŵ2 +
(

1
6
ẑ2 + 1

3
ŵ0 + ŵ2

0

)
γ,

where ẑ2, ẑ4, ŵ0, ŵ2 and γ are functions of acceleration parameter a
given by

ẑ2 = 3a2α2

4
− 4

3
, ẑ4 =

15a2( 3
2
−a2)α4

16
− 40

27
,

ŵ0 = α
2
− 2

3
, ŵ2 = α3

16
(9.5− 8a2)− 2

9
,

where

γ =
(1 + a2)α

8
, α =

(1 + a2)

5(1.3− a2)
. (3.31)

The time t∗ is then given in terms of the initial temperature T∗ by

t∗ =
aα

2

√
3

κρ∗
, ρ∗ =

as
4c
T 4
∗ . (3.32)

The projection of the initial data onto the (z2, w0)-plane is a curve
parameterized by a that cuts through the saddle point corresponding
to the SM in system (3.10), (3.11), between the stable and unstable
manifold, (the dotted line in Figure 1). This implies that a small
under-density corresponding to a < 1 will evolve to the stable rest
point (z2, w0) = (−4/3, 1/3), (c.f. Figure 1).

3.6. The Numerics. In this section we present the results of our nu-
merical simulations. We simulate solutions of (3.10)-(3.13) for each
value of the acceleration parameter a < 1 in a small neighborhood of
a = 1, (corresponding to small under-densities relative to the SM),
and for each temperature T∗ in the range 3000oK ≤ T∗ ≤ 9000oK.
We simulate up to the time ta, the time depending on the accelera-
tion parameter a at which the Hubble constant is equal to its present
measured value H = H0 = 100h0

km
smpc

, with h0 = .68. From this we

conclude that the dependence on T∗ is negligible. We then asked for
the value of a that gives Q(z2(ta), w0(ta)) = .425, the value of Q in
Dark Energy theory with ΩΛ = .7. This determines the unique value
a = a = 0.99999959, and the unique time t0 = ta . These results are
recorded in the following theorem:
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Theorem 5. At present time t0 along the solution trajectory of (3.10)-
(3.13) corresponding to a = a, our numerical simulations give H = H0,
Q = .425, together with the following:

z(t0, ξ) = (0.192)ξ2 + (2.871)ξ4 +O(ξ6),

w(t0, ξ) = (0.914)− (0.126)ξ2 +O(ξ4),

and

A(t0, ξ) = 1− (0.064)ξ2 − (0.574)ξ4, (3.33)

D(t0, ξ) = 1− (0.016)ξ2 +O(ξ4). (3.34)

The cubic correction to redshift vs luminosity as predicted by the wave
model at a = a is

C = 0.359. (3.35)

Note that (3.33) and (3.34) imply that the spacetime is very close
to Minkowski at present time up to errors O(ξ4), so the trajectory in
the (z2, w0)-plane is much closer to the stable rest point M than to
the SM at present time, c.f. Figure 1. The cubic correction associated
with Dark Energy theory with k = 0 and ΩΛ = .7 is C = −0.180,
so (3.35) is a theoretically verifiable prediction which distinguishes the
wave theory from Dark Energy theory. A precise value for the actual
cubic correction corresponding to C in the relation between redshift vs
luminosity for the galaxies appears to be beyond current observational
data.

3.7. The Uniform Spacetime at the Center. In this section we
describe more precisely the central region of accelerated uniform ex-
pansion triggered by the instability due to perturbations that meet the
ansatz (3.3)-(3.6). By (3.9) we have seen that neglecting terms of or-
der ξ4, the density ρ(t) depends only on the time. Further neglecting
the small errors between (z2, w0) and the stable rest point

(
−4

3
, 1

3

)
at

present time t0 when a = a, we prove that the spacetime is Minkowski
with a density ρ(t) that drops like O(t−3), so the instability creates a
central region that appears to be a flat version of a uniform Friedmann
universe with a larger Hubble constant, in which the density drops at
a faster rate than the O(t−2) rate of the SM.

Specifically, as t → ∞, our orbit converges to
(
−4

3
, 1

3

)
, the stable

rest point for the (z2, w0) system(
z2

w0

)′
=

(
−3w0

(
4
3

+ z2

)
−1

6
z2 − 1

3
w0 − w2

0

)
. (3.36)
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Setting z2 = −4/3 + z̄(t), w0 = 1/3 + w̄(t) and discarding higher order
terms, we obtain the linearized system at rest point (−4

3
, 1

3
),(

z̄
w̄

)′
=

(
−1 0
−1

6
−1

)(
z̄
w̄

)
. (3.37)

The matrix in (3.37) has the single eigenvalue λ = −1 with single
eigenvector R = (0, 1). From this we conclude that all orbits come into
the rest point (−4

3
, 1

3
) from below along the vertical line z2 = −4/3.

This means that z2(t) and ρ(t) = z2(t)/t2 can tend to zero at algebraic
rates as the orbit enters the rest point, but w0(t) must come into the
rest point exponentially slowly, at rate O(e−t). Thus our argument
that w̄ = w0 − 1/3 is constant on the scale where ρ(t) = k0/t

α gives
the precise decay rate,

ρ(t) =
k0

t3(1+w̄)
. (3.38)

That is, w̄ ≡ w̄(t) → 0 and k0 ≡ k0(t) are changing exponentially
slowly, but the density is dropping at an inverse cube rate, O(1/t3(1+w̄)),
which is faster than the O(1/t2) rate of the standard model.

Therefore, neglecting terms of order ξ4 together with the small errors
between the metric at present time t0 and the stable rest point, the
spacetime is Minkowski with a density ρ(t) that drops like O(t−3), a
faster rate than the O(t−2) of the SM. Furthermore, we show that
neglecting relativistic corrections to the velocity of the fluid near the
center where the velocity is zero, evolution toward the stable rest point
creates a flat, center independent spacetime which evolves outward
from the origin, and whose size is proportional to the Hubble Length.

We conclude that the effect of the instability triggered by a pertur-
bation of the SM consistent with ansatz (3.3)-(3.6) near the stable rest
point

(
−4

3
, 1

3

)
, is to create an anomalous acceleration consistent with

the anomalous acceleration of the galaxies in a large, flat, uniform,
center-independent spacetime, expanding outward from the center of
the perturbation.

4. Conclusion

The mechanism introduced here for the creation of the anomalous ac-
celeration is derived from a rigorous self-contained mathematical model
which identifies an unstable mode in the SM on the length scale of the
supernova data. The resolution of this instability creates the same
anomalous accelerations as the cosmological constant, without assum-
ing it. The model makes testable predictions. If correct, it would imply
that we live within a large region of approximate uniform under-density
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that is expanding outward from us at an accelerated rate relative to
the SM. The idea that the Milky Way lies near the center of a large
region of under-density has already been proposed and studied in the
physics literature. (See [4] and references therein.)

The central region created by the instability10 is different from, but
looks a lot like, a speeded up Friedmann universe tending more rapidly
to flat Minkowski space than the SM. The model is based on the start-
ing assumption that Einstein’s equations are correct without the cos-
mological constant. The result is a verifiable mathematical explanation
for the anomalous acceleration of the galaxies that does not invoke Dark
Energy.

At this stage we have made no assumptions regarding the space-time
far from the center of the perturbations that trigger the instabilities
in the SM. We have addressed one issue, the anomalous acceleration.
The consistency of this model with other observations in astrophysics
would require additional assumptions.11
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Figure 1. Phase Portrait for Central Region
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