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SUMMARY |

In this talk I introduce
General Relativity
and the Einstein equations,
and recall the
locally inertial formulation
of the equations

introduced by Jeff Groah and author

to analyze shock waves in
Standard Schwarzschild Coordinates
on spherically symmetric spacetimes.




SUMMARY |

[ then discusss recent thesis work
of Zeke Vogler
introducing a new numerical method
for computing GR shock-waves
and a new family of initial data
on which he tested the method.
We call the method a
locally inertial Godunov method
with
dynamacal time dilation
because clocks are dilated in each grid cell
to simulate effects of spacetime curvature.




SUMMARY |

The numerics confirm
shock-wave formation
in forward time,
and
black hole formation
(from a smooth solution)
in backward time
via collapse associated with
an incoming rarefaction wave.




SUMMARY |

As far as we know,
there is not yet
a rigorous mathematical proof
of either shock wave formation
or black hole formation
for the Einstein-Euler equations,
starting from smooth initial data.
So we propose these new solutions
as a natural starting point
for rigorous proofs.




\ICOMMENTS|

The forward time solutions
can be interpreted as
resolving the
secondary reflected wave,
(an incoming shock wave),
in the Smoller-Temple exact
shock-wave model
for
an explosion into a static,
singular isothermal sphere.




(Explosion into a static, singular isothermal sphere)

Shock-Wave
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(Smoller-Temple: Phys. Rev. D, Vol. 51, No. 6, 1995. |
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We would like to simulate the secondary
reflected wave in our Shock-Wave Cosmology...

\ /

Schwarzschild
Metric

(Smoller-Temple: PNAS, Vol. 100, no. 20, 2003, pp. 11216-11218




ICOMMENTS|

Shock wave simulation is
complicated by the fact
that the
Einstein curvature tensor
1s
discontinuous at shock-
waves
1in
SSC-coordinates




LESSON

“The gravitational metric tensor
appears singular at shock waves 1in
coordinates where the analysis and

simulation appear feasible...”
Standard Schwarzschild Coordinates

The metric g is only
Lipschitz continuous at shock-waves
The curvature tensor G 1is
discontinuous at shock-waves

The Einstein equations,
and
Compressible Euler equations,
only hold weakly
at shock waves.




ICOMMENTS|

We are interested to know
whether a successful
numerical simulation of a
fluid dynamical shock
wave has been
demonstrated before 1in
General Relativity.??
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Shock Waves
and
General Relativity




® A blast-wave/shock-wave marks the leading
edge of a classical explosion

® Shock-wave =2 discontinuity in density and
pressure between the explosion and the
material beyond the explosion

e An explosion with a finite mass/energy
behind it would generate such a blast-wave

DT

| o Shock

2T
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The above two photographs are of the same part of the
sky. The photo on the left was taken in 1987 during
the supernova explosion of SN 1987A, while the right
hand photo was taken beforehand. Supernovae are one
of the most energetic explosions in nature, making them
like a 1028 megaton bomb (i.e., a few octillion nuclear
warheads).




Supernova Images. 01/06/2006 10:51 AM
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HEASARC: Education & Public Information

Supernova Images

This is the set of images used to create the supernova inline animation.

One of the most energetic explosive events known is a
supernova. These occur at the end of a star's lifetime, when
its nuclear fuel is exhausted and it is no longer supported
by the release of nuclear energy. If the star is particularly
massive, then its core will collapse and in so doing will
release a huge amount of energy. This will cause a

wave, that ejects the star's envelope into interstellar space.
The result of the collapse may be, in some cases, a rapidly
rotating neutron star that can be observed many years later
as a radio pulsar.




¢ Joel Smoller and | wondered whether there could
be a wave at the leading edge of the biggest of all
explosions--the Big Bang...

* PNAS 2003 we gave a physically plausible model of
a Shock-Wave that cuts off the total mass of the Big
Bang at a finite value thereby placing our universe
of galaxies inside a " "time-reversed Black Hole”...

@ ®




® Computer Visualization by Zeke Vogler...
(webpage http://www.math.ucdavis.edu/~temple/)

() ()

Figure 1. Stages of the Big Bang (a) The beginning (b) The early stage (c) The late stage
(d) After the event horizon




® Zeke Volger and | set out to simulate the secondary
expansion wave numerically to see if it might account for
the anomalous acceleration of the galaxies...when Smoller
joined us and we attempted to set up the simulation, we
discovered a family of exact self-similar GR expansion
waves defined independently of the Shock-Wave...

Uncoupling of

Stages of the dard Model:
8 \SEQQ | Matter and Radiation

t~3x10°

(Neglect
Bi 107355 to 10~%0s Radiation
|g P
Inflation= Pure ressure)
Cosmological Constant p~0
10720 to 3 x 10° yrs

Bang p=—p

Pure Radiation
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p=5p

Time of CMB
379,000 yr




Uncoupling of
Matter and Radiation

Stages of the S«

t~3x10°

107355 to 10739

(Neglect
Inflation= Pure Radiation
Cosmological Constant Pressure)
Bang p=—p p~0

Time of CMB
379,000 yr

® PNAS 2009 we introduce a family of expanding
wave solutions of the Einstein equations that exist
during the radiation phase of the expansion...




Introduction
to
General Relativity




® |ntroduction to General Relativity

® GR is the modern theory of the gravitational field
e In 1915, Albert Einstein introduced the
Einstein Gravitational Field Equations

G=xT

Finstein Ghress

Curvature

Tensor

Energy
Tensor

Universal
Constant

* “Energy-momentum and their fluxes are
the sole source of spacetime curvature”

e Especially pleasing because everything converts
into energy via (roughly) E = m¢? (1905)




The unknown to be solved for is
the gravitational metric tensor g

3
ds®> = gijdxidacj = Z gijd:cida:j
i,j=0

g gives you time changes along
timelike curves and spatial
lengths along spacelike curves




® Basic Principle of General Relativity:

“All properties of the gravitational field
are determined by a
signature (-1,1,1,1) metric g
defined on the
4-dimensional manifold of events”

M = Spacetime
* QI: What can you measure from g?

e Q2: What are the constraints that
determine the time evolution of g?




® What you can measure:

(1)““Proper time change or aging time, as measured by an
observer traversing a timelike curve through spacetime,
will equal the arclength as measured by g”

20 =ct As =cAT

dr dx
dt @

b
4 = gijde'da? as= [as= [ ol de




® What you can measure:

(2) “Spatial lengths of objects correspond to g-lengths
of the curves that define their shape”

20 = ct

A

dx
dt

As =length

— b
ds® = gijdada’ As = /ds E/ 15|l d€




® What you can measure:

(3) “Freefall paths through the gravitational
field are geodesics of the spacetime
metric g”




® What you can measure:

(4) “Non-rotating vectors (gyroscopes) carried
by an observor in freefall are parallel
transported by the unique symmetric

connection determined by g”

X g}%{k

Fixed Stars
3
3E
XS




B Geodesics and Parallel translation
are determined by the
Covariant Derivative:

_ k AVIRC,
Where the Christoffel symbols are given by...
k 1 ko
Iy = 59 { = 9ijo + 9oij + Gjo,i}

. . Y
For example,if... A(s)=Y = Yﬂ@

o d 9
Then... vyX)=X = 2 X((s) = YiooX




® The main point:

“The Covariant Derivative corrects
differentiation of vectors to a
tensor operation...”

VyX=Y(X) + Fk XZY7

i o e
tensor tensor

The components of Vy X transform like a vector
under change of coordinates...

ozt o'
=Yo— VyX VyX
dy> dy> (V%) = (TeX) oy




| Covariant Derivative gives you Geodesics and Parallel Translation|

X g}*{}

Fixed Stars

%
ok

® Geodesics (freefall paths)

VrT =0 <« T tangent to the geodesic

e Parallel Translation (the non-rotating frames carried by freefall)
VrX=0 V7Y =0 <P X,Y parallel in direction T

...but T is the tangent vector in spacetime...




|...but T is the tangent vector in spacetime...|

Y
Y X
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Fixed Stars
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ct
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|...but T is the tangent vector in spacetime...|

ct .
3
22 3
Fixed Stars
3%
Sun X ! % &

Mercury

In spacetime the trajectory (world line) of Mercury is...

ds® = @ da’da’

ds = cdrt
dz® = cdt




...s0 the correct picture is...
T

Fixed Stars

Mercury 1 %:} {:e ;‘xx(

3
3%

Fixed Stars

Sun

1
Mercury €z e e

X 2%

eThe non-rotating frames parallel translated along T remain
almost aligned with the fixed stars, with general relativistic
corrections determined by how g differs from flat spacetime.




In flat Minkowski space the geodesics
are straight lines, and parallel translation
is fixed with the coordinate axes

ds® = —c2dt* + dx* + dy? + d2*

Y




..o the correct picture is...

T

Mercury 1 %:} {:ﬁ ;‘xx(

3

Fixed Stars

Sun

Mercury €z e e

X 2%

“We are connected to the stars by an
almost flat Minkowski spacetime
with GR corrections order |/c.”




Curved spacetime is locally Minkowskian
in the sense that around every point
there exist
Locally Inertial coordinates

ct

Bs(Py)

\/

T

ds? = —c2dt® + dz® + dy® + d2* -I—-

Flat to within
Quadratic Errors

Sun é




® The covariant derivative reflects the
locally inertial character of spacetime

Parallel Translation by
locally inertial frames:

e Given path v(s) in spacetime, cover it with locally inertial
coordinate frames B;s(P,)

® Transport components as constant in each inertial frame

e Refine to squeeze out quadratic errors...




B Clocks in different locally inertial frames
“run at different rates”
and cannot be synchronized by any
global time coordinate...

Curvature leads to
Time-Dilation:




® Conclude: Parallel Translation must agree
with VyX = 0in order that spacetime have
(locally) the same inertial properties as flat
Minkowski Spacetime...

® Reverse it: VX = ( gives a coordinate
independent (covariant) description of
Parallel Translation by locally inertial frames

“In General Relativity: Inertial coordinate
systems are local properties of spacetime
that change from point to point”




® A picture: The earth moves “unaccelerated”
through each local inertial frame, but these frames
change from point to point, thus producing
apparent accelerations in a global coordinate
system in which metric components # (-1,1,1,1)

ct
% 3E
2 HE
Earth Fixed Stars
e
Sun T %

® A point of view: “One can view the
gravitational metric as a sort of book-
keeping device for keeping track of the
locally inertial coordinate systems as they
change from point to point in spacetime”




 Even though the physics is most naturally
expressed in a locally inertial coordinate
system, the analysis of solutions can only
be done in global coordinate systems
that hide the locally inertial simplicity.

This motivates our
“locally inertial Godunov method”
for simulating
GR-shock-waves
in spherically symmetric
spacetimes

Zeke Vogler Thesis, UC-Davis March 2010




® There is no global inertial coordinate
system in which planetary trajectories are
all straight lines...

® This is an expression of the fact that
gravitational fields produce non-zero
spacetime curvature...

® Theorem: You cannot in general remove
the second derivatives of g at the center
of a locally intertial coordinate system, and
these measure SPACETIME CURVATURE

0%g
Goraer = Yk 7 0




® Riemann |854:

® |ntroduced the Riemann Curvature Tensor
“A tensorial measure of the 2nd derivatives
9ij,kl
that cannot be removed by coordinate
transformation”

.: F;k,l - F;'l,k + {F?l k= F?krfyl}
V_ V_

Curl + Commutator

(Not a tensor) (Not a tensor)

1
T = 59]” {~Yijoc + 9i5 + Gjoi}




= Not every spacetime metric can

be a gravitational field

The Einstein equations give the

constaints on g

Stress

FEinstein

FEnergy

Tensor

Curvature

Universal

Constant

Tensor

“Energy-momentum and their fluxes are
the sole source of spacetime curvature”




B Said Differently: G = 8xT gives the
constraints under which locally inertial
frames interact and evolve...

G=8xT: The Constraints
on the evolution of g...




® |n a coordinate system Xx:
g 1 agT
.E Riaj - §R0'rgij
® For a perfect fluid:
Tij = (p + p)uiu; + pgij
p = energy density=pc?

u = 4—velocity=%

p = pressure




T;j gives the energy and momentum densities
and their fluxes for a perfect fluid, the RHS of
the Einstein Equations G=kT

Tij = (p + p)usuj + pgij
But: The Einstein equations are constructed so

that Div G = 0 follows as a consequence of the
Bianchi identies:

Ry 1=0
As a result: Conservation of energy-momentum
is identically satisfied on solutions:
¥ DivT =0x
These reduce to the relativistic compressible
Euler equations in each locally inertial frame...

“The Euler equations are a subsystem of the
Einstein Equations!!!!...




B Q: How smooth should the metric be at Shock VWaves?

G=krT

}

“0°g =k T(p,p,u)”

SHOCK === Jump Discontinuity
in fluid

PL,UL,PL
PR,UR; PR

G =k T =P Jump in 2nd derivative of g
P gect 77

Cl! = 1-derivative Lipschitz continuous




® Smoothness of Metric at Shocks

“0%g =k T(p,p,u)”

RHS discontinuous

\4

LHS has one continuous derivative

g

—
>

>
>

ge Cl,l

Vg e C%!

Vig e C%!
Jump Discont.




=B

T: The shock-wave solutions we
construct are only ¢%! at shock-waves

Ref: TE/GR Memoirs 2004: They are true
weak solutions of the Einstein equations

Conclude: Solutions are one degree
less smooth than the equations ask for!

Open question: Is there a change of

coordinates that smooths the metric
components to ¢! 77

For single shock surfaces the answer is YES. Ref. Israel/TeSm

Thesis Problem-Moritz Rientes: Can the metric be smoothed at
points of shock-wave interaction? (OPEN)




Examples
of
Gravitational
Metrics:
Exact Solutions
of the
Einstein Equations




m Examples:
(1) Schwarzschild Metric:
(Gravitational field outside a star)

26 M 1
d32:—<1— gr >dt2+(1_29M)dr2+r2d92 (S)

s

g = Newton’s Constant
M = Mass of the Sun at r =0

=) Planets follow geodesics of (5)
(Schwarzschild Radius= 2G M)

Birkoff’s Theorem: (S) is the only spherically
symmetric gravitational field in empty space.




(2) Tolman-Oppenheimer-Volkoff (TOV) Metric:
(Static fluid sphere)

1
2 _ 2, - 42 2 102
ds* = —B(r)dt* + - ng(r))dr + r=dQ* | (TOV)

~~ Gravitational field inside a star

M (r) = “Total mass inside radius r”

Setting for: | Chandresekhar Stability Limit
Buchdahl Stability Limit




(3) Friedmann-Robertson-Walker (FRW) Metric:
(Standard Model of Cosmology)

dr?
1— kr2

ds* = —dt* + R(t)? { + erQQ} I (FRW)

R(t)= Cosmological Scale Factor

@EEE=— 0< R(t) <1 <Present Universe)

H = £ — Hubble Constant ~ ho 100 km

smps

=

Galaxies follow geodesics of (FRW)

k<0 < QM:%Q (Open)
k=0 <P Q=1 (Critical)
k>0 <= Qu>1 (Closed)




All 3 are examples of
Spherically Symmetric Metrics
of the general form

ds®> = —A(r,t)dt* + B(r,t)dr? + E(r,t)dtdr + C(r,t)dQ?

dQ? = d6* + sin® (9) d¢* = “line element on unit sphere”

Theorem: Every Spherically Symmetric Spacetime
can (generically) be transformed over to
Standard Schwarzschild Coordinates (SSC)
where the metric takes the simpler form

[d32 = —A(r, t)dt* + B(r,t)dr? + 7‘de2]




To do a numerical simulation of GR-shock waves we match the
FRW metric to the TOV metric Lipschitz continuously on an initial
surface, and numerically simulate the evolution in SSC coordinates

This requires MAPPING FRW over to SSC coordinates.

time Proposed Numerical Simulation
N

\

A
* o 1 P
\\‘d;,ﬂ = —B(, D)di* + W(iﬁ + 72d0?
=0 ‘\\ Standard
FRW N Schwarschild TOV metric
metic * coordinates
. :
2 _ 2 2072 27021 " = s ,
ds® = —dt* + R(t)? {dr? + r2dQ?} N ds® = —B(F)di* + 1_der"’ + 72d9?
\ I

=3

space




Einstein Equations
in
Standard
Schwarzchild
Coordinates




The Simplest Setting

for
Shock-WWaves

e Spherical Symmetry—
Assume Standard Schwarzschild Coordinates:

gijd.z’idzj =
ds? = —A(r,t)dt? 4+ B(r,t)dr2 + r2dQ2

d? = d6? + sin260d¢?,
x = (29,...,23) = (t,r,6, $).

e Define the mass function M(r,t) :

- 2M(r,t))‘1

B(r,t) = (1




o Stress Tensor T :

T4 = (pc? + p)w'wd + pg¥, i,j=0,...,3

4 2,2
A-TO = bl Pl e p= 1?/[0=u0
e
2 2
c o
VAB.T% = ——~c2tv2cvp = Tj?,fl = !
2 2 .
1 _ vito® o
B-TH = e =Ty
,oc2 = density, p = pressure, v = velocity

e Assume Equation of State:

p=0°p

o = sound speed < ¢ = light speed.




(Consequences]

e The equation (1)= M’ = 1xr2AT00 implies:
g - K [T 100 2
M(r,t) = Myy + Ty (ryt)redr
2 Jrg
e The scalar curvature R satisfies

R=(c?-302%)p

e Components of Ty, satisfy:
|T1€11| < TOO,

2 0 11 00

pea o TP < Thf < Tif

e This defines the simplest setting for shock
wave propagation in General relativity.




® The Einstein equations require a constraint on
the initial data to even get started with a
simulation...

e Vogler starts with two solutions FRW and TOV
that automatically statisfy constraints.

e Matching Lipschitz continuously is sufficient to
(weakly) meet the constraints on the initial data
and start the simulation.

e To match them continuously we put initial data
into common SSC coordinates.

e The Locally Inertial Godunov Method works in
SSC.




time Proposed Numerical Simulation
N

\
\
\

N 1
4" = —B(F,DdP + gy +7

k=0 N Standard
FRW ‘\ Schwarschild TOV metric
metic N coordinates

‘\ light

\\ cone
* 1
2 2 2012 25021\ _ o
ds? = —di* + R(t)* {dr? + r2d2} ds* = —B(r)di® + PTTG) d72 4 7202
N 2M(7)
- space
t=1o F =7

7= R(t)r




A Locally Inertial Method
for
Computing Shocks




Einstein Equations-Standard Schwarzschild Coordinates




Einstein Equations-Standard Schwarzschild Coordinates

1

2G M (t,r)
| — 29M(tr)

For Example: B(t,r) =

M(t, 7“) =Mass inside radius r at time t

g =Newton’s Gravitational Constant

[2Q'M(t,r) =1 Black Hole]




Einstein Equations-Standard Schwarzschild Coordinates

o] =D




Einstein Equations-Standard Schwarzschild Coordinates

!
% {r% +B - 1} = kAT (1)
l _& _ 01
!
%2 {r% — (B - 1)} = wB2T! (3)
(MAPLE) 1 .
- oA _ AR o2
age Bu— AT+ 2} 5L 4)
o _ _BAB._ B(B\_ A AB
- 2AB 2 \ B r rB

AN ANE
2AB




Einstein Equations-Standard Schwarzschild Coordinates

%{T%-ﬁ-B—l} = rATY
%{r%’—(B—l)} = wBT"
1 " 2KT 99
_W{Btt_A +o} = ?T ,
_ BAB, B (B’ A  AB
® = "B _5(3) B
A(AN AAB
9\71) T2 am
(N+2)+(3)+(4) <GP  (1)+(3)+divT=0
(weakly)
(Te-Groah Memoirs 2004)




Remarkable Change of Variables

T+ Ty =u




Remarkable Change of Variables

T+ Ty =u

e l.e., Div T=0 reads:




1) T+—— Ty=u

e l.e., Div T=0 reads:

1 1/34 B 4 B,
_ 00 4 01 4 2 7004 © 2 4z Ztpnl
0 ,0+,1+2 + +2 A+B+r +2A

Remarkable Change of Variables

1 1(A 2B 4 A r
— 0l ol L 7014 )t 00 _ 22
0=T3 + T3 +5 ( B+ s\ Tt )T T 25T




Remarkable Change of Variables

1) T+—— Ty=u

e l.e., Div T=0 reads:

1 1/34 B 4 B,
_ 00 4 01 4 2 7004 © 2 4z Ztpnl
0 ,0+,1+2 + +2 A+B+7" +2A

1 1(A 2B 4 A r
— 0l ol L 7014 )t 00 _ 22
0=T3 + T3 +5 ( B+ s\ Tt )T T 25T

o| Time derivatives l and . cancel out under change 7' — u




Remarkable Change of Variables

1) T+—— Ty=u

e l.e., Div T=0 reads:

1 1 /34 B 4 B,
00 01 00 t o1l
0="1T o+ T T+ + T + + + + T

1 1(A 2B 4 A r
— 0l ol L 7014 )t 00 _ 22
0=Tg +Ti' +5 (B + s\ Tt )T T 25T

0[ Time derivatives l and l cancel out under change 7" — u]




Locally Inertial Formulation
A 2 A
e {am) - 25 @

{TE}},ﬁ{\/gTi}} Vs Gm Etay-mn @

+2kaB(TyTaf — (Th))?) — 42T},

B (B-1)

5 - —T+mBT°°, (&)
AZ/ = (Bigl)ervBT}/}. (@)




Locally Inertial Formulation
A 2 A
e {am) - 25 @

{13} ,o+{\/§T?wl} - —%@{%TW—(B;”(T&)—T;}) )
1

+2kaB(TyTaf — (Th))?) — 42T},

B’ -~ (B-1) 00
E = —T + ke BTy, (|)
A (B-1) 1

{TI?/?},O + {TJ}/?},I = (0 Flat Space

Relativistic
{TIQ}},O + {Ti/fl},l =0 Euler




Locally Inertial Formulation
A 2 A
e {am) - 25 @

(it ,O+{@m} - e O e @
1

+2kaB(TyTaf — (Th))?) — 42T},

B’ -~ (B-1) 00
§ = _T + ke BTy, , (|)
A (B-1) 1

{TI(\J}]},O + {Tk/?},l = ( Flat Space

Relativistic
{T?}},O + {Tﬁ},l =0 Euler

u:(TI(\)/?7TJ(\)/Il)
-} A=(AB)




The Locally Inertial Equations

A 2 [A4
{Tz(\)/?},o“‘{ BTI(\)/}} = ETI(\)/}v ¢
1
A 1 [A[4 B-1
{T](\)/Il},o+{ BTﬁ} = -3 E{;Tﬁ*‘( . )(TE/?—TAI/}) (2)
1
+2kaB(T3Thf — (Thf)?) — 42T},
B B-1
£ - Ebi e, ®
A (B-1)

— = T+mBT§}. (4)




The Locally Inertial Equations

aw,{m) - 4f5m W

,1

{Ti’}},w{\/gm} - —%@{%Tww;”(Tﬁf—T}}) @)

+2kaB(T3Thf — (Thf)?) — 42T},
B’ (B—1)

5 = = T Kz BT, (3)
Al B-1
I = ( - ) + kz BT (4)

® Note: Equations (3) and (4) imply that A and B will be no
smoother than Lipschitz continuous at shocks, so G = 8nT can
only hold weakly at shocks in SSC.




The Locally Inertial Equations

(xy, {5}
({5}

,1

2 [A
_z2, Ao
T B M>

1 A 4 11 (B_l) 00 11
-3 E{;TM""ix (Tar —Tar)

1)

2

+2kaB(T3Thf — (Thf)?) — 42T},

B-1
—%erBTgf,
B-1
( ) + kz BT}

®3)
4)

® Note: Equations (3) and (4) imply that A and B will be no

smoother than Lipschitz continuous at shocks, so G = 8nT can
only hold weakly at shocks in SSC.

® Theorem: On single smooth shock surfaces the metric can be
smoothed one degree to ¢! but it remains unknown whether
this can be done at points of shock wave interaction

Topic of Moritz Rientes Thesis.




The Locally Inertial Equations

A 2 [A
aw,{m) - 4f5m o
1
A 1 [A[4 (B—1)
01 ety 20 ! _ L A ) Eamia 00 _ 1l
{TM},0+{ BTM}l - /e (o Elay-ny o
+2kaB(T3Thf — (Thf)?) — 42T},
B (B-1 00
5 - 2 + kx BTy, (3)
Al B-1
I = ( - )+mBTA1}. (4)

® Note: Equations (3) and (4) imply that A and B will be no
smoother than Lipschitz continuous at shocks, so G = 8nT can
only hold weakly at shocks in SSC.

® Theorem: On single smooth shock surfaces the metric can be
smoothed one degree to ¢! but it remains unknown whether
this can be done at points of shock wave interaction
----- Topic of Moritz Rientes Thesis.

e Note: In GR it is usually assumed that metrics are at least C!
and for example, this is assumed in Hawking-Penrose Theorems




The Locally Inertial Equations

{T?f},w{@ﬂ;} = —%\/%T}?}, (1)

1

{T?}},w{\/gﬂ;} NI ISR e
il

+2kaB(T3 Taf — (T51)?) — 42T},
B (B-1)

B = _T + EIBTI(\)}], (3)
Al B-1
i = (357) + kBT (4)

o @RESIEMY (Groah-Te Memoirs 2004) If for 7> 19 > 0
(1) TV {lnp(r)} < Volup(r), TV {:—Z} <V
(2) Ao(r), Bo(r) are Lipshitz continuous solutions of (3), (4)

Then there exists a weak solution of (1)-(4) on 7270, 0<t<T

° -The Einstein equations are consistent at the level of
arbitrary numbers of interacting shock waves of arbitrary strength

® Any Lipshitz cont. metric that meets constraints (2), (3) suffices




Locally inertial Godunov Method
with
Dynamic Time-Dilation

Zeke Vogler
UC-Davis
2010




Locally Inertial Godunov Method

Ao | Ay Ay Ay Ao

i-1 Ti Tyl mi x

TOV




|
w + f(A, ). = g(A, u,7)
{ A’ =h(A,u,x) f
” Aigj | Aimyy Ay Air Atz
T="70 Ti—1 Tl Ty Tipl wigg €
FRW TOV




u; + f(Aau)z = g(A?u7 .T)

t Locally Inertial Godunov Method

{ A’ = h(A,u,z) ;
Aizj | Aicyy Ay A Aija
t .
J
=T ic1 Tl owmy Tikd xip T
FRW Ry: A=A, A=(4B) TOV

® A, = const. * Locally Flat in each Grid Cell




t Locally Inertial Godunov Method

u + f(A,u); = g(A,u, x)
1 A’ = h(A,u,7) I
Ao(t)
ey Ai1y A Aiiis Az,

" ur = uiq; UR £ U;;

‘7 v v L4

x =m0 T Ti-i omp Tkl T x

FRW Rij: A=Ay A=(A,B) u=(@'w) TOV

® A =const. @ Locally Flat in each Grid Cell

® Stagger fluid discontinuities with metric discontinuities
and solve Riemann Problem for 1/2 time-step

u; + f(Ajj,u), =0

Wi—15 xSz =—) UR-P
u = Z]
u;; T > x;




Locally Inertial Godunov Method
u; + f(Aa u)z = g(A? u, .T)

A’ = h(A,u,7) I

Ao(t)

ADY ANV

Ai o
uy =u;—1; ur
¥
x

i Titd min

u = (u',u?) TOV

=79
Ry A=Ay A=(4B)

® A, = const. * Locally Flat in each Grid Cell

® Stagger fluid discontinuities with metric discontinuities
and solve Riemann Problem for 1/2 time-step

® Take Godunov Averages




® Take Godunov Averages

Uy = g(Aij7u7x) - VAf Al

11(0) = flij

t Locally Inertial Godunov Method
u; + f(Aa u)z = g(A? u, .T)
1 A’ =h(Au,z) I \
-1, Uy \
ot ~A A \
A, A1, Ai]_ ATl Atz
tj up =[u_j Ugr f Wi
T=ro icr Tl oy Tipd xi T
FRW Rj: A=A, A=(AB) u=@'u?) TOV

® A, = const. * Locally Flat in each Grid Cell

® Stagger fluid discontinuities with metric discontinuities
and solve Riemann Problem for 1/2 time-step

e Solve Source-ODE for |/2 time-step (operator splitting)




t Locally Inertial Godunov Method

u; + f(Aau)z = g(A?u7 .T)

{ A =h(Au ) j \
;1,5 U \
@ P G SN \
A, A1, A ATl Aiiz;
t] uy =ui-1; ur ¥ ui]‘
x=ro T Ti-i omp Tkl T x
FRW Rj: A=A, A=(AB) u=@'u?) TOV

® A, = const. * Locally Flat in each Grid Cell

® Stagger fluid discontinuities with metric discontinuities
and solve Riemann Problem for 1/2 time-step

® Take Godunov Averages

e Solve Source-ODE for |/2 time-step (operator splitting)

A — h(A,u,2)
A(ro, tjy1) = Ao(tj+1

® Update the metric:




t Locally Inertial Godunov Method

u; + f(Aa u)z =g(A,u, I)
{ A’ =h(A,u,x) f

Ao(t)

Aiaj A1, Ay Aiprj Aiiz;
t. ur =i—1; UR §+ Wj
J

L

T=rp ric1 Vil ooxp Tl wi

FRW Rj: A=A, A=(AB) u=@'u?) TOV

® A, = const. * Locally Flat in each Grid Cell

B~ oo » Bl 00




t Locally Inertial Godunov Method

u; + f(A ) = g(A,u,z)
{ A’ =h(A,u,x) I

Ao(t)

AN

Ai o A, A ATl Aiiz;
ts ur =i—1; UR §+ Wj
J

L

T=rp ric1 Vil ooxp Tl wi

FRW Rj: A=A, A=(AB) u=@'u?) TOV

® A, = const. * Locally Flat in each Grid Cell

B~ oo » Bl 00

p= ¢ p| — Nishida System — Global Exact Soln of RP, [Smol,Te]




Grid Rectangle

(-5.4) (i, 5) (i+39)




Staggering the metric A and solution u

Ay A'- A J Ay
t: —— /'_A_N
J+1 T T
aws \[/ 1\ |/ \|/ \[/\L y NES
t. 1
J ———— —— \W—lhf—/\—,—/ \—,—/\—,—/
Uo,j Uy,j e Ui-1,5 Uit1,5 Unj Un+1,j




A=Constant
in

Consecutive Grid Rectangles:

G Lemcnnnn
R;; Riyy
Aij Ait1
j ........
o1 . ,+1 i
7 3 7 7 2 1+

A+3
i+ 2
2




A=Constant
in
Consecutive Grid Rectangles:

S p—
R;; Riyy
Aij Ait1
JR—
o1 . ,+1 1 .3
? B 1 7 2 71+ Z+§

» “Locally Inertial”




Stagger the Fluid Discontinuities
with the Metric Discontinuities

Ry Rit1
Ai]' Ai+1,]

W;—1,5 U;; U;; Wit1,j

: o o .3
7 7 2 7+ Z+§




Stagger the Fluid Discontinuities
with the Metric Discontinuities

=
=
-+

i1,J

W;—1,5 U;j U;; Wit1,j

: o o .3
7 7 2 7+ Z+§

N =




Stagger the Fluid Discontinuities
with the Metric Discontinuities

GAlemenan
Ry Rit1
A A1
‘ W;—1,5 U;; U;; Wit1,j
T
1 . iy 1 1 .3
L= = 1+ 5 1+ -
D) 1 2 7+ + D)




Stagger the Fluid Discontinuities
with the Metric Discontinuities

R R
Rzg Ri+1d
Ajj At
‘ U1 Ui Wij Uit
Jommmeeees
.1 i 1 4
i— = i+ = -
2 Z\f\;\j B
u; j




Stagger the Fluid Discontinuities
with the Metric Discontinuities

[ PR
R Ridy
A At
) W—1,j U;j U5 Uit1,5
] --------
) 1 z+1 + 1 + 3
2 Z\_/—Yz\;F Z 2
uij




Solve the Riemann Problem
in Each Grid Cell

G Lemnne-
Ry Rit1
A Aty
. W;—1,5 U;; U;; Wit1,j
] ........
o1 . .+1 4 o 3
§— = 2 4 T3
2 ¢ 2 + 2




Solve the Riemann Problem
in Each Grid Cell

: o o .3
7 7 2 7+ Z+§




Solve the Riemann Problem
in Each Grid Cell

Solve the Riemann Poblem for half a time step in Rij

u; + f(Aj,u), =0
Wity o< —» uld

u = J
Uy x> x;




Average Across Two Half-cells

Godunov Average

Rish

Ui U5 Wit1,j

1
i+ i1 i+ =




Average Across Two Half-cells

Godunov Average

Rish

Ui U5 Wit1,j

1
i+ i1 i+ =




Run the Godunov Average under the
ODE step for half a time-step

Godunov Average

= 1 i+ % i+1 i+
Solve ODE for %—timestep

Uy = g(Aij7u7x) - VA.f A’
u(0) = uy;

(Operator Splitting)




Update A by solving ODE

Attt

i+ 1 i+ =

Update A to time t;4

A’ = h(A u, 1)

A(ro,tjr1) = Ao(tjs1)

(Left Hand Data from FRW)




For the Riemann Problem we employ
the special structure when
p=ap
® Relativistic Nishida System: Sm-Te 1994
® Exact Formulas for Shock and Rarefaction Curves

® Global Solution of RP--No Vacuum

® Extreme Relativistic Limit of Free Particles
Pure Radiation:




111 R, v
r U4
r U3 |
| I
! Uy | I
. |
| !
I /)
S /’ //
J I K I
/ /
é U2 é [l
Sa

The shock curves are rigid translates of one another in
the plane of-Riemann Invariants (r;s)
(Sm-Te 1993)




The value A;; = (4i;, By;) in each grid cell
determines the
“local time dilation”

1
® Metric:  ds®> = —Bdt® + Zdr2 + r2d0?

® Light Ray: ds=0,dQ)=0 wap B>+ %er =0

® Speed of Light: c¢= % =VAB




Local Time Dilation

(Vogler 2010) A3B; = 3
A8 =1
Aty
VAB; =2 T
L-A—f-dAt,  F--H---
AtI \/ IAtl AtI l AtI
— Az — — Az — I—Az—l--

vV AB determines the Time-Dilation factor in each grid

@ At = At = Atpin
@ At;=Riemann problem time for light ray to hit grid boundary.

® Ati=fraction of the Riemann problem that evolves by time At.

« _ VAIB; .
® A=Y Ay




Convergence (Vogler)

Theo FeM. Let uas(t,z) and Aa.(t,z) be the approzimate solution generated by
the locally inertial Godunov method starting from the initial data uaz(to,z) and Aaz(to,z)
fortg > 0. Assume these approzimate solutions exist up to some time tenq > to and converge
to a solution (uaz, Aas) = (u,A) as Az — 0 along with a total variation bound at each

time step t;
(5:3) TVt i) {882 (E5 )} <V,

where T.V.p,, o {uax(t), )} represents the total variation of the function ua.(tj, ) on
the interval [Fmin, Tmae]. Assume the total variation is independent of the time step t; and
the mesh length Az. Then the solution (u,A) is a weak solution to the Einstein equations

(2.9)-(2.12).

(1) Total Variation Bound Weak Solution of
2) [, - Convergence Einstein Equations

Vogler verifies (1) and (2) Numerically...




Numerical Simulation

of
GR Shock-Waves

Zeke Vogler
UC-Davis
2010




time Proposed Numerical Simulation
N

\
\
.

N 1
s ds* = —B(r, DA + gy dr” + 7Y

2N (D
\\ 4
k=0 , Standard
FRW N Schwarschild TOV metric
metic \ coordinates
\
\
' _ . L
ds? = —dt? + R(t)? {dr? + r2d0?} ds* = —B(r)df* + iG] di? + 72dQ)

I3

space




Proposed Numerical Simulation
N

time
\\
AY
\
\
\
k=0 K Standard
FRW \ Schwarschild -
metic N coordinates TOV metric
D
.
\
N
\
‘\
t Ai-a LYSY AZ// Ay Aitaj
j \
J
space
T=79 Ti_1 (L‘i_% ;i (pi_'_% Tit1 P:I;
FRW Tov




Intertaction region between FRW and TOV

Light Speed

Sound Speed




Proposed Numerical Simulation
N

time
\\
AY
\
\
\

k=0 K Standard

FRW \ Schwarschild -

metic N coordinates TOV metric

D
.
\
N
\
‘\
t Aiz; Aiy AZ// At L
j \
J
space

e Tio1 o Tieg o omp Titd Tip PT
FRW Tov

Problem: We need to express FRW in SSC coordinates




(Theorem: Assume p = %p, k = 0. Then the FRW

metric
ds® = —dt* + R(t)%dr* + #d?,

under the mapping

goes over to the SSC-metric

dt? dr?
ds* = — P’
T T T T
where B
e=1_ 2v
T 1402

(Sm-Te 2009)




FRWV in Self-Similar SSC Form

@ FRW in comoving coordinates

ds® = —dt* + R(t)* {dr® + r?dQ*}

@® FRW in SSC coordinates

1

ds®> = —B(&)dt* + NG dr® 4 72d0?
§= % 7= R(t)r

2

@® EXACT FRW Solution when P = 3P

AQ=1-v@"  BO =1 @

PRy
o6 =28 e = Ve

k2’




For TOV we take
Static Isothermal Sphere

@® Assume TOV

ds* = —B(r)dE* + ( :

=2 | =2 392
G )dr + 7dQ*.

(Special case when A and B are time independent)

@® TOV Solves the Oppenheimer-Volkoff Equations (1936):

dM
—— = 4n?p

dr

dp GMp P 4773p 26M\
-~ =— 1+=) (1 1-
dr 72 ( + p * M T

® Exact TOV Solution when p = op

P:l
r2

40

A=1-8nGy M = AwyF B =7ite

1 o
7_27rg 1+ 60 + 02




Vogler’s Simulation

2

C
@® Take p= Eﬂ

@® Start with exact FRW and TOV solutions in SSC coordinates

@ For initial data it suffices to match FRW to TOV Lipschitz
continuously at t=const

B’ B-1 i i
B B g Einstein
f, (B xl) Constraint
T = 5 traBTy. Equations

@ This poses discontinuous density and velocity jumps at a
Lipshitz matching of the metric

@ There is a one parameter family of such initial data generating
qualitatively different solutions

® Models a GR explosion into a static isothermal sphere




Match the metrics Lipshitz continuously
along the initial data
with discontinuities

in density and velocity =9 Shock waves!

FRW) ds? = @dt —|— dr + 72d0?

1
Tov) ds? = —-dt + + 72d0?




[Vogler’s One parameter family of intial data depending Toj

Light Speed Sound Speed

o+

N2
Apgpw (to,T0) =1—v (%:) =1-8nGy = Arov(to, o).

_ 4o 1 _
Brov(to, 7o) = Bo(fo) 1te = 2= Brrw (to, To).
— U5

To _ 20
B 1+ vg
1-2, 7<fo i {ﬁ F<To = {%_Z‘zﬁ“ T<To
Ainit(7) = init Binit(T) = e pinit(F) =4
{ 1-8rGy 7> Bo(F)tie T>17 e 7> 7

Matching FRW to TOV leads to one parameter family of initial
data that meets the constraints of the Einstein equations




To start--Vogler wrote a
Riemann Solver for
Relativistic
Compressible Euler




nann Problem Solver

SPEED 2L:0.39
SPEED 2R: 0.9333

VELOCITY: 0.3000

2-RARFFAC
RIEMANN INVARIANT SPC DENSITY




Numerical Simulation
of the
Matched FRW-TOV Spacetimes




2.046¢-003

DENSITY
6.821¢-004

3.480¢-004
0.6546

VELOCITY

4.286¢-001

IND:

10
OUTPUT: ENTIRE

The Initial Profile:
® Note discontinuity in fluid variables

® Lipschitz matching of the metric components




Shock Wave Cosmology Simulator ]

.0000,5.9936)

INDEX: 8193 (r = 5.00) :0.9¢ dx: 0.000244

10: 5.00 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969

End Time of Simulation:




Shock Wave Cosmology Simulator ]

1.959¢-003

DENSIT

3.480¢-004

2.310e-001 r =3.00 2 IG 4.0000,5.9936)

IND:. 8193 (r =5.00) E: 0.9¢ dx: 0.000244
. C dt: 0.00002
10: 5.00 4554 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969

Note: Discontinuities in density and velocity




Shock Wave Cosmology Simulator ]

.0000,5.9936)

INDEX: 8193 (r = 5.00) :0.9¢ dx: 0.000244

10: 5.00 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969

Note: Metric no better than Lipschitz continuous




Shock Wave Cosmology Simulator ]

.0000,5.9936)

INDEX: 8193 (r = 5.00) :0.9¢ dx: 0.000244

10: 5.00 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969

Note: Interaction region inside the cone of sound




Shock Wave Cosmology Simulator ]

.0000,5.9936)

INDEX: 8193 (r = 5.00) :0.9¢ dx: 0.000244

10: 5.00 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969

Note: Convergence to Exact solutions on either side




Shock Wave Cosmology Simulator ]

.0000,5.9936)

INDEX: 8193 (r = 5.00) :0.9¢ dx: 0.000244

10: 5.00 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969

Run Time---Simulation | Day ---Convergence: 2-3 Days




Shock Wave Cosmology Simulator

r=3.00 SOUND=(4.8695,5.7757) LIGHT=(4.0000,5.9936)

SCALE: 0.9965 dx: 0.000244
HA: 0.1096

OUTPUT: ENTIRE TIME: 1.0000/1.0000 (9195/969:

Time Evolution of the simulated shock waves...
Note interaction creates a region of higher density




Numerical Convergence: (First order method)

Number p v A B
Gridpoints Error Rate Error Rate Error Rate Error Rate
64 1.143e-004 | N/A | 4.657¢-002 | N/A | 7.051e-003 | N/A | 3.146e-002 | N/A
128 8.490e-005 | 0.43 | 3.463e-002 | 0.43 | 3.710e-003 | 0.93 | 1.557e-002 | 1
256 5.970e-005 | 0.51 | 2.414e-002 | 0.52 | 1.817e-003 | 1 | 7.704e-003 | 1
512 4.000e-005 | 0.58 | 1.596e-002 | 0.6 | 9.243e-004 | 0.98 | 2.889¢-003 | 1.4
1024 2.470e-005 | 0.7 |9.741e-003 | 0.71 | 4.334e-004 | 1.1 | 1.974e-003 | 0.55
2048 1.410e-005 | 0.81 | 5.502e-003 | 0.82 | 2.568¢-004 | 0.76 | 5.160e-004 | 1.9
4096 7.470e-006 | 0.92 | 2.866e-003 | 0.94 | 1.232¢-004 | 1.1 |4.172e-004 | 0.31
8192 3.740e-006 | 1 |1.420e-003 | 1 |7.100e-005| 0.8 |1.111e-004 | 1.9
16384 1.870e-006 | 1 |7.063e-004 | 1 |3.300e-005| 1.1 |1.024e-004 | 0.12

® To test convergence Vogler uses successive mesh refinement...

® Error: measures the Lldifference between the current mesh
refinement and the previous...

® The Rate is the log base 2 of the ratio of successive errors
(current divided by previous)...




Number p v A [ B

Gridpoints Error Rate Error Rate Error Rate Error Rate
64 1.143e-004 | N/A | 4.657e-002 | N/A | 7.051e-003 | N/A |'3.146¢-002 N/A

128 8.490e-005 | 0.43 | 3.463e-002 | 0.43 | 3.710e-003 | 0.93 | 1.557e-002 | 1

256 5.970e-005 | 0.51 | 2.414e-002 | 0.52 | 1.817e-003 | 1 | 7.704e-003 | 1
512 4.000e-005 | 0.58 | 1.596e-002 | 0.6 | 9.243e-004 | 0.98 | 2.889¢-003 | 1.4
1024 2.470e-005 | 0.7 |9.741e-003 | 0.71 | 4.334e-004 | 1.1 | 1.974e-003 | 0.55
2048 1.410e-005 | 0.81 | 5.502e-003 | 0.82 | 2.568¢-004 | 0.76 | 5.160e-004 | 1.9
4096 7.470e-006 | 0.92 | 2.866e-003 | 0.94 |1.232¢-004 | 1.1 | 4.172e-004 | 0.31
8192 3.740e-006 | 1 |1.420e-003 | 1 |7.100e-005| 0.8 |1.111e-004 | 1.9
16384 1.870e-006 | 1 |7.063e-004 | 1 |3.300e-005 | 1.1 | 1.024e-004 | 0.12

Numerical Convergence:

To test convergence he uses successive mesh refinement...

Error: measures the Lldifference between the current mesh
refinement and the previous.

The Rate is the log base 2 of the ratio of successive errors
(current divided by previous)...

Ideally, First order method should half the error as you double
the number of grid points, so a rate of | is ideal...

Less than one implies convergence slower than expected...
Greater than one means faster than expected...

Vogler gets numbers .43 up to 1.9




Number p v A B
Gridpoints Error Rate Error Rate Error Rate Error Rate
64 1.143e-004 | N/A | 4.657¢-002 | N/A | 7.051e-003 | N/A | 3.146e-002 | N/A
128 8.490e-005 | 0.43 | 3.463e-002 | 0.43 | 3.710e-003 | 0.93 | 1.557e-002 | 1
256 5.970e-005 | 0.51 | 2.414e-002 | 0.52 | 1.817e-003 | 1 | 7.704e-003 | 1
512 4.000e-005 | 0.58 | 1.596e-002 | 0.6 | 9.243e-004 | 0.98 | 2.889¢-003 | 1.4
1024 2.470e-005 | 0.7 |9.741e-003 | 0.71 | 4.334e-004 | 1.1 | 1.974e-003 | 0.55
2048 1.410e-005 | 0.81 | 5.502e-003 | 0.82 | 2.568¢-004 | 0.76 | 5.160e-004 | 1.9
4096 7.470e-006 | 0.92 | 2.866e-003 | 0.94 | 1.232¢-004 | 1.1 |4.172e-004 | 0.31
8192 3.740e-006 | 1 |1.420e-003 | 1 |7.100e-005| 0.8 |1.111e-004 | 1.9
16384 1.870e-006 | 1 |7.063e-004| 1 |[3.300e-005| 1.1 | 1.024e-004 | 0.12
Conclusions:

o Fluid variables start out converging slower than
expected, but head toward one under mesh refinement.

® A stays around one.

® B does a high-low swing, but on average has a rate of
one. (We think it has to do with the integration of B
across the whole simulation space).




Vogler’s Conclusions:

® Shock-waves converge to the cone of sound.

® Numerical convergence to FRW and TOV on
outside of the interaction region

® Simulation determines uniquely the time-rescaling
function of the TOV spacetime---implies
continuity of B comes out of the method

® The simulation is tested with a different SSC
representation of the FRW metric and confirms
convergence to the same solution.

® The one parameter family of initial data is
explored and produces qualitatively different
solutions, but always results in two shock-waves




Black Hole
Formation From
Smooth Initial
Data




2.046¢-003

DENSITY

5,.821¢-004

3.480e-004 |
0.0000

1TY

0.9102
METRIC A

4.286¢-001 r=3.00 SOUND=(5.0000,5.0000) LIGHT=(5.0000,5.0000) r=7.00

INDEX: 8193 (r = 5.00) SCALE: 1.0000 dx: 0.000244
A dt: 0.000103
10: 5.00 TIME: 0.00/200.
OUTPUT: ENTIRE TIME: 0.0000/10.0000 (0/96924

® Initial Data for the Time-Reversed Problem leading to Black Hole
formation by two compressive rarefaction waves (smooth data)

(The only difference is the negative velocity...)




3.053¢-003

DENSITY

9.039¢-004

3.480¢-004
0.0000

VELOCITY

-0.6536
0.0343
METRIC A’

0.0001

1.6088
METRIC B’

4.631¢-001 r=3.00

INDEX: 5164 (r = 4.26) SCALE: 1.0151 dx: 0.000244
ALPH/ 126 dt: 0.000076
10: 5.00 TIME: 20.00/20.00
OUTPUT: ENTIRE TIME: 1.0000/1.0000 (10289/964

® End time simulation of the time-reversed evolution
far from a Black Hole...two rarefaction waves

(Not EXACT rarefaction waves because of curvature...)




|Shock Wave Cosmology Simulator

IND] ) SCALE:
ATLPHA:
10: -5.45

OUTPUT: ENTIRE

® We believe Black Hole will form under continuation of the
time, and this is explored.




3.053¢-003

39¢-004

0.0343
METRIC A’

0.0001

INDEX: 5164 (r = 4.26) e 5 dx: 0.000244
0007
10: 5.00 20.00/20.00
OUTPUT: ENTIRE / d TIME: 1.0000/1.0000 (10289/964

® Note the discontinuities in fluid variables and derivative of
the metric are gone, so we have strong solution of the
Einstein equations...




3.053¢-003

39¢-004

0.0343
METRIC A’

0.0001

INDEX: 5164 (r = 4.26) e 5 dx: 0.000244
0007
10: 5.00 20.00/20.00
OUTPUT: ENTIRE / d TIME: 1.0000/1.0000 (10289/964

® Convergence is slow near the black hole due to time dilation...

® You can’t simulate all the way into the Black hole in SSC
coordinates because of infinite time -dilation...




3.053¢-003

DENSITY

039¢-004

3.480¢-004

0.0343
METRIC A’

0.0001

1.6088
METRIC B’

0. 7
4.631¢-001 r=3.00

INDEX: 5164 (r = 4.26) SCALE: 1.0151
ALPHA: 0.3126

10: 5.00
OUTPUT: ENTIRE

® Vogler argues for Blak Hole formation by demonstrating
solutions evolve inside 9/8 Schwarzschild Radius, the
Buchdahl Stability Limit beyond which no static configuation
has sufficient pressure to hold the solution up...




3.053¢-003

3.480¢-004
0.0000

VELOCITY

4.631¢-001 r=3.00 SOUND=(4.1288,5.5526) LIGHT=(4.0000,6.1179) r=7.00

INDEX: 5164 (r = 4.26) SCALE: 1.0151 dx: 0.000244
ALPHA: 0.3126 dt: 0.000076
10: 5.00 t0: -5.4554 TIME: 20.00/20.00
OUTPUT: ENTIRE MO0: 1.07 TIME: 1.0000/1.0000 (10289/964

® Time evolution in the Black Hole simulation: (To time t=1)

® Note: interaction creates a region of Lower Denisty
approx like interaction of two rarefaction waves.




Number p v A B
Gridpoints Error Rate Error Rate Error Rate Error Rate

64 1.472e-004 | N/A | 5.334e-002 | N/A | 2.707e-002 | N/A | 9.879¢-002 | N/A

128 1.126e-004 | 0.39 | 3.815¢-002 | 0.48 | 1.346e-002 | 1 | 5.532¢-002 | 0.84

256 8.210e-005 | 0.46 | 2.694e-002 | 0.5 |6.751e-003 | 1 |3.299e-002 | 0.75

512 5.850e-005 | 0.49 | 1.889e-002 | 0.51 | 4.063e-003 | 0.73 | 2.632¢-002 | 0.33

1024 4.090e-005 | 0.52 | 1.301e-002 | 0.54 | 2.042e-003 | 0.99 | 1.592e-002 | 0.73

2048 2.790e-005 | 0.55 | 8.770e-003 | 0.57 | 8.794e-004 | 1.2 | 8.348e-003 | 0.93

4096 1.860e-005 | 0.58 | 5.764e-003 | 0.61 | 4.801e-004 | 0.87 | 5.295¢-003 | 0.66

8192 1.220e-005 | 0.62 | 3.685e-003 | 0.65 | 2.705e-004 | 0.83 | 3.312¢-003 | 0.68

16384 7.750e-006 | 0.65 | 2.294e-003 | 0.68 | 1.622¢-004 | 0.74 | 2.210e-003 | 0.58

Numerical Convergence:

® Convergence under successive mesh refinement...

e ['-convergence tending (slowly) to one.

e Convergence rate slower due to time-dilation near Black Hole...

No High-Low swings in B convergence rate...




Vogler’s Conclusions (Same as before):

® Rarefaction-waves converge to the cone of sound.

® Numerical convergence to FRW and TOV on
outside of the interaction region

® Simulation determines uniquely the time-rescaling
function of the TOV spacetime---implies
continuity of B comes out of the method

e The one parameter family of initial data is
explored and produces qualitatively different

solutions, but always results in two rarefaction-
waves




Continuing
Simulation Time

into
Black Hole

(Simulation time |-week)




Shock Wave Cosmology Simulator
2.846¢-002

DENSITY
1.45

4.249¢-005

11267.4171
LIGHT SPEED
29.6312
1.0000
0.9110

BLACK HOLE

9.110e-001 r=0.10 SOUND=(1.4607,17.9603) LIGHT=(1.0150,20.0001) r

dx: 0.001215
dt: 0.000000

OUTPUT: ENTIRE
Continuing the Evolution Into Black Hole...

® Density rises by a factor of about I5... (To time ¢=3.98)




Shock Wave Cosmology Simulator

2.846¢-002

DENSITY

1.452¢-003

0.0888
11267.4171
LIGHT SPEED

29.6312
000
0.9110
BLACK HOLE
0.9110
0.0011
9.110e-001 .10 € .4607,17.9603) LIGHT=(1.015

INDEX: 1875 (r =2.38) SCALE: 29.6312 dx: 0.001215
ALPHA: 0.0000 dt: 0.000000
10: 5.00 t0: 4 TIME 0/200.00
OUTPUT: ENTIRE MO: 1.07 TIME: 3.9848/10.0000 (56543/3

® Black Hole Number 2% ~ .911 > .888 = Buchdahl Limit
r~ 2.38




Shock Wave Cosmology Simulator
2.846¢-002

DENSITY
1.45

4.249¢-005

11267.4171
LIGHT SPEED
29.6312
1.0000
Time KU
Dilation [¥AeS:O#

Factor
9.110e-001  r=0.10  SOUND=(1.4607,17.9603) LIGHT=(1.0150,20.0001) r

dx: 0.001215
dt: 0.000000

OUTPUT: ENTIRE

® Time-dilation factor vVAB rises to |1,000 implying
extreme relativistic effects...




Shock Wave Cosmology Simulator
2.846¢-002

DENSITY
1.45

4.249¢-005

11267.4171
LIGHT SPEED
29.6312
1.0000
Time KU
Dilation [¥AeS:O#

0.9110
Factor '
9.110e-001 r=0.10 SOUND=(1.4607,17.9603) LIGHT=(1.0150,20.0001) r
dx: 0.001215
dt: 0.000000
OUTPUT: ENTIRE
. 1
® Time step tends to zero as you approach the At oc ———

11,000
Black Hole, making it difficult to continue simulation...




Shock Wave Cosmology Simulator

2.846¢-002

DENSITY
1.45

4.249¢-005

11267.4171
LIGHT SPEED
29.6312

1.0000

0.9110
BLACK HOLE

9.110e-001 r=0.10 SOUND=(1.4607,17.9603) LIGHT=(1.0150,20.0001) r

dx: 0.001215
dt: 0.000000

OUTPUT: ENTIRE

® Zeroing in on the Black Hole, Vogler gets the
Black Hole number up to .922...




Shock Wave Cosmology Simulator

2.846¢-002

DENSITY

1.452¢-003

4.249¢-005

112 171
LIGHT SPEED
29.6312
1.0000
0.9110
BLACK HOLE
0.9110
0.0011
9.110e-001 r=0.10

SOUND=(1.4607,17.9603) LIGHT=(1.0150,20.0001) r = 20.00

INDEX: 1875 (r =2.38) SCALE: 29.6312 dx: 0.001215
ALPHA: 0.0000 dt: 0 0

10: 5.00 t0: -5.4554 TIME: 79.70/200.00
OUTPUT: ENTIRE ] .07 TIME: 3.9848/10.0000 (56543/3

® Note the Hump in the Black Hole Number where
localized formation is occuring...
(Black Hole developing over an interval simultaneously??




Pushing Simulation to
Black Hole Number
20 M
T

~ .922




Shock Wave Cosmology Simulator
2.848¢-002

DENSITY

3.211¢-004

3.211¢-004

VELOCITY

-0.8814

9.218¢-001 r=0.10 SOUND=(1.4604,20.0001) LIGHT=(1.0146,20.0001) r = 4.50

SCALE: 29272.0959 dx: 0.001215
PHA: 0.0000 dt: 0.000000

10 ] .
OUTPUT: ENTIRE / .07 4 .985 .0000 (69303/3.

Zooming in on the Black Hole by chopping off the RHS

® Black Hole Number .922 at radius r=4.5 (I-week simulation)




Shock Wave Cosmology Simulator
2.848¢-002

DENSITY

3.211¢-004

3.211¢-004

VELOCITY

-0.8814

9.218¢-001 r=0.10 SOUND=(1.4604,20.0001) LIGHT=(1.0146,20.0001) r = 4.50

SCALE: 29272.0959 dx: 0.001215
PHA: 0.0000 dt: 0.000000

10 ] .
OUTPUT: ENTIRE / .07 4 .985 .0000 (69303/3.

® Region where the solution beats the Buchdahl limit spreads out
over larger and larger radii, ranging from roughly r=2 to r=7...




|Shock Wave Cosmology Si

2.848¢-002

DENSITY
3.211¢-004

3.211¢-004

VELOCITY

-0.8814

LIGHT SPEED

20272.0959

9.218¢-001 r=0.10

SOUND=(1.4604,20.0001) LIGHT=(1.0146,20.0001) r = 4.50

SCALE: 29272.0959 dx: 0.001215

PHA: 0.0000 dt: 0.000000

10 R TIME: 7
OUTPUT: ENTIRE .

® Time-dilation factor v/AB goes from | to 29,272

® Looks like exponential growth in dilation factor vAB




The solutions get dimensions upon setting
the scale of the mass

009 My < M <15 M,
443 km < 7. < 10.37 km,
2.69x 107 % sec < %, <3.18 x 107 sec,

1.08 x 107 My /km® < p. < 5.95 x 107 My /km®,

0km/sec < v < 1.59 x 10° km/sec.

Solar Scale

1.62x 10" My < M <2.7x 10" Mg,
0.084 light-years < 7. < 0.2 light-years,
56 days < t. < 66 days,

1.94 x 10" Mg /km® < p. < 1.07 x 108Mg /km®,

0km/sec < v < 1.59x 10° km/sec.

Galactic Scale




Future Directions:

e PROVE Shock-Wave formation from smooth initial
data?

® PROVE Black Hole formation for perfect fluid?

® Continue Black Hole formation beyond
Schwarzschild radius in Edington-Finkelstein/
Kruskal coordinates?

e Explore other phenomenon from other initial
data?

e Can you smooth the metric at points of shock
wave interaction (Moritz Rientes)?

® Multi-dimensional version of a locally inertial
method?

e Simulate secondary wave in shock wave
cosmology model where 2GM/r>1?




END




