Applications of Differential Equations

- **Logistic Growth:** In many situations where there is growth of a population, the growth is bounded above by some maximum. This kind of growth is called *logistic growth* where the growth of a population is proportional to *both* the size of the population and the difference between the size of the population and the maximum.

Let \(y(t) \) represent the size of the population at time \(t \), and suppose \(0 < y(t) < L \), i.e. \(y \) is always bounded between 0 and \(L \).

\[
\frac{dy}{dt} = ky(L - y).
\]

We can solve this differential equation using separation of variables:

\[
\int \frac{1}{y(L - y)} dy = \int k dt.
\]
Logistic Growth

The general solution to the differential equation

$$y' = ky(L - y),$$

is given by

$$y(t) = \frac{L}{1 + be^{-kLt}}.$$

We will go through this derivation in class. Don’t forget partial fractions:

$$\frac{1}{y(L - y)} = \frac{1}{Ly} + \frac{1}{L(L - y)},$$

Also don’t forget that

$$\int \frac{1}{Ly} dy + \int \frac{1}{L(L - y)} dy = \frac{1}{L} (\ln |y| - \ln |L - y|) = \frac{1}{L} \ln \left(\frac{y}{L - y} \right)$$
Logistic Growth

What does \(y(x) = \frac{L}{1 + be^{-Lkt}} \) look like for different \(L \)?

\[
\frac{L}{1 + be^{-Lkt}}
\]

\(b = 1 \)
\(k = 1 \)
\(L = 1, 5, 10 \)
Logistic Growth

What does \(y(x) = \frac{L}{1 + be^{-kLx}} \) look like for different \(b \)?

\[
\frac{L}{1 + be^{-Lkt}}
\]

- \(b = 0.2, 1, 5 \)
- \(k = 1 \)
- \(L = 1 \)
Logistic Growth

What does \(y(x) = \frac{L}{1 + be^{-kLx}} \) look like for different \(k \)?

\[
\frac{L}{1 + be^{-Lkt}}
\]

- \(b = 1 \)
- \(k = 0.2, 1, 5 \)
- \(L = 1 \)
Example

The state game commission releases 100 deer into a game preserve. During the first 5 years the population increases to 450 deer. Find a model for the population growth assuming logistic growth with a limit of 5000 deer. What does the model predict the size of the population will be in 10 years, 20 years, 30 years?
$L = 5000$ and we use $y(0) = 100$ and $y(5) = 450$ to find k and the constant of integration b.

$$y = \frac{5000}{1 + be^{-5000kt}}$$

Using $y(0) = 100$ we get $b = 49$, and using $y(5) = 450$ we find that $k = \frac{1}{10000} = 0.0000678$ or 6.78×10^{-5} This gives a solution $y = \frac{5000}{1 + 49e^{-0.0000678t}}$ Plugging in for $t = 10$ we find $y(10) \approx 1897$ deer are in the population. Plugging in for $t = 20$ we find that $y(20) \approx 4741$ and at $t = 30$ $y(30) \approx 4990$.
During a chemical reaction, substance A is converted into substance B at a rate that is proportional to the square of the amount of A. When $t = 0$, 50 grams of A is present, and after 2 hours only 10 grams of A remain unconverted. How much of A is present after 4 hours?

Let $A(t)$ be the amount of unconverted substance A at time t. The differential equation we are trying to solve is

$$\frac{dA}{dt} = kA^2.$$

We can solve this by separation of variables and use the conditions $A(0) = 50$, and $A(2) = 10$ to find k and the constant of integration.
\[
\frac{dA}{dt} = kA^2,
\]

has the general solution

\[
A = \frac{-1}{kt + C}.
\]

Using the initial condition we see that \(C = -1/50 \), and using the fact that \(A(2) = 10 \) we find that \(k = -1/25 \). This gives

\[
A = \frac{50}{2t + 1}
\]

So at \(t = 4 \) \(A = \frac{50}{9} \approx 5.56 \) grams of substance \(A \) are remaining.