1. (a) Put the following equation into standard form (hint: complete the square in x, y, z)

$$x^2 + 4y^2 + 4z^2 - 4x - 8z = -4$$

$$\frac{(x-2)^2}{4} + 4 \frac{y^2}{4} + 4 \frac{(z-1)^2}{4} = -4$$

$$\frac{(x-2)^2}{4} + \frac{y^2}{4} + \frac{(z-1)^2}{4} = \frac{-4}{4}$$

(b) What type of surface is given in part (a)?

Ellipsoid

(c) Sketch the (x, y) trace at $z = 1$ of the surface on the axes below.

$$z = 1 \Rightarrow \frac{(x-2)^2}{4} + \frac{y^2}{4} = 1$$

Ellipse centered at $(2, 0)$.
2. Find the general solution to the following differential equations. You must show your work and you must check your answer.

(a) \(\frac{dx}{dt} = 2x - 6 \)

\[x' = 2(x-3) \]

\[\int \frac{dx}{x-3} = \int 2\,dt \]

\[\ln|x-3| = 2t + C \]

Check: \(x' = 2Ae^{2t} \)

\[x = 3 + Ae^{2t} \]

(b) \(\frac{dy}{dx} + y = e^{-x} \)

\(p(x) = 1 \) \(u(x) = e^x \)

\(e^x y = e^x \left[\int e^{-x} \, dx \right] \)

\[= e^{-x} [x + C] = xe^{-x} + Ce^{-x} \]

Check: \(y' = e^{-x} - xe^{-x} \)

\[y' + y = e^{-x} - xe^{-x} + Ce^{-x} \]

\[= 2(3 + Ae^{2t} - 3) \]

\[= 2Ae^{2t} \checkmark \]

(c) \(z + 4xz = x \)

\(\int p(x) = 4x \)

\(u(x) = e^{2x^2} \)

\[\int e^{2x^2} \, dx \rightarrow \int e^{a} \, da \]

\[a = 2x^2 \]

\[da = 4x \, dx \]

\[= \frac{1}{4} e^{2x^2} \]

Check: \(z' = -4Cxe^{-2x^2} \)

\[z' + 4xz = -4Cxe^{-2x^2} + \frac{4x}{4} + 4Cxe^{-2x^2} \]

\[= \frac{1}{4} 4x = x \checkmark \]
3. The rate of increase in sales (S) (in thousands of units) of a product is proportional to the current level of sales and inversely proportional to the square of the time (t). What differential equation represents this relationship? Circle the correct answer, no justification is necessary.

(a) $\frac{dS}{dt} = kSt^2$

(b) $\frac{dS}{dt} = k \frac{t^2}{S}$

(c) $\frac{dS}{dt} = k \frac{S}{t^2}$

(d) $\frac{dS}{dt} = k \frac{t}{S}$

(e) None of the above

0 points
4. During a chemical reaction substance \(A \) is converted into substance \(B \) at a rate proportional to the square of the amount of \(A \). Initially, 100 grams of substance \(A \) are present, and after one hour 50 grams remain.

(a) Find an equation which can predict how many grams of substance \(A \) is present at \(t \) hours.

\[
\frac{dA}{dt} = kA^2
\]

\[
\int \frac{dA}{A^2} = \int kdt
\]

\[
A(0) = 100 = \frac{1}{C-k(0)} = \frac{1}{C}
\]

\[
\Rightarrow C = \frac{1}{100}
\]

\[
A(t) = \frac{100}{1-kt}
\]

\[
A^{-1} = C - kt
\]

\[
A = \frac{1}{C-kt}
\]

(b) How much of substance \(A \) is present after 2 hours?

\[
A(2) = \frac{100}{1+2} = \frac{100}{3}\text{ grams}
\]

(c) When will only 10 grams of substance \(A \) remain?

\[
A(t) = 10 = \frac{100}{1+t}
\]

\[
10 + 10t = 100
\]

\[
1 + t = 10
\]

\[
t = 9\text{ hours}
\]
5. Find the domain and range of the following functions. Also evaluate the functions at the specified point.

7 pts (a) \(f(x,y) = \sqrt{4-x^2-y^2} \) \((x,y) = (0,0) \)

3 pts Domain \(4-x^2-y^2 \geq 0 \) all reals such that \(x^2+y^2 \leq 4 \)

3 pts Range: \(0 \leq z \leq 2 \) for \(z = \sqrt{4-x^2-y^2} \)

\[
\f(0,0) = 2 \quad 1 \text{ pt}
\]

7 pts (b) \(f(x,y) = \ln(x^2+y^2) \), \((x,y) = (-1,-1) \)

3 pts Domain: \(x^2+y^2 > 0 \)

3 pts Range: all reals

1 \(f(-1,-1) = \ln((-1)^2 + (-1)^2) = \ln(2) \)
6. For each of the following quadric surfaces, describe the \((x,y)\) trace, \((x,z)\) trace, and \((y,z)\) traces.

(a) \(12x^2 + 4y^2 - 3z^2 = 0\)

\[2 \ (x,y) \text{ trace } z = 0 \quad 12x^2 + 4y^2 = 0 \quad \text{ellipse}\]

\[2 \ (x,z) \text{ trace } y = 0 \quad 12x^2 - 3z^2 = 0 \quad \text{hyperbola}\]

\[2 \ (y,z) \text{ trace } x = 0 \quad 4y^2 - 3z^2 = 0 \quad \text{hyperbola}\]

(b) \(x^2 + y^2 - z = 1\)

\[2 \ (x,y) \text{ trace } t = 0 \quad x^2 + y^2 = 1 \quad \text{circle}\]

\[2 \ (x,z) \text{ trace } y = 0 \quad x^2 - z = 1 \quad \text{parabola}\]

\[2 \ (y,z) \text{ trace } x = 0 \quad y^2 - z = 1 \quad \text{parabola}\]

(c) \(12 + 12x^2 + 3y^2 - 4z^2 = 0\)

\[2 \ (x,y) \text{ trace } z = 0 \quad 12 + 12x^2 + 3y^2 = 0 \quad \text{hyperbolae}\]

\[2 \ (x,z) \text{ trace } y = 0 \quad 12 + 12x^2 - 4z^2 = 0 \quad \text{hyperbola}\]

\[2 \ (y,z) \text{ trace } x = 0 \quad 12 + 3y^2 - 4z^2 = 0 \quad \text{hyperbola}\]

No graphs necessary.