Math 145, Winter 2013, Midterm 2

<table>
<thead>
<tr>
<th></th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME: printed</td>
<td></td>
</tr>
<tr>
<td>NAME: signature</td>
<td></td>
</tr>
<tr>
<td>STUDENT ID</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td></td>
</tr>
<tr>
<td>Problem 4</td>
<td></td>
</tr>
<tr>
<td>Problem 5</td>
<td></td>
</tr>
<tr>
<td>Problem 6</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Please do not turn this page until you are told to start the exam. You are not allowed to use books, notes, calculators, or, in fact, anything except a pencil (or pen) (and your brain!). You should show all of your work. A correct answer with an incomplete or incorrect explanation will only get partial credit. An incorrect answer with a good explanation will get partial credit. MAKE SURE YOU HAVE ALL THE PAGES OF YOUR EXAM! There are 6 problems. Good Luck!
1 Problem 1

(18 points)

Let L_n be the sequence of numbers defined by the recursion relation

$$L_{n+1} = (-3/2)L_n + L_{n-1}$$

with initial values $L_0 = 5$, $L_1 = 0$.

a. Calculate: L_2 and L_3.

$$L_2 = -\frac{3}{2} \cdot 0 + 5 = 5$$

$$L_3 = -\frac{3}{2} \cdot 5 + 0 = -\frac{15}{2}$$

b. Find an explicit formula for L_n.

Solve: $q^{n+1} = -\frac{3}{2} q^n + q^{n-1}$

$q^{n+1} + \frac{3}{2} q^n - q^{n-1} = 0$

$q^2 + \frac{3}{2} q - 1 = 0$

$2q^2 + 3q - 2 = 0$

$(2q-1)(q+2) = 0$

$q = \frac{1}{2}$ or $q = -2$

Solve: $(\frac{1}{2})^n A + (-2)^n B = 5$

$(\frac{1}{2})^2 A + (-2)^1 B = 0$

$A + B = 5 \rightarrow A = 5 - B$

$\frac{1}{2} A - 2B = 0 \rightarrow A = 48$

$\Rightarrow B = 1, A = 4$

$L_n = 4 \left(\frac{1}{2}\right)^n + (-2)^n$
2 Problem 2

(16 points)

Prove that a graph G with 7 nodes and more than $\binom{7}{2}$ edges is always connected (assume there are no parallel edges or loops in the graph).

(\textit{Brute force method - more elegant solutions welcome!})

Suppose G is not connected.
Then G has at least 2 components.
Let H be a connected component of G with k nodes, and let J be all other nodes and edges of G.
If H has 1 node, J has at most $\binom{6}{2}$ edges.

\[\Rightarrow G \text{ has at most } \binom{6}{2} \text{ edges} \]

H has 2 nodes, J has at most $\binom{5}{2} = 10$ edges.

\[\Rightarrow G \text{ has at most } 11 \text{ edges} \]

H has 3 nodes, J has $< \binom{4}{2} = 6$ edges.

\[\Rightarrow G \text{ has at most } 3 + 6 \text{ edges} \]

By exchanging $H + J$, this covers all cases.

\[\Rightarrow G \text{ has } < \binom{6}{2} \text{ edges} \text{. Contradiction,} \]

\[\Rightarrow G \text{ is connected.} \]
3 Problem 3

(16 points)

Decide which of the graphs below has an Eulerian walk. Decide which of the graphs below has a Hamiltonian cycle. You do not have to justify your answers (which should be “YES” or “NO”) for this problem.

<table>
<thead>
<tr>
<th>Graph Description</th>
<th>Eulerian Walk?</th>
<th>Hamiltonian cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_6 (complete graph on 6 vertices)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>K_7 (complete graph on 7 vertices)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[Graph Image]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[Graph Image]</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
4 Problem 4

(18 points)

Suppose that there are 13 people in a room. Show that there is either a group of 3 people, none of whom know each other, or there is at (at least) 1 person who knows at least 6 others (or possibly both).

Let p_1 be one of the people.
Form a group G_1 consisting of p_1 and everyone whom p_1 knows.
If there are 7 or more people in this group, then p_1 knows at least 6 people and we are done.
So assume there are less than 7 in G_1.

Assume p_2, say, is not in G_1.
Form a group G_2 consisting of everyone p_2 knows who is not already in G_1. If $|G_2| > 7$, then p_2 knows at least 6 people, and we are done.
So assume $|G_2| < 7$. Then $|G_1| + |G_2| \leq 12$,
so there is yet a third person, p_3, who is not in G_1 or G_2,

Then p_1, p_2, p_3 are 3 people none of whom know each other.
5 Problem 5

(16 points)

Let F_n be the Fibonacci sequence, so $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3,...,$

etc. Use induction to prove that

$$(F_1)^2 + (F_2)^2 + (F_3)^2 + (F_4)^2 + \ldots + (F_n)^2 = F_{n+1}F_n$$

D) Check for $n = 1$:

$$(F_1)^2 = 1 = 1 \cdot 1 = F_2 \cdot F_1 \checkmark$$

2) Assume for n, i.e., assume

$$(F_1)^2 + \ldots + (F_n)^2 = F_{n+1}F_n$$

3) Prove for $n+1$, i.e., prove

$$(F_1)^2 + \ldots + (F_n)^2 + (F_{n+1})^2 = F_{n+2}F_{n+1}$$

\[
(F_1)^2 + \ldots + (F_{n+1})^2 = F_{n+1}F_n + (F_{n+1})^2
\]

\[
= F_{n+1}(F_n + F_{n+1}) \quad (\text{def. of } F_n)
\]

\[
= F_{n+1}F_{n+2} \quad \checkmark
\]
6 Problem 6

(16 points)

DEFINITION: A graph G is a tree if it is connected and contains no cycle as a subgraph.

Using only the definition, prove that if G is a tree then G is connected, but deleting any of its edges results in a disconnected graph.

G is connected by definition.

Suppose e is an edge of G, connecting u to v.

Let $G' = G \setminus e$. Suppose G' is connected. Let P be a path in G' from u to v.

Then P together with e forms a cycle in G, so G is not a tree.

Contradiction.

Hence G' is not connected.