1 Problem 1

(15 points)

Find the coefficient of x^3y^6 in the expansion of $(2x - 2y)^9$.

$$(2x - 2y)^9 = \binom{9}{0}(2x)^9 + \binom{9}{1}(2x)^8(-2y) + \ldots + \binom{9}{9}(-2y)^9$$

Coefficient of x^3y^6 is

$$\binom{9}{6} \cdot 2^3 \cdot (-2)^6 = \binom{9}{6} \cdot 2^9$$
2 Problem 2

(20 points)

Prove by induction on \(n \) that the maximum number of pieces into which you can slice a pizza with \(n \) straight cuts is

\[
1 + \frac{n(n+1)}{2}
\]

I. \(n=1 \)

A single straight cut through the pizza cuts it into 2 pieces:

\[
2 = 1 + \frac{1 \cdot 2}{2} \quad \checkmark
\]

II. Assume \(n \) straight cuts can cut the pizza into \(1 + \frac{n(n+1)}{2} \) pieces.

III. Show that the \(n+1 \) cut can cut the pizza into \(1 + \frac{(n+1)(n+2)}{2} \) pieces, and show it cannot cut it into more. The \(n+1 \) cut line can be chosen to intersect each previous cut line exactly once (and not more). Therefore there are \(n \) points of intersection between the \((n+1) \) line and all previous cut lines. Those \(n \) points divide the \((n+1) \) cut line into \(n+1 \) segments. Each segment divides an initial slice into two pieces, so \(n+1 \) are
So the new number of pieces is

\[1 + \frac{n(n+1)}{2} + n + 1 \]

\[= 1 + \frac{n(n+1)}{2} + \frac{2n+2}{2} \]

\[= 1 + \frac{n^2 + 3n + 2}{2} \]

\[= 1 + \frac{(n+1)(n+2)}{2} \]
3 Problem 3

(20 points)

How many ways are there to make up a box of a dozen doughnuts from a tray of 6 jelly, 16 sugar, and 14 chocolate and 10 glazed doughnuts?

If there were at least 12 of each kind, there would be \(\binom{12 + 4 - 2}{3} = \binom{15}{3} \) possibilities.

Of these possibilities, \(\frac{4}{3} \) use more than 10 glazed.

Of these possibilities, \(\binom{5 + 4 - 1 - \frac{8}{3}}{3} \) use more than 6 jelly [fill 7 spots with jelly, then fill the remaining 5 any way at all].

So the total is \(\binom{15}{3} - \binom{8}{3} - 3 \)
4 Problem 4

(10 points)

How many anagrams are there of the word "ANTIMACASSAR"?

\[
\begin{pmatrix} 12 \\ 3 \end{pmatrix} \begin{pmatrix} 9 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}
\]

\[= \frac{12!}{3!2!} \]

Place the "A"s

Place the "S"s

Place the rest

The explanation:
12 letters, one repeats 3 times, one repeats twice, no other repeats is fine.
5 Problem 5

(20 points)

By integrating the binomial expansion, prove that

\[
1 + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \ldots + \frac{1}{n+1} \binom{n}{n} = \frac{2^{n+1} - 1}{n+1}
\]

\[
(1 + x)^n = \binom{n}{0} x^0 + \binom{n}{1} x + \binom{n}{2} x^2 + \ldots + \binom{n}{n} x^n
\]

So

\[
\int_0^1 (1 + x)^n \, dx = \int_0^1 \left[\binom{n}{0} x^0 + \binom{n}{1} x + \binom{n}{2} x^2 + \ldots + \binom{n}{n} x^n \right] \, dx
\]

\[
= \left[\binom{n}{0} x + \frac{\binom{n}{1} x^2}{2} + \frac{\binom{n}{2} x^3}{3} + \ldots + \frac{\binom{n}{n} x^{n+1}}{n+1} \right]_0^1
\]

\[
= \binom{n}{0} + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \ldots + \frac{1}{n+1} \binom{n}{n}
\]

But

\[
\int_0^1 (1 + x)^n \, dx = \frac{(1 + x)^{n+1}}{n+1} \bigg|_0^1 = \frac{2^{n+1} - 1}{n+1}
\]

\[
= \frac{2^{n+1} - 1}{n+1}
\]
6 Problem 6

(15 points)

Find the number of integers between 1 and 1000 which are NOT divisible by 6, 7 or 8.

\[\text{Include } 1 \text{ and } 1000: \]
\[A = \text{ those divisible by 6} \]
\[B = \text{ those divisible by 7} \]
\[C = \text{ those divisible by 8} \]

\[|A| = 166 \]
\[|B| = 142 \]
\[|C| = 125 \]

\[|A \cap B| = \left\lfloor \frac{1000}{42} \right\rfloor = 23 \]
\[|A \cap C| = \left\lfloor \frac{1000}{24} \right\rfloor = 41 \]
\[|B \cap C| = \left\lfloor \frac{1000}{56} \right\rfloor = 17 \]
\[|A \cap B \cap C| = \left\lfloor \frac{1000}{168} \right\rfloor = 5 \]

\[S = 166 + 142 + 125 - 23 - 41 - 17 + 5 \]
\[\# \text{ that are divisible by 6, 7 or 8:} \]

\[1000 - S \]

\[\# \text{ that are not divisible by 6, 7 or 8:} \]
1 Problem 1

(18 points)

Let L_n be the sequence of numbers defined by the recursion relation

$$L_{n+1} = (-3/2)L_n + L_{n-1}$$

with initial values $L_0 = 5$, $L_1 = 0$.

a. Calculate: L_2 and L_3.

$$L_2 = -\frac{3}{2} \cdot 0 + 5 = 5$$
$$L_3 = -\frac{3}{2} \cdot 5 + 0 = -\frac{15}{2}$$

b. Find an explicit formula for L_n.

Solve: $q^{n+1} = -\frac{3}{2} q^n + q^{n-1}$

$$q^{n+1} + \frac{3}{2} q^n - q^{n-1} = 0$$

$$q^2 + \frac{3}{2} q - 1 = 0$$

$$2q^2 + 3q - 2 = 0$$

$$(2q-1)(q+2) = 0$$

$q = \frac{1}{2}$ or $q = -2$

$A + B = 5 \rightarrow A = 5 - B$

$$\frac{1}{2} A - 2B = 0 \rightarrow A = 4B$$

$\Rightarrow B = 1, A = 4$

$$L_n = 4 \left(\frac{1}{2} \right)^n + (-2)^n$$
2 Problem 2

(16 points)

Prove that a graph G with 7 nodes and more than $\binom{7}{2}$ edges is always connected (assume there are no parallel edges or loops in the graph).

(Blunt force method - more elegant solutions welcome!)

Suppose G is not connected.
Then G has at least 2 components.
Let H be a connected component of G with k nodes, and let J be all other nodes and edges of G.
If H has 1 node, J has at most $\binom{6}{2}$ edges.
\Rightarrow G has at most $\binom{6}{2}$ edges.

H has 2 nodes, J has at most $\binom{5}{2} = 10$ edges.
\Rightarrow H has at most 11 edges.
H has 3 nodes, J has $\binom{4}{2} = 6$ edges;
\Rightarrow G has at most $3 + 6$ edges.
By exchanging H + J, this covers all cases.
\Rightarrow G has $\binom{3}{2}$ edges. Contradiction.
\Rightarrow G is connected.
3 Problem 3

(16 points)

Decide which of the graphs below has an Eulerian walk. Decide which of the graphs below has a Hamiltonian cycle. **You do not have to justify your answers (which should be “YES” or “NO”) for this problem.**

<table>
<thead>
<tr>
<th></th>
<th>Eulerian Walk?</th>
<th>Hamiltonian cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_6 (complete graph on 6 vertices)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>K_7 (complete graph on 7 vertices)</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

![Graph 1](image1)

![Graph 2](image2)

![Graph 3](image3)
4 Problem 4

(18 points)

Suppose that there are 13 people in a room. Show that there is either a
group of 3 people, none of whom know each other, or there is at (at least) 1
person who knows at least 6 others (or possibly both).

Let p_1 be one of the people.
Form a group G_1 consisting of p_1
and everyone whom p_1 knows.
If there are 7 or more people in
this group, then p_1 knows at least 6
people and we are done.
So assume there are less than 7 in G_1.
Assume p_2, say, is not in G_1.
Form a group G_2 consisting of
everyone p_2 knows who is not already in
G_1. If $|G_2| > 7$, then p_2 knows at
least 6 people, and we are done.
So assume $|G_2| < 7$. Then $|G_1| + |G_2| \leq 12$.
so there is yet a third person, p_3,
who is not in G_1 or G_2.

Then p_1, p_2, p_3 are 3 people
none of whom know each other.
5 Problem 5

(16 points)

Let F_n be the Fibonacci sequence, so $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, \ldots$, etc. Use induction to prove that

$$(F_1)^2 + (F_2)^2 + (F_3)^2 + (F_4)^2 + \ldots + (F_n)^2 = F_{n+1}F_n$$

1) Check for $n = 1$:

$$(F_1)^2 = 1 = 1 \cdot 1 = F_2 \cdot F_1$$

2) Assume for n, i.e., assume

$$(F_1)^2 + \ldots + (F_n)^2 = F_{n+1}F_n$$

3) Prove for $n+1$, i.e., prove

$$(F_1)^2 + \ldots + (F_{n+1})^2 = F_{n+2}F_{n+1}$$

$$(F_1)^2 + \ldots + (F_n)^2 = F_{n+1}F_n + (F_{n+1})^2$$

$$(F_1)^2 + \ldots + (F_{n+1})^2 = F_{n+1}F_n + F_{n+1}(F_n + F_{n+1}) \quad \text{(def. of F_n)}$$

$$(F_1)^2 + \ldots + (F_{n+1})^2 = F_{n+1}F_{n+2} \quad \checkmark$$
6 Problem 6

(16 points)

DEFINITION: A graph G is a **tree** if it is connected and contains no cycle as a subgraph.

Using only the definition, prove that if G is a tree then G is connected, but deleting any of its edges results in a disconnected graph.

G is connected by definition.

Suppose e is an edge of G, connecting u to v.

Let $G' = G - e$. Suppose G' is connected. Let P be a path in G' from u to v.

Then P together with e forms a cycle in G, so G is not a tree.

Contradiction.

Hence G' is not connected.
6 Problem 6

(14 points)

Let F_n be the Fibonacci sequence, so $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3$, and $F_{n+1} = F_n + F_{n-1}$. Use induction to prove that

\[F_n \leq \left(\frac{5}{3}\right)^n \]

1. Check $F_1 \leq \frac{5}{3}$ (1 ≤ 5/3) √

 $F_2 \leq \left(\frac{5}{3}\right)^2$ (1 ≤ 25/9) √

2. Assume $F_k \leq \left(\frac{5}{3}\right)^k$ for all $k \leq n$.

3. Prove $F_{n+1} \leq \left(\frac{5}{3}\right)^{n+1}$.

 $F_{n+1} = F_n + F_{n-1}$ (by definition)

 $F_{n+1} \leq \left(\frac{5}{3}\right)^n + \left(\frac{5}{3}\right)^{n-1}$ (I. H.)

 $\Rightarrow \quad \left(\frac{5}{3}\right)^n \cdot \left(\frac{5}{3} + 1\right)

 \quad \Rightarrow \quad \left(\frac{5}{3}\right)^n \cdot \left(\frac{8}{3}\right)

 \quad \Rightarrow \quad \left(\frac{5}{3}\right)^{n-1} \cdot \left(\frac{5}{3}\right)^2 = \left(\frac{5}{3}\right)^{n+1}$
3 Problem 3

(14 points)

Let \(G \) be a connected graph with no loops and no parallel edges. Show it is not possible for \(G \) to have exactly eight vertices with degrees 1, 1, 1, 2, 3, 4, 5, 7.

Suppose there is such a graph \(G \).

Label the vertices \(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8 \) with degrees, respectively, 1, 1, 1, 2, 3, 4, 5, 7.

Since \(v_7 \) has degree 7, it is connected to every other vertex.

Since \(v_1, v_2, v_3 \) each have degree 1, the only vertex each is connected to is \(v_8 \).

Hence \(v_7 \) is at most connected to \(v_4, v_5, v_6 \) and \(v_8 \).

Hence degree \((v_7) \leq 4 \).

Contradiction.

Hence no such \(G \) exists.
1 Problem 1

(15 points)

How many sets of three numbers can be formed from \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\} if no two consecutive numbers are to be in the set?

\[
\binom{20}{3} - 18 - 17 \times 2 - 16 \times 17
\]

\[
\text{all sets of 3}
\]

\[
\# \text{with 3 consecutive}
\]

\[
\# \text{with 21, 23 or 19, 20}
\]

\[
\# \text{all others with 2 consecutive}
\]
4 Problem 4

(14 points)

For each of the two graphs G, H drawn below, answer the questions below. You do not have to justify your answers for this problem, and there is no partial credit.

For each of the two graphs G, H, answer the following questions:

b. Does G have a Hamiltonian cycle? Yes

Does H have a Hamiltonian cycle? No

c. Does G have an Eulerian walk? No

Does H have an Eulerian walk? No
6 Problem 6

(14 points)

Determine the number of solutions of the equation

\[x + y + z + w = 14 \]

if \(x, y, z, w \) are all non-negative integers less than or equal to eight. (Note that \(x = 6, y = 8, z = 0, w = 0 \) and \(x = 8, y = 6, z = 0, w = 0 \), for example, are different solutions.)

\[\binom{17}{3} - 4 \binom{8}{3} = 456 \]

\# of non-neg. solutions with no restrictions

4 choices of variable \(x \)

\# of ways to fill 5 spots (after having filled first nine with one variable)
5 Problem 5
(14 points)

Let \(a_n \) be the sequence defined as follows: \(a_0 = 1, a_1 = 3 \), and if \(n > 0 \),
\[
a_{n+2} = 2a_{n+1} + 2a_n
\]
a. Find \(a_2 \) and \(a_3 \).
\[
a_2 = 8
\]
\[
a_3 = 22
\]
b. Find an explicit formula for \(a_n \).

Solve
\[
q^{n+2} = 2q^{n+1} + 2q^n \quad \text{or} \quad q = 0
\]
\[
q^2 - 2q - 2 = 0
\]
\[
q = 1 \pm \sqrt{3}
\]
\[
u = 1 + \sqrt{3}, \quad v = 1 - \sqrt{3}
\]
\[
a_n = A(u)^n + B(v)^n
\]
\[
1 = a_0 = A + B
\]
\[
3 = a_1 = A(1 + \sqrt{3}) + B(1 - \sqrt{3})
\]
\[
3 = A(1 + \sqrt{3}) + (1 - A)(1 - \sqrt{3}) \quad \text{and} \quad A = \frac{2 + \sqrt{3}}{2\sqrt{3}}
\]
\[
B = \frac{\sqrt{3} - 2}{2\sqrt{3}}
\]

\[
\therefore a_n = \left(\frac{2 + \sqrt{3}}{2\sqrt{3}}\right)(1 + \sqrt{3})^n + \left(\frac{\sqrt{3} - 2}{2\sqrt{3}}\right)(1 - \sqrt{3})^n
\]