1 Problem 1
(15 points)

" Find the coefficient of z3y® in the expansion of (2z — 2y)°.
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2 Problem 2
(20 points)

Prove by induction on n that the maximum number of pieces into which
you can slice a pizza with n straight cuts is
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3 Problem 3

(20 points)

How many ways are there to make up a box of a dozen doughnuts from
a tray of 6 jelly, 16 sugar, and 14 chocolate and 10 glazed doughnuts?
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4 Problem 4
(10 points)

How many anagrams are there of the word ” ANTIMACASSAR.”?
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By integrating the binomial expansion, prove that
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6 Problem 6
(15 pOints)

Find the number of integers between 1 and 1000 which are NOT divisible
by 6,7 or 8.
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1 Problem 1
(18 points)
Let L, be the sequence of numbers defined by the recursion relation
Lpt1=(-3/2)L, + L,_;

with initial values Lo = 5, L; = 0.
a. Calculate: Ly and Ls.
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b. Find an explicit formula for L,,.
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2 Problem 2
(16 points)

Prove that a graph G with 7 nodes and more than (g) edges is always
connected (assume there are no parallel edges or loops in the graph).
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3 Problem 3
(16 points)

Decide which of the graphs below has an Eulerian walk. Decide which of
the graphs below has a Hamiltonian cycle. You do not have to justify
your answers (which should be “YES” or “NO”) for this problem.
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4 Problem 4
(18 points)

Suppose that there are 13 people in a room. Show that there is either a
group of 3 people, none of whom know each other, or there is at (at least) 1
person who knows at least 6 others (or possibly both).
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5 Problem 5
(16 points)

Let F,, be the Fibonacci sequence, so ] =1, F, = 1, F} = 2,Fy =3....,
etc. Use induction to prove that '
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6 Problem 6
(16 points)

DEFINITION: A graph G is a tree if it is connected and contains no
cycle as a subgraph.

Using only the definition, prove that if G is a tree then G is connected,
but deleting any of its edges results in a disconnected graph.

G I‘S, CD/M.theJ ‘b(y C‘&Q‘Mlﬁbn .
Sques_e_ 2. W an _Lda,g 65’ é’l Con_n,ccﬁ‘réj

\ .
et G,‘ = G, N o2, SUFPosc Q, | M- .
connected. Loy - ¥ be a path w G

e v,
g'(‘om. (V Q_MMS

T P ogethr with &
o m%de A VG, s G s ot e

l ence G\l 13 ot (b c..“e.cQ .



6 Problem 6

(14 points)

Let F, be the Fibonacci sequence, so F; = 1,F, = 1,F; = 2, F, = 3, and

Foi1 = F, + F,_;. Use induction to prove that
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3 Problem 3
(14 points)

Let G be a connected graph with no loops and no parallel edges. Show it is
not possible for G to have exactly eight vertices with degrees 1,1,1,2,3,4,5, 7.
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1 Problem 1
(15 points)
How many sets of three numbers can be formed

from {1,2,3,4,5,6,7,8,9, 10, 11,12,13, 14,15,16,17, 18, 19, 20} if no two con-
secutive numbers are to be in the set?

(%) - 18 — [Fx2L— [6x/7

3
AN T
T » all others W"'H'\;
%Cfé 0 2 Consecstoe
| 3 a:w\'J(la
2 covﬁﬁcu\\"”?
- U_)\’(\'\

412y or
‘1\0\,203



4 Problem 4
(14 points)

For each of the two graphs G, H drawn below, answer the questions below.
You do not have to justify your answers for this problem, and there
is no partial credit.

G - H

b. Does G have a Hamiltonian cycle? ﬂéﬁ

Does H have a Hamiltonian cycle? N o

c. Does G have an Eulerian walk? N‘O
Does H have an Eulerian walk? N 0



6 Problem 6

(14 points)

Determine the number of solutions of the equation

zT+yt+tz+w=14

if z,y,2,w are all non-negative integers less than or equal to eight. (Note
that 7 =6,y =8,z2=0,w=0andz =8,y =6,z = 0, w = 0, for example,

are different solutions.)
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5 Problem 5
(14 points)
Let a,, be the sequence defined as follows: ag = l,a; =3, and if n > 0,

Uni2 = 2an41 + 2a,

a. Find a; and aj.
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b. Find an explicit formula for 3"'
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