Sample Problems, 218, 1972

1. Let \(R \) be the region bounded by \(y = x^3, \ y = 8, \ x = 0 \).
 A. Sketch \(R \).

 B. Find the volume of the solid generated by revolving \(R \) about the line \(x = -2 \) using the shell method.

 C. Find the volume of the solid generated by revolving \(R \) about the line \(y = 8 \) using the shell method.

2. Find the length of the curve \(y(x) = \ln x - \frac{x^2}{8} \) from \(x = 1 \) to \(x = 2 \).

3. Find the area of the surface obtained by revolving the curve \(y = \sqrt{2x-x^2}, \ 0.5 \leq x \leq 1.5 \), about the \(x \)-axis.

4. A vertical right-circular cylindrical tank is 30 ft. high and 20 ft. in diameter. It is half-full of olive oil weighing 57 lb/ft\(^3\). How much work does it take to pump the oil to the rim of the tank?

5. A semi-circular plate 2 ft. in diameter sticks straight down into freshwater (weight-density 62.4 lb/ft\(^3\)) with the diameter along the surface. Find the force exerted by the water on one side of the plate.

6. Find the center of mass of a thin plate of constant density \(s = 1 \) bounded by the curves \(g(x) = x^2(x+1), \ f(x) = 2, \ x = 0 \).

7. The half-life of plutonium-210 is 139 days. How many days after it arrives in the lab will 95% of it be gone?
8. Integrate:
 A. $\int 4x \sec^2 2x \, dx$
 B. $\int xe^x \, dx$
 C. $\int e^x \cos x \, dx$
 D. $\int x2^{x^2} \, dx$
 E. $\int \tan x \ln (\cos x) \, dx$
 F. $\int \sin^3 x \cos^3 x \, dx$
 G. $\int \ln x \, dx$

9. Solve the differential equations:
 A. $\sqrt{2xy} \; \frac{dy}{dx} = 1$
 B. $\frac{dy}{dx} = \frac{e^{2x-y}}{e^{x+y}}$