

Taut foliations from left orders, in Heegaard genus two

Sarah Dean Rasmussen

University of Cambridge

13 October 2020

Outline

- I. Motivation
- II. Left orders & Right orders
- III. Taut foliations
- IV. Heegaard foliations

I. Motivation

Why fundmental group left orders and taut foliations?

- A. Big picture
- B. Heegaard Floer homology
- C. L-spaces
- D. L-space conjecture

I. Motivation. Big picture

For duration of talk: *M* closed oriented 3-manifold.

Structures/Properties of *M*:

- -interesting geodesics
- -constrained 1-vertex triangulations
- -taut foliations
- -tight contact structures

Invariants of *M*:

-volume

 $-H_1(M)$

 $-\pi_1(M)$

-gauge/Floer-theoretic: HF/HM/ECH, HI.

I. Motivation. Big picture

For duration of talk: M closed oriented 3-manifold.

Structures/Properties of *M*:

- -interesting geodesics
- -constrained 1-vertex triangulations
- -taut foliations
- -tight contact structures

-volume - $H_1(M)$ (cycles / boundaries) - $H_1(M)$ properties: geometric type,... - $H_1(M)$ -gauge/Floer-theoretic: HF/HM/ECH, HI.

I. Motivation. Heegaard Floer homology (Ozsváth-Szabó, 2000)

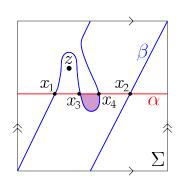
$$M = U_{\alpha} \cup_{\Sigma} U_{\beta}$$
. Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, z)$.

$$HF(M) := HF_{\mathsf{Lag}}(\mathbb{T}_{\alpha}, \mathbb{T}_{\beta}), \quad \mathbb{T}_{\alpha}, \mathbb{T}_{\beta} \subset \mathsf{Sym}^{g(\Sigma)}(\Sigma).$$

- -CF(M) generated by points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \subset \operatorname{Sym}^{g(\Sigma)}(\Sigma)$.
- —Differentials: psuedoholomorphic Whitney disks.

Example:

$$\begin{split} \widehat{CF}(M,\mathfrak{s}_1) : & \langle x_1, x_4 \rangle \xrightarrow{x_4 \mapsto x_3} \langle x_3 \rangle, \\ \widehat{CF}(M,\mathfrak{s}_2) : & \langle x_2 \rangle, \\ \Longrightarrow & \widehat{HF}(M,\mathfrak{s}_1) \simeq \widehat{HF}(M,\mathfrak{s}_2) \simeq \mathbb{Z}. \end{split}$$



I. Motivation. Heegaard Floer homology (Ozsváth-Szabó, 2000)

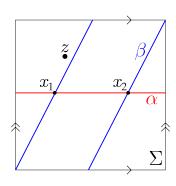
$$M = U_{\alpha} \cup_{\Sigma} U_{\beta}$$
. Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, z)$.

$$HF(M) := HF_{\mathsf{Lag}}(\mathbb{T}_{\alpha}, \mathbb{T}_{\beta}), \quad \mathbb{T}_{\alpha}, \mathbb{T}_{\beta} \subset \mathsf{Sym}^{g(\Sigma)}(\Sigma).$$

- -CF(M) generated by points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \subset \operatorname{Sym}^{g(\Sigma)}(\Sigma)$.
- —Differentials: psuedoholomorphic Whitney disks.

Example:

$$\begin{array}{ll} \widehat{CF}(M,\mathfrak{s}_1): & \langle x_1 \rangle, \\ \widehat{CF}(M,\mathfrak{s}_2): & \langle x_2 \rangle, \\ \Longrightarrow & \widehat{HF}(M,\mathfrak{s}_1) \simeq \widehat{HF}(M,\mathfrak{s}_2) \simeq \mathbb{Z}. \end{array}$$



If M is a $\mathbb{Q}HS$ $(b_1(M)=0)$, then the smallest $\widehat{HF}(M)$ can be is

$$\widehat{HF}(M) = \bigoplus_{\mathfrak{s} \in \mathrm{Spin}^c(M)} \widehat{HF}(M,\mathfrak{s}) \simeq \bigoplus_{h \in H_1(M)} \mathbb{Z} \ \simeq \ \mathbb{Z}^{|H_1(M)|} \,.$$

Definition (L-space).

M is an L-space if $b_1(M) = 0$ and rank $\widehat{HF}(M) = |H_1(M)|$, or equivalently, if $HF_{red}(M) = 0$.

Example L-spaces:

- -Lens spaces.
- -Branched double covers of alternating knots.

I. Motivation. L-space conjecture

Conjecture. (Boyer-Gordon-Watson, Juhász, Ozsváth-Szabó, Némethi)

M is **not** an L-space \iff ...

$$\pi_1(M)$$
 has a left order (LO). $g_1 > g_2 \iff hg_1 > hg_2$

M admits a co-oriented taut foliation (CTF).

(if M a neg def graph manifold) M links a nonrational singularity.

II. Left Orders and Right Orders

LO = Left order. RO = Right order.

A. Definitions and positive cones

B. Real line actions.

II. LOs & ROs. Definitions and positive cones

G nontrivial group. LO = Left order. RO = Right order.

Definition (LOs & ROs).

$$\mathsf{LO}>_{\mathrm{R}}$$
 on $G\colon$ $g_1>_{\mathrm{R}}g_2\iff hg_1>_{\mathrm{R}}hg_2\quad \forall g_1,g_2,h\!\in\!G.$

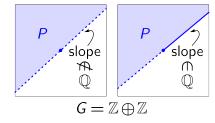
$$\mathsf{RO} >_{\scriptscriptstyle{\mathrm{L}}} \mathsf{on} \ \mathcal{G} \colon \quad g_1 >_{\scriptscriptstyle{\mathrm{L}}} g_2 \iff g_1 h >_{\scriptscriptstyle{\mathrm{L}}} g_2 h \quad \forall g_1, g_2, h \in \mathcal{G} \,.$$

Definition (positive cone P).

 $P \subset G$ is a positive cone if

(i)
$$P \cdot P \subset P$$

(ii)
$$G = P \coprod \{id\} \coprod P^{-1}$$



Proposition (Alternative Definition).

G is LO \iff G is RO \iff G admits a positive cone P.

$$g >_{\scriptscriptstyle L} h \iff g^{-1} >_{\scriptscriptstyle R} h^{-1} \iff g^{-1}h \in P.$$

Theorem (classical). G countable nontrivial group. G is LO \iff G admits faithful \mathbb{R} -action, $\rho: G \to \mathsf{Homeo}_+ \mathbb{R}$.

$$(\Rightarrow)$$
: Dynamically realized action ρ .

Choose $\rho(\cdot)(0): G \hookrightarrow \mathbb{R}$ dense and order-preserving:

$$\rho(g)(0)\!<\!\rho(h)(0)\iff g\!<_{\scriptscriptstyle L}\!h.$$

Set
$$\rho(g)(\rho(h)(0)) := \rho(gh)(0) \quad \forall g, h \in G$$
.

Extend by limit points.

Choose ordering on $\mathbb{Q} \subset \mathbb{R}$: $\mathbb{Q} = \{q_1, q_2, \dots, \}$.

For
$$g \neq h$$
, to see if $g <_L h$, ask "is $\rho(g)(q_1) < \rho(h)(q_1)$?"

If
$$ho(g)(q_i) =
ho(g)(q_i) \ orall i \leq k$$
, ask "is $ho(g)(q_{k+1}) <
ho(h)(q_{k+1})$?,"

Theorem (Boyer-Rolfsen-Wiest). If M is prime, closed, oriented, then $\pi_1(M)$ is LO if $\pi_1(M)$ admits any nontrivial \mathbb{R} -action.

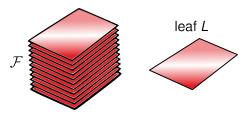
III. Taut foliations (CTFs)

CTF = Cooriented taut foliation.

- A. Foliations
- B. Taut foliation definition
- C. $\pi_1(M)$ LOs from CTFs on M?
- D. Known constructions of taut foliations
- E. Transversely foliated bundles + holonomy reps

III. CTFs. Foliations

Definition (product foliation). A codim-k product foliation \mathcal{F} on X is a decomposition $\mathcal{F} = \coprod_{b \in B} \pi^{-1}(b)$ of X into fibers $\pi^{-1}(b) \cong L$ of a trivial fibration $\pi: X \to B$ over a k-dim base B. $(X \cong L \times B)$ The fibers $\pi^{-1}(b)$, for $b \in B$, are called the *leaves* of \mathcal{F} .

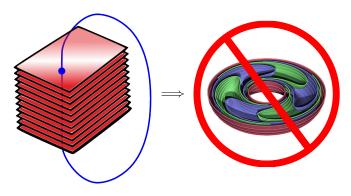


Definition (foliation). A codimension-k foliation \mathcal{F} on X^n is a globally compatible decomposition of X into leaves that looks locally like the product foliation associated to the trivial fibration $\mathbb{R}^n \to \mathbb{R}^k$.

Coorientation on $\mathcal{F} \leftrightarrow \text{globally compatible coorientations on } \mathbb{R}^k s.$

III. CTFs. Taut foliation definition

Definition (taut foliation). A codimension-1 foliation \mathcal{F} on a closed oriented 3-manifold M is called *taut* if for every $x \in M$, there is a closed *transversal* containing x, i.e. a closed curve transverse to \mathcal{F} .



Convention. All foliations cooriented unless otherwise specified: CTF.

Given a CTF \mathcal{F} on M ...

- 1. If $e(\mathcal{F}) = 0$, then $\pi_1(M)$ is LO. (Calegari-Dunfield) \mathcal{F} CTF \leadsto faithful "universal S^1 action": $\rho_{\mathcal{F}}^{S_1}:\pi_1(M) \to \mathsf{Homeo}_+S^1$. $e(\rho_{\mathcal{F}}^{S_1}) = e(\mathcal{F}) = 0 \implies \rho_{\mathcal{F}}^{S_1}$ lifts to \mathbb{R} -action, $\pi_1(M) \to \mathsf{Homeo}_+\mathbb{R}$.
- 2. If \mathcal{F} is \mathbb{R} -covered, then $\pi_1(M)$ is LO.

Leafspace $\Lambda_{\mathcal{F}}$ of CTF \mathcal{F} given by $\widetilde{M} \xrightarrow{\mathsf{leaf} \mapsto \mathsf{point}} \Lambda_{\mathcal{F}}$.

 $\mathcal{F} \ \mathbb{R}\text{-covered means leafspace} \ \Lambda_{\mathcal{F}} \cong \mathbb{R}.$

$$\pi_1(M)$$
 acts on $\widetilde{M} \implies \pi_1(M)$ acts on $\Lambda_{\mathcal{F}} \cong \mathbb{R}$.

- 1. Dunfield: $e(\mathcal{F})$ has approx uniform random distribution in $H^2(M)$.
- 2. R-covered foliations mostly only known for Seifert-fibered manifolds.
- ★ LOs → CTFs: ???? (previously unknown)

III. CTFs. Earlier inquiries into $\pi_1(M)$ LOs \leftrightarrow CTFs

Thurston: Slitherings around S^1 .

Gabai: Intersections with \mathbb{R} -bundles over M?

Danny Calegari: Generalising Ziggurats (Jankins-Neumann-Naimi).

III. CTFs. Known constructions of taut foliations

Only 2 known types of strategies for constructing CTFs on M prime.

- 1. *M* arbitrary: branched surfaces.
- -Sutured hierarchy (but requires $b_1(M) > 0$) (Gabai),
- -Knot exteriors (Roberts et al),
- -Foliar orientations on one-vertex triangulations (Dunfield).
- 2. M Seifert fibered: fiber-transverse foliations.
- -Fiber-transverse foliation on S^1 -fibration over orbifold.
- -For appropriate graph manfiolds, such foliations can be glued together.

Fiber-transverse foliation analog for arbitrary M?

III. CTFs. $\;\;$ Transversely foliated bundles \longrightarrow holonomy representations

Definition (complete transversely foliated bundle).

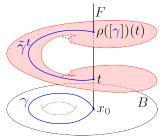
An *F*-bundle $\pi: E \to B$ with foliation \mathcal{F}

is a complete transversely foliated bundle if for each leaf $L \subset E$ of \mathcal{F} ,

(i) (transversality) L is transverse to each fiber $\pi^{-1}(b) \cong F$ of E, and (ii) (completeness) π restricts on L to a covering map $\pi|_L: L \to B$.

Definition (holonomy representation).

For a basepoint $x_0 \in B$ and base-fiber embedding $F \xrightarrow{\sim} \pi^{-1}(x_0) \subset E$, \mathcal{F} has holonomy representation $\operatorname{Hol} \mathcal{F} = \rho : \pi_1(B, x_0) \to \operatorname{Homeo}_+ F$, $\rho([\gamma]) : t \mapsto \tilde{\gamma}^t(1)$, $\tilde{\gamma}^t : I \to E$ lifts $\gamma : (I, \partial I) \to (B, x_0)$ with $\tilde{\gamma}^t(0) = t$.



Proposition (classical).

Given an oriented manifold F, a closed oriented based manifold (B, x_0) , and a representation $\rho : \pi_1(B, x_0) \to \mathrm{Homeo}_+ F$, one can construct

the complete transversely foliated F-bundle E_{ρ} with transverse foliation \mathcal{F}_{ρ} of holonomy representation ρ , by setting

$$E_{
ho} := (\widetilde{B} \times F)/(x,t) \sim (x \cdot g,
ho(g^{-1})(t)), ext{ for all } g \in \pi_1(B,x_0),$$
 $\pi : E_{
ho} \to B, \quad [(x,t)] \mapsto [x] ext{ for } (x,t) \in \widetilde{B} \times F.$ $\mathcal{F}_{
ho} := \coprod_{t \in F} \widetilde{B} \times \{t\}/\sim,$

for \widetilde{B} the universal cover of B.

 \sim identifies each orbit of the diagonal action of $\pi_1(B)$ by deck transformations on \widetilde{B} and by ρ^{-1} on F.

III. CTFs. Transversely foliated bundles: classification

Theorem (classical).

Complete transversely-foliated F-bundles over (B, x_0) are classified by their holonomy representation, up to isomorphism of foliated based F-bundles,

In other words, there is a bijection,

$$\begin{cases} \text{complete transversely-foliated} \\ F\text{-bundles over } (B,x_0) \end{cases} / \text{isomorphism of} \\ \text{foliated based bundles}$$

$$\updownarrow \left(\mathcal{F} \mapsto \mathsf{Hol}\,\mathcal{F}\right) \\ \left\{ \begin{array}{c} \text{representations} \\ \pi_1(B,x_0) \to \mathsf{Homeo}_+F \end{array} \right\}.$$

(For a Seifert fibered space M, this gives a correspondence between CTFs on M and \mathbb{R} -actions of $\pi_1(M)$, up to suitable equivalence.)

III. CTFs. Transversely foliated bundles: applications

Classification of Seifert Fibered Spaces with CTFs:

genus > 0 case: Eisenbud-Hirsch-Neumann.

genus 0 case: Jankins-Neumann, Naimi; Calegari-Walker.

Theorem (J-N & N / C-W)

If $M=M(\frac{\beta_0}{\alpha_0};\frac{\beta_1}{\alpha_1},\ldots,\frac{\beta_n}{\alpha_n})$ is Seifert fibered over S^2 , then M admits a CTF $\iff \pi_1(M)$ admits an $LO \iff$

$$\min_{k>0} -\frac{1}{k} \left(-1 + \sum \left\lceil \frac{\beta_i}{\alpha_i} k \right\rceil \right) < 0 < \max_{k>0} -\frac{1}{k} \left(1 + \sum \left\lfloor \frac{\beta_i}{\alpha_i} k \right\rfloor \right).$$

Theorem (-R)

An analogous classification result holds for graph manifolds.

IV. Heegaard foliations

- A. Main results.
- B. Setup
- C. Subtleties
- D. Foliation templates
- E. Handle-body foliations
- F. Singularities
- G. Singularity cancellation
- H. Extremal regions

IV. Heegaard foliations

Definition (efficient Heegaard diagram).

A Heegaard diagram \mathcal{H} for M is *efficient* if in its associated presentation for $\pi_1(M)$, no proper nontrivial subword of a relator is trivial in $\pi_1(M)$.

Theorem (—R)

Suppose M is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . Then for any left order $>_{\mathbb{L}}$ on $\pi_1(M)$, one can use \mathcal{H} and $>_{\mathbb{L}}$ to build a cooriented taut foliation on M called a Heegaard foliation.

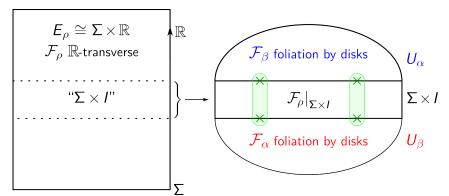
Corollary

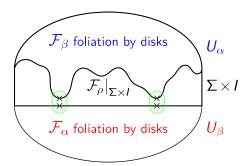
Suppose M is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . If $\pi_1(M)$ is left-orderable, then M is not an L-space.

IV. Heegaard foliations. Setup

$$ho': \pi_1(M) o \mathsf{Homeo}_+ \, \mathbb{R}, \qquad
ho(g)(0) <
ho(h)(0) \iff g <_{\mathsf{L}} h.$$
 $\mathcal{H} = (\Sigma, oldsymbol{lpha}, eta)$ efficient Heegaard diagram for $M,$ $\iota: \Sigma \hookrightarrow M = U_{lpha} \cup_{\Sigma} U_{eta}.$ $ho:=
ho' \circ \iota_*: \pi_1(\Sigma) o \mathsf{Homeo}_+ \, \mathbb{R}$

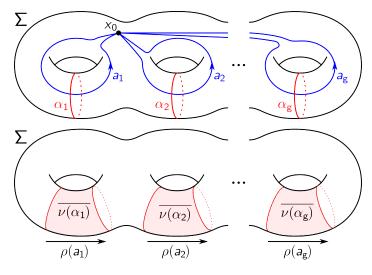
$$ho:=
ho'\circ\iota_*:\pi_1(\Sigma) o\operatorname{Homeo}_+\mathbb{R}$$
 \leadsto $E_
ho\cong\Sigma imes\mathbb{R},\;\mathcal{F}_
ho$ with $\operatorname{\mathsf{Hol}}\mathcal{F}_
ho=
ho.$





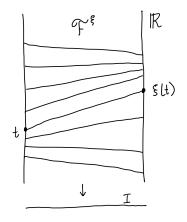
Subtleties:

- 1. The \mathbb{R} -transverse foliation \mathcal{F}_{ρ} must admit sections $\mathcal{F}_{0,\alpha}$ and $\mathcal{F}_{0,\beta}$ that respectively extend to \mathcal{F}_{α} and \mathcal{F}_{β} . \Longrightarrow Foliation Templates.
- 2. Singularities must be contained in special neighborhoods conducive to cancellation. \implies *Extremal regions*.



$$lpha_1, \ldots, lpha_g$$
 freely homotopic to $\hat{lpha}_1, \ldots, \hat{lpha}_g \in \ker \rho = \ker \left[\iota_* : \pi_1(\Sigma) o \pi_1(M) \right]$

Definition. To any $\xi \in \mathsf{Homeo}_+ \mathbb{R}$, we associate the codim-1, 2-dim suspension foliation \mathcal{F}^{ξ} on $I \times \mathbb{R}$, rel boundary. $I \times R$ regarded as mapping cylinder for ξ . {Leaves of \mathcal{F}^{ξ} } = {orbits of points under ξ }.

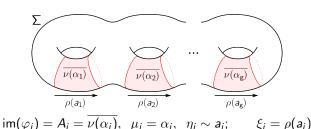


$$\left[\frac{4}{5} / (t,0) \sim (t,1) \right]$$

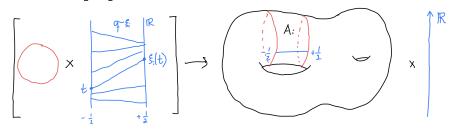
R-transverse foliation on R-transverse foliation on R-bundle over
$$S' = I/203 \sim 2i$$
, $U/(Hol F)/(T_1(S') \rightarrow Homeo_+/R)$, $U/(Hol F)/(T_1(S') \rightarrow Homeo_+/R)$

Definition. A foliation template $T = (\varphi, \xi)$ of length n on Σ is an ordered pair of ordered *n*-tuples with respective *i*th entries

- (i) template charts $\varphi_i: S^1 \times [-\frac{1}{2}, +\frac{1}{2}] \to A_i \subset \Sigma$ determining the i^{th} template triple (A_i, μ_i, η_i) :
 - template pinched annulus $A_i \subset \Sigma$ (pairwise disjoint interiors),
 - template curve $\mu_i = \text{core}(A_i)$,
 - local coorientation $\eta_i: I \to \Sigma$, coorientation for μ_i ;
- (ii) local holonomy $\xi_i \in \text{Homeo}_+ \mathbb{R}$.



Definition. Given $T = (\varphi, \xi)$ with triple (\mathbf{A}, μ, η) , (recall $A_i = \overline{\nu}(\mu_i)$), define the *ith suspension foliation of* T, \mathcal{F}_T^i , on $A_i \times \mathbb{R}$ by associating the foliation $S^1 \times \mathcal{F}^{\xi_i}$ to $A_i \times \mathbb{R}$ via $\varphi_i : S^1 \times [-\frac{1}{2}, +\frac{1}{2}] \to A_i \subset \Sigma$.

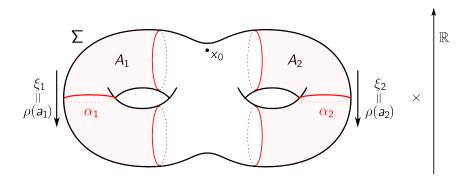


Definition. The global *T-foliation* $\mathcal{F}_{\mathcal{T}}$ is then given by

$$\mathcal{F}_T := (\coprod_{i=1}^n \mathcal{F}_T^i) \ \cup \ \mathcal{F}_{\widehat{\Sigma} \times \mathbb{R}}^{\mathrm{prod}} \quad \text{on} \quad \Sigma \times \mathbb{R},$$

for $\widehat{\Sigma} := \Sigma \setminus \coprod_{i=1}^n \mathring{A}_i$ and $\mathcal{F}^{\mathrm{prod}}_{\widehat{\Sigma} \times \mathbb{R}}$ the product foliation on $\widehat{\Sigma} \times \mathbb{R}$ by $\widehat{\Sigma} \times \{ \mathrm{pt} \}$.

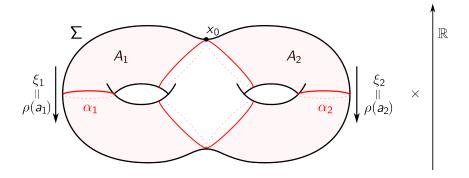
 $T_{\alpha} := (\varphi, \xi)$ with triple $(\mathbf{A}, \alpha, \eta)$. (so $A_i = \overline{\nu}(\alpha_i)$).



$$\langle a_1, a_2 \rangle \, / \ker \rho = \pi_1(\Sigma) / \ker \rho \ \implies \ \mathcal{F}_{\mathcal{T}_{\alpha}} = \mathcal{F}_{\rho}.$$

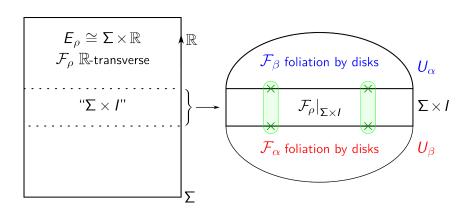
IV. Heegaard foliations. Foliation templates. T-foliations genus 2

$$T_{\alpha} := (\varphi, \xi)$$
 with triple $(\mathbf{A}, \alpha, \eta)$. (so $A_i = \overline{\nu}(\alpha_i)$).



$$\langle a_1, a_2 \rangle / \ker \rho = \pi_1(\Sigma) / \ker \rho \implies \mathcal{F}_{T_{\alpha}} = \mathcal{F}_{\rho}.$$

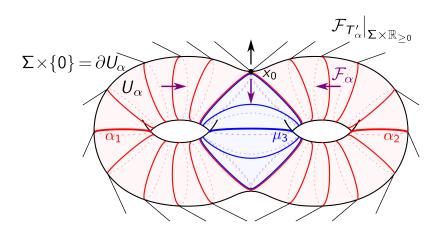
 $T_{\text{Recall}}^{\alpha} := (\varphi, \xi) \text{ with triple } (\mathbf{A}, \alpha, \eta).$ (so $A_i = \overline{\nu}(\alpha_i)$).



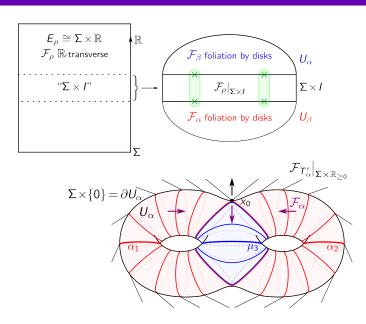
1. The \mathbb{R} -transverse foliation \mathcal{F}_{ρ} must admit sections $\mathcal{F}_{0,\alpha}$ and $\mathcal{F}_{0,\beta}$ that respectively extend to \mathcal{F}_{α} and \mathcal{F}_{β} . \Longrightarrow Foliation Templates.

$$\mathcal{F}_{\alpha}|_{\partial U_{\alpha}} := \mathcal{F}_{\mathcal{T}'_{\alpha}}|_{\Sigma \times \{0\}} = \mathcal{F}_{\alpha,0}$$
.

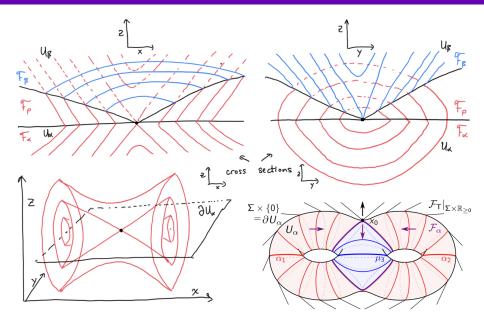
$$a_1, a_2 >_{\scriptscriptstyle L} 1 \implies \rho(a_1)(0), \ \rho(a_2)(0) > 0,$$
 $\xi_3 : t \mapsto t + \varepsilon \implies \xi_3(0) > 0,$ Coorientation of $\mathcal{F}_{\alpha} = \eta_i^{-1} = -$ (Coorientation of μ_i).



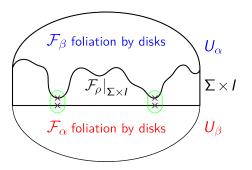
IV. Heegaard foliations. Singularities



$IV. \ Heegaard \ foliations. \hspace{0.5cm} Singularity \ cancellation$

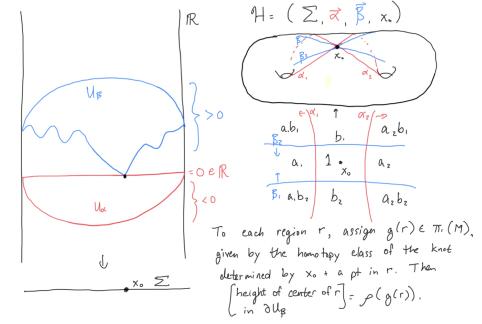


Recall:



2. Singularities must be contained in special neighborhoods conducive to cancellation. \implies *Extremal regions*.

IV. Heegaard foliations. Extremal regions



IV. Heegaard foliations

Definition (Heegaard foliation)

We call the cooriented taut foliation we have just now constructed a ${\it Heegaard\ foliation}.$

Theorem (—R)

Suppose M is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . Then for any left order $>_{\rm L}$ on $\pi_1(M)$, one can use $\mathcal H$ and $>_{\rm L}$ to build a Heegaard foliation on M.

Theorem (—R)

Suppose M is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . Then for any left order $>_1$ on $\pi_1(M)$,

