
Chapter 14
Understanding Activity in Electrically Coupled
Networks Using PRCs and the Theory of Weakly
Coupled Oscillators

Timothy J. Lewis and Frances K. Skinner

Abstract In this chapter, we describe in detail how phase-locking in electrically
coupled networks of spiking neurons can be understood using the framework
of phase response curves (PRCs) and weak coupling theory. We provide the
necessary mathematical background and biological context to allow the reader to
acquire an understanding of the network dynamics. We present the work using
neuronal representations that include general integrate-and-fire and conductance-
based models as well as spatially distributed, compartmental models.

1 Introduction

Neurons communicate with each other by electrical and chemical synapses. Chem-
ical communication involves the release of neurotransmitters from presynaptic
neurons into a synaptic cleft that separates presynaptic and postsynaptic neurons.
Electrical communication on the other hand occurs by direct intercellular channels
between presynaptic and postsynaptic neurons. These intercellular channels consist
of two hemichannels called connexons, and each hemichannel is composed of
six specialized protein molecules called connexins. A gap junction is a cluster
of these channels (see Meier & Dermietzel 2006 for more detail). Several types
of connexin gap junction proteins are expressed in neurons, but connexin36 is
expressed exclusively in neurons. In particular, connexin36 mediates the extensive
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electrical coupling between many cortical inhibitory neurons (Connors & Long 2004;
Galarreta & Hestrin 2001; Söhl et al. 2005). Although chemical synapses are more
common in neural systems and have been studied more extensively, electrical
synapses are more advanced from an evolutionary perspective (Bennett 2000)
and provide connection characteristics that are different from those of chemical
synapses. Specifically, they provide fast, bidirectional coupling and include cou-
pling of subthreshold voltages. Functionally, they are thought to play a role in
synchronization of neuronal activity, but the details are far from clear.

The goal for this chapter is to discuss how synchronization patterns depend on a
neuron’s intrinsic properties and the electrical coupling. Specifically, we will show
how phase response curves (PRCs) in conjunction with the theory of weakly coupled
oscillators (see Chap. 1) can provide important insight into this issue.

1.1 Basic Model and Actions of Gap Junction Coupling

Gap junctions can sometimes exhibit rectification and voltage gating (Hormuzdi
et al. 2004), and models of electrical coupling can involve considerable complexity
(e.g., Vogel & Weingart 2002). However, gap junctions largely act like electrical
resistors (Bennett 1977). Therefore, we will only consider mathematical models
of gap junctions as simple ohmic resistors. Specifically, the basic current balance
equation that we will use for a pair of electrically coupled neurons is:

C
dVj
dt

D �Iionic;j C Iapp;j C ggap
�
Vk � Vj

�
; (14.1)

where t is time, C is the membrane capacitance, Vj is the membrane potential of
the cell j , Iapp;j is a constant applied current (injected DC current) to cell j , and
Iionic;j is the ionic current of cell j . The electrical coupling current flowing from
cell k into j is modeled as Igap; i;k D ggap.Vk � Vj /, where ggap is the gap junction
coupling conductance.

It can be seen from (14.1) that the electrical coupling current between cells
flows down the electrical gradient and tends to bring the cells’ membrane potentials
closer together. As such, we intuitively expect electrical coupling to synchronize
activity. This naturally synchronizing action of gap junctions (due to their rapid,
bidirectional natures) has been discussed in several reviews (Bennett & Zukin 2004;
Connors & Long 2004; Galarreta & Hestrin 2001). However, modeling work has
shown that electrical coupling can support both synchronous and asynchronous
activities (Bem et al. 2005; Chow & Kopell 2000; Cymbalyuk et al. 1994; Lewis
& Rinzel 2003; Sherman & Rinzel 1992). Furthermore, stable antiphase activity has
specifically been found in many conductance-based models of electrically coupled
pairs of cortical inhibitory interneurons (Di Garbo et al. 2005; Lewis & Rinzel 2004;
Mancilla et al. 2007; Nomura et al. 2003; Pfeuty et al. 2003; Skinner et al. 1999).
Gap junctions in conjunction with the cell membrane act as low pass filters, and,
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therefore, a “presynaptic” spike gives rise to an attenuated and delayed voltage
response in the “postsynaptic” cell. Measured postsynaptic responses (spikelets)
vary in size and can include both depolarizing and hyperpolarizing components.
This depends on the details of the spike shape, such as spike width and afterhyper-
polarization, as well as where the gap junctions are located and where postsynaptic
responses are measured. Moreover, spike frequency would be expected to affect the
resulting network dynamics. These aspects make it difficult to intuit the output from
electrically coupled networks,

How can we more fully understand the actions of gap junction coupling? Only
a limited amount of information and mechanistic understandings can be obtained
using direct numerical simulations. We, therefore, turn to PRCs and the theory of
weakly coupled oscillators (Kuramoto 1984).

1.2 PRCs and the Theory of Weakly Coupled Oscillators

As described in the introductory Chap. 1, the PRC, or the phase resetting curve
describes whether a perturbation advances or delays the phase of a periodically
firing neuron.1 PRCs have been used to predict phase-locking behaviors for periodic,
pulsatile stimuli (Glass & Mackey 1988; Rinzel & Ermentrout 1998) and for cell
pairs connected by fast, pulsatile chemical synapses (see Chap. 4). PRCs can also
be used to predict phase-locking in networks of oscillators with general coupling,
including electrical coupling, provided that the coupling is sufficiently weak. This
latter case employs the theory of weak coupling (Kuramoto 1984). The PRC used in
this theory measures the response to brief, small current pulses2 and is often referred
to as the infinitesimal PRC (iPRC).

PRCs are often divided into two classifications: Type I PRCs are nonnegative,
meaning that spikes can only be advanced with perturbations, and type II PRCs
are biphasic, usually with negative aspects at early phases and positive aspects at
later phases (i.e., spikes can be advanced or delayed depending on the timing of
the perturbation relative to the spike). Note that phase zero is typically defined as
the peak of the spike at the soma, and we follow this definition in this chapter.
Whether a neuron exhibits type I or type II PRCs can be important because it has
implications for synchrony in networks coupled with chemical synapses (e.g., see
Crook et al. 1998b; Hansel et al. 1995), and this has been taken advantage of in
examining how cholinergic neuromodulation might affect whether type I or type II
PRC characteristics are present (Stiefel et al. 2009).

1These phase shifts are usually assessed by spike times.
2Theoretically, a delta-function current stimulus with small amplitude (in terms of total charge
injected) is used to compute the iPRC. The iPRC can also be computed by linearizing the system
about the limit cycle and solving the adjoint problem (see Chap. 1).
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The basic mathematical equations for weakly coupled oscillator theory have
been described in Chap. 1, and the same notation is followed in this chapter. When
coupling between oscillators is sufficiently weak, the state of each oscillator can be
captured by its relative phase, and the dynamics of a pair of identical cells connected
by electrical coupling is governed by

d j
dt

D 1

T

Z T

0

Z.t/ggap.VLC .t � . j � k//�VLC .t//dQt D ggapH.�. j � k//;
(14.2)

where  j is the relative phase of the j th cell, VLC .t/ is the T -periodic membrane
potential of the unperturbed (uncoupled) neurons, and Z.t/ is the iPRC of the
neurons. The evolution of the phase difference between the cells, ' D  1 �  2; is
described by the scalar differential equation

d'

dt
D ggap.H.�'/ �H.'// D ggapG.'/; (14.3)

Phase differences '� with G.'�/ D 0 are phase-locked states. A phase-locked state
is stable if G0.'�/ < 0 and unstable if G0.'�/ > 0. Note that the coupling strength
ggap simply scales the G-function. It does not affect the existence or stability of
the phase-locked states; it only affects how fast the system approaches or diverges
from the phase-locked state and how robust the phase-locked states are to noise
and heterogeneities (see Chap. 1 for details). Note also that when the electrically
coupled cells are identical, both the synchronous state '� D 0; T and the antiphase
state '� D T

2
are phase-locked states, as can be seen by (14.3). Furthermore, the

stability of the antiphase state is given by the sign of G0. T
2
/ D �2H 0. T

2
/. These

observations will be useful in our analysis.
The form of the G-function relates the existence, stability, and robustness of

phase-locked states to the iPRC, Z, and the membrane potential, VLC. Z, and VLC

are strictly properties of the individual neurons, and they are relatively easy to obtain
for model cells and for real cells. Thus, the theory of weak coupling provides a two
step method to obtain insight into both the dynamical and biophysical mechanisms
underlying phase-locking:

Step 1: Determine how the shapes of Z and VLC affect phase-locking, i.e., study
how the shapes of the functionsZ and VLC combine (according to the “convolution”
integral in the phase equations (14.2) to influence the phase-locked states.

Step 2: Explore how the shape of Z and VLC are altered by changes in frequency
or individual membrane conductances or by the presence of neuromodulators (or
effects of anesthetics, pharmacological agents, temperature, pH, and so on), i.e., if
we understand how the shapes of Z and VLC alter phase-locking, then the problem
of “understanding how membrane conductances affect phase-locking” is reduced
to “understanding how they affect Z and VLC .” While this latter problem is still
nontrivial, it is a much more manageable problem than the former one.
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1.3 Chapter Outline and Limitations

In this chapter, we describe how PRCs and weakly coupled oscillator theory can
be used to understand activities produced by electrically coupled cells. For space
reasons, we take a narrow focus, only considering electrical coupling between
pairs of spiking neurons in cortical systems and related theoretical works.3 As
such, important work on electrical coupling involving bursting cells, nonneuronal
cells (such as glia), nonspiking cells and invertebrate systems are not included in
this chapter. We examine mathematical models that include the basic features of
spiking neurons and coupling dynamics. With simpler neuronal caricatures, more
extensive analyses can be performed. In general, analyses provide a theoretical
framework with which to understand the behavior of more complicated models and
experimental preparations, as well as the in situ physiological system.

In what follows, we describe the work that has been done using mathemat-
ical models of electrically coupled neuronal networks and the insights into the
mechanisms underlying synchronization patterns in these networks. We start by
describing simple two-cell networks that do not include a biophysical description
for the individual neuron and then continue with two-cell networks that do include
a biophysical description and that consider gap junctions that are not located close
to the cell body. Finally, we provide a short summary and discussion.

2 Single-Compartment Integrate-and-Fire Models
for Electrically Coupled Cell Pairs

In this section, we consider phase-locking of pairs of one-variable single-compartment
integrate-and-fire neurons that are connected by electrical coupling. The dynamics
of the cell pairs are given by

C
dVj
dt

D �Iionic.Vj /C Iapp C ggap.Vk � Vj /: (14.4)

Note that the ionic current Iionic.Vj / depends only on the membrane potential of
the cell. These dynamics are augmented by a fire-and-reset rule: When Vj reaches a
threshold potential Vth, cell j fires a “spike” and Vj is reset to the potential Vreset.4

The suprathreshold portion of a spike is modeled as a delta function. Each time a
cell fires, ˇı.t/ is added to its membrane potential (Lewis & Rinzel 2003; Pfeuty
et al. 2003).

3Chapter 15 extends the analysis presented in this chapter to larger networks and considers coupling
through both chemical synapses and electrical synapses.
4These models could be augmented by including an explicit refractory period and a time-dependent
threshold.
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Fig. 14.1 Bistable activity in a pair of electrically coupled LIF cells. I D 1:2, ˇ D 0:2, ggap D
0:2. Black solid curves and grey dashed curves represent the membrane potentials of the two cells.
Different initial conditions lead to different phase-locked states: (a) synchrony and (b) antiphase

If Iapp � Iionic.Vreset/ and Iapp � Iionic.Vj / for some Vreset < Vj � Vth, then
the isolated cells eventually approach a stable resting potential and do not fire. If
Iapp > Iionic.Vj / for all Vreset � Vj � Vth, then Vj increases monotonically from
Vreset until it reaches the threshold potential Vth at which point the cell “fires.” Vj is
then reset to Vreset, and the process is repeated. Thus, for sufficiently large applied
current, integrate-and-fire cells display periodic oscillations. The frequency of the
oscillations increases with Iapp.

Electrically coupled cell pairs that are modeled using standard leaky-integrate-
and-fire (LIF) dynamics (i.e., without the delta-function spike) exhibit only anti-
phase activity for all suprathreshold applied currents and coupling strengths.5 This
highlights the fact that electrotonic effects of the spikes play an essential role in
determining phase-locking patterns (Chow & Kopell 2000; Lewis & Rinzel 2003;
Pfeuty et al. 2003), and, therefore, they must be included in any adequate model of
electrically coupled cells. As mentioned above, we model the suprathreshold portion
of a spike as a delta-function ˇı.t/.6 Thus, a spike in one cell will instantaneously
increase the membrane potential of the other cell toward threshold by a fixed amount
ggapˇ. With this spike effect included, the LIF model can exhibit both synchrony and
antiphase (Fig. 14.1).

Below, we consider leaky integrate-and-fire (LIF) and quadratic integrate-and-
fire (QIF) dynamics as specific examples, but we also provide some results
for general integrate-and-fire (GIF) dynamics, i.e., integrate-and-fire with any
Iionic.V /. Many of these results are presented in Lewis & Rinzel (2003) and Pfeuty
et al. (2003). The results highlight the importance of the shape of the iPRC and the
components of the membrane potential waveform.

5In fact, it can be shown that, as ggap ! 1, any single-variable IF model will support only
antiphase activity, whereas any single-compartment conductance-based model will support only
synchronous activity (Lewis, unpublished results).
6For certain IF models such as QIF, the spike could also be modeled by tuning Vth, so that the
membrane potential rises rapidly to a high level before being reset (as in Latham et al., 2000).
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2.1 LIF, QIF, and GIF Dynamics

LIF dynamics: For the LIF model, the ionic current is described only by the leakage
current

Iionic.V / D gm.V � Vr/;
where Vr is the reversal potential of the leakage current, and gm is the membrane
leakage conductance of the cell. In nondimensional form (see Appendix 1), the LIF
model is

dvj
dt

D ��j C I

with a threshold potential of 1 and a reset potential 0. For I > 1, LIF cells fire
periodically with a membrane potential waveform of

�LC .t/ D I.1� e�t /C ˇı.t � T /; t 2 Œ0; T �
and a period of oscillation

T D ln

�
I � �reset

I � �th

�
D ln

�
I

I � 1

�
:

The infinitesimal phase-response curveZ.t/ for the LIF model (Hansel et al. 1995;
Neltner et al. 2000) is

Z.t/ D
8
<

:

1

I
exp.t/; 0 < t < T

0; t D 0; T

:

Several ways to derive Z.t/ for LIF cells are covered in the appendix of Lewis &
Rinzel 2003.

QIF dynamics: For the QIF model, the ionic current is

Iionic.V / D gm
.VT � V /.V � VR/

.VT � VR/
;

where VR and VT are the resting potential and “resting threshold” potential7 of
the neuron, respectively, for Iapp D 0, and gm is related to the resting membrane
conductance. Iionic.V / in the QIF model can be thought of as a combination of
currents that capture the effects of the leakage current and some of the threshold
features of the fast sodium current.

In nondimensional form (see Appendix 1), the QIF model is

d�j

dt
D �2j C I;

7Note that the “resting threshold” potential VT is different than the spike-reset threshold vth.
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with a threshold potential �th and a reset potential �reset. For I > 0, the T -periodic
solution of the QIF model is

�LC .t/ D p
I tan

�p
I .t C �.�reset//

�
C ˇı.t � T /; t 2 Œ0; T �

where

�.�/ D 1p
I

arctan

�
�p
I

�
;

with a period of
T D �.�th/� �.�reset/:

The infinitesimal phase-response curveZ.t/ for the QIF model is

Z.t/ D
8
<

:

1

I
cos2

�p
I .t C �.�reset//

�
; 0 < t < T

0 t D 0; T

:

GIF dynamics: The periodic solution for GIF dynamics cannot be obtained explic-
itly, but it can be shown that iPRC Z.t/ for any single-variable integrate-and-fire
model is equal to the reciprocal of the derivative of the membrane potential during
the oscillations

Z.t/ D
( �
�0
LC .t/

��1
; 0 < t < T

0; t D 0; T
:

During the spike-and-reset phase at t D 0; T , we set Z.t/ to 0 in all cases. This
assumes that during the spike, the cell is not affected by external perturbations (e.g.,
due to coupling). This is a reasonable assumption because the input conductance
is extremely high during spikes, and this renders the cell insensitive to external
perturbations.

Note that, outside of the spike, the iPRC Z.t/ for any single-variable integrate-
and-fire model is strictly positive, and, therefore, positive currents will always phase
advance the cell. This is a characteristic of many neuronal oscillators, especially at
low firing rates, and is referred to as type I phase resetting (Ermentrout 1996; Hansel
et al. 1995).

2.2 Phase Models for Integrate-and-Fire Cells

Plugging the expressions forZ.t/ and �LC.t/ into the equations for the phase model
((14.2) and (14.3)) yields the G-functionG.'/ for the IF models. Note that because
of the threshold discontinuity in the “periodic” solution, the integral must be defined
in a piecewise manner

G.'/ D H.�'/ �H.�.T � '// (14.5)
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where

H.�'/ D 1

T

Z '�

0

Z.t/.�LC .t C T � '/ � �LC .t//dt

C 1

T

Z T

'C

Z.t/.�LC .t � '/ � �LC .t//dt C 1

T
ˇZ.'/; (14.6)

Note that H.�'/, and, therefore,G.'/, is a linear combination of terms describing
the subthreshold effects and the suprathreshold spike effects: (1) The terms with
the integrals accounts for all subthreshold activity including the reset, and (2) the
term that is scaled by ˇ accounts for the effect of the suprathreshold portion of the
spike, i.e.,

Hspike.�'/ D 1

T

Z 'C

'�

Z.t/.ˇı.t � '//dt D 1

T
ˇZ.'/

As stated in Sect. 1.2, the stability of the phase-locked states '� is given by the sign
of G0.'�/. However, for ˇ ¤ 0, G.'/ is discontinuous at ' D 0; T . In this case,
G.0/ < 0 (and G.T / > 0/ implies stability of the synchronous state.

2.3 Phase-Locking in a Pair of Electrically Coupled LIF Cells

For the LIF model, the G-function is

G.'/ D
�

2
T
.' sinh.T � '/�.T � '/ sinh.'//C ˇ

TI
.e' � eT�'/; 0 < ' < T

0; ' D 0; T

(14.7)

Figure 14.2 plots voltage profiles .�LC /, iPRCs .Z/, and the corresponding
G-functions for I D 1:15 and I D 1:5 with ˇ D 0:1. The G-function reveals that
that both the synchronous state ' D 0; T and the antiphase state ' D T

2
are stable

at I D 1:15, whereas only the synchronous state ' D 0; T is stable at I D 1:5.
These results can be understood by considering (14.7).

The phase-locked states and their stability are determined by a competition
between the subthreshold portion and suprathreshold portion of the G-function (the
solid and dashed grey curves in Fig. 14.2, respectively). The subthreshold portion
of the G-function (obtained by setting ˇ D 0 in (14.7)) is always positive in
0 < ' < T

2
and negative in 0 < ' < T

2
. This implies that the subthreshold dynamics

always have a desynchronizing effect, forcing the coupled LIF cells toward the
antiphase state. Conversely, the suprathreshold (spike) portion of the G-function
is always negative in 0 < ' < T

2
and positive in 0 < ' < T

2
, and, therefore, the

spike always acts to stabilize the synchronous state ' D 0; T and destabilize the
antiphase state ' D T

2
. The delta-function spike causes the synchronous state to be

always stable. However, at low frequencies (I just above 1), the subthreshold term,
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Fig. 14.2 Membrane potential (vLC /, iPRC (Z), and G-functions for LIF cell pair with weak
electrical coupling. (a) I D 1:15, ˇ D 0:1, (b) I D 1:5, ˇ D 0:1. In G-function panels, black
solid lines are the full G-functions, and the filled circles (open circles) represent stable (unstable)
phase-locked states. The dashed grey lines are the portion of the G-function accounting for the
effects of the spike, which always tend to synchronize activity of LIF cells. The solid grey lines
are the portion of the G-function accounting for subthreshold activity (obtained by setting ˇ D 0),
which always tend to desynchronize the activity of LIF cells

and therefore the antiphase state, dominates, i.e., almost all initial conditions evolve
to the antiphase state. As the frequency increases (with increased I /, the relative
magnitude of the spike effect increases and eventually destabilizes the antiphase
state.

The phase-locked states '� over an interval of I for ˇ D 0:1 are plotted in
Fig. 14.3. As pointed out in Fig. 14.2, both the synchronous and the antiphase states
are stable in the case of I D 1:15, but if I is increased to I D 1:5 only the
synchronous state is stable. In general, at high values of I , the only stable state is the
synchronous state, and at sufficiently low I , stable synchronous and antiphase states
coexist. The antiphase state loses its stability via a subcritical pitchfork bifurcation
at the critical value I�, which depends upon the value of ˇ.

By consideringG0. T
2
/, one can obtain the relationship between the critical value

I� and ˇ analytically

ˇ D
�
I� � 1

2

�
ln

�
I�

I� � 1

�
� 1 D

T
2

tanh
�
T
2

� � 1 (14.8)
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Fig. 14.3 Bifurcation Diagram for LIF cell pair with weak electrical coupling, ˇ D 0:1. Solid and
dashed lines indicate stable and unstable phase-locked states, respectively. I� is the critical value
of I at which antiphase activity ( '

T
D 0:5) changes stability. For I > I�; only the synchronous

activity (S) is stable; for 1 < I < I�; both the synchronous (S) and antiphase (AP) states are
stable. (I� decreases as ˇ increases)
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Fig. 14.4 Two-parameter (ˇ vs. I / bifurcation diagram for the LIF cell pair connected by weak
electrical coupling. The dashed curve plots the critical value I� in relation to ˇ (see (14.8)). Above
the curve, the only stable phase-locked behavior is synchrony (S). Below the curve, the cells can
exhibit either stable synchrony (S) or stable antiphase activity (AP). Note that increased spike
strength ˇ and/or increased applied current I promotes synchronous activity

I� increases as ˇ decreases, as is seen in Fig. 14.4. This implies that, when the
electrotonic effect of the delta-function spikes is weak, antiphase persists for a larger
range of intrinsic frequencies. As the spike effect vanishes (ˇ ! 0/, the critical
current at which the antiphase state loses stability I� goes to infinity and the non-
antiphase unstable steady states approach the synchronous state. This effectively
leaves the antiphase state as the only stable solution for all I (as was the case for
ˇ D 0/.

The asynchrony at low frequencies can be understood in terms of the effect of the
fast repolarization (reset) of the LIF cells and the shape of their iPRCZ.t/. Consider
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two coupled cells with a small phase difference. During the slow depolarization
toward threshold, the membrane potential in the lagging cell is slightly less than
that in the leading cell. Consequently, there is a small positive (depolarizing) current
in the lagging cell that flows from the leading cell due to the electrical coupling.
This current speeds up the lagging cell and slows down the leading cell, which
acts to synchronize the cells. However, because the voltage differences are small,
the electrotonic current is small and the synchronizing effect of this portion of the
subthreshold activity is small. Once the leading cell reaches threshold, it fires and
is immediately reset. If the spike does not instantaneously synchronize the cells, the
voltage of the leading cell is now below that of the lagging cell, and the electrical
coupling current switches direction. Now, coupling acts to impede the increase to
threshold of the lagging cell and to speed up the leading cell. Because the potential
difference between the cells is large and the sensitivity of the cells is highest around
threshold, the lagging cell is substantially delayed before it fires. This desynchro-
nizing effect is so strong at low firing rates (for which the cells are very sensitive at
threshold) that it overcomes the previous synchronizing effect and, therefore, causes
the net effect of coupling over an entire period to be desynchronizing.

2.4 Phase-Locking of a Pair of Electrically
Coupled GIF/QIF Cells

The LIF model highlights how the iPRC and membrane potential (spike, reset,
and subthreshold portions) combine to generate the phase-locking characteristics
of electrically coupled cells. However, LIF dynamics are somewhat limited. In
particular, the iPRCs of LIF cells are always increasing and concave up with a
maximum at ' ! T , i.e., as the membrane potential increases toward threshold,
the cell is increasingly sensitive to perturbations and the rate of this increasing
sensitivity is itself increasing. Therefore, it is not possible to look for general rules
for how the shapes of the iPRC and the membrane potential affect synchronization
patterns. We will now consider the GIF models, which allow for a richer set of
iPRC shapes. In particular, we will examine how the “skewness” of the PRC (as
measured by the location of peak) affects phase-locking. The QIF model will be
used to provide specific examples.

Figure 14.5 plots the voltage profiles .�LC /, the iPRCs .Z/ and the corresponding
G-functions for the QIF model with three different parameter sets. In all cases,
I D 0:1; ˇ D 0:13, and �th � vreset D 3:0, but �reset is �2:85, �1:50, and �0:15 in
panels a, b, and c, respectively. Note that the iPRC changes from having a rightward
skew of the peak in (a) to being symmetric in (b) to having a leftward-skewed peak
in (c). Associated with these changes in the iPRCs are changes in the stability of the
phase-locked states. The G-function associated with the rightward-skewed iPRC
in panel (a) shows that both the synchronous state ' D 0; T and the antiphase
state ' D T

2
are stable, although the antiphase state is dominant. The G-function
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Fig. 14.5 Membrane potential (vLC /, iPRC (Z), and G-functions for QIF cell pairs with weak
electrical coupling. I D 0:1, ˇ D 0:13. (a) vreset D �2:85, vth D 0:15. Both the synchronous and
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associated with the symmetric iPRC in panel (b) shows that only the synchronous
state ' D 0; T is stable. The G-function associated with the leftward-skewed iPRC
in panel (c) shows that only the antiphase state ' D T

2
is stable.

Pfeuty et al. (2003) noted that the skewness of the iPRC has a substantial influ-
ence on the stability of the phase-locked states, and they extensively examined how
the skewness affected the stability of the antiphase state of the QIF model. Recall
that the stability of the antiphase state is given by the sign of G0. T

2
/ D �2H 0. T

2
/.

Therefore, to see how the above changes in the stability of the antiphase state
arise, we can examine how the shape of the iPRC affects G0. T

2
/. By differentiating

equation (14.5) with respect to ' and evaluating at ' D T
2

, we see that
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G0
sub contains the influence of the intervals of subthreshold depolarization, G0

reset
contains the influence of the reset from vth to vreset, and G0

spike contains the influence
of the delta-function spike of strength ˇ. Because Z � 0 and �0

LC � 0 for all
IF models, G0

sub is always negative, indicating that the subthreshold depolarization
phase in the oscillations always acts to stabilize antiphase activity. On the other
hand, the reset term G0

reset is always positive, and, therefore, the instantaneous reset
always acts to destabilize antiphase activity. Note that this was the case with the LIF
model. The spike term G0

spike shows that the delta-function spikes act to stabilize

antiphase activity if and only if the iPRC .Z/ has a negative slope at '� D T
2

.
For LIF, Z0. T

2
/ > 0 and spikes always act to synchronize activity. For the QIF,

Z0. T
2
/ > 0 whenever the iPRC has a rightward skew (i.e., when j�resetj > j�thj/,

and Z0. T
2
/ < 0 whenever the iPRC has a leftward skew (i.e., when j�resetj > j�thj/.

Thus, spikes act to destabilize antiphase activity whenever the iPRC has a rightward
skew and stabilize antiphase whenever the iPRC has a leftward skew.

Figure 14.6 depicts the stability of antiphase activity for an electrically coupled
QIF cell pair in �reset vs frequency (f ) parameter space with �th � �reset D 3:0

Fig. 14.6a shows the case for ˇ D 0, which is G0
sub C G0

reset. It shows that the
net subthreshold activity acts to destabilize the antiphase state at all frequencies
when the iPRC is symmetric, i.e. when �reset D ��th. However, as the magnitude
of �th C vreset increases, or equivalently the skewness of the iPRC increases in
either direction, the influence of the net subthreshold activity on the antiphase state
becomes stabilizing. Figure 14.6b shows the results of adding the spike term G0

spike
to the subthreshold terms. Recall that spikes act to stabilize the antiphase state when
iPRCs skewed to the left (�reset > �1:5, i.e., to the right of the dotted line) and
destabilize the antiphase state when iPRCs skewed to the right (�reset < �1:5,
i.e., to the left of the dotted line). Furthermore, the spike has a greater effect at
higher frequencies. Thus, for iPRCs skewed to the left, antiphase is unstable at low
frequencies, but it becomes stable as the frequency increases, or for iPRCs skewed
highly to the left, antiphase is stable for all frequencies. For iPRCs skewed to the
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right, antiphase is stable at low frequencies, but it becomes unstable as the frequency
increases. Note that the LIF model has iPRCs similar to those in this latter parameter
regime and exhibits equivalent behavior.

A similar analysis can be implemented to determine stability of the synchronous
state (Lewis, unpublished results). When the spike effect is included (ˇ > 0/, the
synchronous state is stable if G.'/ < 0, which is the case wheneverZ.0/ < Z.T /.
This always holds for the LIF model. It also holds for the QIF model when the iPRC
is skewed to the right, but the spike effect acts to destabilize the synchronous state
when the iPRC is skewed to the left.

2.4.1 Summary

Analytical tractability of the IF models has allowed us to establish a clear link
between the phase-locking of coupled cells and the shape of the iPRC and to identify
the relative contributions of the various different phases in the oscillations. The
LIF model showed that only synchrony was stable at higher frequencies, but at
low frequencies, the sharp reset (repolarization) and the high sensitivity to input
in the late phases had strong desynchronizing effects that led to a stable antiphase
state. The QIF model generalized this result. When the iPRC is skewed to the
right (with a peak late in the oscillation cycle), antiphase was typically stable
at low frequencies but destabilized at higher frequencies. Furthermore, increased
magnitude of the spike hindered antiphase activity in this case. On the other hand,
the QIF model showed that when the iPRC is skewed to the left (with a peak early in
the oscillation cycle), antiphase was stable at higher frequencies but destabilized at
low frequencies. In this case, increased magnitude of the spike promoted antiphase
activity. In terms of the effects of the spike, the sign of Z0. T

2
/ was the key quantity.

IF models are highly idealized and allow fairly extensive mathematical analyses.
However, they also have considerable limitations in terms of linking phase-locking
back to biophysical mechanisms. For example, unlike real cells or conductance-
based models, the PRC and the membrane potential always have the relationship
Z.t/ D 10

�LC
.t/, and the iPRCs of IF models are strictly positive (i.e., they are always

type I and never type II). Thus, it is necessary to consider conductance-based models
to acquire insight into the biophysical mechanisms of synchronization.

3 Single-Compartment Conductance-Based Models
for Electrically Coupled Cell Pairs

A major goal is to determine the role that specific intrinsic membrane conductances
play in shaping the synchronization patterns of electrically coupled cells. To do this,
we must consider phase-locking in conductance-based models of neurons. However,
key insights provided by IF models can be used to guide the examination of these
more complex, biophysically based models.
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The conductance-based models that we will consider in this section are
single-compartment models given by the Hodgkin–Huxley formalism

C
dVj
dt

D �Iionic;j .Vj ;mj ; hj ; nj ; : : :/C Iapp;j C ggap.Vk � Vj /;

dyj
dt

D 1

�.Vj /
.y1.Vj / � yj /; yj D mj ; hj ; nj ; : : : (14.10)

where Iionic;j is the sum of the various different ionic conductances in the model
neuron and yj D mj ; hj ; nj ; : : : are the gating variables for the conductances.

Pfeuty et al. (2003) is perhaps the most extensive modeling study on how
intrinsic conductances affect phase-locking of electrically coupled cells. In a set of
numerical simulations of a conductance-based model of a spiking neuron, Pfeuty
et al. found that the persistent sodium conductance promoted antiphase activity
(or more generally asynchronous activity), whereas a fast potassium conductance
and a slow potassium conductance both promoted synchrony. Using the insight
gained from the QIF modeling results, Pfeuty et al. noted that these trends could
be understood in terms of their effects on the skew of the iPRC. They showed
that increasing the potassium conductances led to a rightward shift in the peak
of the iPRC (see also Crook et al. 1998b; Ermentrout et al. 2001), whereas the
persistent sodium conductance shifted the peak to the left. Pfeuty et al. pointed
out that these effects on the iPRCs can be understood in the following way: the
potassium conductances increase refractoriness of a neuron after the spike, and,
therefore, they reduce the responsiveness of the neuron to external perturbations
during the first portion of the period, shifting the maximum of the iPRC toward
latter phases. On the other hand, the persistent sodium conductance is activated near
rest and depolarizing perturbations boost its activation, and thus it increases the
responsiveness of the neuron after a spike and shifts the maximum of the iPRC
toward first half of the period. The upshot of Pfeuty et al. (2003) was that the
refractory effects of the potassium conductances and the boosting effects of the
persistent sodium conductance are responsible for how these conductances alter the
phase-locking dynamics of electrically coupled neurons.

Curiously, Mancilla et al. (2007) found that both potassium conductances
in the Erisir et al. (1999) model for neocortical fast-spiking (FS) cells (i.e.,
a Kv1.3-conductance and a Kv3.2/3-conductance) actually promoted antiphase
behavior. This apparent disagreement between the Mancilla et al. (2007) and Pfeuty
et al. (2003) can be resolved by reconsidering the results from the QIF model.
Figure 14.6b indicates that a decrease in �reset (a rightward skew of the iPRC) will
destabilize antiphase at higher frequencies, but it will stabilize antiphase at lower
frequencies. Thus, assuming that it will cause a rightward skew of the iPRC, an
increase in the potassium conductances should have different effects on antiphase in
different frequency regimes. Indeed, the antiphase that Pfeuty et al. considered was
at higher firing rates, whereas the antiphase that Mancilla et al. considered was at
lower frequencies. This implies a modified rule of thumb for the effects of potassium
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conductances: potassium conductances promote synchrony at higher frequencies,
but they can promote antiphase at lower frequencies.

The above explanation, which was motivated by the IF modeling, provides
some understanding of how certain conductances affect phase-locking; however,
it appears not to be the entire story. The actions of these and other conductances can
sometimes be more subtle. For example, potassium conductances can have various
influences on phase-locking of electrically coupled neurons. Nomura et al. (2003)
studied a model of FS interneurons with a strong Kv3.1 conductance and found
that it exhibited only stable synchrony over the entire frequency range studied
(�5 Hz to 250 Hz). They also examined the Hodgkin–Huxley model, which has
a large Kv1.1 delayed-rectifier conductance, and found that stable antiphase and
synchronous states co-existed for frequencies up to �100 Hz. On the other hand,
Di Garbo et al. (2005) studied another FS interneuron model (modified from
Durstewitz et al. 2000) that also had a fast and strong Kv3-like conductance, but
they found bistability of the antiphase state and the synchronous state up to 80
Hz. Ermentrout and Wechselberger (2009) found that the iPRC of the Erisir et al.
model for cortical FS interneurons was highly oscillatory at very low frequencies,
which gave rise to multistability in cell pairs and clustering in larger networks of
cells. They showed that the slow potassium current (Kv1.3) was at the root of this
behavior. Finally, in Mancilla et al. (2007), while both potassium conductances in
the FS cell model promoted antiphase behavior at low frequencies, these potassium
conductances had different effects on the iPRC. At 25 Hz, the Kv1 conductance
shifted the iPRC peak to the right (and had a visually unperceivable change on the
membrane potential), whereas Kv3 conductance shifted the peak in the iPRC to the
left (and substantially decreased the spike width and increased the AHP).

In essence, while much insight can be obtained from the explanation based on
the skewness of the iPRC, predicting electrically coupled network dynamics from
iPRCs alone can be tricky, especially because predictions from the weakly coupled
oscillator theory involve both iPRCs and the voltage trajectories via the coupling
function. Mancilla et al. (2007) showed that the voltage trajectory can sometimes
have a predominant effect over the iPRC in predicting the stability of the antiphase
state in electrically coupled networks of conductance-based models. In particular,
by explicitly manipulating the voltage trajectory, they found that an increased spike
width and a decreased after-hyperpolarization (AHP) destabilized the antiphase
state. Thus, spike details as described by conductance-based models also need to be
taken into consideration in predicting the output from electrically coupled networks.

One way to start addressing the role of the membrane potential is to exploit
the linearity of the integral in the G-function by decomposing vLC into two or
more components. We can then consider the corresponding components of G0. T

2
/

separately. For example, we can consider the influence of the AHP by adding an
AHP component to the baseline membrane potential, �LC .t/C�AHP.t/. The integral
forG0. T

2
/will separate into two components, and by integrating by parts, we see that
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The second integral term contains the influence of the added AHP on the stability
of antiphase state. It reveals that the AHP will have a stabilizing effect if Z0.t/ > 0
during the bulk of the AHP (note �AHP.t/ < 0/.

The above discussion clearly demonstrates that, in order to identify the
conductances responsible for promoting synchronization, we need to understand
how intrinsic membrane conductances shape both the PRCs and membrane potential
trajectory of individual cells (Acker et al. 2003; Crook et al. 1998b; Ermentrout
et al. 2001; Mancilla et al. 2007; Pfeuty et al. 2003; Stiefel et al. 2009). More work
needs to be done to sort this out. Specific questions that need to be addressed are:
What do negative lobes do? How do details of activation curves and time constants
determine a conductance’s effect on phase-locking behavior? How important is the
interactions with other conductances?

Another issue to consider is that neurons are not “single somatic compartments,”
and some gap junctions are known to be located on dendrites, often quite far from
the cell body (Fukuda 2007). In the next section, we describe work with multi-
compartment models that takes into consideration the effect on network dynamics
of different gap junction coupling locations.

4 Multi-Compartment Models: Effects of Coupling Location
and Dendritic Conductances

In this section, we first summarize what has been done and predicted with multi-
compartment models in which the dendrites are either passive or active. We then
describe the equations and analyses using a three-compartment model for illustrative
purposes.

Crook et al. (1998a) were the first to use iPRCs and weakly coupled oscillator
theory to understand how the presence of dendrites on individual neurons could
affect the activity of neuronal networks. The low-pass filtering effects of dendrites
on both membrane potential and iPRCs were described in Lewis & Rinzel (2004),
and Goldberg et al. (2007) derived a closed form expression for iPRCs generated by
dendritic perturbation (dPRC). Specifically, the passive properties of the dendrites
cause a leftward shift and attenuation of the somatic iPRC. What this means is
that a negative lobe present in a somatic iPRC (due to a type II model) will no
longer exist in the dPRC at a far enough dendritic location, so that one gets a type I
response in the dendrite. The leftward shift and attenuation of PRCs can be seen in
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Pfeuty et al. (2005) for their two-compartment conductance-based model, as well as
in Lewis & Rinzel (2004) where a type II response in the soma and a type I response
in the dendrite is also apparent in the two-compartment model that they used.

4.1 Passive Dendrites

Using a ball-and-stick neuron model, Crook et al. (1998a) extended a somatic neu-
ronal oscillator model to include a thin dendrite. Using the weakly coupled oscillator
theory with chemical coupling, they showed that stable, phase-locked, synchronous
solutions depend on the length of the dendrite and its passive biophysical properties
(membrane time constant and length constant). They also used an 11-compartment
model of a pyramidal cell (somatic compartment, basal dendrite compartment and
nine apical dendrite compartments) and applied the theory to predict phase-locked
states. With dendritic coupling, asynchronous, but non-antiphase, stable phase-
locking is predicted and shown in their network simulations.

For electrical coupling, Lewis & Rinzel (2004) used a two-compartment model
of a FS cortical neuron (active soma, passive dendrite) to demonstrate how dendritic
filtering and the location of gap junctions could alter phase-locking. They showed
that stable antiphase patterns can occur at higher frequencies when coupling is in
dendritic regions, but when the electrical coupling is somatic, antiphase patterns do
not occur at the higher frequencies. As in the chemical coupling case, asynchronous,
but non-antiphase, phase-locking is predicted to occur with dendritic coupling. In
a series of simulations involving more realistic neuronal morphologies, Saraga &
Skinner (2004) built a 372-compartment model of a hippocampal basket cell and
examined two-cell networks that were electrically coupled at proximal, middle or
distal dendritic locations, in which the dendrites were passive. Asynchronous phase-
locked states occurred when the cells were coupled at middle or distal locations, but
not when coupled at proximal locations. Moreover, synchrony never occurred in
these model neurons at any frequency when the weak electrical coupling occurred
at distal locations (Saraga & Skinner 2004; Saraga et al. 2006).

4.2 Active Dendrites

It is clear that with the addition of passive dendrites, electrically coupled network
output changes. However, the dendrites of neurons contain active voltage-gated
channels (Johnston & Narayanan 2008) and this would also be expected to affect
the network output. Goldberg et al. (2007) showed in their analysis that dendritic
conductances could be classified as either regenerative (boosting dPRCs and giving
more of a leftward shift) or restorative (high pass filtering dPRCs possibly creating a
negative portion in the dPRC so that a type II response can occur). Regenerative con-
ductances would include persistent sodium currents, and restorative conductances
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would include delayed rectifier potassium currents. Note that these classifications
correspond to the results of Pfeuty et al. (2003) that were discussed in the
previous section. In two-cell network simulations performed with 372-compartment
models in which the dendrites included voltage-gated sodium and delayed rectifier
potassium currents, the dPRCs exhibited negative lobes – type II PRCs (Saraga
et al. 2006). However, as pointed out by Goldberg et al. (2007), care needs to be
taken in making such statements because adding active conductances in the dendrite
can affect whether the somatic response is type I or II, and the density of the active
conductances would also have an effect. In other words, it becomes more difficult
to predict the changes in PRCs as more realistic neurons with active dendrites
are considered. Indeed, in examining the effects of cholinergic neuromodulation
on PRCs (type II to type I) of modeled cortical neurons, which included a 257-
compartment model of a layer II pyramidal neuron, Stiefel et al. (2009) found that
the modulation was independent of the perturbation location. That is, the location
was not a determining factor in changing the PRC characteristics.

If one takes the next step of applying weakly coupled oscillator theory using the
dPRCs, then predictions can be made. This was done by Crook et al. (1998a) in
showing that inward and outward currents affected the size of stable phase-lags in
two-cell networks coupled with excitatory synapses. Saraga et al. (2006) examined
how including different densities of voltage-gated sodium and potassium channels
in the dendrites affected phase-locked states in electrically coupled networks. They
applied weak coupling theory using a three-compartment model, which was a
reduced version of their 372-compartment model of a hippocampal basket cell. The
density of voltage-gated channels in the dendrites was shown to have a dramatic
effect on the phase-locked state, and this could be somewhat correlated with a
negative lobe in the dPRC. Specifically, negativity in the dPRC was predicted to
give phase-locked states that were asynchronous when electrically coupled at these
distal sites.

In moving toward multi-compartment models of neurons that represent both the
appropriate morphology as well as biophysical characteristics of the particular cell,
Zahid & Skinner (2009) built multi-compartment models of hippocampal interneu-
rons that matched the spike attenuation characteristics measured in these cells,
by adjusting the dendritic conductances. These neurons are of particular interest
because it is known that gap junctions are present at dendritic locations (Fukuda
& Kosaka 2000). They generated dPRCs and used the theory to predict phase-
locked states. By directly comparing theoretical predictions and simulations, they
suggested that quantifying the amount of skewness in measured PRCs was a good
indicator of whether electrically coupled networks would produce synchronous or
asynchronous output. However, as noted earlier (see previous section), one needs to
be careful in predicting network dynamics from PRCs alone as details of the voltage
trajectory also play a role. Nevertheless, it is helpful to try to make predictions based
on PRCs alone.

We now describe the procedure that one can follow in using weakly coupled
oscillator theory with multi-compartment models to predict the output from two-cell
networks. We first note that with a larger number of compartments in multi-
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compartment models, PRCs can be obtained by directly perturbing the model.
If there are only a few compartments then the iPRC, Z.t/, can be obtained by
computing the solution to the linearized model system’s adjoint equations (see
Chap. 1), e.g., using XPPAUT (Ermentrout 2002). However, in working with a
reduced model with a minimal number of compartments, it is important to note that
the full model’s electrotonic characteristics cannot be completely captured (Saraga
et al. 2006; Crook et al. 1998a), and this could be critically important in determining
the network output.

To illustrate the application of the weak coupling oscillator theory process for a
multi-compartment model, let us assume that we have a three-compartment model
consisting of a soma (s), a proximal dendrite (pd) and a distal dendrite (dd).
The voltage components of the three-compartment model system are given by the
following equations for cell 1 (subscript for cell number and superscript for the
compartment).

C
dV s

1

dt
D �.V

pd
1 � V s

1 / � I s
ionic;1

C
dV pd

1

dt
D �.V s

1 � V pd
1 /C �.V dd

1 � V
pd
1 /� I

pd
ionic;1

C
dV dd

1

dt
D �.V

pd
1 � V dd

1 /� I dd
ionic;1

where � is the coupling conductance between connected compartments (assumed to
be uniform) in the multi-compartment model cell. Other parameters are defined as
in the basic equation (14.1) given in the Introduction. Cell 2 equations would be the
same with adjusted cell number subscript. An electrically coupled two-cell network
is formed when gap junctions are present between compartments of two different
cells (cell 1 and cell 2). In that case, an additional current would be added to the
right-hand side of the equation for the appropriate compartment of each cell. If gap
junctions are present between the kth compartments of cell 1 and cell 2, then

I kgap;1W2 D ggap.V
k
1 � V k

2 /

I kgap;2W1 D ggap.V
k
2 � V k

1 /

would be added to the cell 1 and cell 2 model equations for the kth compartment,
respectively.

To apply the weakly coupled oscillator theory to predict what phase-locked states
would be present in an electrically coupled two-cell network of multi-compartment
model cells, one needs to use the PRC and voltage for the compartment where the
coupling occurs. (The process has been described for single compartment models in
Chap. 1.)

For example, consider the situation where the gap junction coupling is between
the dd’s of cell 1 and cell 2. Let Zdd.t/ be the iPRC at that location. Then the
dynamics of a pair of electrically coupled cells is given by:
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d q
dt

D 1

T

TZ

0

Zdd.Qt C  q/.ggapŒV
dd.Qt C  p/ � V dd.Nt C  q/�/dQt

D ggapH
�� � q �  p

��
; (14.11)

where  q is the phase of the qth cell and

H
�� � q �  p

�� D 1

T

TZ

0

Zdd.s/ŒV dd.s � . q �  p//� V dd.s/�/ds:

Thus, the G-function G.�/ D ggapŒH.��/ �H.�/�, which describes the evolution
of the phase difference between the two cells (� D  q � p/, includes properties of
the uncoupled cells, the voltage at the dd location, the PRC at the dd location, and
the expression of the gap junction coupling. If coupling is at the soma (s) or proximal
dendrite (pd) location instead, then Zs and V s or Zpd and V pd, respectively, would
be used instead in the above equations.

In Fig. 14.7, we plot the voltage at all three locations and show the resulting Z
function (iPRCs) at each of these locations. The iPRC at time zero corresponds to
the spike peak in the soma, which does not correspond to peaks in the dendritic
locations. This is made clear by the plot in the far right panel of the first row in
which voltages at all three locations are plotted. Comparison of the iPRCs at the
three locations is shown in the far right panel of the second row. The predicted
leftward shift and attenuation can be seen. Also apparent is the development of a
negative portion in the PRC with non-somatic perturbations. The dramatic effect
on the resulting G-function as the coupling location changes can be seen in the
third row of the figure. Parameter values and additional equations are given in
Appendix 2.

Example voltage output from a two-cell network in which weak electrical
coupling is between dd’s of three-compartment neurons is given in the bottom row
of Fig. 14.7. Voltage output from each of the three compartments (soma, pd, dd) is
shown. For the parameters used in this example in which voltage-gated channels
are present in the dendrites, asynchronous output occurs with about a 20% phase
lag between the two cells (i.e., about a 10 ms lag for a 47 ms period). This phase
lag is predicted by the zero crossing of the G-function which has a negative slope,
as given in the third row, third panel of Fig. 14.7. If coupling occurred at a pd or
soma location instead, then the G-function would give a prediction of either about
5 ms lag or synchrony, respectively – note the zero crossings with negative slope of
the G-function in the first and second panels of the third row of Fig. 14.7. Thus, the
location of gap junctions can have a dramatic effect on phase-locked states, and this
effect can be predicted using weakly coupled oscillator theory.
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Fig. 14.7 Three-compartment model voltages, iPRCs and G-functions.Top row: one cycle of the
voltage at the soma, proximal dendrite (pd) and distal dendrite (dd) locations. Rightmost plot shows
two cycles at all three locations (thickest line is the soma voltage and thinnest line is the dd voltage).
Second row: iPRCs obtained for perturbations at the soma, pd and dd, with the rightmost plot
showing all three (thickest line is soma and thinnest is dd). Note the leftward shift of the iPRC
with more distal locations. Zero time refers to the spike peak at the soma. Third row: G-function
for electrical coupling at the soma, pd and dd, with the rightmost plot showing all three (thickest
line is for soma coupling and thinnest line is for coupling at dd). Somatic coupling predicts stable
synchrony (negative slope at zero), and pd and dd coupling predict stable nonzero phase lags (note
zero crossing value for negative slopes). Bottom row: two-cell simulation for electrical coupling at
the dd location. Plots show voltages at soma, pd and dd locations. Note that the phase lag is the
same at all three locations and corresponds to about 10 ms, as predicted by the stable phase lag
(zero crossing in third plot of above row of G-function). Note that the scale of the vertical axes for
all three plots are not the same

5 Summary and Discussion

In this chapter, we have shown how the theory of weakly coupled oscillators can
provide insight into the phase-locking behavior of electrically coupled spiking
neurons, and we described how synchronization patterns depend on details of
both the PRC and voltage trajectory, both being part of the G-function derived
in the weak coupling theory. For some idealized models (e.g., integrate-and-fire),
detailed analyses can be done to make precise statements about phase-locking
behaviors. However, even when the models become more complex with biophysical



352 T.J. Lewis and F.K. Skinner

conductances, multi-compartment structures and active dendrites, phase-locking
behaviors can still be predicted from the G-functions. We note that the STRC
method, which is another method that uses PRCs to predict network behavior
(introduced in Chaps. 4 and 5), cannot be applied to networks with electrical
coupling. This is because the coupling current that flows between the cells is not
pulsatile and does not have a characteristic shape. Instead, the current flowing
between the cells is present throughout the oscillation cycle and is different for any
given phase-difference between the cells.

In this chapter, we have focused on networks of two identical noiseless cells.
However, as discussed in introductory Chap. 1, the theory of weak coupling can be
extended to include heterogeneity, noise and large numbers of cells. The maxima
of G-functions determine the robustness of the phase-locked states to heterogeneity
(e.g., Mancilla et al. 2007), and the effects of additive white noise on the distribution
of phase-differences is given by a formula that involves integrals of theG-functions
(Pfeuty et al. 2005; see also Chap. 1). Therefore, by examining how the shapes
of Zand VLC affect these quantities, one can explore the effects of noise and
heterogeneity in electrically coupled networks. Perhaps not so surprisingly, the
basic conclusions from the identical noiseless cell pairs largely carry over to these
more complicated situations. For example, Pfeuty et al. (2003) observed that large
heterogeneous networks of QIF neurons displayed the same phase-locking regimes
that they found for QIF cell pairs, except for regimes that occurred for particularly
small regions of parameter space. We should note, however, that fundamentally new
behavior can be observed in large networks with spatially localized connectivity. For
instance, Kazanci & Ermentrout (2007) showed transitions from global synchrony
to travelling wave activity in a network with localized weak electrical coupling.

Strictly speaking, weakly coupled oscillator theory only applies when the
coupling is sufficiently weak. However, qualitative results and general insights
obtained using this theory often hold for moderate coupling strengths. For example,
weakly coupled oscillator theory was used to determine three different regions of
phase-locking behaviors for varying levels of active dendrites in multi-compartment
models. When larger electrical coupling strengths were explored with simulations,
these different regions were still apparent (Saraga et al. 2006). Furthermore, we
note that techniques to explore strong electrical coupling are being developed using
piecewise linear models (Coombes 2008).

5.1 Other Considerations, Biological Details, and Future Work

Ultimately, we would like to obtain a functional understanding of the roles played
by gap junctional coupling in cortical systems. The goal of this chapter was to char-
acterize synchronization patterns brought about by electrically coupled networks
using the theory of weakly coupled oscillators. The use of theory is to expand
our understanding and insight over that obtained from direct numerical simulations
alone, to help obtain a functional understanding. However, it is sometimes the
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case that biologically detailed and realistic simulations can provide functional
insights that are strengthened by subsequent theoretical work or can be explained
by previous theoretical work. For example, work by Traub et al. (1999) using large,
detailed network simulations predicted the need for axo-axonic gap junctions for the
generation of high frequency population oscillations. Subsequent theoretical work
by Lewis & Rinzel (2000) using cellular automata was able to explain how the
resulting network frequencies occurred. In a large, detailed network of striatal FS
cells, Hjorth et al. (2009) suggested that gap junctions played more of a shunting
rather than a synchronizing role. This shunting aspect of gap junction coupling in
large interconnected networks was examined by Amitai et al. (2002) in neocortical
interneurons. These detailed electrically coupled network models included other
details involving chemical synaptic input characteristics relevant for the particular
situation.

The presence of both electrical and chemical synapses has motivated sev-
eral modeling and theoretical works (e.g., Gao & Holmes 2007; Kazanci &
Ermentrout 2007; Kopell & Ermentrout 2004; Lewis & Rinzel 2003; Pfeuty et al.
2005; Skinner et al. 1999). These works show the increased richness that emerges in
these networks. What remains to be explored is how realistic spatial architecture of
electrically coupled networks (Amitai et al. 2002) affects resulting synchronization
patterns.

Appendix 1

Leaky Integrate-and-Fire (LIF)

For the standard leaky integrate-and-fire (LIF), the ionic current is described only
by the leakage current

Iionic.V / D gm.V � Vr/;
where Vr is the reversal potential of the leakage current, gm is the membrane leakage
conductance of the cell. For Iapp > gm.Vth � Vr/, the T -periodic solution is

VLC .t/ D
�
Iapp

gm
C Vr

�
�
�
Iapp

gm
C Vr � Vreset

�
e� gm

C t :

D Vss � .Vss � Vreset/e
� t
�

where

Vss D
�
Iapp

gm
C Vr

�
; � D Cm

gm
;
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and the period is

T D � ln

�
Vss � Vreset

Vss � Vth

�
:

The infinitesimal phase-response curve for the LIF model (Hansel et al. 1995;
Neltner et al. 2000) is

Z.t/ D
8
<

:

�

Vss � Vreset
exp

�
t

�

�
; 0 < t < T

0; t D 0; T

:

Nondimensionalization: By taking

�j D Vj � Vr

Vth � Vr ;
Qt D t

Cm=gm
;

and

I D Iapp

gm.Vth � Vr/
; Q̌ D ˇ

gm.Vth � Vr/
; Qggap D ggap

gm
; �reset D Vreset � Vr

Vth � Vr
;

we obtain the following nondimensional LIF model for electrically coupled cells

dvj
dQt D �vj C I C Qggap.vk � vj /:

When �j reaches a threshold potential 1, cell j fires a ı-function spike of magnitude
Q̌ after which �j is reset to the potential 0. In the main text, the tildes on Qt , Q̌, and
Qggap are omitted for notational convenience.

Quadratic Integrate-and-Fire (QIF)

For the QIF, the ionic current is

Iionic.V / D gm
.VT � V /.V � VR/

.VT � VR/
D gm

.V � NV /2
V�

� Ib;

where VR and VT are the resting potential and “threshold” potential of the neuron,
respectively, for Iapp D 0, and gm is related to the resting membrane conductance.
NV D VT CVR

2
and V� D VT � VR. Ib D gm NV 2

V
�

acts as an intrinsic bias current.
Iionic.V / can be thought of as a combination of currents that captures the effects
of the leakage current and some of the threshold aspects related to the fast sodium
current. For Iapp > Ib , the T -periodic solution is
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VLC .t/ D NV C V�
p
1 tan

�p
1
t

�
C �.Vreset/

�
;

where

I D Iapp � Ib
gmV�

; �.V / D 1p
I

arctan

 
V� NV
V

�p
I

!

;

with a period of
T D �.�.Vth/ � �.Vreset//:

The infinitesimal phase-response curveZ.t/ for the QIF model is

Z.t/ D
8
<

:

�

V�
1p
1

cos2
�p

1
t

�
C �.Vreset/

�
; 0 < t < T

0; t D 0; T

:

Nondimensionalization: By taking

�j D Vj � NV
V�

; Qt D t

Cm=gm
;

and

Q̌ D ˇ

gmV�
; Qggap D ggap

gm
; �reset D Vreset � NV

V�
; �th D Vth � NV

V�
;

we obtain the following nondimensional QIF model:

d�j

d Qt D �2j C I C Qggap.�k � �j /;

When �j reaches a threshold potential �th, cell jfires a ı-function spike of
magnitude ˇ after which �j is reset to the potential �reset. In the main text, the tildes
on Qt , Q̌, and Qggap are omitted for notational convenience.

Appendix 2

Additional Equations and Parameter Values Used
for Three-Compartment Model

The following equations are the same for each compartment in each of cell 1 and 2,
with parameter values as given in the above table.
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Parameter Value Units

� 0.5 mS=cm2

C 0.8 �F=cm2

gs
Na 184 mS=cm2

gdd
Na; g

pd
Na 2.76 mS=cm2

gs
K 140 mS=cm2

gdd
K ; g

pd
K 2.1 mS=cm2

gL 0.0245 mS=cm2

VNa 55 mV
VK �90 mV
VL �60 mV
ggap 0.02 mS=cm2

Iionic D gNam
3h.V � VNa/C gKn

4.V � VK/C gL.V � VL/
dm

dt
D ˛m.1 �m/� ˇmm

dh

dt
D ˛h.1 � h/� ˇhh

dn

dt
D ˛n.1 � n/ � ˇnn

where

˛m D �0:1.V C 35/=.expŒ�0:1.V C 35/�� 1/

ˇm D 4 expŒ�.V C 60/=18�

˛h D 0:07 expŒ.V C 58/=20�

ˇh D 1=.expŒ�0:1.V C 28/�C 1/

˛n D �0:01.V C 34/=.expŒ�0:1.V C 34/�� 1/
ˇn D 0:125 expŒ�.V C 44/=80�
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