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Chapter 1

Introduction

1.1 Background

The brain is characterized in part by its large-scale synchronous oscillatory

electrical behavior [Buzsaki and Draguhn, 2004]. It is thought that synchronous

oscillations are involved in cognition, sensory perception, and memory, but

the exact mechanisms underlying synchrony and its exact function remain

unknown [Buzsaki and Draguhn, 2004]. It is currently believed that oscillations

in the θ (3.5 - 7 Hz) and γ (30 - 70 Hz) frequency ranges affect memory processes

and neural information encoding, while oscillations in the α (8 - 13 Hz) and

γ ranges correlate to cognitive attention [Ward, 2003; Sejnowski and Paulsen,

2006]. Synchronous oscillations appear to be ubiquitous throughout the brain.

For example, oscillations in the γ frequency band have been found in numerous

regions of the brain, including the neocortex, and oscillations in theθ frequency

band are commonly found in the hippocampus [Buszaki and Draguhn, 2004;

Buszaki, 2002]. However, these examples represent only a small fraction of the

frequencies where synchronous oscillatory activity has been observed, and we

are only beginning to understand the biophysical and dynamical mechanisms

underlying different oscillatory patterns [Ward, 2003].
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An understanding of the oscillatory dynamics of subnetworks of neurons

can provide insight into how and when synchronous oscillations arise in the

brain. For example, many local populations of inhibitory interneurons in the

cortex have been found to be extensively interconnected by electrical synapses

[Galarreta and Hestrin, 2001], which are thought to promote synchrony. While

there are many varieties of interneurons, electrical synapses are found predom-

inately between interneurons of the same subpopulation. [Gibson et al., 1999;

Beierlein et al., 2000]. This suggests that interneurons could be organized into

functional subnetworks of cells. Certain subnetworks of interneurons have

been found to play a fundamental role in the generation and maintenance of

synchronous cortical oscillatory activity [Galarreta and Hestrin, 2001; Fries

et al., 2007; Beierlein et al., 2000]. Although studies of electrically coupled

cortical networks indicate that electrical coupling generally promotes the syn-

chronization of electrical oscillations [Beierlein et al., 2000; Traub et al., 2001],

theoretical studies have indicated that weak electrical coupling can support an-

tisynchronous (i.e. antiphase) oscillatory activity in addition to synchronous

behavior [Sherman and Rinzel, 1992; Chow and Kopell, 2000; Lewis and Rinzel,

2003]. However, this antisynchronous activity has not been observed experi-

mentally, even though explicit attempts have been made to observe this phe-

nomena [Mancilla et al., 2007]. Thus, it is thought that the contributions of

certain intrinsic conductances in real neurons might “tune” networks for syn-

chrony [Pfeuty et al., 2003; Mancilla et al., 2007].



3

The intrinsic electrical dynamics of neurons are controlled by the dynamics

of numerous ionic channels. Potassium channels are among the most impor-

tant, as they control the speed of depolarization, the strength and length of

periods of hyperpolarization, and the duration of post-action potential refrac-

tory periods that prevent the formation of additional action potentials. More

than 100 different potassium channels have been identified, and comprise a

wide diversity of activation and deactivation properties. For instance, the

Kv3.1 channel activates on a relatively fast time scale, between 10 - 20 msec, and

also deactivates on a very fast time scale of 1.4 msec [see Coetzee et al., 1999].

Indeed, the Kv3.1 channel been found to deactivate at rates 7 - 10 times faster

than those of nearly all other known voltage-gated potassium channels [Coet-

zee et al., 1999]. The Kv3.1 channel also activates at a relatively high threshold

potential of −10mV. Conversely, the Kv1.3 channel activates on a slower time

scale than the Kv3.1 channel, one greater than 20 msec, and deactivates on a

slower time scale of 14 msec [Coetzee et al., 1999]. The Kv1.3 channel activates at

a threshold potential of −50mV. Because of the importance of potassium chan-

nels in neuronal dynamics and the diversity of their properties, it behooves us

to determine if and how the differences in potassium channel dynamics effect

the synchronous behaviors of neuronal networks.

Two recent studies have suggested that potassium currents can have dif-

ferent effects on the synchronization of electrically coupled neurons. Research

by Pfeuty et al. (2003) incorporated a model of a Kv1.3-like potassium current
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in a Hodgkin-Huxley type model and found that such a current promoted

synchronous oscillations. On the other hand, work by Mancilla et al. (2007)

that incorporated models of both Kv1.3 and Kv3.1 potassium currents found

that their inclusion promoted the formation of antisynchronous oscillations.

Clearly, there is no uniform effect of potassium currents on the synchronization

of electrically coupled oscillators. However, it seems likely that the exact activa-

tion and deactivation properties of individual potassium currents can influence

whether antisynchronous oscillatory behavior arises. In this thesis, we hope to

clarify how differences in the rates of activation and deactivation of potassium

channels can influence the oscillatory behavior of electrically coupled neurons.

1.2 Mathematical Models of a Pair of Electrically Coupled Neu-

rons

1.2.1 Neuronal Dynamics and the Hodgkin-Huxley model

The Hodgkin-Huxley model provides the formalism for the standard math-

ematical description of the electrical activity of a neuron [Hodgkin and Huxley,

1952]. It is based on the idea that the electrical properties of a neuron can be

described by an equivalent electrical circuit. In this circuit, the current flowing

across the membrane has two basic components: one is associated with charg-

ing the membrane capacitance and other is the “ionic currents” which are asso-

ciated with the movement of ions across the membrane through specific ionic

channels. The ionic current in the Hodgkin-Huxley model is subdivided into
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distinct components corresponding to different types of channels: a sodium

current INa, a potassium current IK, and a leakage current IL that accounts for

all other ionic contributions.

The set of differential equations describing the Hodgkin-Huxley model is

Cm
dV
dt
= −INa − IK − IL + Iapplied

where

INa = gNam3h(V − ENa)

IK = gKn4(V − EK)

IL = gL(V − EL)

(1.2.1)

and

dy
dt
= αy(V)(1 − y) − βy(V)y

y∞(V) =
αy(V)

αy(V) + βy(V)

τy(V) =
1

αy(V) + βy(V)

where y = n,m, h.

(1.2.2)

Equation (1.2.1) is a conservation of current equation where Cm is the capac-

itance of the cell membrane, V is the cellular transmembrane potential, and

Iapplied is an external applied current. Each of the ionic currents can be modeled

by an ohmic resistance in series with a “battery”, i.e. an electrochemical driv-

ing force that arises due to the differences in ionic concentrations across the

cell membrane. The sodium and potassium conductances (gNam3h and gKn4,
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respectively) are modeled with variable resistances that are determined by

time-dependent and voltage-dependent “gating” variables (m, h,n); the leak-

age conductance is modeled with a constant resistance. The parameters gNa

and ENa are the maximal conductance and the reversal potential for sodium,

respectively; gK and EK are the maximal conductance and the reversal potential

for potassium, respectively; gL and EL are the leakage conductance and the

leakage potential, respectively. The reversal potentials are determined by the

internal and external concentration of ions according to the Nernst equation

and are typically ENa ≈ 50mV, EK ≈ −75mV, and EL ≈ −55mV [Dayan and

Abbott, 2001]. Note that, the sodium current acts to depolarize the neuron,

i.e. make the membrane potential less negative, because of the relatively high

value of its reversal potential, and that the potassium current acts to hyperpo-

larize the neuron, i.e. make the membrane potential more negative, because of

its relatively low value of its reversal potential.

The ionic currents are controlled by the gating of their ion channels. In

the Hodgkin-Huxley model, m and h are the gating variables for the sodium

channels, and n is the gating variable for the potassium channels. Individually,

each of the gating variables, (m, h,n), can be thought of as a probability that a

corresponding gate subunit is open, i.e., does not inhibit ionic flow through the

channel pore. All gate subunits of an ion channel must be open for its channel

to be open. Each sodium channel has three of the m-type activation gates and

one h-type inactivation gate, while each potassium channel has four of the
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n-type activation gates. If we assume that all gates act independently, then

m3h and n4 give the probability that any given sodium or potassium channel

is open, respectively. As the cell membrane contains numerous sodium and

potassium channels, m3h and n4 can alternatively be interpreted as the fraction

of open sodium and potassium channels, respectively. Thus, the sodium and

potassium conductances at a given state are gNam3h and gKn4, respectively.

Equation (1.2.2) describes the dynamics of each gating variable. αy(V)

is the voltage dependent gate-subunit opening rate and βy(V) is the voltage

dependent gate-subunit closing rate. Both αy(V) and βy(V) are determined by

experimental fit via voltage clamp data. The dynamics of the gating variables

can be more clearly understood by considering y∞(V) and τy(V). y∞(V) gives

the gating variable’s steady state value, the value to which y will evolve for a

fixed membrane potential V. τy(V) gives the gating variable’s time constant,

which quantifies how rapidly the gating variable approaches its instantaneous

steady state value, y∞(V).

Figure 1.2.1 plots the V-dependent the time-constant, τy(V), and steady

state, y∞(V), of the gating variables as a function of the membrane potential.

The steady state values show the value that the gating variable will evolve to

if the membrane potential is kept constant. Note that, when y∞ = 0, all of the

y-gating subunits evolve to the closed state, and when y∞ = 1, all of the y-

gating subunit evolve to the open state. At low voltages, the h-gating subunits

tend to evolve to the closed state and the m- and n-gating subunits tend to
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Figure 1.2.1: The voltage dependence of the gating variables. (i) Steady state
value of the gating variables as a function of fixed V. n∞, m∞, and h∞ are
solid, dashed, and dotted lines, respectively. (ii) Time constants of each gating
variable. τn, τm, and τh are solid, dashed, and dotted, respectively. The smaller
the time constant, the faster the gating variable reacts to changes in voltage.
The m gating variable reacts quickly to voltage changes, while the h gating
variable reacts much more slowly, especially at lower voltages.

evolve to the open state. At high voltages, the converse occurs (Figure 1.2.1(i)).

Because of this behavior, the h-gating subunits are also known as inactivation

gates, and the m and n-gating subunits are also called activation gates. Each

gating variable’s time constant indicates how rapidly the gating subunit reacts

to changes in membrane potential at a given voltage. The smaller the value of

τy(V), the faster the gating variable reacts to voltage changes. In general, the

m-gating subunits are much faster to react to voltage changes than the n- or

h-gating subunits (Figure 1.2.1(ii)).

In the absence of an external applied current, (i.e. Iapplied = 0), a Hodgkin-

Huxley model neuron remains at an equilibrium potential of about −65mV.
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The small sodium and potassium currents counterbalance the leakage current

and force the membrane potential to this equilibrium value.

If a transient positive external current is applied to the cell, the neuron’s

membrane potential will increase. The size of this membrane potential increase

depends on the magnitude and the duration of the applied current. In Figure

1.2.2(i), the dot-dashed line shows the effects of a small magnitude current.

Iapplied is increased from 0 to 2nA at time t = 5msec. The membrane poten-

tial briefly increases before decreasing to a new, slightly higher equilibrium

potential. In Figure 1.2.2(i), the solid line shows an action potential in the

Hodgkin-Huxley model. At t = 0, the neuron is at equilibrium as Iapplied = 0. At

time t = 5msec, Iapplied is increased from 0 to 10nA. The addition of the applied

current Iapplied causes the membrane potential to increase above a threshold

potential. This elicits an action potential, which is characterized by a rapid

increase in the membrane potential followed by a fast repolarization.

Examining the evolution of the gating variables provides insight into the

formation of an action potential. Figure 1.2.2(ii) shows how the gating vari-

ables evolve during an action potential. As the voltage increases due to the

application of Iapplied, the m-gating variable rapidly increases and begins to ac-

tivate the sodium conductance. The activation of the sodium conductance

causes the membrane potential to depolarize further, which in turn causes the

m-gating variable to rapidly increase further, and thus forming a positive feed-

back loop and the large, fast action potential upstroke. Note that concurrently,
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Figure 1.2.2: An action potential in the Hodgkin-Huxley model neuron. (i)
In the time period [0, 5msec], Iapplied = 0 and the neurons is at Vm � −65mV. At
t = 5msec, Iapplied is set to 10nA (solid) and 2nA (dot-dashed). The addition of
Iapplied = 10nA leads to a rapid increase in membrane potential, V, then a fast
repolarization. After repolarization, the cell slowly depolarizes back towards
the equilibrium state. If Iapplied = 2nA, the membrane potential increases but
remains below the threshold potential. Therefore, no action potential occurs,
and the neuron settles to a new, higher equilibrium potential (ii) The evolution
of the gating variables n (solid), m (dashed), and h (dotted) in response to the
changes in voltage as shown in (i) for the addition of Iapplied = 10nA (solid line).
[Parameters and gating variable function are as described in Dayan and Abbott,
2001, p. 173]

the h-gating variable decreases in response to increases in membrane potential.

However, because the h-gating variable responds much more slowly to voltage

changes than the m-gating variable, the sodium conductance is able to activate

and form the positive feedback loop before the h-gating variable significantly

inactivates the sodium conductance. At the same time, the n-gating variable

increases as the voltage increases. However, like the h-gating variable, the n-

gating variable increases more slowly than the m-gating variable, and thus the

activation of the potassium conductance lags that of the sodium conductance.
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After a lag of a few milliseconds, the potassium conductance attains a sig-

nificant level of activation and the sodium conductance becomes significantly

inactivated. Therefore, the potassium conductance then causes a sharp repo-

larization of the neuron. If this repolarization drives the membrane potential

below the resting potential, the neuron is said to have hyperpolarized. During

the hyperpolarization phase, the m-gating variable quickly returns to a steady

state value, m∞(V) ∼ 0, and the sodium conductance is deactivated. The n-

gating variable more slowly returns to a steady state value, n∞(V) ∼ 0. Thus,

the potassium conductance decays and the leakage current returns the neuron

towards its resting equilibrium.

Immediately following an action potential, especially during a hyperpolar-

ized period, it can be difficult or impossible to induce a new action potential via

new stimulation. This property is known as refractoriness, and can be either

absolute or relative. During an absolute refractoriness period, it is impossible

to initiate the creation of another action potential, regardless of the strength of

the stimulus. During a relative refractoriness period, it is possible to create an

action potential but the threshold potential for its creation is increased. The

refractory periods are due to the delay of the h- and n-gating variables to re-

turn to their values at equilibrium. As the neuron exits its refractory period, it

becomes easier to evoke an action potential.

If the applied current, Iapplied, is held constant at a supra-threshold value, i.e.

above a certain threshold, a subsequent action potential can form. Indeed, this
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process can continue indefinitely in a periodic fashion (Figure 1.2.3).
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Figure 1.2.3: Oscillations in the Hodgkin-Huxley model. In the time period
[0, 5msec], Iapplied = 0 and the model neuron is at Vm � −65mV. At t = 5msec,
Iapplied is set to 10nA. (i) Oscillations in the Hodgkin-Huxley model under a
constant current. (ii) Evolution of the gating variables n (solid), m (dashed),
and h (dotted) in response to the changes in voltage as shown in (i).

Since Hodgkin and Huxley first described their model for the squid giant

axon in the 1950’s, the Hodgkin-Huxley model formalism continues to be used

because it reproduces electrophysiological measurements of neurons to a high

degree of accuracy [Bower and Beeman, 1995; Koch and Segez, 1989]. It also

provides a framework for the integration of additional types of ionic currents,

such as the additional potassium current we add in Chapter 4.

1.2.2 The Leaky Integrate and Fire

The complexity of the Hodgkin-Huxley model makes it difficult to gain

analytic insight. This limitation of the Hodgkin-Huxley model can be overcome

by using an idealized model of neuronal dynamics which only captures the
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basic properties of neurons, such as the Leaky Integrate and Fire (LIF) model.

Instead of allowing the gating variables to determine the properties of the

action potential, the standard LIF model includes only the leakage current and

ignores the details of the action potential entirely. Whenever the membrane

potential reaches a prescribed threshold potential, Vth, the neuron is said to

“fire” an action potential and the membrane potential is immediately set to a

reset potential, Vreset. Thus, the effects of the sodium and potassium currents

are described by the threshold and reset conditions.

The intrinsic dynamics of the standard LIF model with a constant applied

current are described by

Cm
dV
dt
= −gL(V − EL) + Iapp

where if V(t−∗ ) = Vth, then V(t+∗ ) = Vreset.

(1.2.3)

As in the Hodgkin-Huxley model, t is time, Cm is the membrane capacitance,

V is the transmembrane potential of the cell, gL(V − EL) is the leakage current,

and Iapp is a current applied to the cells.

For a constant applied current Iapp and the initial condition V(0) = Vreset, the

sub-threshold solution to the LIF model (1.2.3) is given by the following:

V(t) = Vreset +
Iapp + gL(EL − Vreset)

gL
(1 − e−

gL
Cm t).

Note that if Iapp ≤ gL(Vth − EL) that the cell approaches a steady state V∗ =

EL + Iapp/gL ≤ Vth and does not fire. Conversely, if Iapp ≥ gL(Vth − EL), then V
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increases from Vreset until V = Vth ≤ EL + Iapp/gL, at which point the cell fires, V

is reset to Vreset, and the process repeats, producing periodic firing of period

T =
cm

gL
ln

(
Iapp + gL(EL − Vreset)
Iapp + gL(EL − Vth)

)
.

Figure 1.2.4 illustrates examples of sub-threshold steady state behavior and

periodic activity. Note that the LIF model captures the basic behavior of the

Hodgkin-Huxley model as illustrated in Figure 1.2.3(i).

0 50 100 150 200 250
�80

�70

�60

�50

�40

�30

�20

t (ms)

V
 (

m
V

)

Figure 1.2.4: LIF dynamics subject to a constant applied current. The dot-
dash line corresponds to Iapp ≤ gL(EL − Vreset) with Iapp = 1nA. This solution
approaches a steady state that is less than the threshold voltage, and thus no
action potential is fired. The solid line solution corresponds to Iapp ≥ gL(EL −
Vreset) with Iapp = 1.6nA. This solution evolves to the threshold voltage and
allows for the creation of action potentials. For both cases, Vth = −50mV,
Vr = −65mV, Vreset = −80mV, gL = .1μS, and Cm = 1nF.
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The standard LIF model can be extended to include a proscribed action po-

tential which is “fired” when the neuron reaches its threshold potential. While

the inclusion of a proscribed action potential does not influence the dynamics

of an individual LIF neuron, its inclusion does affect the dynamics of electri-

cally coupled LIF neurons. Here, we shall use a δ-function “spike” to model

the action potential, given by βδ(t), where δ(t) is the δ-function, and β is a mea-

sure of the size of the spike [Lewis and Rinzel, 2003]. Thus, when V reaches a

threshold potential, Vth, from below, the cell “fires a spike” of size β. V is then

set to the reset potential, Vreset.

1.2.3 Electrical Coupling

Electrical coupling between neurons is well-described by a simple ohmic

resistance [Bennett and Zukin, 2004]. That is, the current flow from cell 1

into cell 2 can be described by Icoup = gc(V1 − V2), where gc is the constant

conductance of the electrical coupling and V1 and V2 are the voltages for cell

1 and cell 2, respectively. Therefore, to model electrical coupling, Icoup must be

added to the current balance equation in the neuron models. Thus, a model

describing a pair of identical, electrically coupled LIF neurons is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Cm

dV1

dt
= −gL(V1 − EL) + Iapp + gc(V2 − V1)

Cm
dV2

dt
= −gL(V2 − EL) + Iapp + gc(V1 − V2)

(1.2.4)
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where if Vi(t−∗ ) = Vth, then the cell spikes and is reset,

Vi(t∗) = βδ(t∗) and Vi(t+∗ ) = Vreset for i = 1, 2.

Note that, it is important to include an explicit spike in the electrically coupled

LIF neuron model, as the large depolarization during an action potential can

greatly affect the membrane potential of the coupled cell, and thus affect the

dynamics of phase-locking. Without the spike, the coupling term only accounts

for sub-threshold activity, i.e. the rapid re-polarization during an action po-

tential that is captured by the reset of a neuron from Vth to Vreset (i.e., standard

LIF).

In non-dimensionalization terms, the system is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv1

dt̄
= −v1 + I + ḡc(v2 − v1)

dv2

dt̄
= −v2 + I + ḡc(v1 − v2)

(1.2.5)

where if vi(t−∗ ) = vth = 1, then the cell spikes and is reset,

vi(t∗) = βδ(t∗) and vi(t+∗ ) = vreset = 0 for i = 1, 2,

where vi = (Vi −Vreset)/(Vth −Vreset), t̄ = t/(cm/gL), ḡc = gc/gL, β̄ = β/(Vth −Vreset),

and I = (Iapp + gL(EL − Vreset))/(gL(Vth − Vreset)). Note that this reduces the

number of parameters from seven to three and sets vreset = 0 and vth = 1. For

convenience, we will omit the bars over the parameters for the duration of the

chapter.
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1.3 Theory of Weakly Coupled Oscillators & Reduction to Phase

Models

The theory of weakly coupled oscillators allows for the reduction of the

dynamics of any pair of weakly coupled oscillating neurons to a single equation

that governs the phase difference between the two oscillatory cells [Kuramoto,

1984]. This simplified model, known as a phase model, allows for extensive

analysis and insight into the existence and stability of the phase-locking states

of the coupled systems. This approach is often used in the analysis of networks

of neurons, e.g. Ermentrout and Kopell (1991), Grannan et al. (1993), Hansel

et al. (1995), Golomb et al. (2001), Ermentrout and Kleinfeld (2001), and Lewis

and Rinzel (2003). Below, we present a derivation of the phase-model for

electrically coupled neurons.

Consider a pair of identical, weakly electrically coupled neurons (e.g. sys-

tem (1.2.5) with “small” gc), where each isolated neuron oscillates with a period,

T, and that this oscillation is the result of a strongly attracting limit cycle. We

define the voltage component of the limit cycles as vLC(t) (where t ∈ [0,T]). Be-

cause of the weak coupling, the dynamics of each individual cell is dominated

by its intrinsic dynamics rather than the dynamics of the coupled cell. Thus,

each coupled cell strongly adheres to its intrinsic limit cycle vLC(t) and has a

period very close to T. The state of each cell is therefore well described solely

by its position or “phase” on the limit cycle, where the phase of cell j is defined

as φ j(t) = [(t/T) mod 1], where t ∈ [0,T], φ j ∈ [0, 1] (phase 0 is an arbitrary point
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on the limit cycle). Although each cell is dominated by its intrinsic dynamics,

the weak electrical coupling between the cells can cause small changes in the

relative phases of the cells. While these changes are negligible over a single

cycle, these small effects can accumulate over many cycles and lead to specific

phase-locking patterns between the cells (i.e. synchrony, antisynchrony, or

other asynchronous patterns). This relationship can be quantified by the phase

difference between two cells, given by φ = φ j − φk.

To understand these small phase shifts due to coupling, we first need to

know how each cell will react to a “small, brief” current pulse at a given phase

and how much current will be delivered by its coupled cell at a given time. The

infinitesimal phase resetting curve (iPRC), Z(t) quantifies how each cell will

react to a small, brief current pulse at any given phase in the cell’s cycle. To

determine Z(t), suppose that a small current of amplitude A and duration Δt̃ is

delivered to cell j at a phase in the oscillation corresponding to φ j = t̃/T, and

it causes a phase shift of Δφ. The iPRC is the phase shift as a function of the

phase of the stimulus, t̃, normalized by the total charge of the stimulus current,

AΔt̃.

Z(t̃) =
Δφ

AΔt̃
. (1.3.1)

As long as AΔt̃ is sufficiently small, Z(t) is approximately independent of the

size of the stimulus.



19

The amount of current that cell j receives at time t̃ due to its electrical

coupling to cell k is given by

Icouplingj,k(t̃) = gc[Vk(t) − Vj(t)] � gc[vLC(t̃ + φkT) − vLC(t̃ + φ jT)]. (1.3.2)

Using Z(t), (Equation (1.3.1)), and setting its current amplitude A to be the

coupling current Icoupling, the coupling current flowing during the time t to t+Δt̃,

(Equation (1.3.2)), we can find the approximate shift in relative phase of cell j

due to the coupling current from cell k over the small time Δt̃,

Δφ j = Z(t̃ + φ jT)gc[vLC(t̃ + φkT) − vLC(t̃ + φ jT)]Δt̃. (1.3.3)

Dividing both sides of Equation (1.3.3) by Δt̃ and taking the appropriate limit

as Δt̃ → 0 gives a differential equation governing the evolution of the relative

phase φ j due to coupling,

dφ j

dt̃
= Z(t̃ + φ jT)gc[vLC(t̃ + φkT) − vLC(t̃ + φ jT)]. (1.3.4)

Because we assume that the neurons are weakly coupled, gc is small, implying

that the time scale for the evolution of the relative phase φ j is much larger than

that of the period, T. Therefore, we can average the right hand side of Equation

(1.3.4) over the full period of an oscillation while holding φ j and φk fixed to
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obtain an equation that describes the rate of change in φ j on a slow time scale

dφ j

dt̃
=

1
T

∫ T

0
Z(t̃ + φ jT)gc[vLC(t̃ + φkT) − vLC(t̃ + φ jT)]dt̃

=
1
T

∫ T

0
Z(t̃)gc[vLC(t̃) − vLC(t̃ − (φ j − φk)T)]dt̃

= H(−(φ j − φk)).

(1.3.5)

Note that the explicit time dependence of equation (1.3.4) has been eliminated.

By subtracting the differential equation (1.3.5) for cell 2 from that for cell

1, a single differential equation which describes the evolution of the phase

difference between the two coupled cells, φ = φ1 − φ2, is obtained.

dφ
dt
= H(−φ) −H(φ) = G(φ) (1.3.6)

The so-called “G-function” allows for the use of familiar nonlinear dynamics

analysis to determine how changes to the parameters can lead the coupled os-

cillators to evolve to stable phase-locked states [Strogatz, 1994]. As a reminder,

G(φ∗) = 0 indicates thatφ∗ is a phase-locked state. The stability of phase-locked

states can be determined by the sign of G′(φ∗). If G′(φ∗) > 0, the phase-locked

state is unstable, and if G′(φ∗) < 0, the phase-locked state is stable. When

two identical neurons are electrically coupled, as a result of symmetry, φ = 0

and φ = T/2 are always fixed points. In the following chapters, we use the

G-function to probe how changes in parameters, particularly those associated

with an explicit potassium current, affect the stability of the antisynchronous
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phase-locked state, φ = T/2.

1.4 Previous Modeling Results

1.4.1 Integrate and Fire Models

Recent theoretical work has shown that two electrically coupled neural os-

cillators can exhibit both stable synchrony and asynchrony [Chow and Koppell,

2000; Lewis and Rinzel, 2003; Lewis, 2003]. Chow and Kopell (2000) used an

integrate and fire model to show that the shape and size of the action potentials

and the strength of the gap junction plays an important role in the existence and

stability of phase locked states in electrically coupled neurons. Using the elec-

trically coupled LIF model given in Equation (1.2.5), Lewis and Rinzel found

that cell pairs connected by electrical coupling can support both synchronous

and asynchronous firing below a critical frequency. Additionally, they found

that increasing the size of the instantaneous threshold spikes decreased the

frequency range where antisynchronous firing patterns were stable.

As the research presented in this thesis is an extension of the work published

in Lewis and Rinzel (2003), their methods and specific results are reproduced

here.

Numerical simulations of the pair of electrically coupled LIF model neurons

(Equation (1.2.5)) show that changes in action potential frequency can affect

whether the neurons evolve to a stable synchronous or antisynchronous firing

pattern (Figure 1.4.1).
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Figure 1.4.1: Response patterns of a electrically coupled LIF cell pairs. For both
graphs, β = 0.2 and gc = 0.2 with initial conditions of vj = 0.59 and vk = 0.0.
The black lines and green lines correspond to cell j and cell k respectively. In (i)
where I = 1.1, the cells fire at a relatively low intrinsic frequency and cells can
exhibit stable antisynchronous activity. In (ii) where I = 1.6 there is a relatively
high intrinsic frequency and the cells synchronize.

To gain analytical insight, the system was reduced to a phase model. The

membrane potential of an isolated non-dimensionalized LIF neuron during

T-periodic oscillations is described by

vLC(t) = I(1 − e−t) + βδ(t − T) for 0 < t < T,

where T = ln
(

I
I − 1

)
.

(1.4.1)

The iPRC is

Z(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

et

IT
for 0 < t < T.

0 for t = 0,T.
(1.4.2)

(See Appendix A.1 for a derivation of Z(t).)
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Therefore, the G-function for the electrically coupled LIF cell pair can be

calculated through the steps outlined in Section 1.3 (and Appendix A.2). This

gives

Gc(φ) =
1
T

∫ T

0
Z(t)gc

[
(vLC(t − φT) − vLC(t + φT))

]
dt

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

gc

T
[GSUB(φ) + GSPIKE(φ)], for 0 < φ < 1,

0, for φ = 0, 1.
(1.4.3)

where

GSUB(φ) = 2
(
φ sinh((1 − φ)T) − (1 − φ) sinh(φT)

)
, for 0 ≤ φ ≤ 1,

GSPIKE(φ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β
[
eφT − eT(1−φ)

]
for 0 < φ < 1,

0 for φ = 0, 1.

Note that the strength of coupling, gc, does not affect the existence or stability

of phase-locked states. It simply scales the G-function and therefore, only

affects the speed with which the system approaches or retreats from a phase-

locked state.

Figure 1.4.2(i) shows the full G-function for f = 0.49, I = 1.15 and β = 0.1.

Both the synchronous states (black diamonds) and the antisynchronous state

(black circle) are stable. The unstable asynchronous states (open circles) define

the boundaries between the region of attraction between the stable synchronous

and antisynchronous phase-locked states.

The G-function is composed of two terms: GSPIKE(φ), which accounts for the
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Figure 1.4.2: G-functions for weakly electrically coupled LIF cell pairs. (i)
The full G-function for I = 1.15. Filled squares, filled circles, and open circles
indicate the stable synchronous state, the stable antisynchronous state, and the
unstable asynchronous states respectively. In (ii) and (iii), dashed, solid, and
dot-dashed lines correspond to I = 1.05, I = 1.15, and I = 1.3 respectively.
(ii) The portion of the G-function that accounts for the effects of the supra-
threshold portion of the spike. This portion of the G-function always tends to
synchronize activity. (iii) The portion of the G-function that accounts for effects
of the sub-threshold activity. This portion of the of the G-function always tends
to desynchronize activity. In all panels gc = 1, β = .1.
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supra-threshold portion of the spike, and GSUB(φ), which accounts for the sub-

threshold activity of the cell. Note that, when β = 0, Gc(φ) is equal to GSUB(φ).

GSUB(φ) shows that for the given parameters, that the synchronous state is

unstable and the antisynchronous state is stable (Figure 1.4.2(iii)). Conversely,

GSPIKE(φ) always tends to synchronize the coupled cells (Figure 1.4.2(ii)). That

is, this term has a stabilizing effect on the synchronous phase-locked state and

a destabilizing effect on the antisynchronous phase-locked state. Note that this

term is scaled by the size of the spike, β, and that increases in β lead to increased

stability of the synchronous state and decreased stability of the antisynchronous

state. Because Gc(φ) is the scaled linear combination of GSPIKE(φ) and GSUB(φ),

the relative contributions of both portions of GSPIKE(φ) and GSUB(φ) determine

the stability of the antisynchronous state.

The bifurcation diagram is an efficient way to show how the phase-locking

behavior of the electrically coupled LIF neurons depends on the parameters

for the neurons over a range of values (Figure 1.4.3). For small I, both antisyn-

chrony and synchrony are stable, while for large I, only synchrony is stable.

I∗c denotes the critical value of I at which the antisynchronous state, φ = 0.5,

switches stability. I∗c depends on the strength of the spike, β. The relation-

ship between I∗c and the spike strength, β, can be found by investigating where

G′(0.5) = 0. This gives

β =
(
I∗c − 1

2

)
ln

( I∗c
I∗c − 1

)
− 1, (1.4.4)
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Figure 1.4.3: Bifurcation diagram for the LIF cell-pair with weak electrical
coupling with β = 0.1. Solid and dashed lines indicate stable and unstable
phase-locked states respectively. I∗c indicates the critical value of I at which the
antisynchronous state φ∗ = 0.5 changes stability. Where I > I∗c only synchrony
is stable; where I < I∗c both synchrony and antisynchrony are stable.

which implies that I∗c increases as β decreases. That is, the spike suppresses the

stability of the antisynchronous phase-locked state.

Note that one gains considerable insight into the mechanisms generating

the phase locking dynamics by understanding how the model parameters affect

Z(t), vLC(t), and G(φ).

1.4.2 Effects of Potassium Currents

Ermentrout et al. (2001) studied the effects of a slow, voltage-dependent

potassium current on the synchronization of a pair of conductance-based model
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neurons connected by excitatory chemical synapses. They found that the mag-

nitude of the potassium current can affect the stability of the synchronous

phase-locked state. At a fixed frequency of 40 Hz, the synchronous phase-

locked state is stable when the magnitude of the potassium current is small. As

the magnitude of the potassium current is increased, the synchronous phase-

locked state becomes less robustly stable. For a sufficiently large magnitude of

the potassium current, the synchronous phase-locked state becomes unstable.

Interestingly, the antisynchronous phase-locked state remains stable regardless

of the magnitude of the potassium current.

Studies by Pfeuty et al. (2003) and Mancilla et al. (2007) investigated the

effects of potassium currents on the synchronization of electrically coupled

neurons. Pfeuty et al. modified the magnitude of two potassium currents, a

delayed rectifier current and a slow, modified Kv1.3 type current, in numerical

simulations to see how these currents effected synchronization. They found

that both types of potassium currents independently promote the synchroniza-

tion of the coupled cells. As an analog to their full conductance based model,

Pfeuty et al. considered a quadratic integrate and fire (QIF) model, which

similarily to the LIF model, qualitatively captures the dynamics of a neuron.

Pfeuty et al. used the QIF model to link the synchronizing effects of potassium

conductances to a “rightward” shift in the peak of the phase response curve

Mancilla et al. (2007) considered both Kv1.3 and Kv3.1 type potassium channels

as described by Erisir et al. (1999) in a conductance based model. They found
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that both conductances promoted stabilization of the antisynchronous state.

Mancilla et al. found that Kv1.3 shifted the PRC leftwards, while Kv3.1 shifted

the PRC rightwards. Additionally, Mancilla et al. compared their theoretical

model to biological data from neocortical inhibitory interneurons. They found

that unlike the model cells, the real neurons were never able to support antisyn-

chronous oscillatory activity. Furthermore, they found no significant difference

between the location of peaks in model PRCs and experimentally determined

PRCs, suggesting that it is unlikely that changes to the PRC alone are responsi-

ble for determining phase-locking behavior. Mancilla et al. provided evidence

that differences in the shapes of the action potential and after-hyperpolarization

currents are responsible for the differences between phase-locking in the mod-

eled neurons and real neurons.

In this thesis, we hope to extend on both of these studies, and clarify how

intrinsic differences in potassium channels can influence the phase-locking

behavior of electrically coupled neurons.

1.5 Outline of Thesis

In this thesis, we study the effects of potassium currents on the synchro-

nization of electrically coupled neural oscillators. We take advantage of the

finding of Jolivet et al. (2004) that the reduction from a full conductance

based Hodgkin-Huxley type model to an Integrate and Fire (IF) type model

can quantitatively capture the dynamics of the more detailed full conductance
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based model. Therefore, in Chapters 2 and 3, we will extend the LIF model

as used by Lewis and Rinzel (2003) to gain analytic insight into the effect of

potassium currents on synchronization, and then check in Chapter 4 whether

these results hold in a full Hodgkin-Huxley type conductance based model.

In Chapter 2, we introduce two explicit potassium currents that activate

during the hyperpolarization (reset) of a neuron following an action potential.

We first show how these currents affect a single uncoupled LIF neuron. Next,

we electrically couple two LIF neurons with explicit potassium currents and

show that the explicit potassium currents can affect the stability of of phase-

locked states via numerical simulations. To gain insight into how changes

in parameters can affect the stability of phase-locked states, we reduce our

system of electrically coupled LIF neurons with explicit potassium current to

a phase model. We investigate the G-function to understand how the explicit

potassium current affects the existence and stability of phase-locked states. We

then dissect the G-function and examine its decomposition to gain insight into

the mechanisms underlying synchronization.

In Chapter 3, we again add a potassium current to the standard LIF model;

however, we use a voltage-dependent potassium current. Similar to Chapter 2,

we examine the effects of the voltage-dependent, conductance based potassium

current on a single LIF neuron, before examining how the addition of the

conductance based potassium current affects the synchronization of electrically

coupled LIF neurons. As before, we use numerical simulations and a reduction
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to phase models to examine how this conductance based potassium current

affects the existence and stability of phase-locked states. Additionally, we

compare the results from this chapter with those of Chapters 2 to see whether

the results from the simpler model hold in an increasingly realistic one.

In Chapter 4, we use a modified Hodgkin-Huxley type model to investigate

how differences in potassium channel dynamics effect the synchronization

of electrically coupled neurons. Through numerical simulations and phase

models, we compare results from this model with those of our earlier models

in order to see whether the results hold in a more biologically realistic model.
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Chapter 2

Leaky Integrate and Fire (LIF) with an Explicit

Potassium Current

In this chapter, we modify the standard LIF model by adding explicit spike-

activated potassium currents. We consider both a “summing” potassium cur-

rent and a “non-summing” potassium current. For both kinds of explicit potas-

sium currents, an action potential instantaneously triggers the activation of the

potassium current, and the current exponentially decays after the action poten-

tial. The summing potassium current models a current that linearly sums all

potassium currents activated by successive action potentials, which is a good

approximation when an ionic conductance is far from saturation. The non-

summing potassium current models a current that rapidly activates so that it

attains its (near) maximal value during each spike, i.e., the current saturates

with each spike. We determine how the addition of the explicit potassium

current affects the dynamics of a single LIF neuron and investigate how the

addition of the explicit potassium current affects the phase-locking behavior of

a pair of electrically coupled neurons.

2.1 Model Description

2.1.1 LIF with an Explicit Summing Potassium Current
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The LIF model with the addition of the summing potassium current is

Cm
dV
dt
= − gL(V − EL) + Iapp + ηKs(t),

where if V(t−∗ ) = Vth, then

(i) the cell spikes and is reset,

V(t∗) = βδ(t∗) and V(t+∗ ) = Vreset

(ii) the spike times are updated t0 = t∗, tn−1 = tn

(iii) the spike-triggered decaying potassium current is activated such that

ηKs(t) =
0∑

n=−∞
−qs

1
τ

e−(t−tn)/τ.

(2.1.1)

The potassium current is the linear sum of the individual potassium currents

triggered by each spike (which occurred at time tn). The parameter τ is the

time constant of the deactivation of the potassium current, and −qs is the total

charge carried by the potassium current triggered by each spike, i.e., ηKs(t) is

normalized by 1/τ. β scales the effect of the supra-threshold portion of the

spike.

2.1.2 LIF with an Explicit Non-Summing Potassium Current

The LIF model with the addition of the non-summing potassium current is

Cm
dV
dt
= −gL(V − EL) + Iapp + ηKns(t),
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where if V(t−∗ ) = Vth, then

(i) the cell spikes and is reset,

V(t∗) = βδ(t∗) and V(t+∗ ) = Vreset

(ii) the time of the most recent spike is updated t0 = t∗

(iii) the spike-triggered decaying potassium current is activated such that

ηKns(t) = −qs
1
τ

e−(t−t0)/τ for t ≥ t0.

(2.1.2)

The potassium current is triggered by the most recent spike at time t0. As for

the summing potassium current, the parameter τ is the time constant of the

deactivation of the potassium current and the parameter−qs is a measure of the

strength of the potassium current and β scales the effect of the supra-threshold

portion of the spike

2.1.3 Non-dimensionalization

We apply a similar non-dimensionalization as presented in Chapter 1. We

let v = (V − Vreset)/(Vth − Vreset), so that vreset = 0 and vth = 1. Likewise, we

let t̄ = t/(Cm/gL). After applying this non-dimensionalization, we group our

parameters as such: τ̄ = τ/(Cm/gL), β̄ = β/(Vth − Vreset), I = (Iapp + gL(EL −

Vreset))/(gL(Vth − Vreset)), ḡK = qs/(Cm(Vth − Vreset)), and η̄K(t̄) = ηK(t/τ). In the

non-dimensionalized form, Ī is the dimensionless applied current, τ̄ is the

dimensionless time constant of the potassium current, and ḡK is the dimen-

sionless strength of the explicit potassium current. For convenience, the bars
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over the parameters will be omitted for the remainder of this chapter. Thus,

the non-dimensionalized LIF model with an explicit potassium current is

dv
dt
= −v + I − gKηK(t)

where if v(t−∗ ) = vth, then

(i) the cell spikes and is reset,

v(t∗) = βδ(t∗) and v(t+∗ ) = vreset

(ii) the spike times are updated t0 = t∗, tn−1 = tn

(iii) the spike-triggered decaying potassium current is activated such that

ηK(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ηKs(t) =

0∑
n=−∞

1
τ

e−(t−tn)/τ for t ≥ t0,

ηKns(t) =
1
τ

e−(t−t0)/τ for t ≥ t0.

(2.1.3)

2.2 Effects of the Explicit Potassium Current on Firing Frequency

Before considering the effects of coupling, we examine the effects of an

explicit potassium current on the dynamics of a single LIF neuron. We limit

our analysis to the case in which the neuron is stimulated by a constant applied

current I, and we determine the effects of the potassium currents on the firing

frequency, the voltage-profile, and the model neuron’s phase resetting curve.

2.2.1 Numerical Simulations

Figure 2.2.1 presents numerical simulations of the periodic firing of a single

LIF cell with the summing potassium current (left) and the non-summing
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Figure 2.2.1: Periodic firing of LIF model with the summing (left) and the
non-summing (right) potassium current. For all graphs, I = 1.2 and gK = 1. In
each panel, plots of the voltage are in the upper graphs and plots of the explicit
potassium current are in the lower graphs. (i), (ii) For τ = 0.1, the explicit
potassium current drives v below vreset = 0. (iii), (iv) For τ = 1, v is always
greater than vreset (upper). (v), (vi) For τ = 10, the exponential decay in the
explicit potassium current becomes less apparent. The substantial accumulated
amount of potassium current causes (v) the case with the summing potassium
current to have a considerably lower firing frequency compared to (vi) the case
with the non-summing potassium current.
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potassium current (right) for deactivation time constants of τ = 0.1 (top), τ = 1

(middle), and τ = 10 (bottom). Note that, in the model with the summing

potassium current, as the deactivation time constant of the potassium current

τ increases, the firing frequency decreases. Whereas in the model with the

non-summing potassium current, increasing τ causes non-monotonic changes

to the frequency. Increasing τ from τ = 0.1 to τ = 1 causes the firing frequency

to decrease while increasing τ from τ = 1 to τ = 10 causes the firing frequency

to increase. For τ = 0.1 and τ = 1, there is little difference between the firing

frequencies of the LIF model with either the summing potassium current or

the non-summing potassium current. However, the more slowly deactivating

potassium constant τ = 10, the LIF model with the summing potassium current

fires with a substantially lower frequency than for the model with the non-

summing potassium current.

Examining the explicit potassium currents (given in the lower half of each

subfigure), we see that the maximum of the potassium current decreases as τ

increases. For small τ (e.g., τ = 0.1), the current consists of a sharp spike, i.e.,, a

large current is quickly activated and rapidly decays. For large τ (e.g., τ = 10),

the potassium current is always present throughout the entire period. For

τ = 0.1 and τ = 1, there is little difference between the shape and magnitude of

the summing and non-summing potassium currents. However for τ = 10, the

average magnitude of the current is over two times greater for the summing

potassium current than for the non-summing potassium current, and this leads



37

to the lower firing frequency in the LIF model with the summing potassium

current.

2.2.2 Analytical Results

To obtain a more complete picture of the effects of the explicit potassium

current on the dynamics of the LIF model seen via the numerical simulations,

we investigate the analytic solutions to the modified LIF model (Equation

(2.1.3)).

Note that when I < 1, the LIF neuron never spikes, and thus the explicit

potassium current is never activated. The neuron simply exponentially ap-

proaches the steady state, v = I.

However when I > 1, v increases to threshold, vth = 1, which triggers a

spike, resets v to vreset = 0, and activates the explicit potassium current. Because

the explicit potassium current exponentially decays towards zero, v will always

reach vth and cause another spike to be fired. The system will always evolve to

T-periodic activity.

During T-periodic firing, the non-dimensionalized summing potassium

current can be written in closed form.

ηKs(t) =
0∑

n=−∞

1
τ

e−(t−tn)/τ

=

(
1

1 − e−T/τ

)
1
τ

e−t/τ, t ∈ [0,T]

(2.2.1)
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and the non-dimensionalized non-summing potassium current is

ηKns(t) =
1
τ

e−t/τ, t ∈ [0,T]. (2.2.2)

Note that, during periodic firing, ηKs(t) and ηKns(t) only differ by the scaling

factor 1/(1 − e−T/τ) (compare Equation (2.2.1) to Equation (2.2.2)). Because

(1−e−T/τ) is always less than 1, the summing current will contribute more hyper-

polarizing current than the non-summing current, for a given fixed period T,

but the form of the current will be the same.

Because of the similarity between the form of the summing potassium

current, ηKs , and the non-summing potassium current, ηKns , solutions will be

given for the generic potassium current, ηK, but any differences between the

summing and non-summing potassium currents will be noted explicitly.

The general solution for the non-dimensionalized LIF neurons with an ex-

plicit potassium current, (2.1.3), during T-periodic activity is 1

vLC(t) = I(1−e−(t−tn))−gKAK(τ)(e−t/τ−e−tn/τ−(t+tn))+βδ(t−(tn+T)), t ∈ [tn, tn+1 = tn+T).

(2.2.3)

where tn is the time of the nth spike. For the summing potassium current

AK(τ) =
1
τ − 1

,

1We note that this solution is valid for τ � 1. This solution can easily be extended to τ = 1
because τ = 1 is removable singularity. However for simplicity, we omit the specific solution
for τ = 1.
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and for the non-summing potassium current

AK(τ) =
( 1
1 − e−T/τ

) 1
τ − 1

. (2.2.4)

Note that, for any given period T, the term gkAK(τ)(e−t/τ − e−t) captures the

effects of the potassium current on the periodic oscillations of the membrane

potential vLC(t).

The period T can be found by solving vLC(T−) = vth = 1, for T,

1 = I(1 − e−T) − gKAK(τ)(e−T/τ − e−T). (2.2.5)

Although this equation cannot be solved for T explicitly, the period, T, can be

found numerically.

Equation (2.2.5) can be rearranged to give I as a function of the firing

frequency, f (= 1/T), as well as the magnitude of the potassium current, gK, and

the deactivation rate of the potassium current, τ, (i.e., the inverse f -I curve).

I =
1 + gKAK(τ)(e−T/τ − e−T)

(1 − e−T)
. (2.2.6)

Note that when gK = 0, I is identical to that of the standard LIF model.

Figure 2.2.2 illustrates the relationship between the firing frequency, f , and

the applied current, I. Note that, I = 1 is the threshold current for the repetitive

firing of action potentials in the standard LIF model as well as both modified

models. In both the model with the summing potassium current and the
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Figure 2.2.2: The applied current, I, vs. the firing frequency, f . The solid red
line shows the frequency for the standard LIF neuron (no explicit potassium
current, i.e., gK = 0). Solid, dotted, and dashed green and black lines correspond
to τ = 0.2, τ = 1, and τ = 5, respectively. For all plots, gK = 1. As I increases,
f increases. The addition of the explicit potassium current decreases the firing
frequency compared to a standard LIF neuron.

model with the non-summing potassium current, f increases as I increases for

all values of τ. As I increases from I = 1, the f -I curves for the various values

of τ rapidly diverge. As I continues to increase, the contribution of I begins to

dominate over the contribution of the explicit potassium current, and the f -I

curves for all values of τ for the models with the explicit potassium currents

converge toward the f -I curve for the standard LIF model. However, the small

contribution of the explicit potassium current prevents the f -I curves from

becoming identical for the models with the explicit potassium currents and the

standard LIF model.

Equation (2.2.5) also provides the complete relationship between the deac-
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Figure 2.2.3: Effects of the deactivation rate of the explicit potassium current
on the firing frequency of an LIF cell. The green lines correspond to the
model with the summing potassium current, while the black lines correspond
to the model with the non-summing potassium current. The solid red line
indicates the frequency for the standard LIF cell (no explicit potassium current,
i.e., gK = 0). For both current types, solid, dotted, and dashed lines correspond
to gK = 0.1, gK = 0.2, and gK = 0.4, respectively. For small τ, the plots for the
two types of explicit potassium currents are virtually identical. However, for
large τ, the summing potassium current caused the model to fire at a lower
frequency compared to the non-summing potassium current. All plots were
produced with I = 1.2. Similar patterns hold for all I > 1 and gK > 0.

tivation rate of the potassium current, τ, and the firing frequency, f . Figure

2.2.3 plots the f versus τ relationship for I = 1.2 and gk = 0.1, 0.2, and 0.4,

but similar relationships holds for all I > 1 and gk > 0. For the case with

the summing potassium current, the firing frequency monotonically decreases

with increasing τ. On the other hand, the LIF model with the non-summing

potassium current exhibits a non-monotonic relationship between frequency
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and τ. When τ is sufficiently small, the behavior of the summing potassium

current is indistinguishable from that of the non-summing potassium current.

This is because both explicit potassium currents effectively fully decay before

the neuron fires the subsequent action potential. Therefore, there is very little

“leftover” current to significantly accumulate from the previous firing in the

case with the summing current. However, for large τ, a considerable amount of

potassium current can accumulate in the summing potassium current model,

which significantly decreases the firing frequency in comparison to the model

with the non-summing potassium current.

For very large deactivation time constants, τ→∞, the summing potassium

current accumulates over many periods to become an approximately constant

negative current of magnitude gK/T. This accumulated current effectively de-

creases the applied current I to I− gk/T, and thus decreases the firing frequency

of the model with the summing potassium current versus the standard LIF

model. Conversely, the magnitude of the non-summing potassium current de-

creases to 0 for very large deactivation constants due to the scaling term (1/τ).

Thus, the non-summing explicit potassium current is not significantly present,

and this model behaves similarly to the standard LIF model. Hence, for large

τ, the model with the summing potassium current has a lower firing frequency

than that of the model with the non-summing potassium current.

Additionally, Figure 2.2.3 shows that as gK increases, the firing frequency

decreases for both the model with the summing and the non-summing potas-
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sium currents. This is expected because gK is a scaling factor of the potassium

currents, and as gK increases, the magnitude of the hyper-polarizing potassium

current increases, which causes a decrease in the firing frequency in the LIF

model.

2.3 Electrically Coupled Cell-Pair Model with an Explicit Potas-

sium Current

To examine the effects of an explicit potassium current on the phase-locking

behavior in a pair of electrically coupled LIF neurons, we add the non-dimensionalized

spike-triggered potassium currents to the LIF cell-pair model given in the in-

troduction, (1.2.4).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv1

dt
= −v1 + I − gKηK1(t) + gc(v2 − v1)

dv2

dt
= −v2 + I − gKηK2(t) + gc(v1 − v2)

where if vi(t−∗ ) = vth, then

(i) the cell spikes and is reset,

vi(t∗) = βδ(t∗) and vi(t+∗ ) = vreset

(ii) the spike times are updated t0,i = t∗, tn−1,i = tn,i

(iii) the spike-triggered decaying potassium current is activated such that
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ηKi(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ηKs,i(t) =

0∑
n=−∞

1
τ

e−(t−tn,i)/τ,

ηKns,i(t) =
1
τ

e−(t−t0,i)/τ,

for i = 1, 2. (2.3.1)

As before, β scales the effect of the supra-threshold portion of the spike, and

gc is the dimensionless strength of the electrical coupling between the cells.

The explicit potassium currents, gKηKi(t) are defined as in Equation (2.2.1) for

the summing potassium current and Equation (2.2.2) for the non-summing

potassium current. The subindex i on ηKi(t) simply denotes that it refers to the

explicit potassium current of cell i.

2.3.1 Numerical Simulations of Electrically Coupled Cells

Studies have shown that electrically coupled cells can evolve to either sta-

ble synchrony or antisynchrony depending on the strength of the electrical

coupling, gc, the “size” of the spike, β, and the magnitude of the applied cur-

rent, I [Chow and Kopell, 2000; Lewis and Rinzel, 2003]. Here, we investigate

whether the addition of an explicit potassium current can also affect whether

electrically coupled cells evolve to stable synchrony or antisynchrony.

Figure 2.3.1 shows that an explicit potassium current can influence whether

the system evolves to synchrony or antisynchrony. This influence depends

on the values of the parameters describing the potassium current, gk and τ.

Consider the two LIF cell system with I = 1.6, gc = 0.2, and β = 0.2. Without

a potassium current (gK = 0), the system evolves to stable synchrony (not

shown). For the LIF model with the summing potassium current (Figure
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Figure 2.3.1: Electrically coupled LIF neurons with the summing (left column)
and the non-summing (right column) potassium currents. The cells oscillate
independently from initial conditions v1 = 0.59 (black) and v2 = 0.0 (green)
until the coupling term was activated at t = 10. For the summing potassium
current: the system evolves to antisynchrony for (i) τ = 0.1 and (v) τ = 10, and
evolves to synchrony (iii) for τ = 1. For the non-summing potassium current:
the system evolves to antisynchrony for (ii) τ = 0.1, and to synchrony for (iv)
τ = 1 and (vi) τ = 10. For all subfigures, I = 1.6, gK = 1, gc = 0.2, and β = 0.2.
Note: for gK = 0, the system evolves to synchrony.
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2.3.1, left column), the system displays stable antisynchronous activity when

the potassium current’s deactivation time constant is relatively short, τ = 0.1

(Figure 2.3.1(i)). When the deactivation time constant is increased to τ = 1,

the system evolves to stable synchronous activity (Figure 2.3.1(iii)). However,

when the deactivation time constant is increased to τ = 10, the system evolves

to stable antisynchrony (Figure 2.3.1(v)). For the non-summing current (right

column), the system evolves to stable antisynchrony when τ = 0.1 (Figure

2.3.1(ii)) and evolves to stable synchrony when τ = 1 or τ = 10 (Figures 2.3.1(iv)

and 2.3.1(vi)).

2.4 Theory of Weakly Coupled Oscillators: Derivation of Phase

Equation

To gain insight into how changes in the magnitude of the potassium cur-

rent, gK, and its deactivation time constant, τ, affect the phase-locking dynam-

ics of coupled LIF neurons, we use the theory of weakly coupled oscillators

[Kuramoto, 1984]. We apply the steps outlined in Section 1.3 as detailed in

Appendix A.1 to produce the infinitesimal phase resetting function (iPRC) and

the corresponding cell-pair interaction function, G(φ).

The infinitesimal phase resetting curve for the LIF model with an explicit

potassium current is

ZK(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

et

TBK(τ, I)
for 0 < t < T

0 for t = 0,T

(2.4.1)
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where BK(τ, I) =
(
I + gKAK(τ)

[
1
τe

T(τ−1)/τ − 1
)]

, where AK(τ) is given in Equation

(2.2.4) [See Appendix A.1 for derivation]. When gK = 0, ZK(t) reduces to the

iPRC for a standard LIF neuron. The term gKAK(τ)
(

1
τe

T(τ−1)/τ − 1
)

captures the

effects of the potassium current on ZK(t). Because BK(τ, I) > I, the addition of

the explicit potassium current always decreases the iPRC for any given period

T, and thus decreases the sensitivity of the LIF neurons to perturbations, as

shown in Figure 2.4.1.

Summing IK Non-Summing IK

0 0.5 1
0

0.2

0.4

0.6

0.8

1

� = t/T

Z(
t)

gK = 0

� = 0.1
� = 1
� = 10

(i)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

� = t/T

Z(
t)

gK = 0

� = 0.1
� = 1
� = 10

(ii)

Figure 2.4.1: The dependence of the iPRCs, ZK(t), on the explicit potassium
currents. All iPRCs have been normalized by fixed period T = 2.5. The green
lines correspond to the model with the summing potassium current, and the
black lines correspond to the model with the non-summing potassium current.
For both, gK = 1. The solid red line indicates the iPRC for the standard LIF
cell (no explicit potassium current, i.e., gK = 0). For both current types, solid,
dashed, and dotted lines correspond to τ = 0.1, τ = 1, and τ = 10, respectively.
For both the summing and non-summing potassium currents, ZK(t) decreases
as τ is increased from τ = 0.1 to τ = 1 and increases when τ is increased from
τ = 1 to τ = 10 for all phases. All iPRCs were produced with T = 2.5.
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Figure 2.4.1 also shows that for T = 2.5 that ZK(t) decreases as τ is increased

from τ = 0.1 to τ = 1, but it increases as τ is increased from τ = 1 to τ = 10 at

all phases for both types of potassium currents.

By combining the expressions for the iPRC, ZK(t), and the electrical coupling

current between two oscillating neurons, gc(vLC(t−φT)−vLC(t+φT)), we obtain

an equation for the evolution of the phase difference,φ, between the electrically

coupled LIF neurons with an explicit potassium current.

dφ
dt
= G(φ)

where

G(φ) =
1
T

∫ T

0
ZK(t)gc

[
(vLC(t − φT) − vLC(t + φT))

]
dt

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

gc

TBK(τ, I)
[GSUB(φ) + GK(φ) + GSPIKE(φ)], for 0 < φ < 1,

0, for φ = 0, 1.

(2.4.2)

and

GSUB(φ) = 2T
(

1
1 − e−T

)(
φ sinh((1 − φ)T) − (1 − φ) sinh(φT)

)
for 0 ≤ φ ≤ 1,

GK(φ) = gKAK(τ)
[(
τ
τ − 1

)[(
1 − e−T/τ

)
(eφT − eT(1−φ)) − (1 − eT)

(
e−φT/τ − e−T(1−φ)/τ

)]

− 2T
(

1 − e−T/τ

1 − e−T

)[
φ sinh((1 − φ)T) − (1 − φ) sinh(φT)

]]
for 0 ≤ φ ≤ 1,

GSPIKE(φ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β
[
eφT − eT(1−φ)

]
for 0 < φ < 1,

0 for φ = 0, 1.

Note that, to focus on the effects of the frequency, we have used the f -I rela-
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tionship (Equation (2.2.6)) to write I in terms of T. This allows us to consider f

as a parameter, instead of as a function of gk, τ, and I.

As a reminder, G(φ∗) = 0 indicates that φ∗ is a phase-locked state. When

G′(φ∗) > 0, the phase-locked state is unstable, and when G′(φ∗) < 0, the phase-

locked state is stable. As with any symmetrically coupled pair of identical

oscillating cells, the synchronous phase-locked state φ∗ = 0, 1 and the antisyn-

chronous phase-locked stateφ∗ = 0.5 always exist (i.e., G(0) = G(1) = 0,G(0.5) =

0). Because of the δ-function spike and the monotonically increasing Z(t), the

synchronous state is always stable [Lewis and Skinner, 2011]. On the other

hand, the antisynchronous state can be either stable or unstable depending on

the parameters (i.e., G′(0.5) can be either negative or positive). Note that, the

strength of coupling, gc, does not affect the existence or stability of the phase-

locked states: it simply scales the G-function, and therefore, it only affects the

speed with which the system approaches or departs from the phase-locked

states.

2.4.1 The Effects of τ and gk on G(φ)

To better understand the influence of the potassium currents on the existence

and stability of phase-locked states, we examine how changes in τ and gk affect

the function G(φ).

Figure 2.4.2 shows the full G-functions for the summing (left column) and

the non-summing (right column) potassium currents as τ varies (top row) and
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Figure 2.4.2: G-functions for the summing (left) and the non-summing (right)
potassium currents. For all graphs, f = 0.55 and β = 0.2. In (i − ii), gK = 1,
and the black, green, and red lines correspond to τ = 0.1, τ = 1 and τ = 10
respectively. In (iii − iv), τ = 1 and the black, green, and red lines correspond
to gK = 0.2, gK = 1 and gK = 5 respectively. (i − ii) G-functions for the model
with the summing potassium current and for the model with the non-summing
potassium current indicate that the system is bistable for τ = 0.1. When τ = 1,
the antisynchronous state destabilizes, leaving the synchronous state as the sole
stable solution. For τ = 10, both the synchronous and antisynchronous states
are stable. (iii − iv) G-functions for the model with the summing potassium
current and for the model with the non-summing potassium current indicate
that the system is bistable for gK = 0.2. When gK = 1 and gK = 5, the antisyn-
chronous state is unstable. These graphs show that changes in both τ and gK

can affect the stability of phase-locked states.
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as gK varies (bottom row) for f = 0.55 and β = 0.2. Plots of the G-function

for the model with the summing potassium current and for the model non-

summing potassium currents are qualitatively similar for changes of τ and gK.

Figures 2.4.2(i) and 2.4.2(ii) show that the G-function indicates that both the

synchronous and antisynchronous phase-locked states are stable for τ = 0.1

(black curve). When τ is increased to τ = 1 (green curve), the antisynchronous

state becomes unstable, while the synchronous state remains stable. A further

increase in τ to τ = 10 (red curve) restores the bistability of the synchronous

and antisynchronous states. Figures 2.4.2(iii) and 2.4.2(iv) shows that the anti-

synchronous and the synchronous phase-locked states are bistable for gK = 0.2

(black curve). For gK = 1 (green curve) and gK = 5 (red curve), the antisyn-

chronous phase-locked state is unstable, while the synchronous phase-locked

state is stable.

To more generally demonstrate the effects of the explicit potassium currents

on the stability of phase-locked states over a wide range of frequencies, we plot

the bifurcation diagrams for the phase difference φ versus the firing frequency

f for select values of τ and gK for the summing potassium current and the non-

summing potassium current (Figure 2.4.3). Note that stable phase-locked states

are indicated by solid lines, and unstable phase-locked states are indicated by

dashed lines. The unstable curve defines the boundaries between the domain

of attraction for the synchronous state and the antisynchronous state. For

small f , the cell-pair system is bistable; however, the domain of attraction is
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larger for the antisynchronous state, φ = 0.5, than for the synchronous state,

φ = 0, 1, and thus the antisynchronous state dominates. As f increases, the

domain of attraction for the antisynchronous steady state shrinks. With further

increases in f , the synchronous state becomes dominant, and eventually a

critical frequency f ∗ is reached, after which only the synchronous phase-locked

state is stable. This critical frequency f ∗ occurs where the unstable steady state

coalesces with the the antisynchronous state to form a subcritical pitchfork

bifurcation.

We will use changes in the value of this critical frequency f ∗ as a convenient

way to assess how the stability of the antisynchronous steady state depends on

gK and τ. Figure 2.4.3 presents the bifurcation diagrams for several values of

τ and gK for β = 0.2. In both the model with the summing potassium current

(Figure 2.4.3(i)) and the model with the non-summing potassium current (Fig-

ure 2.4.3(ii)), f ∗ decreases as τ is increased from τ = 0.1 (black curve) to τ = 1

(green curve). However, f ∗ increases as τ is increased from τ = 1 to τ = 10 (red

curve). In both models, f ∗ decreases as gK is increased from gK = 0.1 to gK = 1

to gK = 10 (Figures 2.4.3(iii) and 2.4.3(iv)).

2.4.2 The Effects of gk and τ on f ∗

The relationship between the critical frequency, f ∗, where the antisyn-

chronous phase-locked state changes stability and the parameters gk and τ can

be found by investigating G′(φ) at φ = 0.5. The critical frequency where the
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Figure 2.4.3: Bifurcation diagrams for the models with the summing (left
column) and the non-summing (right column) potassium currents. In (i) and
(ii), gK = 1 and black, green and red dashed lines correspond to τ = 0.1, τ = 1,
and τ = 10, respectively. In (iii) and (iv), τ = 1 and black, green and red dashed
lines correspond to gK = 0.2, gK = 1, and gK = 5, respectively. For all graphs,
β = 0.2. Solid lines indicate stable state, while dashed lines indicate unstable
states. We define f ∗ as the critical value of f where the subcritical pitchfork
bifurcation originates. For f < f ∗, both the antisynchronous and synchronous
states are stable, while for f > f ∗ only the synchronous state is stable. (i), (ii) As
τ is increased from τ = 0.1 to τ = 1, f ∗ decreases. However, when τ is increased
from τ = 1 to τ = 10, f ∗ increases. (iii), (iv) As gK increase, f ∗ decreases.
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antisynchronous phase, φ = 0.5, changes stability occurs were G′(φ = 0.5) = 0.

For notational simplicity, we let T∗ = 1/ f ∗, (i.e., T∗ is the critical period).

G′(φ = 0.5) =
2gc

BK(τ, I)
[G′SUB(φ = 0.5) + G′K(φ = 0.5) + G′SPIKE(φ = 0.5)] = 0.

(2.4.3)

where

G′SUB(φ = 0.5) =
(

1
1 − e−T∗

)(
2 sinh(0.5T∗) − T∗ cosh(0.5T∗)

)
,

G′K(φ = 0.5) = gKAK(τ)
[(
τ
τ − 1

)[
e0.5T∗

(
1 − e−T∗/τ

)
+

1
τ

e−0.5T∗/τ(1 − eT∗)
]

−
(

1 − e−T∗/τ

1 − e−T∗

)[
2 sinh(0.5T∗) − T∗ cosh(0.5T∗)

]]
,

G′SPIKE(φ = 0.5) = βe0.5T∗ .

Equation (2.4.3) can be solved numerically for f ∗ as a function of τ, gK, and

β.

Figure 2.4.4 shows how the critical frequency f ∗ changes as τ increases for

several values of gK. The dependence of f ∗ on τ is similar for both the model

with the summing potassium current and the model with the non-summing

potassium current. The region above each curve corresponds to parameter

sets for which only the synchronous state is stable, while the region below

each curve corresponds to parameters sets for which both the synchronous

and antisynchronous states are stable. For both models, as τ increases, the
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critical frequency f ∗ decreases to a minimum value f ∗min at τ = τmin and then it

increases, asymptotically approaching the critical frequency of a pair of electri-

cally coupled LIF neurons without an explicit potassium current, f = f ∗LIF (red

curve).
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Figure 2.4.4: f ∗ as a function of τ for several values of gK. Green lines are
for the model with the summing potassium current and black lines are for the
model with the non-summing potassium current. Solid, dashed, and dotted
lines correspond to gK = 0.1, gK = 0.5, and gK = 1, respectively. For all curves,
β = 0.2 . The solid red line is the critical frequency f ∗LIF for a standard LIF neuron
(i.e., gK = 0). All curves intersect at a specific potassium current deactivation
time constant τ = τint regardless of gK. Note that, for τ < τint, increasing gK

promotes the stability of antisynchrony. For τ > τint, increasing gK hinders the
stability of antisynchrony.

In Figure 2.4.4, all curves intersect at a specific potassium current deacti-

vation time constant τ = τint regardless of the value of gK. At τint, the critical

frequency, f ∗ is the same for all models, regardless of whether an explicit
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potassium current is added to the standard LIF model, and regardless of which

explicit potassium current is added to the standard LIF model. Note that, for

τ < τint, increasing gK increases the region in the f parameter space where

antisynchrony is stable. Conversely, for τ > τint, increasing gK decreases the

region in the f parameter space where antisynchrony is stable.

Figure 2.4.4 shows how increasing τ affects the stability of the electrically

coupled LIF system at a given frequency. If f < f ∗min, antisynchrony and

synchrony are bistable regardless of the value of τ. If f ∗min < f < f ∗LIF, the

antisynchrony and synchrony are bistable for small τ. As τ is increased, the

system transitions to synchrony being the sole stable state. Further increases

to τ restore the bistability of the electrically coupled system. If f > f ∗LIF but less

than the critical frequency when τ → 0, f ∗τ→0, antisynchrony and synchrony

are bistable. As τ is increased, the electrically coupled transitions to having

synchrony as its sole stable phase-locked state. If f > f ∗τ→0, the antisynchronous

state is unstable, and the system always evolves to synchrony. The pattern of

f ∗ versus τ observed in the G-functions, Figure 2.4.2, corresponds to the choice

of f ∗min < f < f ∗LIF.

In the next subsection, we use the decomposition of the G-function (see

Equation (2.4.2)) to further understand the effects of the explicit potassium cur-

rents on the stability of the antisynchronous state, specifically by investigating

the interplay between τ and gK .
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2.5 Insight from the Decomposition of G(φ)

The G-function is a scaled linear combination of three terms, GSUB(φ), GK(φ),

and GSPIKE(φ) (see Equation (2.4.2)). This description of G(φ) allows us to

gain insight into the mechanisms that determine the stability of phase-locked

states. For any given frequency, f , GSUB(φ) captures the portion of the G-

function that depends on the sub-threshold dynamics of the LIF neuron without

the non-potassium current, GSPIKE(φ) only contains the effects of the supra-

threshold portion of the spike, and GK(φ) captures all of the direct effects of the

explicit potassium current on the existence and stability of phase-locked states.

Therefore, we can systematically assess the relative contribution of each portion

of the G-function to gain further insight into the stability of the antisynchrony

phase-locked state.

2.5.1 GSS(φ)

GSUB(φ) and GSPIKE(φ) are similar to those given in Lewis and Rinzel (2003)

(see Section 1.4). Lewis and Rinzel showed that the sub-threshold dynamics

of the standard LIF model, as described by GSUB(φ), always acts to stabilize

the antisynchronous state (φ = 0.5) and acts to destabilize the synchronous

state (φ = 0, 1), whereas the supra-threshold portion of the spike, as described

by GSPIKE(φ), always acts to destabilize the antisynchronous state and stabilize

the synchronous state. Furthermore, they determined how the stability of the

antisynchronous phase-locked state for the LIF cell pair without the explicit
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potassium current GSS(φ) = GSUB(φ) + GSPIKE(φ), depends on the frequency,

f (see Figure 1.4.3). At low frequencies, GSUB(φ) dominates GSS(φ) and the

antisynchronous state is robustly stable. As the frequency is increased, the

relative contribution of GSUB(φ) compared to GSPIKE(φ) in GSS(φ) diminishes and

the antisynchronous state becomes less robust until it loses stability altogether.

We define the critical frequency f ∗SS as the frequency where the antisynchronous

phase-locked state transitions from stable to unstable, i.e., the frequency at

which G′SS(0.5) = 0. This critical frequency f ∗SS depends on β through GSPIKE(φ).

As β is increased, the relative strength of GSPIKE(φ) increases, f ∗SS decreases, and

antisynchrony is suppressed.

As GSS(φ) is well understood, we rewrite G(φ) in Equation (2.4.2) as

G(φ) = (gc/TBK(τ, I))(GSS(φ) + gKGK(φ)).

This will facilitate a discussion of how the explicit potassium combines with

the sub-threshold dynamics and the supra-threshold portion of the spike to

affect the overall stability of the antisynchronous phase-locked state.

2.5.2 GK(φ)

To assess how changes to τ or gK affect the stability of the antisynchronous

state, we examine the zeros of GK(φ). Note that gK scales GK(φ) and does not

affect the location of the zeros of GK(φ). Figure 2.5.1 plots the zeros of GK(φ) as

a function of f for several values of τ. The dashed lines indicate the unstable
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zeros, while solid lines indicate the stable zeros of G(φ). We note that the

branches of the zeros of GK(φ) have the same shape as the bifurcation diagram

for GSS(φ) (see Figure 1.4.3). We define the critical frequency f ∗K of GK(φ)

analogously to f ∗SS. That is, f ∗K is the critical frequency at which G′K(0.5) = 0.

This defines where the explicit potassium current transitions from promoting

to hindering antisynchrony. For both the model with the summing potassium

current and the model with the non-summing potassium current, the critical

frequency f ∗K decreases as τ increases.
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Figure 2.5.1: Zeros of GK(φ) for the (i) summing and the (ii) non-summing
potassium currents. Black, green, and red dotted lines indicate the unstable
zeros for τ = .1, τ = 1, and τ = 10, respectively. Solid black lines indicate stable
zeros. In both graphs, the region where GK(φ) promotes the stability of the
antisynchronous state decreases as τ increases.

To more generally demonstrate the relationship between the critical fre-

quency f ∗K and τ, we examine G′K(φ) = 0 at φ = 0.5 (see Equation (2.4.3)). Note

that the zeros of G′K(φ = 0.5) do not depend on gK, as gK simply scales G′K(φ).
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Similarly, because AK(τ) scales G′K(φ), the solutions of G′K(φ = 0.5) = 0 do not

depend on whether the summing or non-summing potassium current is added

to the LIF model. That is, the solutions of G′K(φ = 0.5) = 0 are identical for both

the model with the summing potassium current and the non-summing potas-

sium currents. Figure 2.5.2 plots the solutions of G′K(φ = 0.5) = 0 and shows

that f ∗K decreases as τ increases. This implies that the region where GK(φ)

promotes antisynchrony always decreases as τ increases. That is, the explicit

potassium currents promote antisynchrony for a larger range of frequencies at

low potassium deactivation time constants than at large ones.
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Figure 2.5.2: Dependence of the critical frequency f ∗K on τ, i.e., G′K(φ = 0.5) = 0.
In the region below the curve, GK(φ) promotes antisynchrony, while in the
region above the curve, GK(φ) suppresses antisynchrony. Note that this curve
is identical for the LIF model with either the summing potassium current or
the non-summing potassium current.
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2.5.3 Interaction of GSS(φ) and GK(φ)

The zeros of G(φ) are determined by interaction between GK(φ) and GSS(φ).

G(φ) is the scaled sum of GK(φ) and GSS(φ). However, the scaling term

gc/(TBK(τ, I)) does not affect the location of the zeros of G(φ) or the value

of f ∗. Thus, the parameters for which the potassium current supports stable

antisynchrony for any given frequency depends only on the relative weights

of GK(φ) and GSS(φ), or more specifically the locations of f ∗K and f ∗SS.

Figure 2.5.3 shows the zeros for GK(φ) and GSS(φ) for gK = 1 and β = 0.2 and

replots the bifurcation diagram for G(φ) (see Figure 2.4.3). Figures 2.5.3(i) and

2.5.3(ii) show that f ∗SS < f ∗ < f ∗K for τ = 0.1. This implies that the addition of the

potassium current to the LIF model acts to stabilize the antisynchronous phase-

locked state. Figures 2.5.3(iii) and 2.5.3(iv) for τ = 1.5 show that f ∗K < f ∗ < f ∗SS.

This implies that the addition of the potassium current to the LIF model acts to

destabilize the antisynchronous phase-locked state.

Examining G′(φ) = 0 at φ = 0.5 shows how the relative weights of GK(φ)

and GSS(φ) affect the frequencies at which antisynchrony changes stability

(Equation (2.4.3)). Note that f ∗ is found by considering

G′(φ = 0.5) =
2gc

BK(τ, I)

[
G′SS(φ = 0.5) + G′K(φ = 0.5)

]
= 0, (2.5.1)

which implies that

−G′SS(φ = 0.5) = G′K(φ = 0.5). (2.5.2)
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Figure 2.5.3: Bifurcation diagram for G(φ) (black) for the LIF model with the
summing (left) and the non-summing (right) potassium currents. Addition-
ally, the zeros of GK(φ) (green) and GSS(φ) (red) are plotted. For all subfigures,
gK = 1, β = .2. (i), (ii) When τ = .1, f ∗SS < f ∗ < f ∗K and implies that the addition
of the potassium current to the LIF model promotes the stability of the antisyn-
chronous phase-locked state. (iii), (iv) When τ = 1.5, f ∗K < f ∗ < f ∗SS and implies
that the addition of the potassium current to the LIF model inhibits the stability
of the antisynchronous phase-locked state.

Therefore, the critical frequency f ∗ is the f -value of the intersection of−G′SS(φ =

0.5) with G′K(φ = 0.5).
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Figure 2.5.4: Effects of the relative weighting of GSS(φ) and GK(φ) on f ∗. Solid
and dotted lines indicate −G′SS(φ = 0.5) and G′K(φ = 0.5), respectively. The zero
of −G′SS(φ = 0.5) is f ∗SS and the zero of G′K(φ = 0.5) is f ∗K. The intersection of
−G′SS(φ = 0.5) and G′K(φ = 0.5) is f ∗. (i) Schematic view. As τ increases, f ∗K
decreases. As gK increases, f ∗K remains stationary, but G′K(φ) becomes steeper,
and “pulls” f ∗ toward f ∗K. As β is increased, f ∗SS decreases. (ii) Effects of τ on
f ∗ with gK = 1 and β = .2. Black, green, and red dashed lines correspond to
τ = 0.1, τ = 1, and τ = 10, respectively. f ∗K decreases as τ is increased. However,
f ∗ displays non-monotonic changes in response to changes in τ. (iii) Effects of
gK on f ∗ with τ = .1 and β = .2. Black, green, and red dashed lines correspond
to gK = 0.1, gK = 1, and gK = 2, respectively. f ∗ increases as gK increases. (iv)
Effects of β on f ∗ with τ = 0.1 and gK = 1. Black, green, and red solid lines
correspond to β = .1, β = .2, and β = .4, respectively. Plots are only shown
for the model with the summing potassium current, but the non-summing
potassium current produce qualitatively similar results.
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Figure 2.5.4 plots −G′SS(φ = 0.5) and G′K(φ = 0.5) and examines the effects

of τ, gK and β on the critical frequency, f ∗. Figure 2.5.4(i) is a schematic plot

of −G′SS(φ = 0.5) and G′K(φ = 0.5). f ∗SS and f ∗K correspond to the zeros of

G′SS(φ = 0.5) and G′K(φ = 0.5), respectively. The intersection of −G′SS(φ = 0.5)

and G′K(φ = 0.5) correspond to the critical frequency f ∗ of where antisynchrony

changes stability, i.e.,. G(φ = 0.5). As the schematic indicates, f ∗K decreases

as τ increases. When gK is increased, f ∗K remains stationary, and the graph of

G′K(φ = 0.5) dilates larger. When β is increased, f ∗SS decreases and the value of

f ∗ decreases.

Figures 2.5.4(ii), 2.5.4(iii), and 2.5.4(iv) illustrate how increases of τ, gK and

β affect the location of f ∗. In Figure 2.5.4(ii), when τ = .1, f ∗SS < f ∗ < f ∗K, which

implies that the addition of the potassium current is increasing the frequency

range where antisynchrony is stable. As τ is increased to τ = 1, f ∗K decreases,

f ∗K < f ∗K, and thus f ∗ decreases. As τ is increased to τ = 10, while f ∗K decreases

further, f ∗ increases because of the decrease in magnitude of GK(φ). For both

τ = 1 and τ = 10, the addition of the potassium current decreases the frequency

range where antisynchrony is stable.

Figure 2.5.4(iii) shows that as gK is increased, f ∗ approaches f ∗K. Figure

2.5.4(iv) shows that, as β is increased, f ∗SS decreases and causes a decrease in

f ∗. Lastly, we note that when f ∗K = f ∗SS = f ∗ (i.e., G′K(φ = 0.5) = G′SS(φ = 0.5) =

G′(φ = 0.5) = 0) that the location of f ∗ is independent of gK. This value of f ∗

corresponds to τint, the intersection point of all plots in Figure 2.4.4.
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2.6 Conclusion and Discussion

In this chapter, we analyzed how the addition of spike-triggered summing

and non-summing potassium currents to two identical, electrically coupled

LIF model neurons affects the existence and stability of phase-locked states.

Numerical simulations indicated that the addition of a spike-triggered potas-

sium current influences whether a system of electrically coupled LIF model

neurons evolve to stable synchrony or antisynchrony. The theory of weakly

coupled oscillators helped to generalize the results of the numerical simula-

tions and provided further insight into how changes to the deactivation time

constant, τ, and the magnitude of the current, gK, affect whether the addition

of the spike-triggered potassium current promoted or suppressed the antisyn-

chronous phase-locked state. The decomposition of the G-function into the

sub-threshold and spike portion, GSS(φ), and the potassium portion, GK(φ),

allowed for additional insight into how and under what conditions increas-

ing τ promoted the stability of the antisynchronous state. These results are

summarized in Table 2.6.1.

We found that either increasing the intrinsic firing frequency by increas-

ing the applied current, I, or increasing the magnitude of the spike effect, β,

promoted synchrony. The effect on synchronization of increasing the magni-

tude of the potassium current, gK, or increasing the size of the deactivation

time constant, τ, is less clear. The decomposition of the G-function into the

sub-threshold and spike portion, GSS(φ), and the potassium portion, GK(φ),



66

Parameter variation Effect

Increasing Intrinsic Frequency (↑ I) Promotes synchrony

Increasing Spike Effect (↑ β) Promotes synchrony

Increasing the Magnitude of Promotes Antisynchrony if f ∗K > f ∗SS
the Potassium Current (↑ gK) Suppresses Antisynchrony if f ∗K < f ∗SS.

Increasing the Deactivation Can Promote or Suppress
Time Constant (↑ τ) Antisynchrony

Table 2.6.1: Summary of Results

allowed us to find conditions where antisynchrony is promoted or suppressed

as gK is increased. If the critical frequency of the sub-threshold and spike por-

tion of the G-function, f ∗SS, is less than the critical frequency of the potassium

portion of the G-function, f ∗K, i.e. f ∗SS < f ∗K, then increasing the magnitude of

the potassium current promotes antisynchrony. Conversely, if f ∗SS > f ∗K, then

increasing the magnitude of the potassium current suppresses antisynchrony.

We refer the reader to Section 2.5.3 for a more thorough analysis of how varying

gK affects synchronization. Despite the insight gained by the decomposition

of the G-function, we are unable to succinctly describe the region where anti-

synchrony is promoted or suppressed when τ is increased. Figure 2.4.4 and

its related text in Section 2.4.2 best explained how varying τ can influence the

region where stable antisynchrony exists.

Further decomposition of the G-function could provide insight into the in-

dividual influence and the relative importance of the phase resetting curve,
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Z(t), and the voltage trace, vLC(t), on the existence and stability of the antisyn-

chronous phase-locked state. We leave this analysis for future work.

2.6.1 Effects of the Summing versus the Non-Summing Potassium Current

In this chapter, we investigated how the phase-locking behavior of a pair of

electrically coupled LIF neurons is affected by the addition of a “non-summing”

potassium current and a “summing” potassium current to each model neuron.

Recall that our model of the non-summing potassium current corresponds to

a current that achieves its maximal conductance (i.e., saturates) whenever an

action potential arises. Our model of the summing potassium current corre-

sponds to a current that is far from saturation and allows for repeated activation

that sums linearly.

We largely treated the summing and non-summing currents identically in

our analysis as the LIF models with these two currents differ by a factor of

1/(1 − e−T/τ) in the potassium current specific term, AK(τ). Because this factor

1/(1 − e−T/τ) is always greater than 1, the summing potassium current has a

greater effect on frequency than the non-summing potassium current on the

dynamics of the LIF model, an effect that becomes more pronounced at higher

frequencies and for larger τ’s. For small values of τ, the effects of the addition

of the two currents to the LIF model on the firing frequency are virtually

identical, while for larger values of τ, the firing frequency of the LIF neuron

with the non-summing potassium current is higher than that of the LIF neuron
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with the summing potassium current (as seen in Figure 2.2.3).

By analyzing the phase-locking dynamics with respect to frequency, we sep-

arated the direct effects of the addition of a spike triggered potassium current

from the indirect effects caused by changes in frequency. This allowed us to

investigate the frequency-independent differences between the summing and

non-summing potassium currents. The form of the G-function allowed us to

identify the differences between the effects of the summing and non-summing

potassium currents by considering two terms: gc/(TBK(τ, I)), which scales the

overall G-function, and gKAK(τ), which scales the portion of the G-function,

GK(φ). Because the scaling factor of the G-function, gc/(TBK(τ, I)), is always

positive, it does not affect the existence or stability of phase-locked states; only

the speed with which the system approaches or departs from the phase-locked

states. The scaling factor of GK(φ), gKAK(τ), affects the relative importance

of the spike-triggered potassium current on the existence and stability of the

phase-locked states of G(φ). Because the potassium specific term, AK(τ) for the

summing potassium current is always greater than AK(τ) for the non-summing

potassium current, the influence of the summing potassium current on the

G-function is greater than that of the non-summing potassium current. For

small values of τ, the effects of the two potassium currents on the critical fre-

quency, f ∗, are virtually identical. However, for larger values of τ, f ∗ for the

non-summing potassium current is greater than f ∗ for the summing potas-

sium current, which indicates that the non-summing potassium current more
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strongly promotes the stability of the antisynchronous phase-locked state than

the summing potassium current.

2.6.2 Comparison to Previous Results of Pfeuty et al. and Mancilla et al.

To facilitate a comparison to the work of Pfeuty et al. (2003) and Mancilla et

al. (2007), we can translate the non-dimensional parameters of our model into

dimensional form. Using the values reported in Mancilla et al. (2007) of Cm ≈

40pF and gL ≈ 10nS, we find that the membrane time constant is τ = 4ms, which

implies that the actual frequency, f , corresponds to 250 f̄ Hz, where f̄ is the

non-dimensional frequency. The non-dimensional deactivation time constants

τ̄ = 0.1, 1.0, and 10, correspond to the deactivation time constants of τ = 0.4, 4.0,

and 40msecs, values which are representative of the reported deactivation rates

for potassium channels in the Kv1 and Kv3 families [Coetzee et al., 1999].

The investigated non-dimensional f̄ frequency range of 0 to 1 corresponds

to an actual frequency range of 0 to 250 Hz, a range that encompasses those

investigated by Mancilla et al. (2007) and Pfuety et al. (2003).

Our results unify those of Pfeuty et al. (2003) and Mancilla et al. (2007).

We find that the addition of a potassium current can promote synchronous

oscillatory activity, as Pfeuty et al. (2003) believe, and can promote antisyn-

chronous oscillatory activity, as Mancilla et al. (2007) contend, depending on

the magnitude of the potassium current, gK, and the deactivation time constant,

τ. Pfeuty et al. found that as the magnitude of either of their potassium current
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was increased that their model became more likely to evolve to synchrony. In

our model, we also found that as the magnitude of the potassium current, gK, is

increased in our model, that antisynchrony is suppressed for sufficiently large

values of τ in certain parameter spaces (i.e, if f ∗K < f ∗SS). That is, increasing

gK can promote synchrony for certain parameters. Mancilla et al. found that

increasing the size of after-hyperpolarizations by increasing the magnitude

of potassium conductances promoted antisynchronous activity. Similarly, we

found that increasing the magnitude of the spike-triggered potassium current,

gK, can promote antisynchrony in certain parameter spaces (i.e., if f ∗K > f ∗SS).

2.6.3 Limitations of the Model

We made numerous idealizations in order to create an analytically tractable

model. Most prominently, we used an LIF model, instead of a full conductance

based model, and chose an idealized current that allowed for easy manipulation

and qualitatively fit the dynamics of potassium currents of the Kv1 and Kv3

families, instead of one that arose as a consequence of the dynamics of the

gating of potassium channel. In Chapter 3, we introduce a more realistic

potassium current, one that is voltage dependent, and investigate its effects on

the phase-locking behavior of a pair of electrically coupled LIF neurons.
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Chapter 3

Leaky-Integrate-and-Fire with a Conductance Based

Potassium Current

In the previous chapter, we examined the effects of a time-dependent potas-

sium current on the phase-locking behavior of a LIF cell-pair model. In this

chapter, we modify a LIF cell-pair model by adding an explicit potassium cur-

rent that more realistically captures the dynamics of potassium channels by

considering both time and voltage dependences. That is, this explicit potas-

sium current is modeled by a time-dependent conductance which depends

on the magnitude of a driving force. We limit this study to non-summing

synapses.

3.1 Model Description

The Leaky-Integrate-and-Fire model with a conductance-based potassium

current is given by

Cm
dV
dt
= −gL(V − EL) + Iapp − CKζ(t − t0)(V − EK),
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where if V(t−∗ ) = Vth, then

(i) the cell spikes and is reset,

V(t∗) = βδ(t∗) and V(t+∗ ) = Vreset

(ii) the time of the most recent spike is updated t0 = t∗

(iii) a spike-triggered decaying potassium conductance is activated such that

ζ(t) =
1

t + τ
for t ≥ 0.

(3.1.1)

CK scales the magnitude of the potassium channel, τ is the time constant of the

deactivation of the potassium conductance, and EK is the reversal potential of

the potassium current. β scales the effect of the supra-threshold portion of the

spike. The form of ζ(t) is chosen for analytical tractability (see Appendix B.1).

3.1.1 Non-dimensionalization

To non-dimensionalize this model, we let v = (V − Vreset)/(Vth − Vreset) so

that vreset = 0 and vth = 1 and set t̄ = t/(Cm/gL). After applying this non-

dimensionalization, we group our parameters as follows: ḡK = CK/Cm, τ̄ =

τ/(Cm/gL), Ī = (Iapp + gL(Vr − Vreset)/(gL(Vth − Vreset)), ĒK = (Ek − Vreset)/(Vth −

Vreset), and ζ̄(t̄) = ζ(t/τ). For convenience, we will omit the bars over the

parameters. Thus, our non-dimensionalized LIF model with this conductance-

based potassium current is given by

dv
dt
= −v + I − gKζ(t − t0)(v − EK)
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where if v(t−∗ ) = vth, then

(i) the cell spikes and is reset,

v(t∗) = βδ(t∗) and v(t+∗ ) = Vreset

(ii) the time of the most recent spike is updated t0 = t∗

(iii) a spike-triggered decaying potassium conductance is activated such that

ζ(t) =
1

t + τ
for t ≥ 0.

(3.1.2)

3.2 Effects of the Conductance-based Potassium Current on

Frequency

Before considering the effects of coupling, we examine the effects of the

conductance-based potassium current on the dynamics of a single LIF neuron.

We limit our analysis to the case in which the neuron is stimulated by a con-

stant applied current I, and we determine the effects of the conductance-based

potassium current on the firing frequency, the voltage-profile, and the model

neuron’s phase resetting curve. Note that, analytical solutions for the model,

(Equation (3.1.2)), are found most easily for integer values of gK. In the text of

this chapter, we only present equations for gK = 1, though equations for gK = 2

can be found in Appendix B.2. However, we do present numerical solutions

for both gK = 1 and gK = 2 where appropriate.

3.2.1 Numerical Simulations

Figure 3.2.1 presents numerical simulations of the periodic firing of a single



74

gK = 1 gK = 2

30 40 50 60
0.0
1.0
2.0
3.0

t

v

30 40 50 60
�5

0

t

G
K

(i) τ = 0.1

30 40 50 60
0.0
1.0
2.0
3.0

t

v

30 40 50 60
�10

0

t

G
K

(ii) τ = 0.1

30 40 50 60
0.0
1.0
2.0
3.0

t

v

30 40 50 60
�1

�.5
0

t

G
K

(iii) τ = 1

30 40 50 60
0.0
1.0
2.0
3.0

t
v

30 40 50 60
�2

0

t

G
K

(iv) τ = 1

30 40 50 60
0.0
1.0
2.0
3.0

t

v

30 40 50 60
�.5

0

t

G
K

(v) τ = 10

30 40 50 60
0.0
1.0
2.0
3.0

t

v

30 40 50 60
�.5

0

t

G
K

(vi) τ = 10

Figure 3.2.1: Periodic firing of LIF model with explicit potassium conductance
with gK = 1 (left column) and gK = 2 (right column). For all graphs, I = 1.5,
EK = −0.5, and β = 0.2. In each panel, plots of the voltage are in the upper
graphs and plots of the explicit potassium conductance are in the lower graphs.
For both gK = 1 and gK = 2, the firing frequency of the model increases as
τ increases. For a given value of τ, the firing frequency decreases as gK is
increased.
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LIF neuron with a conductance-based potassium current for both gK = 1 (left

column) and gK = 2 (right column) for time deactivation constants of τ = .1

(top row), τ = 1 (middle row) and τ = 10 (bottom row) when I = 1.5, EK = −0.5,

and β = 0.2. We note that the firing frequency f of the neuron increases when

τ increases or gK decreases.

3.2.2 Analytical Results

To obtain a more complete picture of the effects of the conductance-based

potassium current on the dynamics of the LIF neuron model seen through

the numerical simulations, we derive the analytical solutions to modified LIF

model (Equation (3.1.2)).

Note that when I < 1, the LIF neuron never spikes, and thus the explicit

potassium current is never activated. The neuron simply exponentially ap-

proaches the steady state, v = I.

However, when I > 1, v increases to threshold, vth = 1, and triggers a spike.

v is then reset to vreset = 0, and the explicit potassium conductance is activated.

Because the explicit potassium conductance decays towards zero, v will always

reach vth and cause another spike to be fired.

It can readily be shown that the system will always evolve to T-periodic ac-

tivity. The solution for the non-dimensionalized LIF neurons with an conductance-
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based potassium current for gK = 1, Eq (3.1.2), during T-periodic activity is

vLC(t) =
1

t + τ

(
[I(τ−1)+Ek](1−e−t−t0)+I(t−t0e−(t−t0))

)
+βδ(t−(t0+T)) t ∈ [t0, t0+T),

(3.2.1)

where t0 is the time of the most recent spike. The period T can be found by

setting t0 = 0 and solving vLC(T) = vth = 1, for T.

1 =
1

T + τ

(
[I(τ − 1) + Ek](1 − e−T) + IT

)
. (3.2.2)

Equation (3.2.2) can be rearranged to give I as a function of the firing

frequency, f (= 1/T), as well as the deactivation rate of the potassium current,

τ, for any given magnitude of the potassium current, gK (i.e., the inverse f -I

curve)

I =
T + τ − EK(1 − e−T)
(τ − 1)(1 − e−T) + T

. (3.2.3)

Figure 3.2.2 illustrates the relationship between the firing frequency, f , and

the applied current, I. For all cases, I = 1 is the threshold current for the

repetitive firing of action potentials, and f increases as I increases. The addition

of the conductance-based potassium current to the LIF model decreases the

firing frequency for all I. For a given value of I, the firing frequency, f , increases

as gK decreases for a given value of τ (not shown) and the firing frequency

increases as τ increases. Because the conductance-based potassium current

is truncated when the period ends and is normalized by τ, changes in τ and
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Figure 3.2.2: The firing frequency, f , versus the applied current, I, for gK = 1.
Solid, dashed and dotted black lines correspond to τ = 0.1, τ = 1, and τ = 10,
respectively. The solid red line indicates the frequency for the standard LIF
cell (no explicit potassium current or gK = 0). The addition of the explicit
potassium current to the standard LIF model decreases the firing frequency for
all I. For a given I, as τ increases, f increases. Increasing gK decreases f (not
shown). For all plots, EK = −0.5

gK affect the total potassium current accumulated over a full period. These

changes due to truncation and normalization likely primarily account for the

effects of τ and gK on the f -I curves.

Figure 3.2.3 plots the f − τ relationship for I = 1.5 and EK = −0.5 and more

clearly illustrates the relationship between the time deactivation constant, τ, of

the potassium conductance and the firing frequency, f . For the LIF model with

a conductance-based potassium current, the firing frequency f monotonically

increases as τ increases. As gK is increased, the firing frequency decreases.
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Figure 3.2.3: Effects of the spike-triggered conductance-based potassium cur-
rent on the firing frequency of an LIF cell. The solid black line corresponds
to the model with gK = 1, while the green line corresponds to the model with
gK = 2. The solid red line indicates the frequency for the standard LIF cell
(no explicit potassium current, gK = 0). For small τ the firing frequency is
much reduced compared to the LIF neuron. However, for large τ, the firing
frequency converges to the firing frequency for the LIF model. For all τ, the
firing frequency is decreased as gK is increased. All plots were produced with
I = 1.5 and EK = −0.5. While not shown, the same pattern holds for all I > 1.

For small values of τ, which correspond to a quickly decaying potassium

conductance, the firing frequency is much less than that for the standard LIF

model. However for large values of τ, which correspond to a more slowly

decaying potassium conductance, the firing frequency is nearly identical to

that of the standard LIF model. These results can be explained as follows.

Note that, the total potassium conductance over a period is gK ln (1 + T/τ). If

the period length is fixed, the total potassium conductance is greater for small
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values of τ than for large values of τ due to the truncation of the potassium

current and the effects of normalizing the potassium conductance by τ, i.e.

1/(t + τ). Therefore, we expect the conductance-based potassium current to

more significantly reduce the firing frequency of the LIF model for smaller

values of τ than for large values of τ. For very large values of τ, the total

potassium conductance over a period is gK ln (1 + T/τ) � 0, which is equivalent

to omitting the conductance-based potassium current from the LIF model (i.e.

gK = 0).

3.3 Electrically Coupled Cell-Pair Model: Effects of a Conductance-

based Potassium Current on Phase-Locking

To examine the effects of a conductance-based potassium current on the

phase-locking behavior in a pair of electrically coupled LIF neurons, we add the

non-dimensionalized spike-triggered conductance-based potassium current to

the LIF model cell-pair model given in the introduction, (1.2.4).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv1

dt
= −v1 + I − gKζ1(t − t0,1)(v1 − EK) + gc(v2 − v1)

dv2

dt
= −v2 + I − gKζ2(t − t0,2)(v2 − EK) + gc(v1 − v2)

where if vi(t−∗ ) = vth, then

(i) the cell spikes and is reset,

vi(t∗) = βδ(t∗) and vi(t+∗ ) = vreset
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(ii) the time of the most recent spike is updated t0,i = t∗

(iii) a spike-triggered decaying potassium conductance is activated such that

ζi(t) =
1

t + τ
for t ≥ 0, i = 1, 2.

(3.3.1)

As before, β scales the effect of the supra-threshold portion of the spike and

gc is the dimensionless strength of the electrical coupling between the cells.

The potassium conductance gKζi(t) is the same as that defined in Equation

(3.1.2). The subindex i on ζi(t) simply denotes that it refers to the potassium

conductance in cell i. Similarly, the subindex i on the time ti,0 denotes the most

recent firing time of cell i.

3.3.1 Numerical Simulations of Electrically Coupled Cells

Studies have shown that electrically coupled LIF cells can evolve to either

stable synchronous or antisynchronous phase-locked states depending on the

strength of the electrical coupling, gc, the “size” of the spike, β, and the magni-

tude of the applied current, I [Chow and Kopell, 2000; Lewis and Rinzel, 2003].

Chapter 2 reaffirmed these observations. Here, we investigate whether the

addition of a conductance-based potassium current can also affect electrically

coupled cells evolve to stable synchrony or antisynchrony.

Figure 3.3.1 shows that an conductance-based potassium current can influ-

ence whether the system evolves to synchrony or antisynchrony. This influence

depends on the rate of decay of the potassium conductance τ. For τ = 0.1 and
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Figure 3.3.1: Coupled LIF with the explicit potassium current for gK = 1 (left)
and gK = 2 (right). The cells evolved independently from initial conditions
v1 = 0.83 (black) and v2 = 0.0 (green) in order to allow the cells to reach a
uniform firing frequency until t = 20, at which time the electrical coupling
term was activated. For τ = 0.1 and τ = 1, the system evolves to antisynchrony
for both gK = 1 and gK = 2. For τ = 10, the system evolves to synchrony for
gK = 1 and gK = 2. For all graphs, I = 1.7, EK = −0.5, gc = 0.2, and β = 0.2.
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τ = 1, the system evolves to antisynchrony for both gK = 1 and gK = 2. For

τ = 10, the system evolves to synchrony for both gK = 1 and gK = 2.

3.4 Theory of Weakly Coupled Oscillators: Derivation of Phase

Equation

As in Chapter 2, to gain insight into how changes in the magnitude of the

potassium conductance, gK, and its deactivation time constant, τ, affect the

phase-locking dynamics of electrically coupled LIF neurons, we use the theory

of weakly coupled oscillators [Kuramoto, 1984]. We apply the steps outlined

in Section 1.3 as detailed in Appendix A.1 to produce the infinitesimal phase

resetting curve (iPRC) and the corresponding cell-pair interaction function,

G(φ).

The infinitesimal phase resetting curve for the LIF model with a conductance-

based potassium current for gK = 1 is

Z(t) =
(t + τ)et

T(I(τ − 1) + Ek + (I − 1)eT)
. (3.4.1)

Figure 3.4.1 shows Z(t) for the standard LIF model and Z(t) for the model

with the conductance-based potassium current when T = 1.67. Both are qual-

itatively similar in that both monotonically increase as the phase increases.

However, for fixed T, Z(t) for the LIF model with the conductance-based potas-

sium current increases more rapidly than that of Z(t) for the standard LIF model

due to the factor (t + τ) in Eq (3.4.1).
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Figure 3.4.1: The dependence of the iPRC, Z(t), on the conductance-based
potassium current. The black lines correspond to the model with gK = 1,
while the green lines correspond to the model with gK = 2. The solid red line
indicates the frequency for the standard LIF cell (no explicit potassium current
or gK = 0). Solid, dashed, and dotted lines correspond to τ = 0.1, τ = 1, and
τ = 10, respectively. All plots were produced with T = 1.67 and EK = −0.5.

By combining the expressions for the iPRC, Z(t), and the electrical coupling

current between the two neurons, gc(vLC(t − φT) − vLC(t + φT)), we obtain an

equation for the evolution of the phase difference, φ, between the electrically

coupled LIF neurons with a conductance-based potassium current. For gK = 1,

dφ
dt
= G(φ)

where

G(φ) =
gc

TD1(τ)

[( ∫ φT

0
(t + τ)etvLC(t + (1 − φ)T)dt +

∫ T

φT
(t + τ)etvLC(t − φT)dt

−
∫ T(1−φ)

0
(t + τ)etvLC(t + φT)dt −

∫ T

T(1−φ)
(t + τ)etvLC(t − (1 − φ)T)dt

)

+ β[(φT + τ)eφT − ((1 − φ)T + τ)e(1−φ)T]
]

(3.4.2)
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and where D1(τ) = T(I(τ − 1) + Ek + (I − 1)eT).

The G-function is evaluated through the use of numerical methods as the G-

function for this model cannot be solved analytically. As a reminder, G(φ∗) = 0

indicates that φ∗ is a phase-locked state. The stability of phase-locked states

can be determined by examining G′(φ∗). When G′(φ∗) > 0, the phase-locked

state is unstable, and when G′(φ∗) < 0, the phase-locked state is stable. As with

any symmetrically coupled pair of identical oscillating cells, the synchronous

phase-locked state φ∗ = 0, 1 and the antisynchronous phase-locked state φ∗ =

0.5 always exist (i.e., G(0) = G(1) = 0, G(0.5) = 0). Because of the δ-function

spike and the monotonically increasing Z(t), the synchronous state is always

stable [Lewis and Skinner, 2011]. On the other hand, the antisynchronous state

can be either stable or unstable depending on the parameters (i.e., G′(0.5) can

be either negative or positive). Note that, the strength of coupling gc, does

not affect the existence or stability of the phase-locked states; it simply scales

the G-function, and therefore it only affects the speed with which the system

approaches or diverges from the phase-locked states.

3.4.1 The Effects of τ on G(φ)

To better understand the influence of the conductance-based potassium

current on the existence and stability of the phase-locked states, we examine

how changes in τ affect the function G(φ).

Figure 3.4.2 shows the full G-functions for gK = 1 and gK = 2 as τ varies
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Figure 3.4.2: G-functions with gK = 1 (left) and gK = 2 (right). For all plots,
with f = 0.65, EK = −0.5, gc = 0.2, and β = 0.2. In each graph, the black, green
and red lines corresponds to τ = 0.1, τ = 1 and τ = 10, respectively. (i) As
τ is increased from τ = 0.1 to τ = 10, the antisynchronous state evolves from
stable to unstable. (ii) For τ = 0.1, the antisynchronous and synchronous states
are both stable. As τ is increased to τ = 1, the antisynchronous state becomes
unstable. When τ is further increased to τ = 10, the antisynchronous state
returns to being stable.

for f = 0.65, EK = −0.5, and β = 0.2. Plots of the G-functions show that

the synchronous state is stable for all values of τ, while the stability of the

antisynchronous state depends on the value of τ. In Figure 3.4.2(i) for gK =

1, as τ is increased from τ = 0.1 (black curve) to τ = 10 (red curve), the

antisynchronous phase-locked state becomes unstable, while the synchronous

state remains stable. In Figure 3.4.2(ii) for gK = 2, for τ = 0.1 (black curve), the

antisynchronous state is stable. As τ is increased from τ = 0.1 to τ = 1 (green

curve), the antisynchronous state becomes unstable. As τ is further increased

from τ = 1 to τ = 10 (red curve), the antisynchronous state again becomes
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stable.
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Figure 3.4.3: Bifurcation diagrams of the model with the explicit potassium
current for the firing frequency f . For all graphs, EK = −0.5 and β = 0.2. Solid
lines indicate stable state and dotted lines indicate unstable states. Black, green,
and red lines indicate τ = 0.1, τ = 1, and τ = 10, respectively. We define f ∗ to
be the critical value of f where the pitchfork bifurcation originates. For f < f ∗,
both antisynchronous and synchronous states are stable, while for f > f ∗ only
the synchronous state is stable. (i) For gK = 1, as τ increases, f ∗ decreases. (ii)
For gK = 2, as τ increases from τ = 0.1 to τ = 1, f ∗ decreases. However, when
τ is increased from τ = 1 to τ = 10, f ∗ increases. We note that the bifurcation
diagrams for gK = 2 are much more greatly affected by changes in τ than those
for gK = 1.

To demonstrate the effects of the conductance-based potassium current on

the stability of phase-locked states over a wide range of frequencies, we plot

the bifurcation diagrams for the phase difference φ versus the firing frequency

f for select values of τ (Figure 3.4.3). Note that stable phase-locked states

are indicated by solid lines, and unstable phase-locked states are indicated by

dashed lines. The unstable curve defines the boundaries between the domain

of attraction for the synchronous state and the antisynchronous state. For
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small f , the cell-pair is bistable; however, the domain of attraction is larger for

the antisynchronous state, φ = 0.5, than for the synchronous state, φ = 0, 1,

and thus the antisynchronous state dominates. As f increases, the domain of

attraction for the antisynchronous state shrinks. With further increases of f ,

the synchronous state becomes dominant, and eventually a critical frequency

f ∗ is reached, after which only the synchronous phase-locked state is stable.

This critical frequency f ∗ occurs where the unstable steady state coalesces with

the the stable antisynchronous state in a subcritical pitchfork bifurcation.

We will use changes in the value of this critical frequency f ∗ as a convenient

way to assess how the stability of the antisynchronous steady state depends on

τ. Figure 3.4.3 presents the bifurcation diagrams for several values of τ when

EK = −0.5 and β = 0.2. When gK = 1, Figure 3.4.3(i) shows that f ∗ decreases as

τ increases. Figure 3.4.3(ii), for gK = 2 shows that f ∗ decreases as τ is increased

from τ = 0.1 to τ = 1. However, f ∗ increases when τ is increased from τ = 1 to

τ = 10.

Figure 3.4.4 shows how the critical frequency f ∗ responds to increases in τ

when EK = −0.5 and β = 0.2. The area above each curve indicates the region

in parameter space where only the synchronous state is stable, while the area

below each curve indicates the region in parameter space where both the syn-

chronous and antisynchronous states are stable. The solid red curve shows

the critical frequency for the standard LIF model for the given parameters (i.e.,

gK = 0). For gK = 1, the LIF model with a conductance-based potassium cur-
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Figure 3.4.4: Critical frequency, f ∗, versus the potassium conductance deac-
tivation time constant, τ. Black and green lines correspond to the model with
gK = 1 and gK = 2, respectively. The red line is for the standard LIF model
without an explicit potassium current (or gK = 0). The model with gK = 1 al-
ways increases the f parameter space where antisynchrony is stable compared
to the standard LIF model. However, the model with gK = 2 shows that for
moderate values of τ, that the model with an explicit potassium current can
more strongly favor synchrony than than the standard LIF model. EK = −0.5
and β = 0.2 for all graphs.

rent (black curve) always increases the region where antisynchrony is stable

in comparison to the standard LIF model for all values of τ, and thus pro-

motes the antisynchronous state. However for gK = 2, the LIF model with a

conductance-based potassium current (green curve) decreases the f parameter

region where stable antisynchrony exists for moderate values of τ and increases

the f parameter region where stable antisynchrony exists for both small and

large values of τ in comparison to the standard LIF model.
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Note that, it is expected that large values of τ would cause the critical

frequency of the LIF model with the conductance-based potassium current

to converge to the critical frequency of the standard LIF model, because the

potassium conductances goes to 0 as τ
 T, due to the potassium conductance

being scaled byτ, i.e. 1/(t+τ). That is, the voltage-dependent explicit potassium

current no longer impacts the dynamics of the LIF model for large values of τ

(see Section 3.2 and Figure 3.2.3).

Unfortunately, further analysis on the effects of the deactivation time con-

stant, τ, on the critical frequency, f ∗, are limited, because of our reliance on

numerical methods.

3.5 Conclusion and Discussion

In this chapter, we studied how the addition of a spike-triggered conductance-

based potassium current to two identical, electrically coupled LIF model neu-

rons affects the existence and stability of phase-locked states. Numerical sim-

ulations indicated that the addition of a spike-triggered conductance-based

potassium current influences whether a system of electrically coupled LIF

model neurons evolve to stable synchrony or antisynchrony. The theory of

weakly coupled oscillators helped to generalize the results of the numerical

simulations and provided more insight into how changes to the deactivation

time constant, τ, and the magnitude of the current, gK, affect whether the ad-

dition of the spike-triggered potassium current promotes or suppresses the
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antisynchronous phase-locked state. These results are summarized in Table

3.5.2.

Parameter variation Effect

Increasing Intrinsic Frequency (↑ I) Promotes synchrony

Increasing Spike Effect (↑ β) Promotes synchrony

Increasing the Magnitude of Can Promote or Suppress
the Potassium Current (↑ gK) Antisynchrony.

Increasing the Deactivation Can Promote or Suppress
Time Constant (↑ τ) Antisynchrony

Table 3.5.2: Summary of Results

We found that either increasing the intrinsic firing frequency by increasing

the applied current, I, or increasing the magnitude of the spike effect, β, pro-

moted synchrony. The effect on synchronization of increasing the magnitude

of the potassium current, gK, or increasing the size of the deactivation time

constant, τ, is less clear. This chapter presented evidence that increasing either

gK or τ can promote or suppress antisynchrony (see Figure 3.4.4); however, an

exact description of the region where antisynchrony is promoted by increasing

gK or τ remains elusive. Perhaps a decomposition of the G-function similar to

that performed in Chapter 2 could provide insight into the effect of gK and τ

on synchronization.

3.5.1 Effects of Including Voltage Dependence in the Potassium Current
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In Chapters 2 and 3, we added a spike-triggered potassium current to a pair

of electrically coupled LIF model neurons. In Chapter 2, we investigated how

a non-summing potassium current affects the phase-locking behavior of a pair

of electrically coupled LIF neurons, and in Chapter 3, we investigated how a

conductance-based potassium current affects the phase-locking behavior of a

pair of electrically coupled LIF neurons. These potassium currents differed in

two ways: the shape and decay rate of their kernels, ηKns(t) and ζ(t), and the

inclusion of the voltage dependence term, (v − EK), in the conductance-based

potassium current. In Appendix B.1, we briefly examine the effects on phase-

locking behavior of interchanging the potassium kernels in the electrically

coupled LIF models (i.e., using ηKns(t) in place of ζ(t) in the conductance-based

potassium current model and using ζ(t) instead of ηKns(t) in the spike-triggered

potassium current). Numerical simulations indicate that the two different

kernels for the potassium currents cause similar effects on the phase-locking

behavior of electrically coupled LIF neurons. However, replacing ηKns(t) with

ζ(t) causes a significant decrease in the firing frequency for small values of τ,

but only a minimal decrease in f for large values of τ. By investigating our

models via frequency, we have minimized the frequency-dependent differences

between the usage of either potassium kernel. Because the majority of the

differences between the two kernels appear to be due to each kernel’s effects

on frequency, we can evaluate how the inclusion of voltage-dependence in the

potassium current effects the dynamics of the model largely independent of
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the choice of the kernel.

We first note that the voltage-dependence term, (v−EK), of the conductance-

based potassium current affects the magnitude of the current. By choice, the

kernel of the conductance-based potassium current always decreases as the

phase advances. Because the membrane potential of the LIF neuron intrinsi-

cally increases, the voltage-dependence term, (v − EK), increases as the phase

increases. The addition of the voltage-dependence term causes the magnitude

of the potassium current to decrease near reset, φ = 0, and increases near

threshold, φ = 1.

The inclusion of voltage-dependence in the potassium current affects the

shape of the iPRC. For the model with the non-summing spike-triggered potas-

sium current, the addition of the potassium current always decreases the iPRC

versus that of the standard LIF model (Figure 2.4.2(ii)). However for the model

with the conductance-based potassium current, the iPRC rapidly increases and

can become larger than the iPRC for the standard LIF model (Figure 3.4.1).

This rapid increase is due to the factor (t + τ) in the iPRC (Equation (3.4.1)).

Thus, the iPRC grows increasingly rapidly with increases in phase. We note

that this factor, (t + τ), is a result of the inclusion of the voltage-dependence

term, (v − EK), in the conductance based potassium current.

Because the G-function is a convolution of the voltage trace and iPRC,

both of which are affected by the inclusion of the voltage-dependence term,

the voltage-dependence term should impact the existence and stability of the
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phase-locked states. However, because of our reliance on numerical methods

to evaluate the G-function, we cannot isolate the influence of the voltage-

dependence on the existence and stability of phase-locked states analytically.

Nevertheless, we can gain insight into how the voltage-dependence term affects

the existence of stable antisynchrony by comparing the effects of τ on the criti-

cal frequency, f ∗, for the electrically coupled LIF model with the non-summing

potassium current and the model with the conductance-based potassium cur-

rent. The model with the non-summing potassium current promotes antisyn-

chrony more strongly than the standard LIF model for sufficiently small values

of τ (τ < τint) and suppresses antisynchrony more strongly than the standard

LIF model for sufficiently large values of τ (τ > τint) (see Figure 2.4.4). When

gK = 1, the model with the conductance-based potassium current promotes

antisynchrony more strongly than the standard LIF model for all values of τ

(see Figure 3.4.4). However, when gK is increased to gK = 2, the model with the

conductance-based potassium current suppresses antisynchrony more strongly

than the LIF model for a small range of τ. On the other hand, as the increase

of gK to gK = 2 can be thought of as the doubling of the effects of the voltage-

dependence term rather than as the increase of the magnitude of the potassium

current, the specific effects of the addition of the voltage-dependence on the

phase-locking behavior of electrically coupled LIF neurons remain undeter-

mined.

3.5.2 Comparison to Previous Results of Pfeuty et al. and Mancilla et al.
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Similar to Chapter 2, we can translate the non-dimensional parameters of

the electrically coupled LIF model with a spike-triggered conductance-based

potassium current into dimensional form to facilitate a comparison to the work

of Pfeuty et al. (2003) and Mancilla et al. (2007). Using the values reported

in Mancilla et al. (2007) of Cm ≈ 40pF and gL ≈ 10nS, we again find that the

membrane time constant is τ = 4ms, which implies that the actual frequency,

f , corresponds to 250 f̄ Hz, where f̄ is the non-dimensional frequency. The

non-dimensional deactivation time constants τ̄ = 0.1, 1.0, and 10, correspond

to the deactivation time constants of τ = 0.4, 4.0, and 40msecs, values which are

representative of the reported deactivation rates for potassium channels in the

Kv1 and Kv3 families [Coetzee et al., 1999]. The investigated non-dimensional

f̄ frequency range of 0 to 1 corresponds to an actual frequency range of 0 to 250

Hz, a range that encompasses those investigated by Mancilla et al. (2007) and

Pfuety et al. (2003).

As the results presented in this chapter support those of Chapter 2, the

results of Chapter 3 also unify those of Pfeuty et al. (2003) and Mancilla et al.

(2007). Like the model of Pfeuty et al., our model from Chapter 3 shows that

increasing the magnitude of the potassium current, gK, can promote synchrony,

at least for certain parameters. Similar to the results of Mancilla et al., our model

indicated that if the size of after-hyperpolarizations are increased by increasing

the magnitude of the potassium current, gK, that antisynchrony is promoted

for certain parameters.
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3.5.3 Limitations of the Model

In this chapter we used a more realistic model of a potassium current than

in Chapter 2 and investigated how it impacts the phase-locking behavior of

a pair of electrically coupled LIF neurons. Although the LIF model captures

the qualitative dynamics of a full conductance based model, it behooves us to

see if the results from this chapter hold in a the more biophysically realistic,

Hodgkin-Huxley type, full-conductance based model. Likewise, we should

see if similar results arise when if a more realistic potassium current, one that

arises due to the gating dynamics of potassium channels, is used instead of

a spike-triggered one. In Chapter 4, we investigate the effects on the phase-

locking behavior of altering a biophysically realistic potassium current on a

pair of electrically coupled, Hodgkin-Huxley type conductance-based model

neurons.
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Chapter 4

Full Conductance-Based Model

In the previous two chapters, we added explicit potassium currents to a

Leaky-Integrate-and-Fire model to see how changes in the strength and the rate

of deactivation of explicit potassium currents affected the existence and stability

of the oscillatory behavior of electrically coupled neurons. In this chapter

instead of using an LIF type-model, we modify the Hodgkin-Huxley model (as

introduced in Chapter 1) to investigate how differences in potassium channel

dynamics might effect the synchronization of electrically coupled neurons.

4.1 Model Description

The modified Hodgkin-Huxley model is given by

Cm
dV
dt
= −INa − IK − IL + Iapplied

where

INa = gNam3h(V − ENa)

IK = (gKresetnreset + gKAHPnAHP)(V − EK)

IL = gL(V − EL)

(4.1.1)
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and

dy
dt
= αy(V)(1 − y) − βy(V)y,

where y = nreset,nAHP,m, h.
(4.1.2)

Cm is the membrane capacitance, V is the transmembrane potential, and INa, IK, IL,

and Iapplied are the sodium, potassium, and leakage currents, respectively. ENa,EK,

and EL are the sodium, potassium, and leakage reversal potentials, respectively.

The maximal conductances for the various currents are given by gNa, gKreset , gKAHP ,

and gL.

The dynamics of the gating variables, m and h for the sodium current and

nreset and nAHP for the two potassium currents, are described by Eq (4.1.2),

where αy(V) and βy(V) are the voltage-dependent gate-subunit opening rate

and closing rate, respectively.

The difference between this model and the standard Hodgkin-Huxley model

is our description of the total potassium current, IK. We consider two separate

potassium currents, IKreset = gKresetnreset(V − EK) and IKAHP = gKAHPnAHP(V − EK).

The first potassium current, IKreset is a fast activating and deactivating current

that primarily controls the fast repolarization of the model neuron following an

action potential, have similar effects as the instantaneous reset of the modified

LIF models used in Chapters 2 and 3, but modeled in a more realistic way. The

second potassium current, IKAHP is qualitavely similar to IKreset , but the magni-

tude and deactivation rate of IKAHP are varied so that we can investigate how
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changes in potassium channel dynamics effect the phase-locking behavior of

the electrically coupled neurons. IKAHP can be thought of as being analogous to

the explicit potassium currents of the previous models.

A full list of parameter values for the model can be found in Appendix C.

4.1.1 Potassium Channel Dynamics

As both the gating variable for the resetting potassium current, nreset and

the gating variable for the after-hyperpolarization potassium current, nAHP, are

identical in form, we present the functions controlling the gating dynamics for

a general “n” gating variable.

We let the voltage-dependent steady state be the sigmoid function

n∞(V) =
eV−V1/2

1 + eV−V1/2
(4.1.3)

and the voltage-dependent time constant be

τn(V) =
τaeV−V1/2 + τd

1 + eV−V1/2
, (4.1.4)

where

n = nAHP, nreset.

(See Figure 4.1.1.)
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The corresponding rate constants are

αn(V) =
eV−V1/2

τaeV−V1/2 + τd
(4.1.5)

and

βn(V) =
1

τaeV−V1/2 + τd
(4.1.6)

In the above equations, V1/2 is the membrane potential where the potas-

sium channel is half activated. We set V1/2 = 0mV for both the reset and AHP

potassium currents. This potential is sufficiently high to ensure that neither

potassium current prevents the formation of an action potential. The activation

rate and the decay rate of the potassium current are given by τa and τd, respec-

tively. Because we want the potassium currents to activate very quickly, we set

both τareset = 0.1ms for the resetting potassium current, IKreset , and τaAHP = 0.1ms for

the AHP potassium current, IKAHP . We choose τdreset = 1ms so that the resetting

potassium current remained activate for a sufficient duration to fully repolarize

the neuron but still deactivated relatively quickly. To investigate the role of the

deactivation constant of the AHP potassium current on the oscillatory behavior

of electrically coupled neurons, we vary τdAHP .

Figure 4.1.1 shows the function that governs the dynamics of the potassium

conductances. Figure 4.1.1(i) shows that at low voltages, n∞ ∼ 0, and thus the

potassium gates tend to be closed; at high voltages, n∞ ∼ 1, and thus the potas-
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Figure 4.1.1: Dynamics of the Potassium Currents In all plots, black and
red lines correspond to IKreset and IKAHP , respectively. For IKreset , τareset = 0.1ms
and τdreset = 1ms. For IKAHP , τaAHP = 0.1ms and τdAHP = 5ms. (i) Plot of n∞(V).
At low voltages, neither potassium current is significantly activated. As the
membrane potential increases past the threshold voltage, V1/2 = 0mV, the
potassium currents become fully activated. Note that, n∞ is identical for both
the reset potassium current and the AHP potassium current. (ii) Plot of τn(V).
At low voltages, both potassium current are much slower to achieve their n∞
values than at high voltages.

sium gates tend to be open. The gates transition from being predominately

closed to being predominately open as the membrane potential is increased

past V1/2 = 0mV. This indicates that at low voltages, the potassium conduc-

tance will be inactive, while at high voltages, the potassium current will be

active. Figure 4.1.1(ii) shows how quickly the potassium gates can achieve

their n∞ value. The potassium currents are much faster to approach their n∞

values at high voltages than at low voltages, i.e., the potassium conductances

are much faster to activate than deactivate.

4.2 Electrically Coupled Cell-Pair Model
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The full conductance-based model of a pair of electrically coupled cells is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Cm

dV1

dt
= −INa1 − IK1 − IL1 + Iapplied + gc(V2 − V1)

Cm
dV2

dt
= −INa2 − IK2 − IL2 + Iapplied + gc(V1 − V2)

where

INai = gNam3
i hi(Vi − ENa)

IKi = (gKresetnreseti + gKAHPnAHPi)(Vi − EK)

ILi = gL(Vi − EL)

(4.2.1)

and

dyi

dt
= αyi(Vi)(1 − yi) − βyi(Vi)yi,

where y = nreseti ,nAHPi ,mi, hi. for i = 1, 2

(4.2.2)

The variables and parameters are the same as defined earlier, Eq (4.1.1);

the sub-index i simply denotes the differences between the two neurons, cell

1 and cell 2. The magnitude of the current that flows from cell j to cell k

through simple ohmic resistance is given, gc(Vj − Vk), where gc is the constant

conductance of the electrical coupling.

4.3 Effect of the AHP Potassium Conductance on Phase-Locking:

Theory of Weakly Coupled Oscillators

To determine how changes to the deactivation time constant and the mag-
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nitude of the AHP potassium current affect the phase-locking behavior of the

electrically coupled neurons, we use the theory of weakly coupled oscillators.

Numerical methods allowed us to determine the voltage trace over a single

period for a model neuron and its corresponding phase-response curve. To-

gether, these can be combined to find the G-function, which allows for the

easy determination of the existence and stability of the phase-locked states as

described in Section 1.3. In general, we will vary the the decay rate, τdAHP , and

magnitude, gKAHP , of the AHP current and examine the G-functions to investi-

gate how changes in these parameters affect the stability of the phase-locked

states.

Figure 4.3.1 shows the voltage trace, PRC, gating variables, and correspond-

ing G-function for the model without the AHP current activated (gKAHP = 0)

(i, iii, v) and with the AHP current activated (gKAHP = 100nS, τdAHP = 5ms)

(ii, iv, vi) at a firing frequency of f ≈ 30Hz. The voltage traces of the model

with and without the AHP current are similar, though the model with the AHP

current repolarizes slightly more strongly and is initially slower to depolarize.

The PRCs are also similar, as both are all positive, Type I PRCs [Ermentrout and

Rinzel, 1988] and are very similar to PRCs measured for real cortical inhibitory

interneurons [Mancilla et al., 2007]. However, they differ as the PRC for the

model with the AHP current is right-shifted and has a higher peak response

to stimulus than the PRC for the model without the AHP current. The evo-

lution of both the nreset and m-gating variables appear identical for the model
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Figure 4.3.1: Voltage Trace, PRC, Gating Variables, and G-functions for IKreset

only (left column) and for both IKreset and IKAHP (right column). In (i, iii, v),
gKAHP = 0, Iapplied = 86pA, f = 29.7Hz. In (ii, iv, vi), gKAHP = 100nS, τdAHP = 5ms,
Iapplied = 120pA, f = 30.6Hz. In (iii) and (iv), black, blue, green, and red lines
correspond to the value for the h, m, nreset, and nAHP gating variables.
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with and without the AHP current. However, the m-gating variable achieves

a higher value in the model with the AHP current, which leads to higher

maximum sodium conductance, and thus a greater depolarization during the

action potential. Regardless, the response of the model with and without the

AHP current appear qualitatively similar. However, the G-functions illustrate

that these seemingly small differences can foster a change in the phase-locking

behavior of the electrically coupled neurons. In the model without the AHP

current, the G-function indicates that only the synchronous state is stable; the

antisynchronous state is unstable. Interestingly, in the model with the AHP cur-

rent, the G-function indicates that both the synchronous and antisynchronous

phase-locked states are stable for these values of gKAHP and τdAHP . It appears

that the addition of the AHP current can stabilize the previously unstable

antisynchronous state.

4.3.1 Effects of varying Iapplied, gKAHP , and τdAHP on the G-functions

From the previous chapters, we expect that as Iapplied is increased, the fir-

ing frequency, f , increases, and the antisynchronous phase-locked state loses

stability. Figure 4.3.2 shows that this pattern holds in our modified Hodgkin-

Huxley model. When gKAHP = 100nS and τdAHP = 5, increasing Iapplied causes the

antisynchronous phase state to switch from being stable to unstable. When

Iapplied = 100pA, the antisynchronous phase-locked state is clearly stable (Figure

4.3.2(i)). As Iapplied is increased to Iapplied = 200pA and Iapplied = 300pA, the anti-
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Figure 4.3.2: G-functions for increasing values of Iapplied. For all plots, gKAHP =
100nS and τdAHP = 5ms. (i) Iapplied = 100pA, f = 26.5Hz. (ii) Iapplied = 200pA, f =
41.4Hz. (iii) Iapplied = 300pA, f = 51.0Hz. (iv) Iapplied = 400pA, f = 59.1Hz. As
Iapplied increases, the antisynchronous phase-locked state transitions from stable
to unstable and the firing frequency f increases.

synchronous state remains stable, but much less robustly so. In (iv), as Iapplied

is increased to Iapplied = 400pA the antisynchronous phase-locked transitions to

being unstable. Thus as expected, as Iapplied is increased, the firing frequency, f ,

increases, and antisynchronous oscillatory behavior appears to be suppressed.

Figure 4.3.3 shows that as gKAHP increases, the antisynchronous phase-locked
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Figure 4.3.3: G-functions for increasing values of gKAHP . For all plots, τdAHP =
5ms and Iapplied = 300pA. (i) gKAHP = 0nS, f = 94.7Hz. (ii) gKAHP = 50nS, f =
60.9Hz. (iii) gKAHP = 100nS, f = 51.0Hz. (iii) gKAHP = 200nS, f = 43.8Hz. As
gKAHP increases, the antisynchronous phase-locked state transitions from being
unstable to being stable. Additionally, the firing frequency f decreases as gKAHP

increases.

state transitions from being unstable to being stable when τdAHP = 5ms and

Iapplied = 300pA. When gKAHP = 0nS and gKAHP = 50nS, the antisynchronous state

is unstable (Figures 4.3.3(i) and 4.3.3(ii), respectively). When gKAHP is increased

to gKAHP = 100nS and gKAHP = 200nS, the antisynchronous state becomes stable.
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Thus, it appears that when τdAHP = 5ms, that the AHP potassium current, IKAHP

promotes antisynchronous behavior. However, note that as gKAHP increases, the

firing frequency decreased.
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Figure 4.3.4: G-functions for increasing values of τdAHP . For all plots, gKAHP =
100nS and Iapplied = 300pA. (i) τdAHP = 1ms, f = 94.6Hz. (ii) τdAHP = 5ms, f =
51.0Hz. (iii) τdAHP = 10ms, f = 29.9Hz. (iv) τdAHP = 20ms, f = 16.6Hz. As
τdAHP increases, the antisynchronous phase-locked state transitions from being
unstable to being stable. Additionally, the firing frequency f decreases as τdAHP

increases.

Figure 4.3.4 shows that as τdAHP increases, the antisynchronous state tran-
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sitions from being unstable to being stable when gKAHP = 100nS and Iapplied =

300pA. For τdAHP = 1ms, the antisynchronous state is unstable (4.3.4(i)). As τdAHP

is increased from τdAHP = 1ms to τdAHP = 5ms, the antisynchronous state becomes

unstable. As τdAHP is further increased to τdAHP = 10ms and τdAHP = 20ms, the

antisynchronous state becomes more robustly stable. Additionally, as τdAHP

increased, the firing frequency f decreased.

Both Figures 4.3.4 and 4.3.3 showed that varying τdAHP and gKAHP can affect

the stability of the antisynchronous phase-locked state. However, it is unclear

whether the changes to the stability of the antisynchronous phase-locked state

are due directly to the changes of τdAHP and gKAHP , or to the indirect effects of

τdAHP and gKAHP on the firing frequency. As Figure 4.3.2 illustrated, changes in

frequency can effect the stability of the antisynchronous state. Therefore, it

behooves us to determine whether changes in τdAHP or gKAHP directly effect the

stability of the antisynchronous state or only indirectly effect the stability of the

antisynchronous state due their effects on the firing frequency.

By selecting an appropriate value of Iapplied, we can tune the electrically

coupled neurons to fire with the same frequency regardless of their values of

τdAHP and gKAHP . Figure 4.3.5 shows that varying gKAHP effects the stability the

antisynchronous phase-locked state even when the firing frequency is held at

approximately constant. In each subfigure, τdAHP = 5ms and Iapplied was chosen so

that the firing frequency, f ≈ 30Hz. For gKAHP = 0nS, the antisynchronous phase-

locked state is unstable (Figure 4.3.5(i)). As gKAHP is increased to gKAHP = 50nS,
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Figure 4.3.5: G-functions for increasing values of gKAHP for the same f . For
all plots, τdAHP = 5ms. (i) gKAHP = 0nS, Iapplied = 86pA, f = 29.7Hz. (ii) gKAHP =
50nS, Iapplied = 105pA, f = 30.0Hz. (iii) gKAHP = 100nS, Iapplied = 115pA, f = 29.7Hz.
(iv) gKAHP = 200nS, Iapplied = 135pA, f = 30.0Hz.

the antisynchronous phase-locked state becomes stable. Further increases in

gKAHP to gKAHP = 100nS and gKAHP = 200nS, increase the robustness and basin

of attraction of the stable antisynchronous state. It appears that the value of

gKAHP can directly effect the stability of the antisynchronous phase-locked state.

We note that similar response patterns for the stability of the antisynchronous
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phase-locked state were observed in both Figure 4.3.3 and Figure 4.3.5, although

differences exist regarding the robustness and the basin of attraction for the

antisynchronous phase-locked state.
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Figure 4.3.6: G-functions for increasing values of τdAHP for same f . For all
plots, gKAHP = 50nS. (i) τdAHP = 1ms, Iapplied = 86pA, f = 29.9Hz. (ii) τdAHP =
5ms, Iapplied = 105pA, f = 30.0Hz. (iii) τdAHP = 10ms, Iapplied = 205pA, f = 29.8Hz.
(iv) τdAHP = 20ms, Iapplied = 500pA, f = 30.2Hz.

Figures 4.3.6, 4.3.7, and 4.3.8 shows that changing τdAHP effects the stability of

the antisynchronous state even when the firing frequency is kept approximately
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Figure 4.3.7: G-functions for increasing values of τdAHP for same f . For all
plots, gKAHP = 100nS. (i) τdAHP = 1ms, Iapplied = 86pA, f = 30.1Hz. (ii) τdAHP =
5ms, Iapplied = 120pA, f = 30.6Hz. (iii) τdAHP = 10ms, Iapplied = 300pA, f = 29.9Hz.
(iv) τdAHP = 20ms, Iapplied = 900pA, f = 30.7Hz.

equal. For Figures 4.3.6, 4.3.7, and 4.3.8, gKAHP = 50nS, gKAHP = 100nS, and

gKAHP = 200nS, respectively. In all figures and subfigures, Iapplied was chosen so

that f ≈ 30Hz. When τdAHP = 1ms, the antisynchronous state is unstable (Figures

4.3.6(i), 4.3.7(i), and 4.3.8(i)) . However, as τdAHP is increased to τdAHP = 5ms,

τdAHP = 10ms, and τdAHP = 20ms, the antisynchronous phase-locked state evolves
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Figure 4.3.8: G-functions for increasing values of τdAHP for same f . For all
plots, gKAHP = 200nS. (i) τdAHP = 1ms, Iapplied = 86pA, f = 30.3Hz. (ii) τdAHP =
5ms, Iapplied = 135pA, f = 30.0Hz. (iii) τdAHP = 10ms, Iapplied = 460pA, f = 29.8Hz.
(iv) τdAHP = 20ms, Iapplied = 1600pA, f = 30.0Hz.

to be stable in each figure. It appears that the value of τdAHP can directly effect

the stability of the antisynchronous phase-locked state. We note that similar

response patterns for the stability of the antisynchronous phase-locked state

were observed in both Figure 4.3.4 and Figure 4.3.7, although differences exist

regarding the robustness and the basin of attraction for the antisynchronous
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phase-locked state.

In addition to any indirect effects on the firing frequency due to increases

of the deactivation time constant, τdAHP , or the magnitude of the AHP current,

gKAHP , increasing τdAHP or gKAHP promotes the stability of the antisynchronous

phase-locked state for the parameters we have investigated.

4.4 Discussion and Conclusions

In this chapter, we investigated how the existence and stability of the phase-

locked states for a pair of electrically coupled conductance-based model neu-

rons are affected by changes to the dynamics of a constituent AHP potassium

current. We used the theory of weakly coupled oscillators to gain insight into

whether changes to the magnitude and the deactivation time constant of the

AHP potassium current promoted or suppressed antisynchronous oscillatory

behavior. Our work indicated that increasing the magnitude of the AHP cur-

rent, gKAHP , and increasing the deactivation time constant, τ, both promote

antisynchronous oscillatory behavior.

It remains unclear how changes in τdAHP and gKAHP affect the mechanisms

underlying the G-function. Further research into how IKAHP impacts the iPRC

and the voltage trace should clarify where and how antisynchrony oscillatory

behavior is promoted.

4.4.1 Comparison to Previous Results of Pfeuty et al. and Mancilla et al.

The results for the electrically coupled Hodgkin-Huxley type conductance-
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based model neurons reaffirm the main results of Chapters 2 and 3 – changes to

the intrinsic dynamics of potassium conductances can affect the existence and

stability of the antisynchronous phase-locked state. Our results immediately

support those of Mancilla et al. (2007). That is, increasing the size of after-

hyperpolarization by increasing the magnitude of the potassium current, gKAHP ,

promotes antisynchrony. Unlike our models of Chapter 2 and 3, our electrically

coupled Hodgkin-Huxley type conductance-based model does not support the

conclusions of Pfeuty et al. (2003). We did not observe synchronous oscillatory

behavior being promoted due to the increase of the magnitude of the AHP

potassium current, gKAHP . However, it is possible that such behavior exists. By

investigating more values and larger values of τdAHP , a parameter space where

increases to the magnitude of the potassium current, gKAHP , promote synchrony

potentially may be found.

4.4.2 Limitations of the Model

We intentionally limited our search for stable antisynchrony in this model

to a set of lower frequencies, as this is the range of frequencies where antisyn-

chrony is predicted to occur by previous models in this thesis and from similar

models by others (see Chapters 2 and 3; Chow and Koppell, (2000); Lewis and

Rinzel, (2003); Lewis, 2003; Mancilla et al., (2007)). It is possible that this model

might show that stable antisynchrony exists at higher frequencies for suitable

parameters; however, we did not investigate this possibility.
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In order to study models that allow for analytic insight, this thesis is limited

to the examination of the effects of a potassium current on the phase-locking be-

havior of a pair of identical, electrically coupled model neurons. We can create

more biophysically realistic models in which to study the effects of potassium

currents on oscillatory behavior in several ways. For instance, we can con-

sider additional forms of cellular interactions, such as mutual inhibition due

to chemical signaling. We can incorporate the natural heterogeneity exhibited

by populations of neurons by considering non-identical model cells. We can

examine more biophysically realistic subnetworks of neurons instead of only a

pair of cells. We can introduce noise into our model, via the coupling current

or the potassium current, and see if and how its inclusion effects the stability

of phase-locked states. As stable, antisynchronous oscillatory activity has yet

to be observed experimentally [Mancilla et al., 2007], it behooves us to see

whether increasingly biophysically realistic theoretical models also predict the

existence of stable antisynchrony.

Despite the limitations of our models, the results presented in this thesis

support the need for accurate biophysical measurements, as even seemingly

small differences in reported activity appear to affect the existence and stability

of oscillatory activity.
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Appendix A

A.1 The Infinitesimal Phase Resetting Curve Z(t)

The intrinsic dynamics of the LIF neuron with an explicit potassium current

are given by the differential equation

dv
dt
= −v + I − gKηK(t)

and the condition that when v reaches a threshold of 1, it is reset to v = 0. (Note

that ηK(t) and AK(τ) are defined in Chapter 2.) When I > 1, the cell undergoes

periodic firing. If the membrane potential of the cell starts out at v(0) = 0, then

the T-periodic solution is given by

vLC(t) = I(1 − e−t) − gKAK(τ)(e−t/τ − e−t) + βδ(t − T), 0 ≤ t < T.

We compute the iPRC by determining how a cell responds to a small δ-function

perturbation of strength ε when the cell is at an arbitrary phase in the oscilla-

tions corresponding to t = t̃. The stimulus causes an instantaneous jump in v

by ε, i.e. v(t̃) = I(1 − e−t) − gKAK(τ)(e−t/τ − e−t) + ε, and thus altering the phase

of the oscillation. To evaluate the magnitude and direction of the phase shift

Δφ, we use v(t̃) = I(1 − e−t) − gKAK(τ)(e−t/τ − e−t) + ε as the initial condition to
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the system and solve for the time t = T − TΔφ that the cell reaches threshold

v(T − TΔφ) = 1.

1 = v(T − TΔφ)

= v(t̃)e−(T−TΔφ−t̃) + I(1 − e−(T−TΔφ−t̃)) − gKAK(τ)(e−(T−TΔφ)/τ − e−
t̃
τ−(T−TΔφ−t̃))

=
[
I(1 − e−t̃) − gKAK(τ)(e−

T−TΔφ
τ +(T−TΔφ−t̃) − e−t̃) + ε

]
e−(T−TΔφ−t̃) + I(1 − e−(T−TΔφ−t̃))

= I(1 − e−(T−TΔφ)) − gKAK(τ)(e−
T−TΔφ
τ − e−(T−TΔφ)) + εe−(T−TΔφ−t̃)

Because this equation is transcendental, we can not explicitly solve for the

phase advance, Δφ. However, with implicit differentiation, we can expand Δφ

around the small parameter ε. This yields

Δφ(t̃) =
et̃

T
(
I + gKAK(τ)

(
1
τe

T(τ−1)/τ − 1
))ε +O(ε2).

We normalize the phase shiftΔφ by the strength of ε to obtain, the infinitesimal

phase resetting curve (i.e. the PRC for sufficiently small ε). Thus

Z(t̃) =
et̃

T
(
I + gKAK(τ)

(
1
τe

T(τ−1)/τ − 1
)) .

Note that taking gK → 0 (i.e. no explicit potassium current) yields the iPRC for

the standard LIF model. The iPRC for the LIF model with a voltage dependent

explicit potassium current (Chapter 3) is found using the steps outlined above.

A.2 Reduction to Phase Model

Using the procedure outlined in the introduction, 1.3, the G-function for an
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electrically coupled pair of LIF cells can be found by computing the integral

G(φ) =
1
T

∫ T

0
Z(t)gc

[
(vLC(t − φT) − vLC(t + φT))

]
dt

We remind the reader that although Z(t) and vLC(t) are periodic, they are

only defined on t ∈ [0,T] for the LIF model neurons. Thus to appropriately

evaluate G(φ), we must separate the integral over the appropriate subintervals.

G(φ) =
1
T

∫ T

0
Z(t)gc

[
(vLC(t − φT) − vLC(t + φT))

]
dt

=
gc

T

[ ∫ T

0
Z(t)(vLC(t − φT)dt −

∫ T

0
Z(t)vLC(t + φT))dt

]

=
gc

T

[( ∫ φT

0
Z(t)vLC(t + (1 − φ)T)dt +

∫ T

φT
Z(t)vLC(t − φT)dt

)

−
( ∫ (1−φ)T

0
Z(t)vLC(t + φT)dt +

∫ T

(1−φ)T
Z(t)vLC(t − (1 − φ)T)dt

)]
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Appendix B

B.1 Choice of ζ(t)

To facilitate comparisons between the LIF model with a conductance-based

potassium current and the LIF model with a spike-triggered potassium cur-

rent, ideally we would have chosen identical kernels. Unfortunately, it is not

possible to find an analytic solution to the LIF model with a conductance-based

potassium current if an exponentially decaying kernel, i.e. ηKns(t), is used in

place of ζ(t). In choosing ζ(t), we were mindful of choosing an equation that

was qualitatively similar to ηKns(t) to keep comparisons reasonable. Thus we

choose ζ(t) = 1/(t + τ).

While analytic solutions to the LIF model with ηKns(t) as the kernel for

the potassium conductance cannot be found, numerical solutions are possible.

To show that the two kernels gives qualitatively similar results, Figure B.1.1

presents the pacing of non-dimensionalized electrically coupled LIF neurons

with a conductance-based potassium current where the conductance kernel,

ζ(t) is replaced with ηKns(t).

Both Figure B.1.1 with ηKns(t) as the potassium conductance kernel and

Figure 3.2.1 with ζ(t) as the potassium conductance kernel show that for small
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Figure B.1.1: Electrically coupled LIF neurons with ηKns(t) as the kernel for the
explicit potassium conductance with gK = 1 (left) and gK = 2 (right). The cells
oscillate independently from initial conditions v1 = 0.83 (black) and v2 = 0.0
(green) until the electrical coupling term was activated at t = 20. For τ = 0.1
and τ = 1, the system evolves to antisynchrony for both gK = 1 and gK = 2.
For τ = 10, the system evolves to synchrony for gK = 1 and gK = 2. For all
subfigures, I = 1.7, EK = −0.5, gc = 0.2, and β = 0.2.
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τ that the electrically coupled cell-pair can evolve to antisynchrony. As τ

is increased, the system shifts and evolves to synchrony instead. However,

the LIF model with a conductance-based potassium current with ηKns(t) as the

potassium conductance kernel has a much higher firing frequency at low τ than

that of the model with ζ(t). As τ increases, the differences in firing frequency

between the use of the two kernels diminish.

Similarly, the LIF model with an explicit potassium current (Chapter 2) can

be reinvestigated with ζ(t) used in place of ηKns(t). Unfortunately, when ζ(t) is

included in the differential equation in place of ηKns(t), it is no longer possible

to find an analytic solution to the modified differential equation. To show that

the two kernels gives qualitatively similar results, Figure B.1.2 presents the

numerical simulation of non-dimensionalized electrically coupled LIF neurons

with a spike-triggered potassium current where the kernel, ηKns(t) is replaced

with ζ(t).

Both Figure B.1.2 with ζ(t) as the potassium current kernel and Figure 2.3.1

(right column) withηKns(t) as the potassium current kernel shows that for smallτ

that the use of either kernel allows the system to evolve to stable antisynchrony.

As τ is increased, the coupled system evolves to synchrony for both kernels.

However, the use of ζ(t) in place of ηKns(t) leads to a lower firing frequency for

small τ. However, this difference diminishes as τ is increased.

Even though ζ(t) and ηKns(t) differ in how quickly each decays and how

much total current each contributes, they have similar qualitative effects on the
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Figure B.1.2: Electrically Coupled LIF neurons with ζ(t) as the kernel for
the spike-triggered potassium current. The cells oscillate independently from
initial conditions v1 = 0.59 (black) and v2 = 0.0 (green) until the coupling terms
was activated at t = 10. (i − ii) For τ = 0.1 and τ = 1 the system evolves to
antisynchrony. (iii) For τ = 10, the system evolves to synchrony. For all graphs,
I = 1.6, gK = 1, gc = 0.2, and β = 0.2.

LIF model. Furthermore, our choice of both kernels was arbitrary, as both were

chosen to qualitatively capture the dynamics of a potassium channel rather

than to adhere to biophysical dynamical measurements.

B.2 Solutions for the LIF model with a Conductance-based

Potassium Current for gK = 2

In this section, we present the solutions for the LIF model with a conductance-
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based potassium current for gK = 2.

The corresponding solution to (3.2.1) for the differential equation (3.1.2) for

gK = 2 is

vLC(t) =
1

(t + τ)2

[(
I(2 − 2τ + τ2) + 2Ek(τ − 1)

)
(1 − e−(t−t0))

+ I
(
t(t + 2τ − 2) − t0(t0 + 2τ − 2)e−(t−t0)

)

+ 2Ek(t − t0e−(t−t0)) + v(t0)(t0 + τ)2e−(t−t0)
]
+ βδ(t − (t0 + T)) t ∈ [t0, t0 + T).

(B.2.1)

The corresponding solution to (3.2.2) to find the period, T, is

1 =
1

(T + τ)2

[(
I(2−2τ+τ2)+2Ek(τ−1)

)
(1− e−T)+T

(
I(T+2τ−2)+2Ek

)]
. (B.2.2)

Equation (B.2.2) can be rearranged to give I as a function of the firing

frequency f (= 1/T). This corresponds to Equation (3.2.3).

I =
(T + τ)2 − 2EK[(τ − 1)(1 − e−T) + T]

(2 − 2τ + τ2)(1 − e−T) + T(T + 2τ − 2)
(B.2.3)

The iPRC, Z(t) for gK = 2, which corresponds to (3.4.1) is

Z(t) =
(t + τ)2et

2T[I(1 − τ + τ2/2) + Ek(τ − 1) + ((T + τ)(I − 1) + Ek − I)eT]
. (B.2.4)
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The G-function for gK = 2, which corresponds to (3.4.2) is

G(φ) =
gc

TD2(τ)

[( ∫ φT

0
(t + τ)2etvLC(t + (1 − φ)T)dt +

∫ T

φT
(t + τ)2etvLC(t − φT)dt

−
∫ T(1−φ)

0
(t + τ)2etvLC(t + φT)dt −

∫ T

T(1−φ)
(t + τ)2etvLC(t − (1 − φ)T)dt

)

+ β[(φT + τ)2eφT − ((1 − φ)T + τ)2e(1−φ)T]
]

where D2(τ) = 2T[I(1 − τ + τ2/2) + Ek(τ − 1) + ((T + τ)(I − 1) + Ek − I)eT]
(B.2.5)
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Appendix C

C.1 Model Parameters

Here we give the parameters for the modified Hodgkin-Huxley type model.

As a reminder, this model was described by

Cm
dV
dt
= −gL(V − EL) − gNam3h(V − ENa) − (gKresetnreset + gKAHPnAHP)(V − EK) + Iapplied,

dy
dt
= αy(V)(1 − y) − βy(V)y, where y = n,m, h.

(C.1.1)

We set each of the following to the given value, Cm = 40pF, gL = 10nS,

gNa = 4500nS, gKreset = 900nS, EL = −70mV, ENa = 74mV, and EK = −90mV

[Mancilla et al, 2007].

For m,

αm(V) =
40.0(75.5 − V)

e−(V−75.5)/13.5 − 1.0

βm(V) =
1.2262
eV/42.248 .

(C.1.2)

For h,

αh(V) =
0.0035
eV/42.186

βh(V) =
−0.017(51.25 + V)
e−(51.25+V)/5.2 − 1.0

.

(C.1.3)
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For nreset, we set V1/2 = 0mV, τareset = 0.1ms, and τdreset = 1ms.

αnreset(V) =
eV+10

0.1eV+10 + 2

βnreset(V) =
1

0.1eV+10 + 2
.

(C.1.4)
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