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1. Introduction 

A phase response curve (PRC) quantifies the response of a periodically firing neuron to an 

external stimulus (Figure 1).  More specifically, it measures the phase shift of the oscillating 

neuron as a function of the phase that a stimulus is delivered.  The task of generating a PRC for a 

real neuron seems straightforward:  (1) If the neuron is not oscillating, then inject a constant 

current or apply a neuromodulator to make the neuron fire with the desired period; (2) Deliver a 

pulsitile stimulus at a particular phase in the neuron’s periodic cycle, and measure the 

subsequent change in timing of the next spike (Figure 1 top panel); (3) Repeat these steps for 

many different phases (Figure 1 bottom panel).  However, there are many subtle issues that 

complicate this seemingly simple process when dealing with real neurons.   

Many of the complicating factors in generating PRCs arise from the fact that neurons are 

inherently noisy on several time-scales.  There is usually a considerable amount of variation in 

the inter-spike intervals of “periodically” firing neurons.  This jitter in inter-spike intervals 

confounds the change in phase that is due to a stimulus.  Furthermore, neuronal firing is 

typically not stationary over the time-scales on which PRCs are measured, and a PRC can 

change significantly with the firing rate of a neuron.  Other important issues that need 

consideration when constructing PRCs arise from the inherent nonlinearities and slow-time-

scale processes of neuronal dynamics.  These issues include determining the appropriate stimuli 

and deciding how long to wait between stimuli.   
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data to extract the underlying PRC and quantifying the stochastic variation of the phase 

responses.  Finally, in section 6, we describe an alternative method to generate PRCs using small 

amplitude white noise stimuli.  

 

2. Choosing an appropriate stimulus  

PRCs are often used to predict the phase-locking dynamics of coupled neurons, using either 

spike-time response curve (STRC) maps (e.g. (Canavier, 2005; Netoff et al., 2005) also see 

Chapter Z) or the theory of weakly coupled oscillators (e.g. (Ermentrout & Kopell, 1991; 

Kuramoto, 1984); also see Chapter X and Y) as follows: 

(1) The STRC map approach can be used for networks in which synaptic inputs can be 

moderately strong but must be sufficiently brief.  The limiting assumption of STRC map 

approach is that the effect of any input to a neuron must be complete before the next input 

arrives.  In this case, the PRC can be used to predict the phase shift due to each synaptic input.  

Therefore, if one intends to use the STRC map method to predict phase-locking behavior, then 

PRCs should be generated using a stimulus that approximates the synaptic input in the neuronal 

circuit under study.         

(2) The theory of weakly coupled oscillators can be used for completely general coupling but 

the total coupling current incident on a neuron at any time must be sufficiently small.  The 

limiting assumption of this method is that the effects of the inputs sum linearly, i.e. the neurons 

respond to input like a time-dependent linear oscillator.  The infinitesimal PRC (iPRC), which is 

used in the theory of weakly coupled oscillators, can be obtained from any PRC generated with 

sufficiently small perturbations (so long as the perturbation elicits a “measurable” response). 

Typically, current-based stimuli that approximate delta-functions are used. 

As indicated above, the choice of stimulus used to generate a PRC depends on the intended 

use of the PRC.  It also depends on the need for realistic stimuli and ease of implementation.  In 



 

 

this section, we will address some of the issues involved in choosing an appropriate stimulus 

waveform to generate a PRC.  For the case of small amplitude stimuli, we will also describe the 

relationships between PRCs generated with different stimulus waveforms.   

2.1 Stimulus waveforms 

2.1.1 Current­based synaptic input:   

Perhaps the simplest stimulus waveform used to measure a neuron’s PRC is a square pulse 

of current.  Square wave current stimuli are easy to implement in models and in a real neuron, 

using a waveform generator.  A possible drawback is that square wave pulses do not resemble 

synaptic conductances (however, see section 2.2) . 

A current stimulus waveform that has a shape similar to realistic synaptic input is an alpha 

function 
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where ܵ௠௔௫ controls the amplitude of the synaptic current, ߬௙ is the time constant that controls 

the decay (“fall”) of the synaptic current, and ߬௥ is the time constant that controls the rise time of 

the synaptic current.  Here, ݐ ൌ 0 is the time at the onset of each synaptic input.  Examples of 

alpha functions with different coefficients are plotted in Figure 2.  The coefficients of the alpha 

function current stimulus can be chosen in order to fit the post-synaptic potentials (PSPs) 

measured in neurons of interest.1  In the neocortex, physiologically reasonable values for the 

synaptic conductance time constants are ߬௙ ൎ 1.8 msec and ߬௥ ൎ 1.4 msec for fast excitatory 

synapses and ߬௙ ൎ 3.5 msec and ߬௥ ൎ 1.0 msec for fast inhibitory synapses (Cruikshank, Lewis, & 

Connors, 2007).  The peak amplitude is synapse-specific and depends on the resistance of the 

neuron.  We usually adjust the amplitude of the synaptic current so that it elicits a PSP of ~1 mV 

                                                        
1 The time constants of the synaptic currents will be faster than those for the PSP because the current waveform 

is filtered due to the RC properties neuronal membrane.  To find the time constants of the synaptic currents, one can 
adjust these time constants until the current stimulus induces a PSP waveform that adequately matches an actual 
PSP. 



 

 

in amplitude.  Figure 3 shows PRCs generated using an alpha function current stimulus with a 

positive ܵ௠௔௫ to simulate an excitatory synaptic input (top) and a negative ܵ௠௔௫ to simulate an 

inhibitory synapse (bottom).   

 

 

The shape of the PRC can be significantly affected by the shape of the stimulus waveform 

used to generate it.  PRCs measured from the same neuron using excitatory currents with 

different time constants are shown in Figure 4.  As the synaptic time constants increase, the PRC 

 

Figure 3.  Phase response curves measured with alpha-function current stimuli: [top] voltage trace from 
neuron over one period [middle] excitatory stimuli, [bottom] inhibitory stimuli.  Each plot depicts the spike 
time advance, in proportion of the period, as a function of stimulus phase.  Zero phase and a phase of 1 are 
defined as voltage crossing of -20 mV.  The INa+IK model of Izhikevitch (2007) was used to model neuronal 
dynamics with ISI = 15 ݉ܿ݁ݏ. The synaptic parameters were ߬௥ ൌ 0.25 ,ܿ݁ݏ݉ ߬௙ ൌ 0.5 and  ܵ௠௔௫ ,ܿ݁ݏ݉ ൌ 0.04. 

 

Figure 2.  Alpha function current stimuli plotted with different time constants and the same total current (in 
arbitrary units, AU).   



 

 

peak shifts down and to the left.  This shift in the PRC is associated with changes in phase-

locking of synaptically coupled neurons; simply by slowing the time constants of the synapses, it 

is possible for a network to transition from synchronous firing to asynchronous firing (Lewis & 

Rinzel, 2003; Netoff et al., 2005; Van Vreeswijk, Abbott, & Ermentrout, 1994). 

  

The PRC can also be affected by the magnitude of the stimulus used to generate it.  As 

shown in the example in Figure 5, the peak of the PRC typically shifts up and to the left as the 

magnitude of excitatory input increases. PRCs for inhibitory pulses are generally flipped 

compared to those for excitatory pulses, and the peak in the PRC typically shifts down and to the 

right as the magnitude of inhibitory input increases.  For sufficiently small input, the magnitude 

of the PRC scales approximately linearly with the magnitude of the input.  In fact, for sufficiently 

small input, the changes in the PRC that occur due to changes in the stimulus waveform can be 

understood in terms of a convolution of the stimulating current with the neuron’s so-called 

infinitesimal PRC.  This will be described more fully in section 2.2.  Some of the changes in the 

PRC that occur in response to changes of the stimuli with large magnitudes follow the same 

trends found for small stimuli, however other changes are more complicated and involve the 

nonlinear properties of neurons.   

 

Figure 4. The shape of PRC changes with the shape of the stimulus waveform. Phase response curves are 
measured with alpha-function excitatory current stimuli.  Inset shows synaptic waveforms as the rise time 
constants and falling time constants are varied. The INa+IK model of Izhikevitch (2007) was used to model 
neuronal dynamics with a period of 7.2 ݉ܿ݁ݏ and ܵ௠௔௫ ൌ 0.04  



 

 

When stimulating a neuron, the maximum a neuron’s spike can be advanced is to the time 

of the stimulus.  In other words, the spike cannot be advanced to a time before the stimulus was 

applied.  Therefore, the spike advance is limited by causality.  Often we plot the causality limit 

along with the PRC to show the maximal advance (as shown in Figure 16).  When plotting PRC’s 

measured from neurons if the stimulus was too strong much of the data will hug the causality 

limit for a significant portion of the phase,.  This indicates that the stimulus is eliciting an action 

potential at these phases.  If this is the case, we will drop the stimulus strength down.  Because 

each neuron we record has a different resistance, it is not possible to choose one stimulus 

amplitude that works for every cell.  We often have to adjust the amplitude.  If the stimulus 

amplitude is too weak, we find the PRC is indistinguishable from flat.   

The line of causality can affect the estimate of the PRC as well.  If the neuron is close to the 

line of causality, it effectively truncates the noise around the PRC.  PRC’s measured using 

excitatory synaptic inputs are affected more by the line of causality than those measured 

with inhibitory synaptic inputs, where the effect is to generally delay the next spike.  In 

another chapter in this book, it will be addressed how the truncation of the noise can 

affect the estimation of the PRC and how to correct for it. 

 

 

Figure 5.  The shape of PRC changes with the magnitude of the stimulus waveform.  Phase response curves are 
measured with alpha-function current stimuli.  The INa+IK model of Izhikevitch (2007) was used to model 
neuronal dynamics with ISI = 15 ݉ܿ݁ݏ. The synaptic time constants were ߬௥ ൌ 0.25 and ߬௙ ܿ݁ݏ݉ ൌ  .ܿ݁ݏ݉ 0.5



 

 

2.1.2 Conductance­based synaptic input:   

When a neurotransmitter is released by a presynaptic cell, it opens ion channels in the 

postsynaptic cell, evoking a synaptic current carried by the flow of ions through the cell 

membrane.  The synaptic current depends on number of channels opened (i.e. the activated 

synaptic conductance) and the potential across the membrane.  To simulate a more realistic 

“conductance-based” synapse, an alpha function can be used to describe the synaptic 

conductance waveform which is then multiplied by synaptic driving force (the difference 

between the membrane potential ܸ and the reversal potential of the synaptic current ܧ௦௬௡) to 

calculate the synaptic current  

ሻݐ௦௬௡ሺܫ ൌ ሻݐ௦௬௡ሺܩ ቀܧ௦௬௡ െ ܸሺݐሻቁ ݐ    , ൒ 0, 

where the synaptic conductance waveform ܩ௦௬௡ሺݐሻ is defined to be 
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The parameter ݃௦௬௡ scales the amplitude of the synaptic conductance.  Note that stimulating a 

neuron with a conductance waveform requires a closed loop feedback system, called a dynamic 

clamp.  The details of a dynamic clamp will be discussed section 4.1.   

The synaptic reversal potential is calculated using the Nernst equation if the channels only 

pass one ion, or the Goldman-Hodgkin-Katz equation if it passes multiple ions (Hille, 1992).  

Excitatory glutamatergic ion channels are cationic, passing some sodium and potassium ions, 

and therefore the associated excitatory synaptic current reversal potential is usually set near 0 

mV.  Inhibitory GABAergic ion channels pass mainly chloride or potassium ions, and therefore 

the associated inhibitory synaptic reversal potential is usually set near -80 mV.  The time 

constants for synaptic conductances are very similar to those previously quoted for synaptic 

currents. 



 

 

In Figure 6, the synaptic conductance profiles and corresponding current waveforms for 

an excitatory synaptic conductance-based input are plotted for different input phases, as 

illustrated in the Golomb-Amitai model neuron (Golomb & Amitai, 1997).  As the neuron’s 

membrane potential changes over the cycle so does the synaptic driving force.  Thus, the 

synaptic current waveform will be different for different input phases.  For this reason, a PRC 

measured with a conductance-based input will be different from a PRC measured using a 

stimulus with a fixed current waveform.  For excitatory conductance-based synaptic inputs, the 

input current can even reverse direction when the action potential passes through the excitatory 

synaptic reversal potential.  Differences between PRC generated with inhibitory conductance-

based input current-based input are more pronounced than for excitatory input because the 

cell’s voltage between action potentials is much closer to the inhibitory reversal potential than 

for the excitatory reversal potential.  This results in larger fractional changes of the driving force 

(and therefore input current) when compared to excitatory synapses.   

 

 

Figure 6. Synaptic input current varies with phase for conductance-based synaptic input.  [Top left panel] Identical synaptic 
conductance (ܩ௦௬௡ሻ waveforms started at different phases; [middle left panel] the corresponding synaptic current waveforms;  
[bottom left panel] the membrane potential used to calculate the synaptic current waveforms.  Notice that the synaptic current 
depends on the membrane potential.  [Right panels] PRCs measured with inhibitory current input and inhibitory conductance 
input.  The bottom panel shows the voltage trace, and the synaptic reversal potential at -80 mV.  To model the current-based 
waveforms, the synaptic driving force was held constant at 16 mV (i.e. ܸ െ  ௦௬௡=-64 mV-(-80 mV)).  The INa+IK model ofܧ
Izhikevitch (2007) was used for figures in the left panels, and the Golomb-Amitai model (1997) was used for figures in the right 
panels. 



 

 

2.2  The infinitesimal phase response curve (iPRC)  

The infinitesimal phase response curve (iPRC or Z) is a special PRC that directly 

measures the sensitivity of a neuronal oscillator to small input current2 at any given phase.  The 

iPRC is used in the theory of weakly coupled oscillators to predict the phase-locking patterns of 

neuronal oscillators in response to external input or due to network connectivity (Ermentrout & 

Kopell, 1991; Kuramoto, 1984) see also Chapters X and Y).  For mathematical models, the iPRC 

can be computed by linearizing the system about the stable limit cycle and solving the 

corresponding adjoint equations ((Ermentrout & Chow, 2002), see also Chapter X).  

Equivalently, the iPRC can be constructed by simply generating a PRC in a standard fashion 

using a small delta-function3 current pulse and then normalizing the phase-shifts by the net 

charge of the pulse (the area of the delta-function).  More practically, the iPRC can be obtained 

using any stimulus that approximates a delta-function, i.e. any current stimulus that is 

sufficiently small and brief.  Typically, small brief square pulses are used.  Note that, for 

sufficiently small stimuli, the system will behave like a time-dependent linear oscillator, and 

therefore the iPRC is independent of the net charge of the stimulus that was used.  When 

generating approximations of a real neuron’s iPRC, it is useful to generate iPRCs for at least two 

amplitudes to test for linearity and determine if a sufficiently small stimulus was used.   

2.2.1 Relationship between general PRCs and the iPRC 

The iPRC measures the linear response of an oscillating neuron (in terms of phase shifts) to 

small delta-function current pulses. Therefore, it can serve as the impulse response function for 

the oscillatory system: The phase-shift due to a stimulus of arbitrary waveform with sufficiently 

small amplitude can be obtained by computing the integral of the stimulus weighted by the 

                                                        
2 In general, the iPRC is equivalent to the gradient of phase with respect to all state variables evaluated at all 

points along the limit cycle (i.e. it is a vector measuring the sensitivity to perturbations in any variable).  However, 
because neurons are typically only perturbed by currents, the iPRC for neurons is usually taken to be the voltage 

component of this gradient ቀ
డథ

డ௏
ቁ evaluated along the limit cycle. 

3 A delta-function is a pulse with infinite height and zero width with an area of one.  Injecting a delta-function 
current into a cell corresponds to instantaneously injecting a fixed charge into the cell, which results in an 
instantaneous jump in the cell’s membrane potential by a fixed amount.  



 

 

iPRC.  Thus, a PRC of a neuron for any particular current stimulus can be estimated from the 

“convolution”4 of the stimulus waveform and the neuron’s iPRC 

 
ሺ߶ሻܥܴܲ ؆ න ܼሺݐ ൅ ߶ܶሻ ሻݐ௦௧௜௠ሺܫ ݐ݀

ஶ

଴
, (1)  

where ܴܲܥሺ߶ሻ is the phase shift in response of a neuron with an iPRC ܼሺݐሻ and a current 

stimulus of waveform ܫ௦௧௜௠ሺݐሻ, and ߶ is the phase of the neuron at the onset of the stimulus.  

Note that equation 1 assumes that the relative phase of the neuron ߶ is a constant over the entire 

integral.  However, because only small stimuli are considered, phase shifts will be small, and 

thus this assumption is reasonable.   

2.2.2 Calculating PRCs from iPRCs 

Assuming that the functional forms of the stimulus (as chosen by the experimenter) and the 

iPRC (as fit to data) are known, an estimate of the PRC can be calculated using equation 1. From 

a practical standpoint, the interval of integration must be truncated so that the upper limit of the 

interval is ݐ௠௔௫ ൏ ∞.  By discretizing ߶  and ݐ so that ݐ௝ ൌ and ߶௝ ݐ∆ ݆ ൌ ݆  with ܶ/ݐ∆ ݆ ൌ

1 … ܰ, ݐ∆ ൌ  ௠௔௫/ܰ, equation becomesݐ

 
൫߶௝൯ܥܴܲ ؆ ෍ ܼ൫ݐ௞ ൅ ߶௝ܶ൯ ௞ሻݐ௦௧௜௠ሺܫ ݐ∆

ேିଵ

௞ୀ଴

 (2)  

(Note that a simple left Reimann sum is used to approximate the integral, but high order 

numerical integration could be used for greater accuracy).  Equation 2 can be used to directly 

compute an approximation of the PRC in the time-domain.  In this direct calculation, ݐ௠௔௫  

should be chosen sufficiently large to ensure that the effect of the stimulus is almost entirely 

accounted for.  In the case of small pulsatile stimuli, one period of the neuron’s oscillation is 

usually sufficient ሺi. e.  ݐ௠௔௫ ൌ ܶ ሻ.   

                                                        
4 The definition of a convolution is  ݃ כ ݂ ሺ߰ሻ ൌ ׬ ݃ሺ߰ െ ൌ ݐ݀ ሻݐሻ ݂ሺݐ ׬  ݃൫െሺݐ െ ߰ሻ൯ ݂ሺݐሻ ݀ݐ , so 

technically,  ܴܲܥሺ߶ሻ ൌ ܼ כ  .ሺെ߶ܶሻܫ 



 

 

The PRC could also be calculated by solving equation 2 using discrete Fourier transforms 

(DFTs) 

 
൫߶௝൯ܥܴܲ ؆

1
ܰ

෍ መܼ௡ መሺேିଵሻି௡ܫ ݁ି௜ଶగ௡థೕ்/௧೘ೌೣ ݐ∆

ேିଵ

௡ୀ଴

 (3)  

where መܼ௡ and ܫመ௡ are coefficients of the nth modes of the DFTs of the discretized ܼ and ܫ௦௧௜௠, as 

defined by 

 
௝൯ݐ൫ݔ ൌ ∑ ො௡݁ݔ 

೔మഏ೙೟ೕ
೟೘ೌೣேିଵ
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ଵ

ே
∑ ௝൯݁ି௜ଶగ௡௧ೕ/௧೘ೌೣேିଵݐ൫ݔ

௝ୀ଴  (4)  

Note that, because the DFT assumes that functions are ݐ௠௔௫-periodic, a ܴܲܥ൫߶௝൯ calculated with 

this method will actually correspond to phase shifts resulting from applying the stimulus ܫ௦௧௜௠ 

 ௠௔௫ should be two or three times theݐ ,௠௔௫-periodically.  To minimize this confounding effectݐ

intrinsic period of the neuron for small pulsatile stimuli  ሺi. e.  ݐ௠௔௫ ൌ 2ܶ  or 3ܶሻ.   

2.2.3 Calculating iPRC from the PRC measured with current­based stimuli:  

If a PRC was measured for a neuron using a stimulus that had a sufficiently small 

magnitude, then the iPRC of the neuron can be estimated by “deconvolving” the functional form 

of the PRC with the stimulus waveform, i.e. solving equation 2 for ܼ൫ݐ௝൯.  Deconvolution can be 

done in the time-domain or the frequency-domain.  Equation 3 shows that the nth mode of the 

DFTs of the discretized PRC is ܴܲܥ෣௡ ൌ መܼ௡ ܫመሺேିଵሻି௡∆ݐ.  Therefore, the iPRC can be computed by  
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ቇ ݁௜ଶగ௡థೕ்/௧೘ೌೣ

ேିଵ

௡ୀ଴

. (5)  

We can also directly solve equation 2 for the iPRC, ܼ൫ݐ௝൯, in the time domain by noting that 
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(6)  

which can be written in matrix form as  

തതതതതതܥܴܲ  ؆ ܫ Ӗ௦௧௜௠ ܼ,ഥ  (7)  

where ܴܲܥതതതതതത and ҧܼ are the vectors representing the discretized PRC and iPRC respectively, and   

ܫ Ӗ௦௧௜௠ is an ܰ ൈ ܰ matrix with the j,kth element ܫ௦௧௜௠൫ݐ௞ െ ߶௝ܶ൯.  Therefore, we can find the iPRC ҧܼ 

by solving this linear system.  Note that this problem will be well-posed because all rows of 

ܫ Ӗ௦௧௜௠ are shifts of the other rows.  

A related method for measuring the iPRC using a white noise current stimulus will be 

discussed in section 6. 

2.2.4 iPRCs, PRCs and conductance­based stimuli  

As inferred from section 2.1.2, the synaptic waveform for conductance-based stimuli is not 

phase invariant.  However, the ideas in previous sections can readily be extended to incorporate 

conductance-based stimuli.  The PRC measured with a synaptic conductance is related to the 

iPRC by  

 
ሺ߶ሻܥܴܲ ؆ න ܼሺݐ ൅ ߶ܶሻ ݃௦௬௡ሺݐሻ ቀܧ௦௬௡ െ ܸሺݐ ൅ ߶ܶሻቁ ݐ݀

ஶ

଴
. (8)  

Assuming that the functional forms of the stimulus, the iPRC and the membrane potential are 

known, an estimate of the PRC for conductance-based stimuli can be calculated in a similar 

manner to that described for current-based stimuli in section 2.2.2.  That is, the PRC can be 

computed in the time-domain or frequency domain, using 



 

 

 
൫߶௝൯ܥܴܲ ؆ ෍ ܼሺݐ௞ሻ ቂ݃௦௬௡൫ݐ௞ െ ߶௝ܶ൯ ቀܧ௦௬௡ െ ܸሺݐ௞ሻቁቃ ݐ∆

ேିଵ

௞ୀ଴

 (9)  

 
ൌ െ ෍ ௡ݖ̂ ො௡ݒ ො݃ሺேିଵሻି௡ ݁ି௜ଶగ௡థೕ்/௧೘ೌೣ ݐ∆

ேିଵ

௡ୀ଴

, (10)

where ݒො௡ and ො݃௡ are the nth modes of the DFTs of the discretized functions ൫ܸሺݐሻ െ  ௦௬௡൯ andܧ

݃௦௬௡ሺݐሻ.  Furthermore, the iPRC can be calculated from the PRC in the frequency-domain by 

noting that the nth mode of the DFTs of the discretized PRC is ܴܲܥ෣௡ ൌ െ̂ݖ௡ ݒො௡ ො݃ሺேିଵሻି௡ ∆ݐ for 

conductance-based stimuli (see equation 10), therefore 

 
ܼ൫ݐ௝൯ ൌ  െ ෍ ቆ

෣ି௡ܥܴܲ

ො௡ݒ ො݃ሺேିଵሻି௡ ݐ∆
ቇ ݁௜ଶగ௡థೕ்/௧೘ೌೣ .

ேିଵ

௡ୀ଴

 (11)  

When computing the iPRC in the time-domain, we can first “deconvolve” equation 8 to find the 

product ቀܧ௦௬௡ െ ܸሺݐሻቁ  ܼሺݐሻ, and then divide out the driving force to find the ܼሺݐሻ.  Note that 

numerical error could be large when ቀܧ௦௬௡ െ ܸሺݐ௞ሻቁ is small, therefore care should be taken at 

these points (e.g. these points could be discarded).    

Estimates of the iPRCs for a real neuron that are calculated from PRCs measured with 

excitatory synaptic conductance in one case and inhibitory synaptic conductance in another are 

shown in Figure 7(Netoff, Acker, Bettencourt, & White, 2005).  While the measured PRCs look 

dramatically different, the iPRCs are quite similar, indicating that the main difference in the 

response can be attributed to changes in the synaptic reversal potential.  The remaining 

differences between the estimated iPRCs are likely due to small changes in the state of the 

neuron, error introduced by fitting the PRCs, and/or the fact that the response of the neuron to 

the stimuli is not perfectly linear. 



 

 

 

 

3. Dealing with slow­time­scale dynamics in neurons  

Processes that act on relatively slow time scales can endow a neuron with the “memory” of 

stimuli beyond a single cycle.  In fact, a stimulus applied to one cycle is never truly isolated from 

other inputs.  In this section we will address how neuronal memory can affects the phase 

response properties of a neuron.  Specifically, we will discuss how stimuli can affect the cycles 

following the cycle in which the neuron was stimulated and how to quantify these effects 

(Section 3.1). We also address how the effect of repeated inputs can accumulate over many 

periods, resulting in accommodation of the firing rate and alteration of the PRC (Section 3.2).  

3.1 Higher­order PRCs  

A stimulus may not only affect the inter-spike intervals (ISIs) in which it is applied but may 

also affect the ISIs of the following cycles, although usually to a lesser degree.  This can happen 

 

Figure 7. Estimates of the infinitesimal PRC (iPRC) for a pyramidal neuron from CA1 region of the of hippocampus 
as calculated using PRCs . A synaptic conductance stimulus was used to generate PRCs of the neuron, and then the 
shape of the synaptic waveform was deconvolved from the PRC to estimate the iPRC.  (Top panel) Voltage trace of 
neuron over one period.  Inset is the synaptic conductance waveform.  (Middle two panels) PRCs measured with 
excitatory conductances (upper) and inhibitory conductances (lower).  (Bottom panel)  iPRCs estimated using the 
excitatory and the inhibitory PRCs. The iPRCs from the two data sets, despite being measured with completely 
different waveforms, are similar.  Figure modified from Netoff et al, 2005a 



 

 

in two ways.  The first is when the stimulus starts in one cycle but continues into the next cycle.  

The second is through neuronal memory.  For example, a phase shift of a spike during one cycle 

may result in compensatory changes in the following cycle, or the stimuli may significantly 

perturb a slow process such as an adaption conductance.  Often a large spike advance is followed 

by a small delay in the next period (Netoff et al., 2005; Oprisan & Canavier, 2001).  As 

mentioned earlier, the PRC represents the phase shifts of the first spike following the onset of 

the stimulus, so the PRC measured this way can be considered the “first order PRC”.  The 

additional phase shifts of the second spike (or nth spike) following the onset of the stimulus 

versus the phase of the stimulus onset is called the “second order PRC” (or nth order PRC).  

Examples of first, second and third order PRCs are shown in Figure 8.  The higher order PRCs 

are usually small as compared to the first order PRC, but can have significant implications in 

predicting network behavior when accounted for (Oprisan & Canavier, 2001).   

 

 

Figure 8.  First, second and third order PRCs.  The first order PRC is measured as the change in period of the cycle 
that the stimulus was applied, while second and third order PRCs are measured from additional phase shifts of 
spikes in the subsequent cycles.  Often the second and third order PRCs are small compared to the first order PRC 
and are of alternating sign.  Simulations were performed using the Golomb-Amitai model (1997). 



 

 

3.2 Functional PRCs 

Many neurons exhibit significant amount of accommodation when a repeated stimulus is 

applied. Thus, the shape of the PRC can depend on whether the perturbed cycle is measured 

before or after the accommodation.  Usually, the PRC is measured by applying a single stimulus 

every few periods, in order to let the neuron recover from the stimulus and return to baseline 

firing rate.  If the stimulus is repeated at each cycle and the same time lag, the neuron may 

accommodate to the synaptic input by changing the ISI over the first few cycles.  One approach 

to deal with the accommodation is to measure the phase advance after the neuron has 

accommodated to the input and reached a steady-state response.  The phase response curve 

from the accommodated neuron is termed the functional phase response curve (fPRC) (Cui, 

Canavier, & Butera, 2009).  The method is illustrated in Figure 9.  The PRC taken from the first 

stimulus interval looks different from the last train.  Under conditions where a neuron may 

accommodate significantly during network dynamics, the predictions of network phase locking 

using the fPRC may produce more accurate results than predictions using standard PRCs. 



 

 

 

 

4. Issues in PRC data acquisition  

On the time-scale of a full PRC experiment, the neuron’s firing rate can drift significantly.  

This drift can confound the small phase shifts resulting from the stimuli.  “Closed-loop” 

experimental techniques can be used to counteract this drift and maintain a stable firing rate 

over the duration of the experiment.  In this section 4.1, we introduce the dynamic clamp 

technique, which enables closed loop experiments (section 4.1), and we describe a method for 

using the dynamic clamp to control the spike rate in order to reduce firing rate drift over the 

duration of the experiment (section 4.2).  We also show how the dynamic clamp can also be used 

 

Figure 9.  Functional PRC takes accommodation into consideration.  The neuron is stimulated at the same phase 
for many cycles, and the PRC is determined from the average interspike intervals averaged over the last cycles.  
(Top trace) Voltage (in mV) and current for a stimulus applied repeatedly at a fixed phase.  Time series taken from 
one set of stimuli shown in middle panel.  (Middle) Interspike intervals (ISIs): circles represent unstimulated 
cycles; dots are stimulated periods.  The phase of the stimulus is systematically varied from the earliest to latest 
across the stimulus trains.  Simulations were performed using the Golomb-Amitai model (1997). (Bottom) PRCs 
without accommodation (calculated from first ISI) and with accommodation (calculated from last ISI). 



 

 

to choose the phases of stimulation in a quasi-random manner, which can minimize sampling 

bias (section 4.3).  

4.1 Open­loop and closed­loop estimation of the PRC 

Historically, patch clamp experiments have been done in open-loop, where a pre-

determined stimulus is applied to the neuron and then the neuron’s response is measured.  With 

the advent of fast analog-to-digital sampling cards in desktop computers, it has been possible to 

design experiments that require real-time interactions between the stimulus and the neuron’s 

dynamics in a closed-loop fashion, called a dynamic-clamp (Sharp, O'Neil, Abbott, & Marder, 

1993).   

There are many different real-time systems available for dynamic clamp experiments 

(Prinz, Abbott, & Marder, 2004).  We use the Real-Time eXperimental Interface (RTXI) system 

(A. D. Dorval 2nd, Bettencourt, Netoff, & White, 2007; A. D. Dorval, Christini, & White, 2001; A. 

D. Dorval, Bettencourt, Netoff, & White, 2008), which is an open-source dynamic clamp based 

on real-time Linux.  It is freely available to the public for download at http://www.rtxi.org.  

Modules for controlling the firing rate of the neuron, simulating synapses and measuring the 

PRC can be downloaded with the RTXI system.  The RTXI system is modular, allowing one to 

write small modules that perform specific tasks and then connect them together to run full sets 

of experiments.  Figure 10 illustrates the modules used to generate PRCs experimentally.  We 

note that the modular design makes it relatively easy to replace a synaptic conductance module 

with a module to trigger a pico-spritzer to inject neurotransmitters proximal to the dendrite to 

simulate synapses.   
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response to change in current and the time to settle, which is out of the scope of this chapter and 

will be published elsewhere.  We have found that for most neurons using ܭ௣ ൌ 6 ൈ 10ିଵଶ and 

௜ܭ ൌ 6 ൈ 10ିଵ଴ works well.  Figure 11 demonstrates the effects of the spike rate controller.  The 

ISIs are plotted for an open-loop experiment in which a constant current is injected into a 

neuron and for a closed-loop experiment in which a current is adjusted to maintain the neuron 

at a desired firing rate.  The mean ISI in the open-loop experiments undergoes a drift of ~10-20 

msec, whereas the mean ISI in the closed-loop experiments stays very close target period of 100 

msec.  The autocorrelation is also shown to show that the method does not introduce any 

significant correlation, which occurs if the feedback loop begins to oscillate. 



 

 

 

4.3 Phase sampling methods 

When generating a PRC for a deterministic computational model of a neuron, it is easy to 

systematically sample the response to stimuli at various phases by simply stepping through 

phases of stimulation, while measuring the phase shift in response to each stimulus, and 

restarting the model neuron at a particular initial condition on the limit cycle after each 

measurement.  In generating PRCs for real neurons, stimuli are delivered sequentially to a 

oscillating neuron.  Experimentally, it is best to leave several unstimulated inter-spike intervals 

after each stimulus to minimize any interactions between the effects of stimuli.  This can be 

 

Figure 11.  Spike rate control using ePI controller.  (a) In the open-loop configuration, inter-spike 
interval experiences significant drift over the ~30 second time interval in which the baseline applied 
current is applied, and the average inter-spike interval near the end of the trace (30 to 35 sec) is over 
10ms away the target interval of 100 msec.  Autocorrleations of first lag is nearly zero (see bottom 
row). This indicates that the error from one cycle is almost completely independent of the previous 
cycle.  (b) With closed-loop control, the inter-spike interval converges quickly to the target rate of 100 
msec.  (c&d) The mean inter-spike interval, after the initial transient, is statistically indistinguishable 
from the target rate throughout the time interval in which the baseline applied current is applied.  
(e&f) During this time, the current injected into the cell is varying to maintain the neuron close to the 
target spike rate.  Standard deviation of the error in open-loop and closed-loop are similar, indicating 
that the closed-loop is only reducing the drift in the inter-spike interval rate and not the variability 
from spike to spike.  (g&h) The autocorrelation at the first lag is nearly zero for both the open and 
closed loop controller.  If feedback gain (from the proportional feedback coefficient) is too high, the 
first lag of the autocorrelation will be negative, indicating a ringing of the controller. 
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achieved by periodically stimulating the neuron at intervals several times longer than the 

neuron’s natural period.  Assuming that the neuron has some variability in its period (i.e. jitter) 

or by choosing the ratio between the period of the neuron and the period of stimulation 

corresponds to an irrational number, this method should sample the period close to uniformly 

and in an unbiased fashion.  The advantage of this somewhat haphazard sampling method is 

that it can be done open loop.  The disadvantage is that, in practice, it may result in 

oversampling of some phases and undersampling of others.   

With a closed-loop experimental system, the phase at which the stimuli are applied can be 

selected directly (i.e. by triggering the stimuli off of spike times).  By randomly selecting the 

phases of stimulation, you can ensure that there are no biases introduced by the experimental 

protocol.  However, even with randomly selecting phases it does not sample the phases most 

efficiently.  Efficiency is paramount in experiments, because you are racing the slow death of the 

cell, and thus optimum sampling can improve your PRC estimates.  Quasi-random selection of 

phases, using a “low-discrepancy” sequence such as a Sobol sequence, can cover the phases in 
ଵ

√ே
 

the time as it would take a random sequence, where N is the number of data points (Press, 

1992).  The Sobol sequence as a function of stimulus cycle is illustrated at the bottom of Figure 

12.  

 

 

Figure 12.  Sobol sequence to sample the phase of stimulation.  With closed-loop experiments stimuli can be 
applied at selected phases.  The Sobol sequence is a quasi-random sequence, which efficiently samples phase 
and minimizes bias.  The plot represents the selected stimulus phase plotted against the stimulus number.  The 
intervals are not random, but not periodic. 



 

 

 

5.  Fitting functions to PRCs 

The inter-spike intervals measured after applying stimuli can be highly variable for real 

neurons, even if the stimuli are applied at the same phase.  Because of this variability, PRC 

experiments yield scatter plots of phase shift vs the phase of stimulation.  By appropriately 

fitting noisy PRC data, a functional relationship can be obtained to characterize the mean 

response of the neuron.  This functional form of the PRC can then be used in conjunction with 

coupled oscillator theory to predict of the network behaviors.  In this section, we discuss fitting 

polynomial functions (section 5.1) and Fourier series to PRC data (section 5.2) and address the 

issue of determining optimal number of fit coefficients in terms of the Aikake Information 

Criterion (section 5.3).  We also discuss statistical models of the variance in PRC data (section 

5.4). 

5.1 Polynomials 

Simple functions that are sufficiently flexible to accommodate the shapes of PRCs are 

polynomials (Netoff et al., 2005; Tateno & Robinson, 2007).  Fitting polynomials to PRC data is 

easy to implement:  Matlab and many other data analysis programs have built-in functions that 

provide the coefficients of a kth degree polynomial to fit data in the least squares sense.  A kth 

order polynomial fit to PRC data has the form   

ሺ߶ሻܥܴܲ ൌ ௞߶௞ܥ ൅ ௞ିଵ߶௞ିଵܥ ൅ ڮ ൅ ଶ߶ଶܥ ൅ ߶ଵܥ ൅  ,଴ܥ

where ܴܲܥሺ߶ሻ is the change in phase as a function of the phase of the stimulus ߶, ܥ௫’s are the 

coefficients that are determined by the fit to the data.   

Often, spiking neurons are insensitive to perturbations during and immediately following 

spikes.  This property is manifested in PRCs with noisy but flat portions at the early phases, 

which can sometimes cause spurious oscillations in polynomial fits.  These oscillations in the fit 



 

 

can be reduced or eliminated by constraining the PRC to be zero at ߶ ൌ 0 by using the following 

constrained polynomial: 

ሺ߶ሻܥܴܲ ൌ ሺܥ௞߶௞ ൅ ڮ ൅ ଶ߶ଶܥ ൅ ߶ଵܥ ൅  ߶ ଴ሻܥ

Moreover, because excitatory inputs can only advance the phase of the next spike to the point 

that the neuron actually spikes, excitatory synaptic inputs to spiking neurons generally elicit a 

PRC with no phase shifts at ߶ ൌ 1.  Thus, it is useful to constrain the fit of the PRC to be zero at 

both ߶ ൌ 0 and ߶ ൌ 1, 

ሺ߶ሻܥܴܲ ൌ ൫ܥ௞߶௞ ൅ ڮ ൅ ଶ߶ଶܥ ൅ ߶ଵܥ ൅ ଴൯߶ሺ1ܥ െ ߶ሻ. 

To obtain a constrained polynomial for the general period-1 polynomial case, a constant term כܥ 

must added to the above polynomial (Tateno & Robinson, 2007).   

Examples of a two-end constrained fit and a no-constraint fit to raw PRC data generated 

with excitatory stimuli are illustrated in Figure 13.  Figure 14 shows examples of a one-end 

constrained fit (ܴܲܥሺ߶ሻ ൌ 0), a two-end constrained fit and a no-constraint fit for PRC data 

generated with inhibitory inputs.  In the case of inhibitory input, there are almost zero phase 

shifts at early phases, but input causes considerable phase shifts at late phases.   



 

 

 

 

 

Figure 14. Fits to PRC data generated with inhibitory input.  PRCs generated with inhibitory inputs have different 
shapes than those generated with excitatory curves.  This is predominantly because phase shifts are not limited by 
causality.  The largest delays usually occur immediately prior to the neuron spiking.  A 4th order polynomial (5 
coefficients) fit is plotted with a solid line.  A 6th order polynomial fit (4 coefficients and 2 constraints) with the 
beginning constrained to (0,0) and the end to (0,1) is plotted with a dotted line.  This function does not fit the right 
hand side of the data well.  A 5th order polynomial fit (4 coefficients and 1 constraint) constrained only at the 
beginning to (0,0) is plotted with a dot-dashed line. This curve provides the best fit to the data. 

 

Figure 13. Free and constrained polynomial fits to PRC data for excitatory input to a neuron.  Phase advance as a 
function of stimulus phase is measured for a pyramidal neuron in hippocampus.  The neuron was firing at 10 Hz 
(100 msec intervals).  The solid line is an unconstrained 6th order polynomial fit (using 7 coefficients) to the points.  
Notice that the line does not meet the (0,0) point or the (1,0).  The dashed line is a two-ended constrained 
polynomial fit (4 coefficients and 2 constraints) that forces the curve to start at (0,0) and end at (1,0).   



 

 

5.2 Fourier series 

Due to the periodic nature of many PRCs, PRC data is often fit using Fourier series (e.g. 

(Galan, Ermentrout, & Urban, 2005; Mancilla, Lewis, Pinto, Rinzel, & Connors, 2007; K. Ota, 

Nomura, & Aoyagi, 2009).  A kth order Fourier series fit to PRC data can be written as  

ሺ߶ሻܥܴܲ ൌ ܽ଴ ൅ ෍൛ ௝ܽ cosሺ2݆ߨ߶ሻ ൅ ௝ܾ sinሺ2݆ߨ߶ሻൟ

௞

௝ୀଵ

, 

where the Fourier coefficients are given by 

ܽ଴ ൌ
1
ܰ

෍ ∆߶௡,       

ே

௡ୀଵ

௝ܽ ൌ
2
ܰ

෍ ∆߶௡ cosሺ2݆ߨ߶௡ሻ,    

ே

௡ୀଵ

 ܾ௝ ൌ
2
ܰ

෍ ∆߶௡ sinሺ2݆ߨ߶௡ሻ
ே

௡ୀଵ

, 

where ∆߶௡ is the phase advance measured on stimulus number ݊ that was delivered at phase ߶௡, 

and ܰ is the number of data samples.  Because many PRCs are zero for ߶ ൌ 0 and ߶ ൌ 1, a better 

fit for fewer parameters can sometimes be obtained by using the Fourier sine series  

ሺ߶ሻܥܴܲ ൌ ෍ ௝ܾ sinሺ݆ߨ߶ሻ
௞

௝ୀଵ

,      ௝ܾ ൌ
2
ܰ

෍ ∆߶௡ sinሺ݆ߨ߶௡ሻ.

ே

௡ୀଵ

 

Figure 15 illustrates PRC data that is fit using the Fourier sine series with ݇ =1, 2, 3 and 10.  It 

can be seen that the PRC data set is fit well with only the first few modes.  Seemingly spurious 

oscillations appear when the first 10 modes are used to fit the PRC data, suggesting the data are 

over fit. 



 

 

 

One advantage that Fourier series has over polynomials is that one can get a reasonably 

good idea of the shape of the PRC by considering the values of the coefficients.  Furthermore, 

the H-function, which is defined as HሺΔ୧ሻ ൌ  Δ௜ାଵ െ Δ௜ ൎ ଵሺΔ௜ሻܥܴܲ ൅ ଶሺ1ܥܴܲ െ Δ௜ሻ, where 

 ଵሺΔ௜ሻ represents the phase advance of cell 1 given the synaptic input from cell 2 andܥܴܲ

ଶሺ1ܥܴܲ െ Δ௜ሻ is phase advance of cell 2 given the approximate phase of cell 1’s input (assuming 

the phase advance of cell 1 from cell 2’s input is nearly zero).  This is the difference between the 

two neuron’s spikes on can simply be estimated by summing only the odd Fourier Coefficients 

(Galán, Ermentrout, & Urban, 2006). 

 

Figure 15.  Fourier sine series fit to PRC data for a hippocampal, CA1 pyramidal neuron.  (Top Panel) The same raw 
data as used in Figure 13, but data is fit using a Fourier sine series.  Curves for fits using different numbers of modes 
(coefficients) are indicated in the legend.  The dotted (1 Coef), dot-dashed (2 Coefs) and solid (4 Coefs) show that the 
fit improves with more coefficients.  However, while the dashed line (10 Coefs) technically has lower residual error, 
the curve exhibits spurious oscillate, indicating it is over-fitting to the data.  (Bottom panel) the Akaike Information 
Criterion (AIC) is used to determine the optimal number of coefficients.  The minimum at 4 coefficients indicates that 
no more than 4 coefficients should be used to fit the PRC. 



 

 

5.3 Over­ and under­fitting PRC data: Akaike information criterion (AIC) 

Because Fourier modes are orthogonal to one another, each Fourier Coefficient can be 

determined sequentially5 and the fitting process can be stopped when the quality of the fit is 

satisfactory.  As indicated above, when too few modes are included, the data will not be well fit, 

and as more modes are included, the residual error of the fit will decrease.  However, while 

including additional modes can decrease the residual error, the decreased error may not be 

justified by the additional fitting parameters. To determine how many modes (i.e. number of 

fitting parameters) should be included, one can use the Akaike information criterion (AIC) 

(Burnham & Anderson, 1998).  The Akaike information criterion6 is calculated using the 

function 

ሺ݇ሻܥܫܣ ൌ 2݇ ൅ ݊ ቌln ቌ
1
݊

෍ ௝߳ሺ݇ሻଶ

௡

௝ୀଵ

ቍቍ 

where ݇ is the number of fitting parameters (e.g. Fourier coefficients), ݊ is the number of points 

in the data set, and ௝߳ሺ݇ሻ is the residual error for the jth data point to the fitted PRC using the ݇ 

fitting parameters.  The optimal number of parameters is determined when ܥܫܣሺ݇ሻ is at its 

minimum.  In Figure 15 (bottom), ܥܫܣ is plotted as a function of the number of parameters used 

to fit neuronal PRC data.  It can be seen that the minimum occurs at ݇ ൌ 4, thus using more 

than 4 Fourier modes is over-fitting the PRC data.   

The AIC can be used in a similar manner to select the optimal number of coefficients for 

polynomial fits.  In fact, the AIC can be used to determine which model (i.e. a Fourier series, a 

constrained polynomial, etc.) yields the optimal fit.  We note however that the AIC does not 

determine whether the fits are statistically significant.  

                                                        
5 Note that this could be done for polynomial fits too by using orthogonal polynomials (e.g. Legrendre or 

Chebychev polynomials).  
6 This formula for the AIC assumes that errors are independently distributed and described by a Gaussian 

distribution.  



 

 

There are alternative approaches to check for validity of fits to PRC data.  Galan et al. 

(2005) fit raw PRC data with a Fourier series and then tested their fit by comparing it to 

smoothed data and to fits when the data had been shuffled along the phase axis (abscissa) of the 

PRC.  There are also techniques that employ Bayesian methods to produce a maximum 

aposteriori (MAP) estimation of the iPRC ((K. Ota, Omori, & Aonishi, 2009) see also Chapter Q).  

5.4 Fitting noise around the PRC  

PRC data for real neurons can be quite noisy.  Models that use PRCs to predict phase-

locking dynamics usually do not account for the variable phase-response properties of neurons. 

Accounting for the variance of PRC data into these models could provide insight into inherently 

stochastic behaviors such as random leader swapping and jitter around ‘stable’ phase-locked 

states.  Therefore, it could be very useful to obtain a good description of the variability of PRC 

data. 

The variance in PRC data could be generated from several sources.  One source of variability 

could be due to external synaptic noise, which will influence the neurons’ spike times along with 

the simulated input applied through the electrode.  We find that blocking synaptic inputs in slice 

experiments did not dramatically reduce the variability (Netoff, unpublished), indicating that 

synaptic noise may not be a major source of variability of in vitro PRC data.  Another source of 

variability could be the stochastic fluctuation of the ion channels in the neurons themselves.  It 

has not yet been identified how much of the variability can be attributed to this source.  

Identifying the source of the noise may be important in determining how the variability is 

related to the shape of the PRC, i.e. the variability in spike time may be phase dependent.  

The variance around the PRC can be strongly phase dependent, as can be seen in Figure 13 

and Figure 16.  For moderate to large sized inputs, the variability in response to excitatory 

inputs earlier in the cycle is usually greater than inputs arriving at the end of the cycle.  There 

are two causes for the decreased variability at late phases.  One is that, as the neuron approaches 



 

 

threshold towards the end of the cycle, synaptic inputs are more likely to directly elicit an action 

potential.  A directly elicited action potential has significantly less variability than a spike whose 

time has been modulated by synaptic inputs early in the cycle.  Inhibitory synaptic inputs 

generally do not elicit an action potential, and therefore generate PRCs with more uniform 

variability across phase, as shown in Figure 14.   

The simplest way to estimate the noise is to bin the data and estimate the standard 

deviation in each phase bin.  The drawback to this method is that dividing the data into finer 

temporal bins results in fewer points in each bin and a less accurate estimate of the standard 

deviation.  This also leads to a piecewise model of the variance.   

Another approach is to fit a continuous function relating the variance to the phase.  A 

simple function that can be fit to the standard deviation around the PRC data for excitatory 

stimuli is ߪොሺ߶ሻ ൌ ݊ଵ ൅ ݊ଶඥ1 െ ߶.  At the end of the cycle when ߶ ൌ 1, the second term is zero 

and the standard deviation is equal to ݊ଵ.  As the phase of the input decreases, the variance 

increases as a square root of the phase.  The motivation for this function is ad-hoc, but is based 

on the premise that the noise is summed from the time of the synaptic input to the end of the 

period.  Therefore, the variance increases linearly in time (and the standard deviation as a 

square root) as the synaptic input is applied earlier in the phase.   

Fitting a function to the noise is not as easy as fitting a function to the mean.  Rather than 

optimizing the least squares error from the fit function, we must find the maximum likelihood 

function instead.  First, we start with the removing our best estimate of the PRC from the raw 

data ݎሺ݅ሻ ൌ ൫߶ሺ݅ሻ൯ܥܴܲ_ܣܶܣܦ െ  ൫߶ሺ݅ሻ൯  to get the residuals.  The residuals of the PRCܶܫܨ_ܥܴܲ

are plotted in lower panel of Figure 16.  Next, we need to estimate the probability of seeing the 

actual measured inter-spike intervals given an estimate of the variance at each phase.  We can 

choose the initial conditions for the function ߪොሺ߶ሻ as: ݊ଵ ൌ ටଵ

௡
∑ ሺ݅ሻଶ௡ݎ

௜  and slope ݊ଶ ൌ 0.  

Assuming that the residuals are Gaussianly distributed and independent, the probability of 



 

 

observing each point given our function for the variance is ݌ሺ݅ሻ ൌ
ଵ

ఙෝሺ௜ሻ√ଶగ
exp ቀെ

௥ሺ௜ሻమ

ଶఙෝሺ௜ሻమቁ.  The total 

likelihood of all the points observed is the product of the probabilities at each point, ࣦ ൌ ∏ ሺ݅ሻ௡݌
௜ .  

Because this probability can become very small very quickly and approach the limits of the 

machine precision, it is usually calculated as the log-likelihood, logሺࣦሻ ൌ െ ∑ ሾ
ଵ

ଶ
logሺ2ߪߨොሺ݅ሻଶሻ ൅௡

௜

log ሺ݌ሺ݅ሻሻሿ.  Optimizing the log-likelihood by adjusting the parameters of ߪො, we can fit the 

function to the variance of the data.  Standard deviation as a function of phase fitting our 

function to the noise is shown in Figure 16.  

Recently, Ermentrout, Beverlin & Netoff (submitted) has shown that, when a neuron is 

subjected to additive white noise, the relationship between the variance in phase response of a 

neuron and the shape of the iPRC (Z) is 

varሺ߶ሻ ൌ ߳ଶ ቆሾ1 ൅ Ԣሺ߶ሻሿଶܼߚ න ܼଶሺݏሻ݀ݏ
థ

଴
 ൅ න ܼଶ൫ݏ ൅ ݏሺ߶ሻ൯ܼ݀ ߚ

்

థ
ቇ, 

where ߳ is the magnitude of the (white) noise and ߚ is the strength of the (delta-function) 

stimulus.  Note that, to leading order in ߚ, this variance is phase independent for small ߚ and is 

equivalent to the intrinsic jitter in the ISIs   

varሺ߶ሻ ൌ ߳ଶ ቆන ܼଶሺݏሻ݀ݏ
்

଴
 ቇ. 

The parameters ߳ and ߚ are usually unknown, therefore are used as free parameters to fit the 

function to the data optimizing the maximum likelihood.  Fits to the residuals using this 

function is plotted in Figure 16.  This function gives slightly higher accuracy in fitting the 

variance over the simpler square-root function given the same number of free parameters. 



 

 

 

 

6. Measuring iPRC with ``White Noise" Stimuli 

In this section, we outline an alternative method for measuring the infinitesimal phase 

response curve (iPRC).  The method consists of continuously stimulating the neuron with a 

small-amplitude highly-fluctuating input over many inter-spike intervals, measuring the phase 

shifts of all spikes due to the stimulus, and then deconvolving the stimulus and the phase-shifts 

to obtain the iPRC.  The method is suggested in Izhikevich (Izhikevich, 2007) and is related to 

work in Ermentrout et al. (Ermentrout, Galan, & Urban, 2007) and Ota et al. (K. Ota et al., 

2009). 

As described in section 2.3, we assume that the stimuli are sufficiently small so that 

stimulus has a linear effect on the phase of the neuron. Therefore, the phase shift ∆߰௞ of the kth 

 

Figure 16. Fitting a function to the phase dependent noise.  (Top panel) Raw PRC data fit with a function to estimate 
the mean PRC.  The standard deviations are shown with error bars at each phase of the PRC.  The slanted blue line 
represents the line of causality, the maximum phase advance that can occur (i.e. neuron spikes at time of stimulus).  
(Bottom panel) The estimated PRC is subtracted from the raw data leaving the residuals of the PRC. The dashed line 
represents the standard deviation of the PRC at each phase fit with a simple function using maximum likelihood.  
The solid line represents a fit function that makes use of the PRC’s shape in predicting standard deviation of the 



 

 

spike during the stimulus is approximated by integral of the product of the iPRC ܼሺݐሻ and the 

stimulus ܫ௦௧௜௠,௞ሺݐሻ ൌ   ሻ over the kth inter-spike intervalݐ௞ሺߦ ߪ

 
∆߰௞ ൌ ܶ െ ௞ܶ ؆ න ܼ൫ߠሺݐሻ൯ ߪ ሻݐ௞ሺߦ ݐ݀

்ೖ

଴
 (12)

where ௞ܶ is the duration of the kth inter-spike interval, ܶ is the intrinsic period of the neuron, 

and ߠሺݐሻ is the absolute phase of the neuron.  The stimulus ߦ ߪ௞ሺݐሻ is chosen to be a piecewise 

constant function that is a realization of Gaussian white noise, i.e. time is broken up into very 

small intervals of width ∆ݐ and the amplitudes of ߦ ߪ௞ሺݐሻ is each subinterval is drawn from a 

Gaussian distribution with zero mean and variance ߪଶ, where ߪ is assumed to be small.  Note 

that this stimulus is composed of a wide range of Fourier modes that will typically form a basis 

for the iPRC Z.  

The phase of the unstimulated neuron increases linearly with time, and therefore we 

approximate the phase of the weakly stimulated neuron as ߠሺݐሻ ൌ ܶ/ ௞ܶ ݐ.  By changing variables 

so that the integration is in terms of phase, equation 12 becomes 

 
∆߰௞ ؆ න ܼሺߠሻ ߪ ሻ൯ߠሺݐ௞൫ߦ ௞ܶ

ܶ
ߠ݀

்

ఏୀ଴
 (13)

Note that, in this form, the upper limit of integration is independent of k, i.e. it is the same for 

all cycles.  By discretizing phase into 20~ܯ equal bins of width ∆ߠ ൌ  equation 13 can be ,ܯ/ܶ

approximated using a middle Riemann sum  

 
∆߰௞ ؆ ෍ ܼ൫ߠ௝൯ ߪۃ ۄ௝ሻݐ௞ሺߦ

ெ

௝ୀଵ

௞ܶ

ܶ
ߠ∆  (14)

where ߦ ߪۃ௞ሺݐ௝ሻۄ is the average of the stimulus in the jth bin during the kth cycle  

ۄ௝ሻݐ௞ሺߦ ߪۃ ൌ
1
∆

න ݐ݀ ሻݐ௞ሺߦ ߪ
௧ೕା ∆ೖ/ଶ

௧ೕି ∆ೖ/ଶ
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and ߠ௝ ൌ ቀ݆ െ
ଵ

ଶ
ቁ ∆ߠ, ௝ݐ ൌ

 ்ೖ

்
௝, and  ∆௞ൌߠ

 ்ೖ

்
 Figure 17 shows an example of a fluctuating  .ߠ∆

stimuli (second panel) and its binned and averaged version for a single cycle and ܯ ൌ 20.     

 

If the stimulus is presented over N cycles, equation 14 with ݇ ൌ 1 … ܰ yields a system of 

N equations with M unknowns, i.e. the equally spaced points on the iPRC ܼ൫ߠ௝൯.  In matrix 

notation, this system of equations is  

 ∆߰തതതത ؆ Γ ҧܼ (15)

where ∆߰തതതത is an ܰ ൈ 1 vector containing the phase shifts of each spike during the stimulus, Γ is an 

ܰ ൈ ۄ௝ሻݐ௞ሺߦ ߪۃ matrix in which the j,k element is ܯ  ்ೖ

்
 containing the binned and averaged ߠ∆

stimuli for each spike, and ҧܼ is a ܯ ൈ 1 vector containing the points on the iPRC.  Thus, 

estimation of the iPRC is reduced to solving a ‘simple’ linear algebra problem.  Typically, there 

should be more phase shifts recorded (ܰ) than points on the iPRC (ܯ), so that system equation 

15  is over-determined and can be solved using a least squares approximation.  Figure 18 shows 

 

Figure 17.  [top panel] The membrane potential of a Hodgkin-Huxley model neuron subject to an applied current of 
 ଶ for a single cycle. The blue trace represents the unperturbed oscillation, and the red trace represents the݉ܿ/ܣߤ 10
oscillation perturbed by  the “white noise” stimulus in the middle panel.  [middle panel]  A  realization of the “white 
noise”  stimuli ߦ ߪ௞ሺݐሻ that is (sampled with a time step Δݐ ൌ ߪ and ܿ݁ݏ݉ 0.005 ൌ  ଶ).  [third panel]   The݉ܿ/ܣߤ  1.5
stimulus in the second panel after being divided into ܯ ൌ 20 bins and averaged for each bin.  The amplitudes from 
this averaged signal make up one row of the matrix Γ. 



 

 

an example of an iPRC estimated using this technique for the Hodgkin-Huxley (HH) model 

neuron with additive current noise.  There are 20 points on the estimated iPRC (ܯ ൌ 20) and 40 

spikes were sampled (ܰ ൌ 40).  The error in this estimated iPRC is 0.30, where the error is 

computed as the normalized ℓଶ-norm ԡ ҧܼ െ ܼ௔തതതԡଶ/ԡܼ௔തതതԡଶ, where ܼ௔തതത is the iPRC calculated using 

the adjoint method evaluated at the appropriate phases. 

 

Because Γ is a random matrix, it could sometimes have a high condition number, which 

could lead to significant error in the estimation of the discretized iPRC ҧܼ.  However, we can 

reduce the chance of this error by making the number of spikes considered ܰ sufficiently larger 

than the number of points on the estimated iPRC ܯ.  Figure 19 shows the decrease in the error 

of the estimation of the iPRC for the HH model neuron as the number of spikes is increased.  

Note the steep initial decrease in the error.  In practice, we find that about twice as many spikes 

(phase shifts) as number of points on the estimated iPRC yields a relatively low error.  Typically, 

20 points provides a good representation of an iPRC for a spiking neuron.  Therefore, if a 

 

Figure 18.  Example of an estimated iPRC using the “white noise” method for the Hodgkin-Huxley neuron 
with “unknown” additive  noise. The red trace is the iPRC calculated using the adjoint method (Ermentrout, 

1991) and the crosses are the estimates of the iPRC found from solving equation 15  for തܼ.  There are ܯ ൌ 20 
points on the estimated iPRC, and ܰ ൌ 40  cycles were used to calculate the iPRC.  The stimulus has 
parameters Δݐ ൌ ߪ and  ܿ݁ݏ݉ 0.005 ൌ 1.5  ଶ. The signal (stimulus) to noise ratio was ~5.0.  The  error݉ܿ/ܣߤ
in the estimated iPRC is 0.30. 



 

 

neuron is firing at 10-20 Hz on average, and the phase shifts are measured over 40 spikes, it 

only takes 2-4 seconds to record the data needed to estimate the iPRC.   

 

The strength of the random stimulus, ߪ, also affects the quality of the estimated iPRC.  In 

practice, the stimulus amplitude must be small in order for the estimation to be theoretically 

valid, but it must also be large enough to overcome the intrinsic noise in the system.  Figure 20 

plots the error in the estimation as a function of ߪ when there is no unknown additive noise in 

the system (a), and when there is unknown additive noise in the system (b).  In both cases, there 

is an optimal value of ߪ that minimizes the error in our estimation.  This optimal value is larger 

when there is noise in the system. 

   

Figure 19.  Error in the estimated iPRC with ܯ ൌ 20 versus the number of inter-spike intervals.   The error in the 
estimated iPRC is computed as ԡ ҧܼ െ ܼ௔തതതԡଶ/ԡܼ௔തതതԡଶ, where ܼ௔തതത is the iPRC calculated using the adjoint method 
evaluated at the appropriate phases.  (a) The system with no noise.  (b)  The system with “unknown” additive 
white noise with signal (stimulus) to noise ratio of ~5.0.  Estimates were made for M=20 points on the iPRCs.  
For both cases, the error decreases quickly as more trials are recorded.  The stimulus has parameters Δݐ ൌ
ߪ and ܿ݁ݏ݉ 0.005 ൌ ߪ ଶ in (a) and݉ܿ/ܣߤ  1.5 ൌ  ଶ in (b).   700 trials were used to generate the statistics݉ܿ/ܣߤ  8
for every point on the graphs.  Data points are mean values and error bars represent the limits that included 
േ30% of data. 

(a) (b) 



 

 

 

While the method described above is perhaps the most straightforward “white noise” 

method, other methods that use white noise stimuli to measure the iPRC have also been 

proposed.  Ermentrout et al. 2007 showed that, when an oscillating neuron is stimulated with 

small amplitude white noise, the spike triggered average (STA) is proportional to the derivative 

of its iPRC.  As such, the iPRC can be calculated by integrating the STA.  Ota (K. Ota et al., 2009) 

recently addressed several practical issues concerning the results of Ermentrout (Ermentrout et 

al., 2007) and outlined a procedure to estimate iPRCs for real neurons by using an appropriately 

weighted STA.   

 Izhikevich (Izhikevich, 2007) comments that white noise methods for iPRC estimation 

should be more immune to noise than standard pulse methods because the stimulus fluctuations 

are spread over the entire cycle and not concentrated at the moments of pulses.  However, to our 

knowledge, there has been no systematic comparison of the white noise methods and the 

standard pulse method.  More work is needed to determine the optimal method for different 

situations (i.e. different noise levels, limitations on number of spikes, etc.).  Furthermore, we 

expect that refinements could be made to improve most of these methods.   

   

Figure 20.  Error in the estimated iPRC versus Signal Strength. The error is calculated as described in Figure 19.  
The error is shown as a function of the strength of the random signal when (a) the system has no noise and (b) 
the system has “unknown” additive white noise.    In both cases, there is an optimal value of the signal strength 
which minimizes the error in the estimation.  Furthermore, both the mean and standard deviation of the error 
increase significantly as the signal strength becomes too large, i.e. the neuron no longer responds linearly.  
Estimates were made with N=40 recorded spikes, M=20 points on the iPRCs, and Δݐ ൌ  The  .ܿ݁ݏ݉ 0.005
unknown noise had a magnitude such that the signal (stimulus) to noise ratio was ~5.0 when ߪ ൌ   .ଶ݉ܿ/ܣߤ  8
700 trials were used to generate the statistics for every point on the graphs.  Data points are mean values and 
error bars represent the limits that included േ30% of data. 

 

(a) (b) 



 

 

 

Summary 

 The first step in generating a phase response curve for a neuron is choosing an 

appropriate stimulus waveform.  When estimating the infinitesimal PRC (for use with theory 

of weakly coupled oscillators), a small brief delta-function-like stimulus pulse can be used.  

If synaptic inputs are not expected to sum linearly, then a realistic synaptic waveform should 

be used to measure the PRC to include the proper nonlinear responses of the neuron. 

 The effects of a pulse stimulus on neuronal firing may last longer than a single cycle and 

give rise to measureable changes in ISIs in the cycles following the stimulated interval.  

These effects can be quantified with secondary and higher order PRCs and can be 

incorporated into models to increase their accuracy (Maran & Canavier, 2008; Oprisan & 

Canavier, 2001).  Alternatively, the stimulus can be repeated at the same phase until the 

higher order effects accumulate and stabilize, and then the steady state response to the 

synaptic input at a phase can be measured.  This results in measuring a “functional PRC” 

(Cui et al., 2009). 

 Neurons exhibit considerable amounts of noise, making phase response data variable.  

There are two sources of noise: drift and jitter.  Drift in the dynamics of the neuron occurs 

from slow-time-scale neuronal processes and “run down” (slow death) of the neuron during 

the experiment.  This can be compensated to some degree by maintaining the firing rate of 

the neuron with a spike rate controller.  While it is not a panacea, it keeps one aspect (the 

period) approximately constant over the duration of the experiment.   

 To decrease the duration of the PRC experiment and thereby reduce the effects of drift 

on PRC estimation, the sampling of stimulus phase can be optimized.  Using a Sobol 

sequence to sample the phases is much more efficient than random, or quasi-periodic 

sampling.   



 

 

 The jitter in the phase response can be overcome by fitting a function to the data to 

estimate the deterministic portion of the neuron’s PRC.  Polynomials with constraints or 

Fourier series usually provide good fits to PRC data.   The Akaike information criterion can 

be used to determine the appropriate number of coefficients when fitting either a polynomial 

or the Fourier series.   

 The variability in a neuron’s phase response can also be quantified and modeled.  

Ermentrout, Beverlin & Netoff (submitted) has recently shown that the phase dependence of 

the variance is dependent on the shape of the PRC.  We also present a simple function that 

can be fit to the variance by optimizing the maximum likelihood that does a reasonably good 

job.   

 White noise stimulus approaches provide alternatives to pulse stimulation methods for 

measuring infinitesimal PRCs.  This approach uses linear algebra to estimate the iPRC from 

neuronal response to white noise applied to several periods.  More work must be done to 

optimize these methods and to systematically compare them to the standard pulse 

stimulation methods. 
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