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The Influence of Dendritic Properties on the Dynamics of Oscillatory Neurons

Abstract

Synchronization of oscillatory activity in neuronal networks arises in many areas

of neuroscience. In the mammalian cortex, oscillatory behavior arises as a result of

the synchronized electrical activity of large populations of cortical neurons. Much

effort has been put into tying this observed cortical oscillatory activity to different

behavioral functions. However, directly linking these cortical oscillations to precise

functional roles is a difficult task and more work must be done before this can occur.

Rather than directly addressing the issue of the functional role of these oscillations,

one can first address the question of what are the biophysical mechanisms that un-

derlie the observed synchronous electrical activity? A deep understanding of these

mechanisms can allow one to extract the functional role of the aforementioned syn-

chronous oscillatory behavior. It is known that networks of inhibitory interneurons

play a fundamental role in generating the oscillatory electrical behavior seen in the

cortex. Furthermore, it has been shown experimentally that the inhibitory neurons

in these networks are highly interconnected by electrical synapses on their dendrites,

and that the dendrites of these inhibitory neurons appear to display effectively pas-

sive electrical behavior. Concurrently, theoretical studies have shown that passive

dendritic filtering can change the phase-locking behavior in networks of neuronal os-

cillators. Therefore, even passive dendritic properties can be important in the flow of

electrical activity between inhibitory neurons in the cortex, and, consequently, in the

generation of the synchronous electrical activity seen there. Here, we examine the

role that passive dendritic properties play in shaping the oscillatory electrical activity

of neuronal networks.
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Chapter 1

Introduction

Synchronization of oscillatory activity in neuronal networks arises in many areas of

neuroscience and has been linked to various behavioral functions. There is little doubt

that the oscillatory behavior of these networks plays a major role in generating motor

patterns of repetitive activity such as locomotion, feeding, and breathing [86, 92, 105].

In the mammalian cortex, oscillatory behavior arises as a result of the synchronized

electrical activity of large populations of cortical neurons. This oscillatory behav-

ior is apparent in electroencephalogram (EEG) recordings and can occur in different

frequency bands and in different areas of the cortex [14]. Oscillations within these

different frequency bands have been hypothesized to correspond with different behav-

ioral functions. For example, synchronized gamma-frequency (30-80Hz) oscillations

in the mammalian sensory cortex have been hypothesized to be important in sensory

information processing, e.g. in the olfactory system [57] and the visual system [42],

in motor programming [68], and associative learning [66]. However, linking these cor-

tical oscillations directly to precise functional roles is a difficult task and more work

has to be done before this can occur. Therefore, rather than directly addressing the

issue of the functional role of these oscillations, one can first address the question of
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what are the biophysical mechanisms that underlie the observed synchronous electri-

cal activity? A deep understanding of these mechanisms can allow one to extract the

functional role of the aforementioned synchronous oscillatory behavior.

Oscillatory network behavior can be generated from individual neurons that are

non-oscillatory (e.g. [8, 103, 111]), or from individual neurons that fire periodically

in the absence of coupling (e.g. [33, 46, 59]). Here, we will be concerned with

behavior that arises in networks of oscillatory neurons that are coupled together. In

this case, the network behavior is shaped by the properties of the coupling (such as

the time course and strength of the synapse, e.g. [53, 110]) and the dynamics of the

individual neurons (such as the types of intrinsic currents that the neurons contain,

e.g. [17, 74]). Therefore, an understanding of the activity in individual neurons

that make up a neuronal network is of vital importance in understanding the overall

behavior of networks like these.

In the classic view, neurons typically consist of a dendritic tree where the major-

ity of inputs to the cell are received, a soma (cell body) in which these inputs are

integrated, and an axon. Signal transmission in neurons usually occurs as follows.

A presynaptic neuron releases neurotransmitter onto the dendritic tree of a postsy-

naptic neuron. The neurotransmitter causes a change in the membrane potential of

the dendritic tree of the postsynaptic neuron. This change in potential, or signal,

then propagates along the dendritic tree down to the soma, usually with some atten-

uation. The amount of attenuation depends on the types of ion channels that exist

in the membrane of the dendritic tree. The signal is then integrated in the soma

of the postsynaptic neuron. If the resulting integrated input to the neuron is large

enough, an action potential, a large and transient depolarization of the membrane

potential, will be initiated in the axon hillock of the neuron. The action potential
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then propagates down the axon and causes the release of neurotransmitter onto a dif-

ferent postsynaptic cell, and the process starts over. As such, neurons are spatially

extensive, heterogeneous objects. They are often modeled as single-compartment

objects that ignore the spatial anatomy of the cell. This simplification is made for

mathematical tractability and computational efficiency. However, many neurons are

not electrotonically compact, and single-compartment models cannot be expected to

fully capture their behavior. Dendrites can have substantial effects on the dynamics

of individual neurons. For example, the architecture and ionic channel density of

a dendritic tree can alter the firing pattern and encoding properties of a neuronal

oscillator [52, 56, 61].

Networks of inhibitory interneurons play a fundamental role in generating the

oscillatory electrical behavior seen in the cortex [4, 15, 93, 98]. As a result, syn-

chronization in inhibitory networks is a topic of much theoretical and experimental

research [64, 65]. It has been shown experimentally that (i) the inhibitory neurons

in these networks are highly interconnected by electrical synapses on their dendrites

[2, 36], and (ii) the dendrites of these inhibitory neurons appear to display effec-

tively passive electrical behavior [48]. Concurrently, theoretical studies have shown

that passive dendritic filtering can change the phase-locking behavior in networks of

neuronal oscillators [12, 20, 59]. Therefore, even passive dendritic properties can be

important in the flow of electrical activity between inhibitory neurons in the cortex,

and, consequently, in the generation of the synchronous electrical activity seen there.

The purpose of this dissertation is to examine how dendritic properties affect the

dynamics of single oscillatory neurons and the phase-locking behavior of networks of

these neuronal oscillators coupled by electrical synapses.

The outline of this dissertation is as follows: this first chapter serves as an intro-
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duction to the physiological and theoretical background that motivated this study.

The second chapter reviews basic neuronal electrophysiology, single-compartment

Hodgkin-Huxley-type neuron models, and the Leaky-Integrate-and-Fire neuron model,

which is a reduced model. The third chapter introduces the cable equation, the con-

cept of equivalent cylinders, and two spatially extended neuron models that will be

used extensively in this thesis. The fourth chapter presents the theory of weakly

coupled oscillators, which is the main analytical tool that we use to probe how weak

dendritic influences affect the dynamics of single and electrically coupled neuronal

oscillators. The fifth and sixth chapters examine how influences from the dendrite

modulate the dynamics of individual neuronal oscillators. The seventh chapter exam-

ines how weak dendritic influences can affect the phase-locking behavior of networks

of electrically coupled neurons.

A slightly modified form of Chapter 4 will appear in the book Phase Response

Curves in Neuroscience (N. Schultheiss and A. Prinz, eds.). Slightly modified forms

of Chapters 5 and 6 have been submitted to Physical Review E and SIAM Journal of

Applied Math, respectively. The work in Chapter 7 will give rise to two manuscripts

that will be submitted to appropriate scholarly journals.

1.1 Summary

In this chapter, we have reviewed the biological and theoretical motivation for study-

ing how dendritic properties affect the dynamics and oscillatory behavior of single

neurons, and the phase-locking behavior of networks of electrically coupled neuronal

oscillators, which will be the focus of this dissertation.
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Chapter 2

Basic Neuronal Electrophysiology

and Single-Compartment Neuron

Models

We review basic neuronal electrophysiology and introduce two types of single-compartment

neuron models: the Hodgkin-Huxley model, and the leaky-integrate-and-fire model.

We also discuss the typical ways that these single-compartment neuron models can

begin to display oscillatory electrical behavior.

2.1 Introduction

Neurons receive and integrate synaptic inputs and actively transmit the signal result-

ing from these integrated inputs along their cell length via action potentials, which

are large and transient depolarizations of their membrane potentials (see Chapter

1). The action potential is the main carrier of information within neurons in the

brain. Therefore, an understanding of the biophysical mechanisms of action poten-
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tial dynamics is necessary before one can even begin to understand the mechanisms

underlying the electrical activity of neuronal networks. In this chapter, we discuss

the basic electrophysiology of the neuron, and explain the generation of the action

potential with the use of the Hodgkin-Huxley model of the squid giant axon [44].

Furthermore, we describe the different ways that single neurons can begin displaying

oscillatory electrical behavior. Lastly, we present a reduction of the Hodgkin-Huxley-

type models known as the leaky-integrate-and-fire (LIF) neuron [1, 99] which is more

amenable to mathematical analysis and will be utilized in Chapter 6. Note that

in this chapter, we assume that the neuron is represented as a single-compartment,

with no spatial dependence. Spatially extended neuron models will be discussed in

Chapter 3.

2.2 Neuronal Membrane Physiology

The cellular membrane of a neuron is composed of a phospholipid bilayer in which

are embedded various proteins. Some of these proteins act as channels that allow

ions (such as sodium Na+ and potassium K+) to pass through the membrane down

their electrochemical gradient. Other proteins behave as pumps and use energy in

the form of ATP in to move ions across the membrane against their electrochemical

gradient. For example, the Na+-K+ pump exchanges 3 intracellular Na+ for 2 extra-

cellular K+. The existence of the neuronal membrane along with the work of the ion

pumps permits internal potential of the neuron to be different from the potential of

the medium surrounding the neuron. More specifically, the membrane separates the

internal and external medium of the neuron while the action of the Na+-K+ pump

causes the internal (external) concentration of K+ (Na+) to be greater than the ex-

ternal (internal) concentration. It is the difference between the internal and external
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potential that is commonly referred to as the membrane potential of the neuron, i.e.

V = VI −VE where VI is the internal potential (or voltage) and VE is the potential of

the external medium. The resting potential is the membrane potential of the neuron

in the absence of any external influences and is typically around −65 mV .

The action potential is a large and transient rise (depolarization) of membrane po-

tential above rest usually in response to some external stimulation, e.g. from another

neuron via an excitatory synapse. This rapid change in membrane potential is the

way that neurons transmit information to one another. To begin understanding how

a neuron can generate an action potential, we will first look at the underlying electri-

cal components of the membrane. First off, due to the properties of the phospholipid

molecules, ions typically cannot pass directly through the membrane except through

the specific protein channels. Thus, the membrane acts as an insulator separating

two conducting solutions, and behaves like a capacitor. When the voltage across the

membrane changes, a current will be generated. This capacitive current is given by

IC = Cm
dV (t)

dt
, (2.2.1)

where Cm is the specific capacitance of the membrane in units of μF/cm2 and V (t)

is the membrane potential, in units of mV , at time t.

Since ions can flow through the membrane by way of the embedded protein chan-

nels, there will also be transmembrane currents associated with the movement of

these ions through the channels. These protein channels act as linear Ohmic resistors

with variable resistance R. The reason the resistance is variable is due to the fact

that the channels can be “voltage-gated”, meaning that the channels can contain

multiple “gates” whose opening and closing is a function of the membrane potential.

Thus, the current through the channels will be given by Ohm’s Law and Kirchhoff’s
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conservation of current law

Iion =
1

Rion(V )
(V (t) − Vion) = gion(V )(V (t) − Vion), (2.2.2)

where Rion(V ) is the specific ion channel resistivity in units of kΩ · cm2 that could

be a function of the membrane potential, gion(V ) is the specific ionic conductance

( 1
Rion(V )

) in units of mS/cm2, and Vion is the reversal potential of the ion channel in

units of mV . The reversal potential (also known as the Nernst potential) is given by

Vion =
RT

zF
ln

[ion]o
[ion]i

, (2.2.3)

where R = 8.314472(15) J
Kmol

is the universal gas constant, T is the absolute temper-

ature, z is the valence of the ion, F = 9.64853399(24)×104 C
mol

is Faraday’s constant,

and [ion]o ([ion]i) is the external (internal) concentration of the ion. The reversal

potential of the channel is the potential at which there is no net current flow through

the channel for that specific ion. It determines whether a particular ionic current

will be and inward or outward current relative to the resting potential. For example,

suppose the internal concentration of K+ is about 20 times greater than the external

concentration. At room temperature, VK ≈ −77 mV . Since the resting potential is

around −65 mV , this means that the opening of K+ channels will cause current to

flow out of the neuron. Thus, K+ would be an outward current.

In the next section, we will present the Hodgkin-Huxley model [44], which pro-

vided the first quantitative biophysical explanation for the generation of the action

potential in the squid giant axon.
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2.3 The Hodgkin-Huxley Model

The Hodgkin-Huxley model assumes that the electrical activity of the squid giant

axon is mainly due to the movement of Na+ and K+ ions across the membrane.

Thus, in the model, the neuronal membrane contains Na+ channels, K+ channels,

and a leakage channel through which various other ionic species, such as chloride

Cl−, can pass. The equivalent circuit diagram corresponding to the Hodgkin-Huxley

model is shown in Figure 2.3.1.

Extracellular

Intracellular

IK

gK

INa IL

gNa

Cm

VNa

IC

V

gL

VK VL

Figure 2.3.1: Circuit Diagram for the Hodgkin-Huxley Model of the Squid
Giant Axon. The membrane itself acts as a capacitor since it separates two con-
ducting solutions. The embedded protein channels behave like resistors with a driving
force given by the reversal potential of the channel. In this model, the membrane is
assumed to consist of only Na+ channels, K+ channels, and leakage channels where
Cl− and other ions flow through.

The conductances of the Na+ and K+ channels are functions of time and the

membrane potential, while the conductance of the leakage channel is a constant and
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unaffected by changes in the membrane potential. Furthermore, the Na+ channel

consists of three activation gates that are independent of each other and open when

the membrane potential is depolarized above rest, and an inactivation gate that closes

the channel when the neuron has been depolarized above rest for a certain amount

of time. Thus, the Na+ current has the form

INa = ḡNam(t)3h(t)(V (t) − VNa), (2.3.1)

where ḡNa is the maximum conductance of the channel, m(t) is the fraction of open

activation gates at time t, and h(t) is the fraction of open inactivation gates at time

t. Since the membrane is assumed to have many ion channels embedded in it, the

variables m and h represent the fraction of all activation and inactivation gates,

respectively, of the Na+ channels in the open state.

Similarly, the K+ channel has four independent activation gates that open when

the neuron is depolarized. Thus, the current flowing through the K+ channel has the

form

IK = ḡKn(t)
4(V (t) − VK), (2.3.2)

where ḡK is the maximum conductance of the channel and n(t) is the fraction of open

activation gates at time t.

Each of the gating variables m, h, and n also obey a differential equation of the

form

dy

dt
= αy(V )(1 − y) − βy(V )y =

y∞(V ) − y
τy(V )

, (2.3.3)

where y = m, h, n, βy(V ) is the rate that the gate switches from the open state to
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the closed state, αy(V (t)) is the rate that the gate switches from the closed state

to the open state, y∞(V ) = αy(V )

αy(V )+βy(V )
is the steady-state fraction of open gates,

and τy(V ) = 1
αy(V )+βy(V )

is the time constant associated with the change in the

fraction of open gates. The functional forms of y∞(V ) and τy(V ) were actually found

experimentally by Hodgkin and Huxley by fitting voltage clamp data [44]. Figure

2.3.2 plots the values of the steady-state gating variables for the Hodgkin-Huxley

model along with their associated time constants.
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Figure 2.3.2: Steady-State Gating Variables and Associated Time Constants
for the Hodgkin-Huxley Model. (a) Steady-state gating variables plotted as a
function of the membrane potential. Note that h∞(V ) decreases as V increases, which
corresponds to the Na+ channel inactivating as the membrane potential increases.
(b) Time constants for the gating variables as a function of the membrane potential.
Note that τm(V ) is much smaller than the time constants for h and n. This indicates
that changes in Na+ activation occur much faster than Na+ inactivation or K+

activation.

Invoking Kirchhoff’s conservation of current law and using Figure 2.3.1, the

Hodgkin-Huxley model can be written compactly as

IC + INa + IK + IL = Iappl, (2.3.4)

where Iappl is an external current applied to the neuron. The above equation can be
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rewritten to obtain the complete Hodgkin-Huxley model

⎧⎪⎪⎨
⎪⎪⎩
Cm
dV

dt
= −ḡNam

3h(V − VNa) − ḡKn4(V − VK) − gL(V − VL) + Iappl

dy

dt
= αy(V )(1 − y) − βy(V )y =

y∞(V ) − y
τy(V )

, y = m, h, n.

(2.3.5)

The introduction of the Hodgkin-Huxley model in 1956 [44] provided quantitative

explanations and predictions about the nature of action potential generation in the

squid giant axon. Furthermore, it introduced a modeling formalism for neurons that

is still used today. Thus, when we refer to Hodgkin-Huxley-type models throughout

this dissertation, we will be referring to models of the form

Cm
dV

dt
= −

∑
i

Ii + Iappl, (2.3.6)

where Ii denotes the individual ionic currents of the model which all have the form

Ii(t) = ḡix
pyq(V (t) − Vi), (2.3.7)

where x and y satisfy equation (2.3.3), and the subscript i refers to the ion that flows

through the channel.

2.3.1 Generation of the Action Potential

The Hodgkin-Huxley model provides a quantitative explanation of the mechanisms

involved in the generation of action potentials in the squid giant axon. Furthermore,

this explanation can be qualitatively applied to action potential generation in many

different neurons. That is, when the membrane potential of the neuron is depolarized
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above rest, a number of Na+ channels open quickly due to the small time constant

associated with the m variable (see Figure 2.3.2 (b)). This allows more Na+ to flow

into the neuron due to the electrochemical gradient, i.e. the inside of the membrane

is more negative than the outside and it has a lower concentration of Na+. The

influx of extracellular Na+ causes the cell to become more depolarized opening more

and more Na+ channels and leading to the large abrupt depolarization seen at the

beginning of an action potential (Figure 2.3.3 I). At this point, enough time has

passed (roughly 2 msec) so that the the Na+ inactivation gates begin to close and

theK+ activation gates begin to open, which slows the influx of extracellular Na+ and

allows K+ to flow down its electrochemical gradient out of the cell, thus causing the

membrane potential to begin repolarizing (Figure 2.3.3 II). The membrane potential

then hyperpolarizes due to the fact that the Na+ gates are now inactivated and the

K+ gates are still open causing the membrane potential of the neuron to approach

the K+ reversal potential, which is lower than the resting potential (Figure 2.3.3 III).

Finally, the potassium gates begin to close as the leakage current brings the cell back

to its resting potential, and all of the variables approach their resting values (Figure

2.3.3 IV).

2.3.2 Refractory Period

The Hodgkin-Huxley model can also be used to explain another commonly observed

phenomenon known as the refractory period of a neuron. More specifically, the abso-

lute refractory period refers to the time during which a neuron cannot fire an action

potential, and the relative refractory period refers to the time following the absolute

period during which the neuron requires a larger current stimulus than it would need

at rest to fire an action potential. Both of these periods can be explained by exam-
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Figure 2.3.3: Generation of the Action Potential in the Hodgkin-Huxley
Model of the Squid Giant Axon. The upper plot shows the voltage of the neuron
during an action potential, while the lower plot shows how the gating variable m,
h, and n change during the action potential. The Roman numerals refer to different
stages of the action potential (refer to text for explanation).

ining the lower half of Figure 2.3.3. When the membrane potential is depolarized

during the action potential, h decreases, causing the Na+ channels to inactivate.

Once inactivated, these channels cannot be reopened until the membrane potential

repolarizes for a sufficient amount of time. Thus, the large amount of inactivatedNa+

channels that is seen when the membrane potential hyperpolarizes (Figure 2.3.3 III)

effectively prohibits the generation of a second action potential. As the membrane

potential begins to repolarize, h increases and the Na+ gates start to be released from

inactivation. At the same time, n is large relative to its resting value corresponding
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to a large amount of K+ channels to be open. This causes the membrane potential

to hyperpolarize towards the K+ channel reversal potential. The combination of the

neuron having more inactivated Na+ channels and more open K+ channels than it

would have at rest causes it to require a larger current stimulus to generate an action

potential. As the neuron approaches its resting membrane potential, the current re-

quired to generate a second action potential decreases to its resting value. The return

of the membrane potential to rest marks the end of the refractory period.

2.4 Neuronal Oscillations

When stimulated with a constant external applied current of sufficient amplitude,

many neurons exhibit the periodic firing of action potentials seen in Figure 2.4.1.

Moreover, it is also important to note that a wide class of neurons are intrinsically

active, firing regularly and responding to inputs through perturbations to otherwise

regular spike times [5, 6, 7, 113]. This behavior is reproduced in Hodgkin-Huxley-

type models when the parameter Iappl is sufficiently large, or when other parameters,

e.g. EL, are large.

The first person to classify neuronal excitability was Alan Hodgkin in 1948 [45].

By injecting steps of currents of various amplitudes into neuronal membranes and

looking at the resulting behavior, Hodgkin found that most neurons fall into two

major classes oscillatory behavior:

• Class I neural excitability refers to neurons that can fire action potentials at

arbitrarily low frequencies.

• Class II neural excitability refers to neurons where the onset of periodic behav-

ior occurs at a non-zero frequency, and the firing frequency of the neuron is
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Figure 2.4.1: Periodic Firing of Action Potentials. When the parameter Iappl is
large enough in the Hodgkin-Huxley model, the membrane potential begins displaying
periodic firing of action potentials. This behavior is also seen in real neurons [45].

relatively insensitive to changes in the applied current.

Figure 2.4.2 illustrates the two different classes of neural excitability in (b) the stan-

dard Hodgkin-Huxley neuron and (b) a modified Hodgkin-Huxley neuron [47].

Class I, or Type I neurons, fire with a frequency that can vary smoothly from 0

Hz to 180 Hz, as shown in Figure 2.4.2. On the other hand, Class II neurons fire in a

narrower frequency band that varies from about 55 Hz to 80 Hz, as shown in Figure

2.4.2.

In the language of dynamical systems, if Iappl is treated as a bifurcation parameter,

then Hodgkin’s classes of neural excitability can be reinterpreted as [49, 89]:

• Class I neural excitability refers to neuronal models where the onset of pe-

riodic oscillations arises from either a saddle-node on invariant cycle (SNIC)

bifurcation or a homoclinic bifurcation.
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Figure 2.4.2: Frequency-Applied Current Curves for Two Neuron Models
Displaying Class I and Class II Excitability. (a) For this model, action po-
tentials can be generated with arbitrarily low frequency, corresponding to Hodgkin’s
Class I neural excitability. (b) Periodic firing of action potentials in this model turn
on at a non-zero frequency corresponding to Hodgkin’s Class II neural excitability.

• Class II neural excitability refers to neuronal models where the onset of periodic

oscillations arises from either a supercritical or subcritical Hopf bifurcation.

These are the most common bifurcations that lead to periodic firing in neuronal

models.

2.5 The Leaky-Integrate-and-Fire Model

Although Hodgkin-Huxley-type models provide quantitative descriptions of neuronal

electrophysiology, they are mathematically difficult to analyze due to their highly non-

linear nature. However, there exist various reduced models that capture the essential

features of the Hodgkin-Huxley-type models, while at same time being conducive to

mathematical analysis. One such model, which we use in this thesis, is known as the



2.5. The Leaky-Integrate-and-Fire Model 18

Leaky-Integrate-and-Fire Neuron [1, 99].

The idea behind the leaky-integrate-and-fire model comes from the fact that the

action potential of a neuron can be characterized as having 2 phases: (i) a slow

depolarization of the membrane potential until it reaches a “threshold” value, and

(ii) a rapid depolarization followed by a repolarization back to rest. This second phase

often has an invariant shape that is determined by the interaction of the nonlinear

Na+ and K+ currents and is typically not affected by changes in the applied current.

Thus, to simplify phase (ii) we assume that the nonlinear currents can be replaced by

a nonlinear threshold with a reset condition. Lastly, we make the assumption that

the subthreshold dynamics (phase (i)) are dominated by the leakage current. Thus,

by removing INa and IK and their gating variables from equation (2.3.5), we can

write the leaky-integrate-and-fire model as

Cm
dV

dt
= −gL(V − VL) + Iappl, (2.5.1)

with the condition that when V (t) reaches a threshold voltage Vth, it is immediately

reset to a potential VR. Thus, the subthreshold dynamics of the LIF neuron is modeled

as an RC-circuit. However, when Iappl is large enough, the LIF model will display

periodic firing. Note that since phase (ii) is assumed to be invariant, one could add a

spike shape to the LIF model without changing its dynamics [17, 50, 58]. In Figure

2.5.1 (a), we plot an example of periodic firing in the LIF model with a simple spike

function that jumps the voltage up to a value β once the neuron reached threshold,

and then immediately resets the potential to VR.

A major reason why the leaky-integrate-and-fire model is popular among theorists

is because of the fact that it contains only a threshold nonlinearity. Thus, one can

often write down the analytic solution. Below threshold
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Figure 2.5.1: the Leaky-Integrate-and-Fire Model Displays Action Poten-
tial and Oscillatory Dynamics Similar to that of Hodgkin-Huxley-Type
Models. (a) Example voltage trace of the leaky-integrate-and-fire neuron with a
spike added on. When the voltage reaches a threshold Vth = −30 its is jumped up
to β = 30 and then immediately reset to VR = −70. (b) Frequency-applied current
curve for the leaky-integrate-and-fire neuron given by equation (2.5.3). The leaky-
integrate-and-fire neuron can fire at arbitrarily low frequencies. Thus, it falls into
Hodgkin’s Class I of neuronal excitability.

V (t) = V (t0)e
gL/Cm(t0−t) +

[
VL +

Iappl
gL

] (
1 − egL/Cm(t0−t)

)
, (2.5.2)

where t0 is the start time. The LIF model can also display oscillatory behavior seen

in Hodgkin-Huxley-type models, e.g. Figure 2.5.1 (b). Because we have the analytic

solution (2.5.2), it is possible to write down an equation for the frequency of the

oscillations, f , as a function of the system parameters
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f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣Cm

gL
ln

⎛
⎜⎜⎝
VR −

[
VL +

Iappl
gL

]

Vth −
[
EL +

Iappl
gL

]
⎞
⎟⎟⎠ + Ts

⎤
⎥⎥⎦
−1

if Iappl > gL(Vth −EL)

0 else ,

(2.5.3)

where Ts is the duration of the spike which is 0 in Figure 2.5.1 (b). Thus, one can

analytically examine how changes in different parameters affect the dynamics of the

leaky-integrate-and-fire neuron.

The leaky-integrate-and-fire model captures some of the essential features of the

electrical activity of neurons, such as threshold behavior and periodic firing of ac-

tions potentials, while at the same time being amenable to mathematical analysis.

As such, many theorists have utilized this simplified model in order to probe the

mechanisms of various phenomena such as phase-locking in neuronal networks, e.g.

[12, 58, 108]. However, It is important to note that the leaky-integrate-and-fire model

does not capture every feature of the Hodgkin-Huxley-type models. For example, the

leaky-integrate-and-fire model has oversimplified threshold dynamics and unrealistic

refractory properties [3, 16].

2.6 Summary

In this chapter, we have reviewed basic concepts from neuronal electrophysiology and

explained the mechanisms underlying the generation of action potentials in neurons

with the use of the Hodgkin-Huxley model. We have also described the different

ways that neurons can begin to exhibit oscillatory electrical behavior. Lastly, we

presented a simplified neuronal model known as the leaky-integrate-fire neuron that
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will be used in Chapter 6.
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Chapter 3

The Cable Equation, Equivalent

Cylinders, and the Rall

Lumped-Soma and Ball-and-Stick

Model Neurons

The cable equation, originally derived by Lord Kelvin in 1855 to study the transat-

lantic telegraph cable, has become one of the standard models for studying the volt-

age profiles of spatially extended neurons. Here, we present the derivation of the

cable equation, and introduce the concept of an equivalent cylinder which, under cer-

tain circumstances, allows one to reduce a branched dendritic structure into a single

cylinder. For our purposes, the equivalent cylinder method provides an analytically

tractable approach to studying the effects of dendritic properties on the dynamics of

neuronal oscillators by collapsing the often complicated branching dendritic structure

of a neuron into a single cylinder. Lastly, we close this chapter by introducing the
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Rall Lumped-Soma and Ball-and-Stick model neurons. Both models consist of an

isopotential soma attached to a single passive dendritic cable (which can be thought

of as arising from the equivalent cylinder of a branched dendritic structure). The only

difference between the two models is that the Rall lumped-soma model assumes that

the somatic membrane consists of ion channels that behave like linear Ohmic resistors

(generally referred to as a passive membrane), while the ball-and-stick model allows

for nonlinear voltage-gated Hodgkin-Huxley-like ion channels (see Chapter 2) in the

somatic membrane (generally referred to as an active membrane). The ball-and-stick

neuron model will be used in Chapters 5 and 7, while a slight variation of the Rall

lumped-soma model will be used in Chapter 6.

3.1 Introduction

Neurons are spatially extensive heterogeneous objects (see Chapter 1). As such, it is

unlikely that the membrane potential of the neuron will be same at every point. It

is often the case that the membrane potential undergoes significant attenuation and

delay as it travels down the cable-like structure of axons or dendrites. One of the

first people to investigate how a neurons structure affects its electrical activity was

Wilfrid Rall [78, 79, 80, 83, 84]. At the time, not much attention was being paid to

dendrites, as the prevailing opinion was that dendrites were so electrotonically long

that any inputs on the dendrite could not affect the electrical activity of the soma

(cell body) in any significant way [26]. However, using a combination of mathematical

theory and the little physiological data that was available to him, Rall [78] was able to

convincingly show that this “standard motoneurone” model [26] underestimated the

dendritic contribution by a significant amount. Although Rall’s ideas were met with

resistance early on, his results have now become standard in the field of computational
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neuroscience [95]. Furthermore, his application of the theory of electrical flow through

leaky cables to studying dendrites has also become a core part of the computational

neuroscience curriculum.

3.2 Assumptions

We begin by assuming that the dendrite is a cylindrical piece of a phospholipid bilayer

membrane surrounding an interior of cytoplasm (top of Figure 3.2.1). There are two

main types of current that can arise in this cylinder: the first is due to the movement

of ions through protein channels embedded in the neuronal membrane (the trans-

membrane current); and the second is due to the movement of ions through the cyto-

plasm (the axial current). Since the resistance that the ions encounter when flowing

through the membrane is typically much greater than the resistance flowing through

the cytoplasm, and since the diameters of dendrites are typically much smaller than

their lengths, the dominant fraction of current inside the cylinder flows parallel to

its longitudinal axis, with only a small fraction flowing perpendicularly through the

membrane. Furthermore, by comparing the membrane potential obtained from the

solution of Laplace’s equation in cylindrical coordinates in three dimensions with the

solution of the one-dimensional cable equation, Rall [82] showed that the membrane

potential typically decays 104th times faster in the radial and angular directions, than

in the direction parallel to its longitudinal axis. Therefore, we can safely assume that

the axial current and the transmembrane current are the only two types of current

in the cylinder. This implies that we only have to solve for the voltage in one spatial

dimension 1. Thus, the dendrite can be modeled as a one-dimensional cable.

The cytoplasm inside the cylinder as well as the extracellular medium are ap-

1This assumption is also known as the core conductor assumption [84]
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proximated by linear ohmic resistances, as the ions encounter resistance as they flow

through either medium. To further simplify the situation, we assume that the intra-

cellular resistance of the cytoplasm and the extracellular resistance of the external

medium are constant along the length of the cable. Furthermore, we assume that the

radius of the cylinder is constant along its length. However, this assumption can be

easily removed to incorporate a spatially varying dendritic radius.

Extracellular

Membrane

Intracellular Space

Extracellular Space

Intracellular

It dx
Cm dx

gLD dx

ELD dx

gLD dx
Cm dx

ELD dx

VI(x, t)

VE(x, t) VE(x+ dx, t)

IE(x+ dx, t)
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II(x+ dx, t)
VI(x+ dx, t)

II(x, t)

IE(x, t)

Figure 3.2.1: Circuit Diagram for the Cable Equation The dendrite is modeled
as a cylindrical phospholipid bilayer membrane surrounding cytoplasm. The voltage
inside the cylinder is referred to as VI(x, t), while the voltage outside the cylinder is
referred to as VE(x, t). This cylinder is then broken up into small segments of length
dx. Rc is the cytoplasmic resistivity, AI is the cross-sectional area of the cylinder,
RE is the external medium resistivity, AE is the external cross-sectional area, Cm is
the capacitance, gLD is the leakage conductance, and ELD is the reversal potential of
the leakage channel. Note that all of these parameters are assumed to be constant
along the length of the dendrite.
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3.3 Derivation

Next, we divide the cable up into small isopotential segments of length dx. In each

segment, we have the transmembrane current and the axial current on the inside and

outside of the cell. The transmembrane current is made up of a capacitive current

and an ionic current coming from the movement of ions through protein channels

embedded in the membrane (Figure 3.2.1). Since we are concerned with passive

membrane properties, we assume that the ion channels are not voltage-gated and can

be approximated by linear ohmic resistances, i.e. the resistance of each channel is

constant. Thus, the transmembrane current density for a segment is given by2

It = 2πa

(
Cm
∂V

dt
+ gLD(V −ELD)

)
, (3.3.1)

where V (x, t) = VI(x, t) − VE(x, t) is the membrane potential at position x and

time t in units of mV , VI(x, t) (VE(x, t)) is the voltage inside (outside) the cylinder,

p = 2πa is the perimeter of the cylinder in units of cm, a is the radius of the cylinder

in units of cm, Cm is the capacitance of the membrane in units of μF/cm2, gLD is the

conductance of the ion channel in units of mS/cm2, and ELD is the reversal potential

of the channel in units of mV .

Since the internal and external medium are both assumed to behave like ohmic

resistors, we have

II(x, t)
Rc

AI
dx = VI(x− dx, t) − VI(x, t) (3.3.2)

IE(x, t)
RE

AE

dx = VE(x− dx, t) − VE(x, t) (3.3.3)

2see Chapter 2
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where Rc

AI
dx is the resistance of the internal medium, Rc is the cytoplasmic resistivity

in units of kΩ·cm, AI = πa2 is the cross-sectional area of the cylindrical cable in units

of cm2, and RE

AE
dx is the resistance of the external medium with external resistivity

RE and external cross-sectional area AE . Note that for large external volumes, the

effective external resistance is essentially 0. In this case, VE(x, t) would be equal to

a constant that is usually set to zero.

Kirchhoff’s conservation of current law requires that the current entering one point

must balance the current leaving that point. According to Figure 3.2.1, this implies

that

− Itdx = II(x+ dx, t) − II(x, t), (3.3.4)

and

Itdx = IE(x+ dx, t) − IE(x, t). (3.3.5)

Since there are no additional current sources, the total axial current is given by

ITa = II + IE. Furthermore, ITa is constant along the cable since summing equations

(3.3.4) and (3.3.5) yields

0 =
II(x+ dx, t) − II(x, t)

dx
+
IE(x+ dx, t) − IE(x, t)

dx
, (3.3.6)

which, as dx→ 0, limits to

0 =
∂II
∂x

+
∂IE
∂x
, (3.3.7)

which implies that II + IE is constant along the length of the cylinder. Using this
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fact along with equations (3.3.2) and (3.3.3), and that V = VI − VE , one finds

ITa =
AI

Rc

[
V (x− dx, t) − V (x, t)

dx

]
+

(
Rc + AI

AE
RE

Rc

)
IE(x, t), (3.3.8)

which implies that

IE(x, t) =

(
Rc

Rc + AI

AE
RE

)
ITa − 1

Rc

AI
+ RE

AE

[
V (x− dx, t) − V (x, t)

dx

]
. (3.3.9)

Plugging the above expression into equation (3.3.5) and dividing both sides by dx

yields

It =
1

Rc

AI
+ RE

AE

[
V (x− dx, t) − 2V (x, t) + V (x+ dx, t)

dx2

]
, (3.3.10)

where we have used the fact that ITa is constant along the cable. As dx → 0, the

above expression limits to

2πa

(
Cm
∂V

∂t
+ gLD(V −ELD)

)
=

1
Rc

AI
+ RE

AE

∂2V

∂x2
. (3.3.11)

Note that we have also assumed that the leakage conductance of the membrane, gLD,

and the reversal potential of the leak channel are constant along the length of the

dendrite. If the extracellular resistance is ignored we can rearrange equation (3.3.11)

to arrive at the standard form for the passive cable equation

τm
∂V

∂t
= λ2∂

2V

∂x2
− (V − ELD), (3.3.12)

where τm = RmCm is the membrane time constant, Rm = 1/gLD is the membrane

resistivity in units of kΩ · cm2, and λ =
√

Rma
2Rc

is the length constant of the cylin-
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der. Similarly to the membrane time constant, the length constant of the cylinder

is the distance at which the membrane potential of the cylinder has decayed by a

factor of e−1. Thus, cables with large (small) length constants experience less (more)

attenuation of the voltage along the length of the cylinder.

3.4 Equivalent Cylinder

Dendritic trees of real neurons are generally more complicated than a single cylinder.

However, under certain assumptions, one can show that the branching structure of a

dendritic tree can be collapsed in a so-called equivalent cylinder [79, 81].

First, we nondimensionalize time and space using t̄ = t/τm, x̄ = x/λ, and shift

V using V̄ (x̄, t̄) = V (x/λ, t/τm) − ELD. Plugging these new variables into equation

(3.3.12) yields

∂V̄

∂t̄
=
∂2V̄

∂x̄2
− V̄ . (3.4.1)

The steady-state of equation (3.4.1) obeys

d2V̄

dx̄2
= V̄ . (3.4.2)

3.4.1 A Note on Boundary Conditions

In order to solve (3.4.2), we must first specify the domain and the boundary condi-

tions. Since we are going to be considering cables of finite length, we will consider our

domain to be the interval [0, L] where L is the electrotonic (nondimensional) length

of the cable. More specifically, the electrotonic length, L, is equal to the physical

length, �, of the cable divided by the length constant, λ. Dendrites with small (large)
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electrotonic lengths experience less (more) voltage attenuation along their physical

lengths.

Next, if we want to know the steady state voltage profile of a cable when we inject

a constant current at one end and hold the voltage fixed at the other end (i.e. voltage

clamp), then the appropriate boundary conditions for (3.4.2) would then be

πa2

Rcλ

dV̄

dx̄
(0) = −I0 (3.4.3)

V̄ (L) = Vf . (3.4.4)

Equation (3.4.3) is obtained by assuming that no current leaks through the neuronal

membrane at x̄ = 0 (see next paragraph), and by using conservation of current. I0

is the constant current injection in units of μA/cm2, and Vf is the voltage clamp

potential at the distal (x = L) end of the cable. By integrating equation (3.4.2) twice

and applying the above boundary conditions, one finds

V̄ (x̄) =
Vf

eL + e−L

(
ex̄ + e−x̄

)
+ I0

( √
2RcRm

πa3/2

eL + e−L

)(
eL−x̄ − e−L+x̄

)
. (3.4.5)

Figure 3.4.1 (a) shows an example of the steady-state voltage profile of the cable

when current is injected at one end and voltage clamped to Vf = 0 at the other end.

Lastly, suppose that we wanted to model a cable with a constant current injection

at one end as before, but, rather than clamping the voltage at the other end, we want

to consider the natural condition where the end of the cable is covered with the

neuronal membrane with resistivity Rm. In this case, the resistance at the terminal

end of the cable will be Rm/πa
2. For realistic values of Rm and a, this terminal
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(a) (b)

Figure 3.4.1: Solutions of equation (3.4.2) with Different Boundary Condi-
tions. Rm = 7 kΩ · cm2, Rc = .09 kΩ · cm, I0 = 2 μA/cm2, L = 3, and a = 3× 10−3

cm. (a) Steady-state voltage profile of the cable with constant current injection at
x = 0 and voltage clamped to Vf = 0 at x = L. (b) Voltage profile with constant
current injection at x = 0 and sealed-end (no-flux) boundary condition at x = L.

resistance is quite large [79]. Therefore, we make the assumption that the terminal

resistance is infinite, which then implies that no current flows through the distal end

of the cable. The boundary conditions for this situation are then

πa2

Rcλ

dV̄

dx̄
(0) = −I0 (3.4.6)

dV̄

dx̄
(L) = 0 (3.4.7)

where (3.4.7) represents the “sealed-end” boundary condition for the cable. Note

that equations (3.4.3) and (3.4.6) are a specific case of the sealed-end boundary

condition where a constant current is being injected at the end of the cylinder. The

corresponding solution to (3.4.2) would then be
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V̄ (x̄) = I0

√
2RcRm

πa3/2

cosh(x− L)

sinh(L)
. (3.4.8)

Figure 3.4.1 (b) shows an example of the steady-state voltage profile of the cable when

current is injected at one end and sealed end boundary condition at the other end.

Note that the only difference between the two plots in Figure 3.4.1 is the boundary

condition at x̄ = L. Figure 3.4.1 (a) has the voltage at x̄ = L clamped to zero, while

Figure 3.4.1 (b) has zero current at x̄ = L.

3.4.2 A Simple Branching Structure

In this section, we illustrate how the cable equation can be used to examine the po-

tential of a simple branching structure consisting of a parent branch and two daughter

branches (Figure 3.4.2).

I0

x̄ = 0

L1

L21

L22
V̄22

V̄21
V̄1

a1a1a1
a22

a21

Figure 3.4.2: A Simple Branching Structure. A parent branch of length L1 and
radius a1 splits off into two daughter branches with lengths L21 and L22 and radii a21

and a22.

Suppose that the parent branch has nondimensional length L1 and radius a1 and

is connected to 2 daughter branches who are nondimensional distances L21 and L22

from x = 0. The steady-state potential of each cable is governed by equation (3.4.2).

However, they differ in their boundary conditions. For example, suppose that a
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constant current is injected at the beginning (x̄ = 0) of the parent branch

πa
3/2
1√

2RcRm

dV̄1

dx̄
(0) = −I0. (3.4.9)

At the junction connecting the branches, we know that

V̄1(L1) = V̄21(L1) = V̄22(L1). (3.4.10)

Furthermore, by conservation of current at the junction

πa
3/2
1√

2RcRm

dV̄1

dx̄
(L1) =

πa
3/2
21√

2RcRm

dV̄21

dx̄
(L1) +

πa
3/2
22√

2RcRm

dV̄22

dx̄
(L1), (3.4.11)

where we have assumed that the cables have the same values of Rm and Rc, but

they differ in the values of their radii. Note that the radii being raised to the 3/2

power arises naturally from the fact that πa2

Rcλ
= πa3/2√

2RcRm
. Lastly, if we specify that

the daughter branches both have sealed-end boundary conditions

dV̄21

dx̄
(L21) =

dV̄22

dx̄
(L22) = 0, (3.4.12)

then, using the general solutions for (3.4.2)

V̄1(x̄) = A1 sinh(x̄) +B1 cosh(x̄) (3.4.13)

V̄21(x̄) = A21 sinh(x̄− L21) +B21 cosh(x̄− L21) (3.4.14)

V̄22(x̄) = A22 sinh(x̄− L22) +B22 cosh(x̄− L22), (3.4.15)
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we have six equations (the boundary conditions) and six unknowns. The coefficients

are then found to be

A1 = −
√

2RcRm

πa
3/2
1

I0 (3.4.16)

B1 = A1
a

3/2
21 tanh(L1 − L21) tanh(L1) + a

3/2
22 tanh(L1 − L22) tanh(L1) − a3/2

1

a
3/2
1 tanh(L1) − a3/2

21 tanh(L1 − L21) − a3/2
22 tanh(L1 − L22)

(3.4.17)

A21 = 0 (3.4.18)

B21 =
A1 sinh(L1) +B1 cosh(L1)

cosh(L1 − L21)
(3.4.19)

A22 = 0 (3.4.20)

B22 =
A1 sinh(L1) +B1 cosh(L1)

cosh(L1 − L22)
(3.4.21)

Figure 3.4.3: Steady-State Voltage Profile for the Simple Branching Struc-
ture. Rm = 7 kΩ · cm2, Rc = .09 kΩ · cm, I0 = 2 μA/cm2, L1 = 2, a1 = 3 × 10−3

cm, L21 = 4, a21 = 5 × 10−6 cm, L22 = 7, and a22 = 8 × 10−4 cm. Notice that the
voltage attenuation is smaller along the shorter and thinner cable.



3.4. Equivalent Cylinder 35

Figure 3.4.3 plots an example of the solution obtained for the simple branched struc-

ture. It is important to note that this technique can also be used for more complicated

branching structures that are made up of passive components [79].

3.4.3 Equivalent Cylinder for the Simple Branching Struc-

ture

Here, we illustrate the equivalent cylinder technique on the simple branching structure

from the previous section.

Continuing with the same example from the previous section, if we further assume

that the daughter branches are both the same nondimensional distance from x̄ = 0,

i.e. L21 = L22, then V̄21 and V̄22 both obey the same differential equation (3.4.2) on

the same domain, and have identical boundary conditions, (3.4.10) and (3.4.12). It

follows that V̄21 = V̄22. Furthermore, from (3.4.11) we now have

a
3/2
1

dV̄1

dx̄
(L1) = (a

3/2
21 + a

3/2
22 )
dV̄21

dx̄
(L1). (3.4.22)

At this point, we see that the solution would behave like a single cable with a jump

in its radius at x̄ = L1. However, if

a
3/2
1 = a

3/2
21 + a

3/2
22 , (3.4.23)

then V̄1 and V̄21 have the same derivative and value at L1, and they obey the same

differential equation3. It follows that the composite function

3This is known as the “three halves law” [79, 81]
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V̄ =

⎧⎪⎪⎨
⎪⎪⎩
V̄1(x̄) if 0 ≤ x̄ ≤ L1

V̄21(x̄) if L1 ≤ x̄ ≤ L21,

(3.4.24)

solves (3.4.2) on the domain [0, L21]. Thus, the two daughter branches can be col-

lapsed into an equivalent cylinder of length L21 and radius a1, and there is no jump

in the radius of the cable at x̄ = L1.

To further illustrate the point, let us compare the solution from the branched

structure to that obtained with the equivalent cylinder. The general solutions of the

branched structure with the equivalent cylinder are given by

V̄1 = Ã1 sinh(x̄) + B̃1 cosh(x̄) (3.4.25)

V̄21 = Ã21 sinh(x̄− L21) + B̃21 cosh(x̄− L21). (3.4.26)

Using (3.4.10), (3.4.12), (3.4.22), and (3.4.23), it follows that

Ã1 = −
√

2RcRm

πa
3/2
1

I0 (3.4.27)

B̃1 = Ã1
tanh(L1 − L21) tanh(L1) − 1

tanh(L1) − tanh(L1 − L21)
(3.4.28)

Ã21 = 0 (3.4.29)

B̃21 =
Ã1 sinh(L1) + B̃1 cosh(L1)

cosh(L1 − L21)
(3.4.30)

Notice that (3.4.27-3.4.30) are the same as (3.4.16-3.4.19) when L21 = L22 and (3.4.23)

is true. Thus, the solutions for the steady-state membrane potential of the branched

structure and the equivalent cylinder are equivalent as illustrated in Figure 3.4.4.
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Figure 3.4.4: Steady-State Voltage Profile for the Simple Branching Struc-
ture with the Equivalent Cylinder. Rm = 7 kΩ · cm2, Rc = .09 kΩ · cm, I0 =
2 μA/cm2, L1 = 2, L21 = L22 = 4, a21 = 5 × 10−6 cm, a22 = 8 × 10−4 cm, and

a1 = (a
3/2
21 + a

3/2
22 )2/3. Notice that the voltage traces for the two daughter branches

now overlap and are described by the single equation (3.4.26).

It was shown by Rall [79, 81, 84] that if a structure with N daughter branches

satisfies: (i) Rm and Rc are the same on every branch; (ii) each branch is the same

nondimensional distance from x̄ = 0; (iii) a
3/2
1 =

∑N
j=1 a

3/2
2j where a1 is the radius of

the parent branch; and (iv) the daughter branches all have the same distal bound-

ary condition; then all of the daughter branches can be collapsed into an equivalent

cylinder of radius a1 and length L21. Note that it is possible to collapse more com-

plex branching structures into one long equivalent cylinder as long as (i)-(iv) are

satisfied at each branch point. However, these conditions are generally not satisfied

by real dendritic trees. Furthermore, equivalent cylinders really only describe the

steady-state membrane potential of the branched structure. Nonetheless, using this

simplified view of a dendritic tree, Rall [78] was able to show that inputs to the
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dendrite can significantly affect the membrane potential at the soma. Thus, this sim-

plified model can provide insight into how dendritic properties affect the dynamics of

the somatic membrane potential. In the next section, we introduce a standard model

that incorporates the dynamics of the soma into this simplified dendritic framework.

3.5 The Rall Lumped-Soma Model

The Rall Lumped-Soma Model is one of the simplest models that incorporates the

spatial structure of a neuron. It assumes that the entire dendritic tree of a neuron is

modeled as a single cylinder (or equivalent cylinder) of length L

Cm
∂V

∂t
=

a

2Rc

∂2V

∂x2
+ gLD(V − ELD). (3.5.1)

Furthermore, it assumes that the soma (located at x = 0) is an isopotential sphere

whose membrane only contains a passive leakage channel (i.e. it behaves like an RC

circuit). To obtain the somatic boundary condition, we again make use of Kirchhoff’s

conservation of current law and balance the current coming from the dendrite at x = 0

with the current coming from the soma

πd2

(
Cm
∂V

∂t
(0, t) + gL(V (0, t) − EL) − Iappl

)
=
πa2

Rc

∂V

∂x
(0, t), (3.5.2)

where πd2 is the surface area of the soma, d is the diameter of the soma in units of

cm, gL is the leakage conductance of the soma in units of mS/cm2, EL is the leakage

reversal potential in units of mV , Iappl is a constant current injection to the soma in

units of μA/cm2, and we have assumed for convenience that the dendrite and the soma

both have the same capacitance Cm in units of μF/cm2. Although any biologically

reasonable boundary condition can be used at the distal end of the dendrite, we will
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assume that we have a sealed-end cable. Thus, the Rall Lumped-Soma Model can

written compactly as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cm
∂V

∂t
=

a

2Rc

∂2V

∂x2
+ gLD(V − ELD)

Cm
∂V

∂t
(0, t) = −gL(V (0, t) −EL) + Iappl +

a2

d2Rc

∂V

∂x
(0, t)

∂V

∂x
(L, t) = 0.

(3.5.3)

We will use this model with a slight modification in a later chapter where we examine

how non-weak dendritic influences can alter the dynamics of a somatic oscillator.

In the next section, we present a small generalization of the Rall Lumped-Soma

Model called the “Ball-and-Stick” model [20] which we will make extensive use of

throughout this dissertation.

3.6 The Ball-and-Stick Model

The Ball-and-Stick model is a slight generalization of the Rall Lumped-Soma model

to incorporate active (nonlinear) ionic conductances into the somatic membrane. In

essence, the two models have the same assumptions. Namely that the dendritic tree

is modeled as a single cable and the soma is modeled as an isopotential sphere (Figure

3.6.1). The only difference is that we allow the soma to contain Hodgkin-Huxley-like

[44] active currents
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cm
∂V

∂t
=

a

2Rc

∂2V

∂x2
+ gLD(V −ELD)

Cm
∂V

∂t
(0, t) = −Iion(V (0, t), 	w) + Iappl +

a2

d2Rc

∂V

∂x
(0, t)

∂V

∂x
(L, t) = 0.

(3.6.1)

where Iion(V (0, t), 	w) represents the sum of the HH-type ionic currents (see Chap-

ter 1) and 	w is a vector containing the gating variables of the ionic conductances.

The gating variables in the vector 	w are described by equations of the form d�w
dt

=

1
τ�w(V )

(	w∞(V ) − 	w).

x=L

Dendrite

Soma

x=0

Figure 3.6.1: Ball-and-Stick Model Neuron. An isopotential active soma is at-
tached to a single passive dendrite of length L.
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3.7 Summary

In this chapter, we have presented the main ideas behind cable theory, which will be

used throughout this dissertation as the model for a passive dendrite. We have also

introduced our main modeling tools for investigating the spatial dynamics of neurons,

namely the Ball-and-Stick model and the Rall Lumped-Soma Model.
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Chapter 4

The Theory of Weakly Coupled

Oscillators

4.1 Introduction

This chapter focuses on the application of the theory of weakly coupled oscillators [71,

54, 29] to studying the dynamics of networks of neuronal oscillators. The theory can

be used to predict phase-locking in neuronal networks with any form of coupling, but

as the name suggests, the coupling between cells must be sufficiently “weak” for these

predictions to be quantitatively accurate. This implies that the coupling can only

have small effects on neuronal dynamics over any given period. However, these small

effects can accumulate over time and lead to phase-locking in the neuronal network.

The theory of weak coupling allows one to reduce the dynamics of each neuron,

which could be of very high dimension, to a single differential equation describing

the phase of the neuron. These “phase equations” take the form of a convolution

of the input to the neuron via coupling and the neuron’s infinitesimal PRC (iPRC).
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The iPRC measures the response to a small brief (δ-function-like) perturbation and

acts like an impulse response function or Green’s function for the oscillating neurons.

Through the dimension reduction and exploiting the form of the phase equations, the

theory of weakly coupled oscillators provides a way to identify phase-locked states

and understand the mechanisms that underlie them.

The main goal of this chapter is to illustrate how a weakly coupled neuronal

network is reduced to its phase model description. Three different ways to ‘derive’

the phase equations are presented, each providing different insight into the under-

lying dynamics of phase response properties and phase-locking dynamics. The first

derivation (the “Seat-of-the-Pants” deviation in section 4.3) is the most accessible.

It captures the essence of the theory of weak coupling and only requires knowledge

of some basic concepts from dynamical system theory, and a good understanding of

what it means for a system to behave linearly. The second derivation (The Geo-

metric Approach in section 4.4) is somewhat more mathematically sophisticated and

provides deeper insight into the phase response dynamics of neurons. To make this

second derivation more accessible, we tie all concepts back to the explanations in the

first derivation. The third derivation (The Single Perturbation Approach in section

4.5) is the most mathematically abstract but it provides the cleanest derivation of

the phase equations. It also explicitly shows that the iPRC can be computed as a

solution of the “adjoint” equations.

During these three explanations of the theory of weak coupling, the phase model

is derived for a pair of coupled neurons to illustrate the reduction technique. The

later sections (section 4.6 and 4.7) briefly discuss extensions of the phase model to

include heterogeneity, noise, and large networks of neurons.
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4.2 Neuronal Models and Reduction to a Phase

Model

4.2.1 General Form of Neuronal Network Models

The general form of a single or multi-compartmental Hodgkin-Huxley-type neuronal

model [44] is

dX

dt
= F (X), (4.2.1)

where X is a N -dimensional state variable vector of containing the membrane po-

tential(s) and gating variables1, and F (X) is a vector function describing the rate

of change of the variables in time. For the Hodgkin-Huxley (HH) model [44], X =

[V,m, h, n]T and

F (X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
C

(−gNam
3h(V − ENa) − gKn4(V − EK) − gL(V − EL) + I)

m∞(V )−m
τm(V )

h∞(V )−h
τh(V )

n∞(V )−n
τn(V )

,

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2.2)

In this chapter, we assume that the isolated model neuron (equation (4.2.1)) exhibits

stable T -periodic firing (e.g. top trace of Figure 4.3.1). In the language of dynamical

systems, we assume that the model has an asymptotically stable T -periodic limit

cycle. These oscillations could be either due to intrinsic conductances or induced by

1The gating variables could be for ionic membrane conductances in the neuron, as well as those
describing the output of chemical synapses.
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applied current.

A pair of coupled model neurons is described by

dX1

dt
= F (X1) + εI(X1, X2) (4.2.3)

dX2

dt
= F (X2) + εI(X2, X1), (4.2.4)

where I(X1, X2) is a vector function describing the coupling between the two neurons,

and ε scales the magnitude of the coupling term. Typically, in models of neuronal

networks, cells are only coupled through the voltage (V ) equation. For example, a

pair of electrically coupled HH neurons would have the coupling term

I(X1, X2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
C

(gC(V2 − V1))

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4.2.5)

where gC is the coupling conductance of the electrical synapse.

It is important to note that in order to apply the theory of weak coupling, the

equations for the neuronal network (4.2.3-4.2.4) should be put in dimensionless form

in order to identify the ”small” parameter ε relative to the parameters describing the

intrinsic dynamics of the neurons.
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4.2.2 Phase models, the G-Function and Phase-Locking

The power of the theory of weakly coupled oscillators is that it reduces the dynamics

of each neuronal oscillator in a network to a single phase equation that describes the

rate of change of its relative phase, φj . The phase model corresponding to the pair

of coupled neurons (4.2.3-4.2.4) is of the form

dφ1

dt
= εH(φ2 − φ1) (4.2.6)

dφ2

dt
= εH(−(φ2 − φ1)). (4.2.7)

(4.2.8)

The following sections present three different ways of deriving the function H , which

is often called the interaction function.

Subtracting the phase equation for cell 1 from that of cell 2, the dynamics can be

further reduced to a single equation that governs the evolution of the phase difference

between the cells, φ = φ2 − φ1

dφ

dt
= ε(H(−φ) −H(φ)) = εG(φ). (4.2.9)

In the case of a pair of coupled Hodgkin-Huxley neurons (as described above), the

number of equations in the system is reduced from the original 8 describing the

dynamics of the voltage and gating variables to a single equation. The reduction

method can also be readily applied to multicompartment model neurons (e.g. [116,

59]), which can render a significantly larger dimension reduction. In fact, the method

has been applied to real neurons as well (e.g. [64]).

Note that the function G(φ) or “G-function” can easily be used to determine the
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phase-locking behavior of the coupled neurons. The zeros of the G-function, φ∗, are

the steady state phase differences between the two cells. For example, if G(0) = 0,

this implies that that the synchronous solution is a steady state of the system. To

determine the stability of the steady state note that when G(φ) > 0, φ will increase

and when G(φ) < 0, φ will decrease. Therefore, if the derivative of G is positive

at a steady state (G′(φ∗) > 0) then the steady state is unstable. Similarly, if if the

derivative of G is negative at a steady state (G′(φ∗) < 0) then the steady state is

stable. Figure 4.2.1 shows an example G-function for two coupled identical cells.

Note that this system has 4 steady states corresponding to φ = 0, T (synchrony),

φ = T/2 (antiphase), and two other asynchronous states. It is also clearly seen that

φ = 0, T and φ = T/2 are stable steady states and the other asynchronous states are

unstable. Thus, the two cells in this system exhibit bistability, and they will either

synchronize their firing or fire in anti-phase depending upon the initial conditions.

In sections 4.3, 4.4 and 4.5, we present three different ways of derive the in-

teraction function H and therefore the G-function. These derivations make several

approximations that require the coupling between neurons to be sufficiently weak.

“Sufficiently weak” implies that the neurons’ intrinsic dynamics dominate the effects

due to coupling at each point in the periodic cycle, i.e. during the periodic oscil-

lations, |F (Xj(t))| should be an order of magnitude greater than |εI(X1(t), X2(t))|.
However, it is important to point out that, even though the phase models quanti-

tatively capture the dynamics of the full system for sufficiently small ε, it is often

the case that they can also capture the qualitative behavior for moderate coupling

strengths [58, 70].
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Figure 4.2.1: Example G function. The G function for two model FS interneurons
coupled with gap junctions on the distal ends of their passive dendrites is plotted.
The arrows show the direction of the trajectories for the system. This system has
four steady state solutions φS = 0, T (synchrony), φAP = T/2 (anti-phase), and
two asynchronous states. One can see that synchrony and anti-phase are the only
stable steady-states for this system (filled in circles). Thus, depending on the initial
conditions, the two neurons will fire synchronously or in anti-phase.

4.3 A “Seat-of-the-Pants” Approach

This section will describe perhaps the most intuitive way of deriving the phase model

for a pair of coupled neurons [58]. The approach highlights the key aspect of the

theory of weakly coupled oscillators, which is that neurons behave linearly in response

to small perturbations and therefore obey the principle of superposition.

4.3.1 Defining Phase

T -periodic firing of a model neuronal oscillator (equation (4.2.1)) corresponds to

repeated circulation around an asymptotically stable T -periodic limit cycle, i.e. a

closed orbit in state space X. We will denote this T -periodic limit cycle solution as
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XLC(t). Phase of a neuron is a measure of the time that has elapsed as the neuron’s

moves around its periodic orbit, starting from an arbitrary reference point in the

cycle. We define the phase of the periodically firing neuron j at time t to be

θj(t) = (t+ φj) mod T, (4.3.1)

where θj = 0 is set to be at the peak of the neurons’ spike (Figure 4.3.1).2 The

constant φj , which is referred to as the relative phase of the jth neuron, is determined

by the position of the neuron on the limit cycle at time t = 0. Note that each phase

of the neuron corresponds to a unique position on the cell’s T -periodic limit cycle,

and any solution of the uncoupled neuron model that is on the limit cycle can be

expressed as

Xj(t) = XLC(θj(t)) = XLC(t+ φj). (4.3.2)

When a neuron is perturbed by coupling current from other neurons or by any

other external stimulus, its dynamics no longer exactly adhere to the limit cycle,

and the exact correspondence of time to phase (equation (4.3.1)) is no longer valid.

However, when perturbations are sufficiently weak, the neuron’s intrinsic dynamics

are dominant. This ensures that the perturbed system remains close to the limit cycle

and the inter-spike intervals are close to the intrinsic period T . Therefore, we can

approximate the solution of neuron j by Xj(t) � XLC(t+ φj(t)), where the realtive

phase φj is now a function of time t. Over each cycle of the oscillations, the weak

perturbations to the neurons produce only small changes in φj. These changes are

negligible over a single cycle, but they can slowly accumulate over many cycles and

2Phase is often normalized by the period T or by T/2π, so that 0 ≤ θ < 1 or 0 ≤ θ < 2π
respectively. Here, we do not normalize phase and take 0 ≤ θ < T .
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Figure 4.3.1: Phase. a) Voltage trace for the Fast-Spiking interneuron model from
Erisir et al. [27] with Iappl = 35 μA/cm2 showing T-periodic firing. b) The phase,
θ(t) of these oscillations increases linearly from 0 to T , and we have assumed that
zero phase occurs at the peak of the voltage spike.

produce substantial effects on the relative firing times of the neurons.

The goal now is to understand how the relative phase φj(t) of the coupled neurons

evolves slowly in time. To do this, we first consider the response of a neuron to small

abrupt current pulses.

4.3.2 The Infinitesimal Phase Response Curve

Suppose that a small brief square current pulse of amplitude εI0 and duration Δt is

delivered to a neuron when it is at phase θ∗. This small, brief current pulse causes

the membrane potential to increase abruptly by δV � εI0Δt/C, i.e. the change in

voltage will approximately equal the total charge delivered to the cell by the stimulus,

εI0Δt, divided by the capacitance of the neuron, C. In general, this perturbation can

cause the cell to fire sooner (phase advance) or later (phase delay) than it would have
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fired without the perturbation. The magnitude and sign of this phase shift depends

on the amplitude and duration of the stimulus, as well as the phase in the oscillation

at which the stimulus was delivered. This relationship is quantified by the Phase

Response Curve (PRC), which gives the phase shift Δφ as a function of the phase θ∗

for a fixed εI0Δt (Figure 4.3.2).

For sufficiently small and brief stimuli, the neuron will respond in a linear fashion,

and the PRC will scale linearly with the magnitude of the current stimulus

Δφ(θ∗) � ZV (θ∗) δV = ZV (θ∗)
(

1

C
εI0Δt

)
, 0 ≤ θ∗ < T, (4.3.3)

where ZV (θ∗) describes the proportional phase shift as a function of the phase of

the stimulus. The function ZV (θ) is known as the infinitesimal phase response curve

(iPRC) or the phase-dependent sensitivity function for voltage perturbations. The

iPRC ZV (θ) quantifies the normalized phase shift due to an infinitesimally small

δ-function-like voltage-perturbation delivered at any given phase on the limit cycle.

4.3.3 The Phase Model for a Pair of Weakly Coupled Cells

Now we can reconsider the pair of weakly coupled neuronal oscillators (equations

(4.2.3-4.2.4)). Recall that, because the coupling is weak, the neurons’ intrinsic dy-

namics dominate the dynamics of the coupled-cell system, and Xj(t) � XLC(θj(t)) =

XLC(t+φj(t)) for j = 1, 2. This assumes that the coupling current can only affect the

speed at which cells move around their limit cycle and does not affect the amplitude

of the oscillations. Thus, the effects of the coupling are entirely captured in the slow

time dynamics of the relative phases of the cells φj(t).

The assumption of weak coupling also ensures that the perturbations to the neu-

rons are sufficiently small so that the neurons respond linearly to the coupling current.
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Figure 4.3.2: Measuring the Phase Response Curve from Neurons. The
voltage trace and corresponding PRC is shown for the same FS model neuron from
Figure 4.3.1. The PRC is measured from a periodically firing neuron by delivering
small current pulses at every point, θ∗, along its firing period and measuring the
subsequent change in period, Δθ, caused by the current pulse.

That is, (i) the small phase shifts of the neurons due to the presence of the coupling

current for a brief time Δt can be approximated using the iPRC (equation (4.3.3)),

and (ii) these small phase shifts in response to the coupling current sum linearly (i.e.

the principle of superposition holds). Therefore, by equation (4.3.3), the phase shift

due to the coupling current from t to t+ Δt is
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Δφj(t) = φj(t+ Δt) − φj(t) (4.3.4)

= ZV (θj(t)) (εI(X1(t), X2(t)))Δt. (4.3.5)

= ZV (t+ φj(t)) (εI(XLC(t+ φj(t)), XLC(t+ φk(t))))Δt. (4.3.6)

Furthermore, by dividing the above equation by Δt and taking the limit as Δt→ 0,

we obtain a system of differential equations that govern the evolution of the relative

phases of the two neurons

dφj
dt

= ε ZV (t+ φj) I(XLC(t+ φj), XLC(t+ φk)), j, k = 1, 2; /j �= k. (4.3.7)

Note that, by integrating this system of differential equations to find the solution

φj(t), we are assuming that phase shifts in response to the coupling current sum

linearly.

The explicit time-dependence on the righthand side of equation (4.3.7) can be

eliminated by “averaging” over the period T . Note that ZV (t) and XLC(t) are T -

periodic functions, and the scaling of the righthand side of equation (4.3.7) by the

small parameter ε indicates that changes in the relative phases φj occur on a much

slower time scale than T . Therefore, we can integrate the righthand side over the full

period T holding the values of φj constant to find the average rate of change of the

φj over a cycle. Thus, we obtain equations that approximate the slow time evolution

of the relative phases φj
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dφj
dt

= ε
1

T

∫ T

0

ZV (t̃)
(
I(XLC(t̃), XLC(t̃+ φk − φj))

)
dt̃ (4.3.8)

= εH(φk − φj), j, k = 1, 2; j �= k, (4.3.9)

i.e. the relative phases φj are assumed to be constant with respect to the integral

over T in t̃, but they vary in t. This averaging process is made rigorous by averaging

theory [43, 34].

We have reduced the dynamics of a pair of weakly coupled neuronal oscillators

to an autonomous system of two differential equations describing the phases of the

neurons and therefore finished the first derivation of the phase equations for a pair

of weakly coupled neurons.3 Note that the above derviation can be easily altered

to obtain the phase model of a neuronal oscillator subjected to T -periodic external

forcing as well. The crux of the derivation was identifying the iPRC and exploiting

the approximately linear behavior of the system in response to weak inputs. In fact,

it is useful to note that the interaction function H takes the form of a convolution

of the iPRC and the coupling current, i.e. the input to the neuron. Therefore, one

can think of the iPRC as an impulse response function or Green’s function for the

system.

Averaging Theory

Averaging theory [43, 34] states that there is a change of variables that maps solutions

of

3Note that this reduction is not valid when T is of the same order of magnitude as the time scale
for the changes due to the weak coupling interactions (e.g. close to a SNIC bifurcation), however
an alternative reduction can be performed in this case [32].



4.4. A Geometric Approach 55

dφ

dt̃
= εg(φ, t̃), (4.3.10)

where g(φ, t̃) is a T -periodic function in φ and t̃, to solutions of

dϕ

dt
= εḡ(ϕ) + O(ε2), (4.3.11)

where

ḡ(ϕ) =
1

T

∫ T

0

g(ϕ, t̃)dt̃, (4.3.12)

and O(ε2) is Landau’s “Big O” notation which represents terms that either have a

scaling factor of ε2 or go to zero at the same rate as ε2 goes to zero as ε goes to zero.

4.4 A Geometric Approach

In this section, we describe a geometric approach to the theory of weakly coupled

oscillators originally introduced by Yoshiki Kuramoto [54]. The main asset of this

approach is that it gives a beautiful geometric interpretation of the iPRC and deepens

our understanding of the underlying mechanisms of the phase response properties of

neurons.

4.4.1 The One-to-One Map Between Points on the Limit Cy-

cle and Phase

Consider again a model neuron (4.2.1) that has a stable T -periodic limit cycle solu-

tion, XLC(t) such that the neuron exhibits a T -periodic firing pattern (e.g. top trace

of Figure 4.3.1). Recall that the phase of the oscillator along its limit cycle is defined
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as θ(t) = (t+φ) mod T , where the relative phase φ is a constant that is determined

by the initial conditions. Note that there is a one-to-one correspondence between

phase and each point on the limit cycle. That is, the limit cycle solution takes phase

to a unique point on the cycle, X = XLC(θ), and its inverse maps each point on the

limit cycle to a unique phase, θ = X−1
LC(X) = Φ(X).

Note that it follows immediately from the definition of phase (4.3.1) that the rate

of change of phase in time along the limit cycle is equal to 1, i.e. dθ
dt

= 1. Therefore,

if we differentiate the map Φ(X) with respect to time using the chain rule for vector

functions, we obtain the following useful relationship

dθ

dt
= ∇XΦ(XLC(t)) · dXLC

dt
= ∇XΦ(XLC(t)) · F (XLC(t))) = 1, (4.4.1)

where ∇XΦ is the gradient of the map Φ(X) with respect to the vector of the neuron’s

state variables X = (x1, x2, · · · , xN )

∇XΦ(X) =

(
∂Φ

∂x1
,
∂Φ

∂x2
, ...,

∂Φ

∂xN

)∣∣∣∣
X

. (4.4.2)

4.4.2 Asymptotic Phase and the Infinitesimal Phase Response

Curve

The map θ = Φ(X) is well-defined for all points X on the limit cycle. We can

extend the domain of Φ(X) to points off the limit cycle by defining the concept

of asymptotic phase. If X0 is a point on the limit cycle and Y0 is a point in a

neighborhood of the limit cycle4, then we say that Y0 has the same asymptotic phase

4In fact, the point Y0 can be anywhere in the basin of attraction of the limit cycle.
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as X0 if ||X(t;X0)−X(t;Y0)|| → 0 as t→ ∞. This means that the solution starting

at the initial point Y0 off the limit cycle converges to the solution starting at the

point X0 on the limit cycle as time goes to infinity. Therefore, Φ(Y0) = Φ(X0). The

set of all points off the limit cycle that have the same asymptotic phase as the point

X0 on the limit cycle is known as the isochron [114] for phase θ = Φ(X0). Figure

4.4.1 shows some isochrons around the limit cycle for the Morris-Lecar neuron [67].

It is important to note that the figure only plots isochrons for a few phases and that

every point on the limit cycle has a corresponding isochron.

Equipped with the concept of asymptotic phase, we can now show that the iPRC

is in fact the gradient of the phase map ∇XΦ(XLC(t)) by considering the following

phase resetting “experiment”. Suppose that, at time t, the neuron is on the limit

cycle in state X(t) = XLC(θ∗) with corresponding phase θ∗ = Φ(X(t)). At this time,

it receives a small aburpt external perturbation εU , where ε is the magnitude of the

perturbation and U is the unit vector in the direction of the perturbation in state

space. Immediately after the perturbation, the neuron is in the state XLC(θ∗) + εU ,

and its new asymptotic phase is θ̃∗ = Φ(XLC(θ∗) + εU). Using Taylor series,

θ̃ = Φ(XLC(θ∗) + εU) = Φ(XLC(θ∗)) + ∇XΦ(XLC(θ∗)) · (εU) + O(ε2). (4.4.3)

Keeping only the linear term (i.e. O(ε) term), the phase shift of the neuron as a

function of the phase θ∗ at which it receives the εU perturbation is given by

Δφ(θ∗) = θ̃ − θ∗ = ∇XΦ(XLC(θ∗)) · (εU). (4.4.4)

As was done in section 4.3.2, we normalize the phase shift by the magnitude of the
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Figure 4.4.1: Example Isochron Structure. a) The limit cycle and isochron struc-
ture for the Morris-Lecar neuron [67] is plotted along with the nullclines for the sys-
tem. b) Blow up of a region on the left side of the limit cycle showing how the same
strength perturbation in the voltage direction can cause different size phase delays
and even a phase advance. c) Blow up of a region on the right side of the limit cycle
showing also that the same size voltage perturbation can cause different size phase
advances.

stimulus,

Δφ(θ∗)
ε

= ∇XΦ(XLC(θ∗)) · U = Z(θ∗) · U. (4.4.5)

Note that Z(θ) = ∇XΦ(XLC(θ)) is the iPRC. It quantifies the normalized phase shift
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due to a small delta-function-like perturbation delivered at any given point on the

limit cycle. As was the case for the iPRC ZV derived in the previous section (see

equation (4.3.3)), ∇XΦ(XLC(θ)) captures only the linear response of the neuron and

is quantitively accurate only for sufficiently small perturbations. However, unlike ZV ,

∇XΦ(XLC(θ)) captures the response to perturbations in any direction in state space

and not only in one variable (e.g. the membrane potential). That is, ∇XΦ(XLC(θ))

is the vector iPRC; its components are the iPRCs for every variable in the system

(see Figure 4.4.2).
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Figure 4.4.2: iPRCs for the Morris-Lecar Neuron. The voltage, V (t) and chan-
nel, w(t), components of the limit cycle for the same Morris-Lecar neuron as in Figure
4.4.1 are plotted along with their corresponding iPRCs. Note that the shape of volt-
age iPRC can be inferred from the insets of Figure 4.4.1. For example, the isochronal
structure in Figure 4.4.1 (c) revales that perturbations in the voltage component will
cause phase advances when the voltage is increasing from roughly 30 to 38 mV .
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In the typical case of a single-compartment HH model neuron subject to an applied

current pulse (which perturbs only the membrane potential), the perturbation would

be of the form εU = (p, 0, 0, · · · , 0) where x1 is the membrane potential V . By

equation (4.4.3), the phase shift is

Δφ(θ) =
∂Φ

∂V
(XLC(θ)) p = ZV (θ) p, (4.4.6)

which is the same as equation (4.3.3) derived in the previous section with p =(
1
C
εI0Δt

)
.

With the understanding that ∇XΦ(XLC(t)) is the vector of iPRC’s for the system,

we now derive the phase model for two weakly coupled neurons.

4.4.3 A Pair of Weakly Coupled Oscillators

Now consider the system of weakly coupled neurons (4.2.3-4.2.4). We can use the

map Φ to take the variables X1(t) and X2(t) to their corresponding asymptotic phase,

i.e. θj(t) = Φ(Xj(t)) for j = 1, 2. By the chain rule, we obtain the change in phase

with respect to time

dθj
dt

= ∇XΦ(Xj(t)) · dXj

dt

= ∇XΦ(Xj(t)) · [F (Xj(t)) + εI(Xj(t), Xk(t))]

= ∇XΦ(Xj(t)) · F (Xj(t)) + ∇XΦ(Xj(t)) · [εI(Xj(t), Xk(t))]

= 1 + ε∇XΦ(Xj(t)) · I(Xj(t), Xk(t)), (4.4.7)

where we have used the “useful” relation (4.4.1). Note that the above equations are

exact. However, in order to solve the equations for θj(t), we would already have to
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know the full solutions X1(t) and X2(t), in which case you wouldn’t need to reduce

the system to a phase model. Therefore, we exploit that fact that ε is small and

make the approximation Xj(t) ∼ XLC(θj(t)) = XLC(t + φj(t)), i.e. the coupling

is assumed to be weak enough so that it does not affect the amplitude of the limit

cycle, but it can affect the rate at which the neuron moves around its limit cycle. By

making this approximation in equation (4.4.7) and making the change of variables

θj(t) = t+ φj(t), we obtain the equations for the evolution of the relative phases of

the two neurons

dφj
dt

= ε∇XΦ(XLC(t+ φj(t))) · I(XLC(t+ φj(t)), XLC(t+ φk(t))). (4.4.8)

Note that these equations are the vector versions of the equations (4.3.7) with the

iPRC written as ∇XΦ(XLC(t)). As described in the previous section, we can average

these equations over the period T to eliminate the explicit time dependence and

obtain the phase model for the pair of coupled neurons

dφj
dt

= ε
1

T

∫ T

0

∇XΦ(XLC(t̃))·I(XLC(t̃), XLC(t̃−(φk−φj)))dt̃ = εH(φk−φj). (4.4.9)

Note that, while the above approach to deriving the phase equations provides

substantial insight into the geometry of the neuronal phase response dynamics, it

does not provide a computational method to compute the iPRC for model neurons,

i.e. we still must directly measure the iPRC using extensive numerical simulations

as described in the previous section.



4.5. A Singular Perturbation Approach 62

4.5 A Singular Perturbation Approach

In this section, we describe the singular perturbation approach to derive the theory of

weakly coupled oscillators. This systematic approach was developed independently

by Malkin [62, 63], Neu [71], and Ermentrout [29]. The major practical asset of this

approach is that it provides a simple method to compute iPRCs for model neurons.

Consider again the system of weakly coupled neurons (4.2.3-4.2.4). We assume

that the isolated neurons have asymptotically stable T -periodic limit cycle solutions

XLC(t) and that coupling is weak (i.e. ε is small). As previously stated, the weak

coupling has small effects on the dynamics of the neurons. On the time-scale of a

single cycle, these effects are negligible. However, the effects can slowly accumulate

on a much slower time-scale and have a substantial influence on the relative firing

times of the neurons. We can exploit the differences in these two time-scales and use

the method of multiple scales to derive the phase model.

First, we define a “fast time” tf = t, which is on the time-scale of the period of

the isolated neuronal oscillator, and a “slow time” ts = εt, which is on the time-scale

that the coupling affects the dynamics of the neurons. Time, t, is thus a function of

both the fast and slow times, i.e. t = f(tf , ts). By the chain rule, d
dt

= ∂
∂tf

+ ε ∂
∂ts

.

We then assume that solutions X1(t) and X2(t) can be expressed as power-series in

ε that depend both on tf and ts,

Xj(t) = X0
j (tf , ts) + εX1

j (tf , ts) + O(ε2), j = 1, 2.

Substituting these expansions into equations (4.2.3-4.2.4) yields
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∂X0
j

∂tf
+ ε
∂X0

j

∂ts
+ ε
∂X1

j

∂tf
+ O(ε2) = F (X0

j + εX1
j + O(ε2)) (4.5.1)

+εI(X0
j + εX1

j + O(ε2), X0
k + εX1

k + O(ε2)), j, k = 1, 2; j �= k.

Using Taylor series to expand the vector functions F and I in terms of ε, we obtain

F (X0
j + εX1

j + O(ε2)) = F (X0
j ) + εDF (X0

j )X
1
j + O(ε2) (4.5.2)

εI(X0
j + εX1

j + O(ε2), X0
k + εX1

k + O(ε2)) = εI(X0
j , X

0
k) + O(ε2), (4.5.3)

where DF (X0
j ) is the Jacobian, i.e. matrix of partial derivatives, of the vector func-

tion F (Xj) evaluated at X0
j . We then plug these expressions into equations (4.5.1),

collect like terms of ε, and equate the coefficients of like terms.5

The leading order (O(1)) terms yield

∂X0
j

∂tf
= F (X0

j ), j = 1, 2. (4.5.4)

These are the equations that describe the dynamics of the uncoupled cells. Thus,

to leading order, each cell exhibits the T -periodic limit cycle solution X0
j (tf , ts) =

XLC(tf + φj(ts)). Note that equation (4.5.4) implies that the relative phase φj is

constant in tf , but it can still evolve on the slow time-scale ts.

Substituting the solutions for the leading order equations (and shifting tf appro-

priately), the O(ε) terms of equations (4.5.1) yield

5Because the equation should hold for arbitrary ε, coefficients of like terms must be equal.
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LX1
j =

∂X1
j

∂tf
−DF (XLC(tf))X

1
j

= I(XLC(tf ), XLC(tf − (φj(ts) − φk(ts)))) −X ′
LC(tf)

dφj
dts
. (4.5.5)

To simplify notation, we have defined the linear operator LX = ∂X
∂tf

−DF (XLC(tf ))X,

which acts on a T -periodic domain and is therefore bounded. Note that equation

(4.5.5) is a linear differential equation with T -periodic coefficients. In order for our

power series solutions for X1(t) and X2(t) to exist, a solution to equation (4.5.5) must

exist. Therefore, we need to find conditions that guarantee the existence of a solution

to equation (4.5.5), i.e. conditions that ensure that the righthand side of equation

(4.5.5) is in the range of the operator L. The Fredholm Alternative explicitly provides

us with these conditions.

Theorem (Fredholm’s Alternative). Consider the following equation

(∗) Lx =
dx

dt
+ A(t)x = f(t); x ∈ R

N ,

where A(t) and f(t) are continuous and T-periodic. Then, there is a continuous

T-periodic solution x(t) to (*) if and only if

(∗∗) 1

T

∫ T

0

Z(t) · f(t)dt = 0,

for each continuous T-periodic solution, Z(t), to the adjoint problem

L∗x = −dZ
dt

+ {A(t)}TZ = 0.
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In the language of the above theorem,

A(t) = −DF (XLC(tf )),

and

f(t) = I(XLC(tf), XLC(tf − (φj(ts) − φk(ts)))) −X ′
LC(tf )

dφj
dts
.

Thus, the solvability condition (**) requires that

1

T

∫ T

0

Z(tf ) ·
[
I(XLC(tf ), XLC(tf − (φj(ts) − φk(ts)))) −X ′

LC(tf )
dφj
dts

]
dtf = 0

(4.5.6)

where Z is a T -periodic solution of the adjoint equation

L∗Z = −∂Z
∂tf

−DF (XLC(tf ))
TZ = 0. (4.5.7)

Rearranging equation (4.5.6),

dφj
dts

=
1

T

∫ T

0

Z(tf ) · [I(XLC(tf), XLC(tf − (φj(ts) − φk(ts))))] dtf (4.5.8)

where we have normalized Z(tf) by

1

T

∫ T

0

Z(tf ) · [X ′
LC(tf)]dtf =

1

T

∫ T

0

Z(tf ) · F (XLC(tf ))dtf = 1. (4.5.9)
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This normalization of Z(tf ) is equivalent to setting

Z(0) ·X ′
LC(0) = Z(0) · F (X ′

LC(0)) = 1, (4.5.10)

because Z(t) ·X ′
LC(t) is a constant (see Appendix A).

Finally, recalling that ts = εt and tf = t, we obtain the phase model for the pair

of coupled neurons

dφj
dt

= ε
1

T

∫ T

0

Z(t̃) · [I (XLC(t̃), XLC(t̃− (φj − φk))
)
]dt̃ = εH(φk − φj), (4.5.11)

By comparing these phase equations with those derived in the previous sections, it is

clear that the appropriately normalized solution to the adjoint equations Z(t) is the

iPRC of the neuronal oscillator (see 4.5.2 for further discussion).

4.5.1 Appendix A: A Note on the Normalization of Z(t)

d

dt
[Z(t) · F (XLC(t))] =

dZ

dt
· F (XLC(t)) + Z(t) · d

dt
[F (XLC(t))]

= (−DF (XLC(t))TZ) · F (XLC(t))

+Z(t) · (DF (XLC(t))X ′
LC(t))

= −Z(t) · (DF (XLC(t))F (XLC(t)))

+Z(t) · (DF (XLC(t))F (XLC(t)))

= 0.

This implies that Z(t) ·F (XLC(t)) is a constant. The integral form of the normaliza-

tion of Z(t) (equation (4.5.9)) implies that this constant is 1. Thus,
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Z(t) · F (XLC(t)) = Z(t) ·X ′
LC(t) = 1, (4.5.12)

for all values of t including t = 0.

4.5.2 Appendix B: The Relationship between Adjoints and

Gradients

Here, we present Brown et. al’s [13] direct proof that ∇XΦ(XLC(t)) satisfies the

adjoint equation (4.5.7) and the normalization condition (4.5.9) in order to illustrate

the relationship between the gradient of the phase map ∇XΦ(XLC(t)) to solution of

the adjoint equation Z(t).

Consider again the system of differential equations for an isolated neuronal oscil-

lator (4.2.1) that has an asymptotically stable T -periodic limit cycle solution XLC(t).

Suppose that X(t) = XLC(t+φ) is a solution of this system that is on the limit cycle,

which starts at point X(0) = XLC(φ). Further suppose that Y (t) = XLC(t+φ)+p(t)

is a solution that starts at from the initial condition Y (0) = XLC(φ) + p(0), where

p(0) is small in magnitude. Because this initial perturbation p(0) is small and the

limit cycle is stable, (i) p(t) remains small and, to O(|p|), p(t) satisfies the linearized

system

dp

dt
= DF (XLC(t+ φ))p, (4.5.13)

and (ii) the phase difference between the two solutions is
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Δφ = Φ(XLC(t+ φ)) − Φ(XLC(t+ φ) + p(t)) = ∇XΦ(XLC(t+ φ)) · p(t) + O(|p|2).
(4.5.14)

Furthermore, while the asymptotic phases of the solutions evolve in time, the phase

difference between the solutions Δφ remains constant. Therefore, by differentiating

equation (4.5.14), we see that to O(|p|)

0 =
d

dt
[∇XΦ(XLC(t+ φ)) · p(t)]

=
d

dt
[∇XΦ(XLC(t+ φ))] · p(t) + ∇XΦ(XLC(t+ φ)) · dp

dt

=
d

dt
[∇XΦ(XLC(t+ φ))] · p(t) + ∇XΦ(XLC(t+ φ)) · (DF (XLC(t+ φ))p(t))

=
d

dt
[∇XΦ(XLC(t+ φ))] · p(t) +

(
DF (XLC(t+ φ))T∇XΦ(XLC(t+ φ))

) · p(t)
=

{
d

dt
[∇XΦ(XLC(t+ φ))] +DF (XLC(t+ φ))T (∇XΦ(XLC(t+ φ)))

}
· p(t).

Because p is arbitrary, the above argument implies that ∇XΦ(XLC(t)) solves the ad-

joint equation (4.5.7). The normalization condition simply follows from the definition

of the phase map (see (4.4.1)), i.e.

dθ

dt
= ∇XΦ(XLC(t)) ·X ′

LC(t) = 1. (4.5.15)
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4.5.3 Appendix C: Computing the PRC Numerically Using

the Adjoint method

As stated in this beginning of this section, the major practical asset of the singular

perturbation approach is that it provides a simple method to compute the iPRC for

model neurons. Specifically, the iPRC is a T -period solution to

dZ

dt
= −DF (XLC(t))TZ (4.5.16)

subject to the normalization constraint

Z(0) ·X ′
LC(0) = 1. (4.5.17)

This equation is the adjoint equation for the isolated model neuron (equation (4.2.1))

linearized around the limit cycle solution XLC(t).

In practice, the solution to equation (4.5.16) is found by integrating the equation

backwards in time [112]. The adjoint system has the opposite stability of the original

system (equation (4.2.1)), which has an asymptotically stable T -periodic limit cycle

solution. Thus, we integrate backwards in time from an arbitrary initial condition so

as to dampen out the transients and arrive at the (unstable) periodic solution of equa-

tion (4.5.16). To obtain the iPRC, we normalize the periodic solution using (4.5.17).

This algorithm is automated in the software package XPPAUT [28], which is available

for free on Bard Ermentrout’s webpage www.math.pitt.edu/ ∼ bard/bardware/.
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4.6 Extensions of Phase Models for Pairs of Cou-

pled Cells

In this section, we show how the phase reduction technique can be extended to

incorporate weak heterogeneity and weak noise.

4.6.1 Weak Heterogeneity

Suppose that the following system

dXj

dt
= Fj(Xj) + εI(Xk, Xj) = F (Xj) + ε [fj(Xj) + I(Xk, Xj)] (4.6.1)

describes two weakly coupled neuronal oscillators (note that the vector functions

Fj(Xj) are now specific to the neuron). If the two neurons are weakly heterogeneous,

then their underlying limit cycles are equivalent up to an O(ε) difference. That is,

Fj(Xj) = F (Xj) + εfj(Xj), where fj(Xj) is a vector function that captures the O(ε)

differences in the dynamics of cell 1 and cell 2 from the function F (Xj). These

differences may occur in various places such as the value of the neurons’ leakage

conductances, the applied currents, or the leakage reversal potentials, to name a few.

As in the previous sections, equation (4.6.1) can be reduced to the phase model

dφj
dt

= ε

(
1

T

∫ T

0

Z(t̃) · [fj(XLC(t̃)) + I(XLC(t̃), XLC(t̃+ φk − φj))
]
dt̃

)
= εωj + εH(φk − φj), (4.6.2)

where ωj = 1
T

∫ T

0
Z(t̃) ·fj(XLC(t̃))dt̃ represents the difference in the intrinsic frequen-
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cies of the two neurons caused by the presence of the weak heterogeneity. If we now

let φ = φ2 − φ1, we obtain

dφ

dt
= ε(H(−φ) −H(φ) + Δω)

= ε(G(φ) + Δω), (4.6.3)

where Δω = ω2 − ω1. The fixed points of (4.6.3) are given by G(φ) = −Δω.

The addition of the heterogeneity changes the phase-locking properties of the

neurons. For example, suppose that in the absence of heterogeneity (Δω = 0) our G

function is the same as in Figure 4.2.1, in which the synchronous solution, φS = 0,

and the anti-phase solution, φAP , are stable. Once heterogeneity is added, the effect

will be to move the neurons away from either firing in synchrony or anti-phase to a

constant asynchronous phase shift, as in Figure 4.6.1. For example, if neuron 1 is

faster than neuron 2, then Δω < 0 and the stable steady-state phase-locked values

of φ will be shifted to left of synchrony and to the left of anti-phase, as is seen in

Figure 4.6.1 when Δω = −0.5. Thus, the neurons will still be phase-locked, but in

an asynchronous state that will either be to the left of synchronous state or to the

left of the anti-phase state depending on the initial conditions. Furthermore, if Δω

is decreased further, saddle node bifurcations occur in which a stable and unstable

fixed point collide and annihilate each other.

4.6.2 Weakly Coupled Neurons with Noise

In this section, we show how two weakly coupled neurons with additive white noise in

the voltage component can be analyzed using a probability density approach [54, 75].
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Figure 4.6.1: Example G Function with Varying Heterogeneity. Example of
varying levels of heterogeneity with the same G function as in Figure 4.2.1. One can
see that the addition of any level of heterogeneity will cause the stable steady-state
phase-locked states to move to away from the synchronous and anti-phase states to
asynchronous phase-locked states. Furthermore, if the heterogeneity is large enough,
the stable steady-state phase-locked states will disappear completely through saddle
node bifurcations.

The following set of differential equations represent two weakly heterogeneous

neurons being perturbed with additive noise

dXj

dt
= Fj(Xj) + εI(Xk, Xj) + δNj(t), i, j = 1, 2; i �= j, (4.6.4)

where δ scales the noise term to ensure that it is O(ε). The term Nj(t) is a vector

with Gaussian white noise, ξj(t), with zero mean and unit variance (i.e. 〈ξj(t)〉 = 0

and 〈ξj(t)ξj(t′)〉 = δ(t− t′)) in the voltage component, and zeros in the other variable

components. In this case, the system can be mapped to the phase model
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dφj
dt

= ε(ωj +H(φk − φj)) + δσφξj(t), (4.6.5)

where the term σφ =
(

1
T

∫ T

0
[Z(t̃)]2dt̃

)1/2

comes from averaging the noisy phase equa-

tions [54]. If we now let φ = φ2 − φ1 we arrive at

dφ

dt
= ε(Δω + (H(−φ) −H(φ))) + δσφη(t), (4.6.6)

where Δω = ω2 − ω1 and η(t) = ξ2(t) − ξ1(t) is also Gaussian white noise with zero

mean and unit variance.

This non-linear Langevin equation (4.6.6) corresponds to the Fokker-Planck equa-

tion [91, 100, 106]

∂ρ

∂t
(φ, t) = − ∂

∂φ
[ε(Δω +G(φ))ρ(φ, t)] + (δσφ)

2 ∂
2ρ

∂φ2
(φ, t), (4.6.7)

where ρ(φ, t) is the probability that the neurons have a phase difference of φ at time

t. The steady-state
(
∂ρ
∂t

= 0
)

solution of equation (4.6.7) is

ρ(φ) =
1

N
eM(φ)

[
e−αTΔω − 1∫ T

0
e−M(φ̄)dφ̄

∫ φ

0

e−M(φ̄)dφ̄+ 1

]
, (4.6.8)

where

M(φ) = α

∫ φ

0

(Δω +G(φ̄))dφ̄, (4.6.9)

N is a normalization factor so that
∫ T

0
ρ(φ)dφ = 1, and α = ε

δ2σ2
φ

represents the ratio

of the strength of the coupling to the variance of the noise.

The steady-state distribution ρ(φ) tells us the probability that the two neurons
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will have a phase difference of φ as time goes to infinity. Furthermore, Pfeuty et

al. [75] showed that spike-train cross-correlogram of the two neurons is equivalent

to the steady state distribution (4.6.8) for small ε. Figure 4.6.2 (a) shows the cross-

correlogram for two identical neurons (Δω = 0) using the G function from Fig-

ure 4.2.1. One can see that there is a large peak in the distribution around the

synchronous solution (φS = 0), and a smaller peak around the anti-phase solution

(φAP = T/2). Thus, the presence of the noise works to smear out the probability

distribution around the stable steady-states of the noiseless system.

(a)
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Figure 4.6.2: The Steady-State Phase Difference Distribution ρ(φ) is the
Cross-Correlogram for the Two Neurons. (a) Cross-correlogram for the G
function given in Figure 4.2.1 with α = 10. Note that we have changed the x-axis
so that φ now ranges from −T/2 to T/2. The cross-correlogram has two peaks cor-
responding to the synchronous and anti-phase phase-locked states. This is due to
the fact that in the noiseless system, synchrony and anti-phase were the only sta-
ble fixed points. (b) Cross-correlograms for two levels of heterogeneity from Figure
4.6.1. The cross-correlogram from (a) is plotted as the light solid line for compari-
son. The peaks in the cross-correlogram have shifted to correspond with the stable
asynchronous steady-states in Figure 4.6.1.

If heterogeneity is added to the G function as in Figure 4.6.1, one would expect

that the peaks of the cross-correlogram would shift accordingly so as to correspond

to the stable steady-states of the noiseless system. Figure 4.6.2 (b) shows that this is
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indeed the case. If Δω < 0 (Δω > 0), the stable steady-states of the noiseless system

shift to the left (right) of synchrony and to the left (right) of anti-phase, thus causing

the peaks of the cross-correlogram to shift left (right) as well. If we were to increase

(decrease) the noise, i.e. decrease (increase) α, then we would see that the variance

of the peaks around the stable steady-states becomes larger (smaller), according to

equation (4.6.8).

4.7 Networks of Weakly Coupled Neurons

In this section, we extend the phase model description to examine networks of weakly

coupled neuronal oscillators.

Suppose we have a one spatial dimension network ofM weakly coupled and weakly

heterogeneous neurons

dXi

dt
= Fi(Xi) +

ε

M0

M∑
j=1

I(Xj , Xi), i = 1, ...,M ; (4.7.1)

where M0 is the maximum number of cells that any neuron is connected to and the

factor of 1
M0

ensures that the perturbation from the coupling is O(ε). As before, this

system can be reduced to the phase model

dφi
dt

= ωi +
ε

M0

M∑
j=1

wijH(φj − φi), i = 1, ...,M. (4.7.2)

where W = {wij} is the connectivity matrix of the network. Thus, the pairwise

phase models derived in the previous sections are easily extended to model networks

of weakly coupled neuronal oscillators.

Because of the non-linear nature of equation (4.7.2), analytic solutions normally
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cannot be found. Furthermore, it can be quite difficult to analyze for large numbers of

neurons. Fortunately, there exists an approach to simplifying equation (4.7.2) so that

mathematical analysis can be utilized, the so-called continuum approximation. This

is not to say that simulating the system equation (4.7.2) is not useful. Depending

upon the type of interaction function that is used, various types of interesting phase-

locking behavior can be seen, such as total synchrony, traveling oscillatory waves, or,

in two spatial dimensional networks, spiral waves and target patterns, e.g. [54, 33].

4.7.1 Continuum Limit

A powerful approach to analyzing (4.7.2) in the limit thatM is very large is to assume

that the network of neuronal oscillators forms a spatial continuum [30, 21, 12].

Suppose that we have a one-dimensional array of neurons in which the jth neuron

occupies the position xj = jΔx where Δx is the spacing between the neurons. Further

suppose that the connectivity matrix is defined by W = {wij} = W (|xj − xi|),
where W (|xj|) → 0 as |xj | → ∞ and

∑∞
j=−∞W (xj)Δx = 1 For example, the spatial

connectivity matrix could correspond to a Gaussian function, W (|xj−xi|) = e
|xj−xi|

2

2σ2 ,

so that closer neurons have more strongly coupled to each other than to neurons that

are further apart. We can now rewrite equation (4.7.2) as

dφ

dt
(xi, t) = ω(xi) + ε

∞∑
j=−∞

[w(xj − xj) Δx H (φ(xj , t) − φ(xi, t))] , (4.7.3)

where φ(xi, t) = φi(t), ω(xi) = ωi and we have taken 1/M = Δx. By taking the limit

of Δx→ 0 (M → ∞) in equation (4.7.3), we arrive at the continuum phase model
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∂φ

∂t
(x, t) = ω(x) + ε

∫ ∞

−∞
W (|x− x̄|) H(φ(x̄, t) − φ(x, t)) dx̄, (4.7.4)

where φ(x, t) is the phase of the oscillator at position x and time t.

Various authors have utilized this continuum approach to prove results about

the stability of the synchrony and traveling wave solutions of equation (4.7.4) [30,

31, 21, 12]. For example, Crook et al. [21] were able to prove that presence of

axonal delay in synaptic transmission between neurons can cause the onset of traveling

wave solutions. This is due to the presence of axonal delay which encourages larger

phase shifts between neurons that are further apart in space. Similarly, Bressloff

and Coombes [12] derived the continuum phase model for a network of integrate-

and-fire neurons coupled with excitatory synapses on their passive dendrites. Using

this model, they were able to show that long range excitatory coupling can cause the

system to undergo a bifurcation from the synchronous state to traveling oscillatory

waves. For a rigorous mathematical treatment of the stability results for general

continuum and discrete phase model neuronal networks, see [31].

4.8 Summary

In this chapter we have described the main mathematical tool that will be utilized

in this dissertation, the theory of weakly coupled oscillators.
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Chapter 5

Effects of Dendritic Load on the

Firing Frequency of Oscillating

Neurons

In this chapter, we study the effects of passive dendritic properties on the dynamics

of neuronal oscillators. We find that the addition of a passive dendrite can sometimes

have counter-intuitive effects on firing frequency. Specifically, the addition of a hyper-

polarized passive dendritic load can either increase, decrease, or have negligible effects

on firing frequency. We use the theory of weak coupling to derive phase equations

for “ball-and-stick” model neurons and two-compartment model neurons. We then

develop a framework for understanding how the addition of passive dendrites mod-

ulates the frequency of neuronal oscillators in terms of their phase response curves

(PRC). We show that the average value of the neuronal oscillator’s PRC measures

the sensitivity to the dendritic load, including whether the addition of the dendrite

causes an increase or decrease in firing frequency. We link this phenomenon to the
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slope of the neuronal oscillator’s frequency-applied current (f-I) curve. We also show

that equivalent results exist for constant and noisy point source input to the den-

drite. We note that the results are not specific to neurons but are applicable to any

oscillator subject to a passive load.

5.1 Introduction

Neurons can have extensive spatial geometries, but they are often modeled as single-

compartment objects that ignore the spatial anatomy of the cell. This simplification

is made for mathematical tractability and computational efficiency. However, many

neurons are not electrotonically compact, and single-compartment models cannot be

expected to fully capture their behavior. Dendritic properties can have substantial

effects on the dynamics of single neurons, as well as the activity in neuronal net-

works. For example, the architecture of a dendritic tree can alter the firing pattern

and encoding properties of a neuronal oscillator [52, 56, 61] and dendritic filtering

can change the phase-locking behavior in networks of neuronal oscillators [12, 20, 59].

Even the effects of dendrites without active ionic currents are not always straight-

forward. Intuitively, if the leakage reversal potential of the passive dendrite is lower

than the average voltage of the oscillations, then the firing frequency of the neu-

ronal oscillator will decrease with the addition of the dendrite (see Figure 5.4.1 (a)).

Surprisingly, however, the passive hyperpolarizing dendritic “load” can sometimes in-

crease a neuron’s firing frequency (Figure 5.4.1 (b))[51, 96], or have very little effect

on it (Figure 5.4.1 (c)).

In previous modeling and experimental work, Kepler et al. [51] and Sharp et

al. [96] examined the influence of electrical coupling between a neuronal oscillator

and a passive cell, which is analogous to a two-compartment model of a soma with
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a passive dendrite [59]. They demonstrated that when the oscillator has a predom-

inantly hyperpolarized membrane potential wave-form (i.e. a short duty-cycle), the

electrical load of the passive cell acted to decrease the frequency of oscillations as the

strength of the electrical coupling increased. On the other hand, when the oscillator

had a predominantly depolarized membrane potential wave-form (i.e. a long duty-

cycle), the electrical load of the passive cell acted to initially increase the frequency

of oscillations as the strength of electrical coupling increased until the frequency

reached a maximum and then decreased with further increase in coupling strength.

In an analogous chemical oscillator system, Dolnik et al. [23] observed similar fre-

quency modulation when properties of the chemical load were altered rather than the

waveform of the isolated oscillator.

Here, we extend the results of Kepler et al. by developing a general framework to

understand the mechanisms by which dendritic load properties and intrinsic somatic

properties affect the firing frequency of the neuronal oscillator. We model a neuron

as an isopotential somatic oscillator attached to a thin passive dendritic cable using

the “ball-and-stick” model [80], and as an isopotential somatic oscillator compart-

ment electrically coupled to a passive compartment, i.e. a two-compartment model

(see Appendix 5.9). We use the theory of weak coupling [29, 54, 71] to derive an

equation for the change in the firing frequency of the neuron due to the presence

of the dendritic load. We then show how the frequency effects of adding a dendrite

to a neuronal oscillator can be understood in terms of dendritic properties and the

somatic oscillator’s phase response curve. Finally, we link these effects to the shape

of the oscillator’s frequency-applied current (f-I) curve.
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5.2 Ball-and-Stick Model Neuron

We model the electrical activity of a neuron using a “ball-and-stick” model [12, 20]

(see also section 3.6) that consists of a spherical active isopotential soma attached to

a single thin passive dendrite. The dendrite is modeled as a one-dimensional passive

cable of physical length L [78, 84]

Cm
∂v

∂t
=

a

2RC

∂2v

∂x2
− gLD(v − ELD), x ∈ (0, L), (5.2.1)

where v(x, t) is the voltage of the dendrite in mV at position x and time t, gLD is the

leakage conductance in the dendrite in mS/cm2, RC is the cytoplasmic resistivity of

the dendrite in kΩ · cm, a is the radius of the dendrite in cm, ELD is the reversal

potential of the leakage conductance in the dendrite in mV , and Cm is the membrane

capacitance in μF/cm2, which is assumed to be constant throughout the neuron.

Hodgkin-Huxley (HH) [44] type equations are used to model the electrical activ-

ity of the soma. An application of the conservation of current law at the junction

connecting the spherical soma and the thin dendrite (x = 0) yields the proximal

boundary condition

Cm
∂v

∂t
(0, t) = −Iion,S(v(0), 	w) + I +

a2

d2RC

∂v

∂x
(0, t), (5.2.2)

where Iion,S(v, 	w) represents the sum of the HH-type ionic currents (see appendix),

	w is a vector containing the gating variables of the ionic conductances, and d is the

diameter of the soma in cm. The gating variables in the vector 	w are described
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by equations of the form d�w
dt

= 1
τ�w

(	w∞(v) − 	w). The last term in equation (5.2.2)

represents the axial current flowing from the dendrite into the soma. The parameter

I is the somatic bias current in μA/cm2. Note that changes in I are equivalent

to changes in the leakage reversal potential, EL, and therefore changes in I can be

thought of as being due to current input into the soma or due to the effects of a

neuromodulator. The values of I and EL are chosen such that the isolated soma

undergoes T -periodic (limit cycle) oscillations. We define vLC(t) to be the membrane

potential component of the isolated somatic oscillator’s limit cycle.

We assume that no current flows out the distal end of the dendrite, which yields

the no flux boundary condition at the end of the dendrite (x = L)

∂v

∂x
(L, t) = 0. (5.2.3)

The Morris-Lecar model [67, 89] and a neuron model of Traub [47, 104] are used in

the simulations presented here. However, similar results were obtained using several

other model neurons [1, 27, 35, 44]. Furthermore, the basic analysis that we present

here is general and can be applied to any oscillator.

The analysis in this paper relies on a certain combination of model parameters

being sufficiently “small”. To identify this small compound parameter, we nondimen-

sionalize the model (5.2.1-5.2.3). We set V = V (x̄, t̄) = v(λx̄,τS t̄)−EL

−EL
(where EL is the

leakage reversal potential in the soma), x̄ = x
λ
, t̄ = t

τS
, where λ(a) =

√
a

2RCgLD
is the

length constant of the dendrite, and τS = Cm

gL
is the membrane time constant of the

soma. The resulting nondimensional equations for the ball-and-stick model neuron

are
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g
∂V

∂t̄
=
∂2V

∂x̄2
− (V − ĒLD)

∂V

∂t̄
(0, t̄) = −Īion,S(V (0, t̄), 	w) + Ī + ε(a)

∂V

∂x̄
(0, t̄)

∂V

∂x̄

(
L

λ(a)
, t̄

)
= 0.

(5.2.4)

where g = gL

gLD
, ĒLD = ELD−EL

−EL
, Īion,S(V (0, t̄), 	w) = 1

−gLEL
Iion,S((−EL)V (0, t̄) +

EL, 	w), Ī = 1
−gLEL

I, and ε(a) = a2

d2gLRCλ(a)
. Also, d�w

dt
= 1

τ�w
(	w∞(v) − 	w) becomes

d�w
dt̄

= τS

τ�w
(	w∞(−ELV (0, t̄)+EL)− 	w). We define the nondimensionalized period of the

limit cycle to be T̄ = T
τS

, and the nondimensional voltage component of the isolated

soma’s limit cycle as VLC(t̄).

The term ε(a)∂V
∂x̄

(0, t̄) in equation (5.2.4) is the nondimensional axial current at the

soma-dendritic junction and is the dendrite’s perturbation to the somatic membrane

dynamics. To ensure that this perturbation is weak, we assume that

ε(a) =
a2

d2gLRCλ(a)
=
a2

d2

√
2gLD

g2
LRCa

is small. Essentially, we assume that a � d, i.e. that the radius of the dendrite is

small relative to the diameter of the soma, and that
√

2gLD

g2
LRCa

is O(1) so that ε(a) � 1.

5.3 Theory of Weak Coupling and Reduction to a

Phase Model

The theory of weak coupling [29, 54, 71] (see also Chapter 4), has been widely used to

analyze dynamics in networks of oscillating neurons (e.g. [32, 46, 58, 74]). The theory
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can also be used to analyze the dynamics of neurons under the influence of an external

forcing. When this perturbing current to an individual neuron is sufficiently weak,

the complete state of the neuron can be approximated by its phase on its T̄ -periodic

limit cycle, θ(t̄) ∈ [0, 1). Furthermore, the evolution of the neuronal oscillator’s phase

is governed by its phase-equation

dθ

dt̄
= ω̄ + Δω̄ = ω̄ +

1

T̄

∫ T̄

0

Z(s)Ipert(s)ds, (5.3.1)

where dθ
dt̄

is the instantaneous nondimensional frequency of the neuron, and ω̄ = 1
T̄

is the nondimensional frequency of the isolated (unperturbed) somatic oscillator.

Ipert(s) is a nondimensional T̄ -periodic perturbing current that can be thought of

as arising from coupling or external input. Z(s) is the nondimensional infinitesimal

phase response curve (PRC) of the neuronal oscillator. The PRC quantifies the

change in phase due to a δ-function current perturbation at a particular phase on the

limit cycle. The PRC can be thought of as a Green’s function or impulse response

function for a linear oscillator. Δω̄ = 1
T̄

∫ T̄

0
Z(s)Ipert(s)ds represents the modulation

of the isolated oscillator’s frequency due to the external current averaged over one

period of the oscillations.

The theory of weak coupling can be applied to the ball-and-stick model by consid-

ering the dendritic load as the perturbation to the soma, following Crook et al. [20].

During steady oscillations in the ball-and-stick model, a T̄ -periodic current flows

between the soma and dendrite, modulating the intrinsic oscillations of the soma.

Therefore, we set Ipert(s) = ε(a)∂V
∂x̄

(0, s), which is the (nondimensional) current at

the soma-dendritic junction. As long as this modulating current is sufficiently weak,

the dynamics of the ball-and-stick model can be reduced to the phase model
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dθ

dt̄
= ω̄ +

1

T̄

∫ T̄

0

Z(s)ε(a)
∂V

∂x̄
(0, s)ds. (5.3.2)

In order to close equation (5.3.2), ∂V
∂x̄

(0, t̄) needs to be determined. Using our

assumption that ε(a) � 1, we can find a leading order approximation of ∂V
∂x̄

(0, t̄).

Because the dendritic perturbation is weak, the soma clings tightly to its limit cycle

so that V (0, t̄) � VLC(t̄).

This approximation simplifies the boundary condition at the soma (x̄ = 0) and

yields the leading order approximation for the system (5.2.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g
∂V

∂t̄
=
∂2V

∂x̄2
− (V − ĒLD)

V (0, t̄) = VLC(t̄)

∂V

∂x̄

(
L

λ(a)
, t̄

)
= 0.

(5.3.3)

System (5.3.3) is a first-order linear partial differential equation with T̄ -periodic forc-

ing at one end, and the solution can be found using Fourier series. Expanding the

somatic potential in a Fourier series, VLC(t̄) = 1
T̄

∑
n∈Z
Vne

2πint̄/T̄ , and solving system

(5.3.3) yields

V (x̄, t̄) =

(
V0

T̄
− ĒLD

) cosh
(
x̄− L

λ(a)

)
cosh

(
L

λ(a)

) +
1

T̄

∑
n �=0

Vn
cosh

(
bn

(
x̄− L

λ(a)

))
cosh

(
bn

(
L

λ(a)

)) e2πint̄/T̄

+ĒLD, (5.3.4)

where bn =
√

1 + g2πin/T̄ . Differentiating equation (5.3.4) with respect to x̄ and
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evaluating at x̄ = 0 gives

∂V

∂x̄
(0, t̄) =

(
ĒLD − V0

T̄

)
c0(a) − 1

T̄

∑
n �=0

cn(a)Vne
2πint̄/T̄ , (5.3.5)

where cn(a) = bn tanh
(
bn

L
λ(a)

)
. Note that cn(a) are complex numbers that capture

the “filtering” effects of the dendrite.

Substituting this expression for ∂V
∂x̄

(0, t̄)back into equation (5.3.2) and expanding

the PRC in a Fourier series, Z(t̄) = 1
T̄

∑
m∈Z

Zme
2πimt̄/T̄ , yields the phase model for

the ball-and-stick model

dθ

dt̄
= ω̄ + Δω̄

= ω̄ + ε(a)

[
Z0

T̄

(
ĒLD − V0

T̄

)
c0(a) − 1

T̄ 2

∑
n �=0

Z−nVncn(a)

]

= ω̄

+ ε(a)

[
Z0

T̄

(
ĒLD − V0

T̄

)
c0(a) − 2

T̄ 2

∞∑
n=1

|ZnVncn(a)| cos(ψn(a) + γn − φn)
]
,

(5.3.6)

where ψn(a), γn, and φ−n are the angles, in radians, corresponding to cn(a), Vn, and

Z−n, respectively.

Below, we will analyze the phase model in order to understand how the addition

of the thin passive dendrite alters the frequency of the somatic oscillator. For con-

venience of physiological interpretation, the values of all quantities are reported in

dimensional terms in the results section. The phase model in dimensional terms is
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dθ

dt
= ω + Δω

= ω

+
ε(a)

τS

[
〈z〉(ELD − 〈vLC〉)c0(a) − 2

T 2

∞∑
n=1

|znvncn(a)| cos(ψn(a) + γn − φn)
]
,

(5.3.7)

where vn and zn are the Fourier coefficients of the membrane potential oscillations

vLC(t) and the dimensional PRC z(t), respectively, and 〈vLC〉 = v0/T and 〈z〉 = z0/T

are the mean values of vLC(t) and z(t), respectively.

In Appendix 5.10 we show how input from point sources on the dendrite can be

incorporated into equation (5.3.7) and demonstrate that including point sources with

constant input is equivalent to changing ELD. Furthermore, we show that this result

holds for noisy input when the correlation time of the noise is sufficiently large.

5.4 Results

In this section, we examine the dependence of firing frequency of the ball-and-stick

neuron on the magnitude of the dendritic perturbation ε(a) and the value of ELD.

We emphasize the fact that changes in the bias current, I, can be thought of as

either changes in the leakage reversal potential of the soma, EL or current input

to the soma; also changes in the leakage reversal potential of the dendrite, ELD,

can be thought of as arising from either global changes in dendritic leakage reversal

potential, or point source synaptic inputs to the dendrite (Appendix 5.10). First,

we observe the behavior of the simulated model equations (5.2.1-5.2.3), and we show
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that this behavior is well approximated by the phase model (5.3.7). We then interpret

this behavior in terms of the biophysical quantities in equation (5.3.7): 〈z〉, 〈vLC〉,
ELD, ε(a), cn(a), vn, and zn. Lastly, we illustrate a connection between two intrinsic

properties of the isolated neuronal oscillator: the frequency-applied current curve and

the average value of the PRC.

In all simulations, unless otherwise indicated, somatic dynamics are modeled by

the Morris-Lecar equations with parameters given in the Appendix. We also view

an increase in ε(a) as an increase in the dendritic radius a. Note, however, that an

increase in a also results in an increase the dendritic space constant, λ(a).

5.4.1 Simulations: Passive Dendritic Load Can Either In-

crease or Decrease Firing Frequency

Figure 5.4.1 plots the somatic voltage traces for two different values of applied cur-

rent to the soma, I = 6.4 μA/cm2 (Figure 5.4.1(a)) and I = 22.4 μA/cm2 (Fig-

ure 5.4.1(b)). For both cases, ELD is set to −60 mV , which is hyperpolarized relative

to the somatic membrane potential. Intuitively, we expect that the hyperpolarizing

dendritic load should decrease the frequency of the oscillations. This is clearly the

case in Figure 5.4.1(a) in which the frequency of the isolated somatic oscillator is

greater than the frequency of the oscillator attached to the dendrite. However, in

Figure 5.4.1(b), the frequency of the isolated somatic oscillator is lower than the

frequency when the somatic oscillator is attached to the dendrite. Furthermore, the

frequency of the oscillator can remain unchanged (Figure 5.4.1 (c)) due to the ad-

dition of the dendrite. Thus, simply by varying the current applied to the soma,

the hyperpolarizing dendritic load can have a decelerating, accelerating, or negligible

effect on the frequency of oscillations. As mentioned earlier, this phenomenon is sim-
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ilar to what Kepler et al. [51] observed in a model of a neuronal oscillator electrically

coupled to a passive cell.

Figure 5.4.2 shows the change in firing frequency of the full ball-and-stick model

(dotted line) as a function of ε(a) with I = 6.4 μA/cm2 and I = 22.4 μA/cm2 for

two different values of ELD. For a relatively hyperpolarized value of ELD (−75 mV ),

the frequency of oscillations decreases as ε(a) is increased for I = 6.4 μA/cm2 (Fig-

ure 5.4.2 (a)), but the frequency increases as ε(a) is increased for I = 22.4 μA/cm2

(Figure 5.4.2 (a)). This agrees with the behavior seen in Figure 5.4.1. When the

value of ELD is relatively depolarized (i.e. ELD = 25 mV , which is close to the peak

of the somatic voltage), the results are reversed. That is, the frequency of oscillations

increases as ε(a) is increased for I = 6.4 μA/cm2 and decreases as ε(a) is increased for

I = 22.4 μA/cm2. Thus, the results in Figure 5.4.2(a) agree with our intuition about

the effects of dendritic load: when the leakage reversal potential of the dendrite is hy-

perpolarized (depolarized) relative to the somatic voltage oscillations, the frequency

of oscillations is decreased (increased) as the strength of the dendritic perturbation

is increased. However, Figure 5.4.2(b) shows that by changing the intrinsic period

of the somatic oscillator, the addition of a passive hyperpolarizing dendrite load can

have a counter-intuitive effect and increase the frequency of oscillations.

5.4.2 Mechanisms for Frequency Changes: Insights from the

Phase Model

The phase model quantitatively captures the behavior of the full model for sufficiently

small values of ε(a), and Figure 5.4.2 shows that it can also capture the qualitative

behavior for moderate values of ε(a). Therefore, we can use the phase model to

explain the effects of dendritic load on firing frequency in terms of cable properties
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Figure 5.4.1: The addition of a hyperpolarized dendrite can decrease, in-
crease, or not change firing frequency. Voltage traces for a Morris-Lecar neuron
without a dendritic cable (an isolated soma, ε(a) = 0) and with a passive dendritic
cable (ε(a) = 0.25) for three different values of applied current to the soma: (a)
I = 6.4 μA/cm2, (b) I = 22.4 μA/cm2, and (c) I = 16.6 μA/cm2. In all cases, the
dendritic leakage reversal potential ELD is held at −60 mV , which is hyperpolarized
relative to the voltage oscillations. However, the frequency of the somatic oscillator
decreases in (a), increases in (b), and changes by a negligible amount in (c).
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Figure 5.4.2: Firing frequency can either increase or decrease as a function
of increasing magnitude of the dendritic perturbation, ε(a), depending
upon the value of the dendritic leakage reversal potential and the applied
current at the soma. Percent change in firing frequency is plotted as a function
of the strength of the dendritic perturbation, ε(a), for hyperpolarized (−75 mV )
and depolarized (25 mV ) values of ELD when (a) I = 6.4 μA/cm2 and (b) I =
22.4 μA/cm2. The dots represent results from simulations of the full ball-and-stick
model, equations (5.2.1-5.2.3), the solid line represents results from simulations of the
phase model, equation (5.3.7), and the dash-dotted line represents ΔωDC , equation
(5.4.1). In (a), the addition of the dendrite with a hyperpolarized (depolarized)
leakage reversal potential decrease (increases) the frequency of oscillations as ε(a)
is increased. In (b), we see the opposite effect: the addition of the dendrite with
a hyperpolarized (depolarized) leakage reversal potential increases (decreases) the
frequency of oscillations as ε(a) is increased. Note that, for all four plots, ΔωDC

captures the tendency for the frequency to increase or decrease as a function of ε(a).
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and intrinsic properties of the neuronal oscillator. To do this, it is useful to emphasize

the split in the frequency modulation term of the phase model Δω into the DC

(n = 0) component ΔωDC and the AC (n �= 0) component ΔωAC . That is, Δω =

ΔωDC + ΔωAC , where

ΔωDC =
ε(a)

τS
〈z〉(ELD − 〈vLC〉)c0(a) (5.4.1)

ΔωAC = −ε(a)
τS

2

T 2

∞∑
n=1

|znvncn(a)| cos(ψn(a) + γn − φn). (5.4.2)

Note that the DC components ΔωDC corresponding to the examples depicted in

Figure 5.4.2 accurately capture the tendency for the frequency to increase or de-

crease as a function of ε(a). Given that the DC component plays the dominant role

in determining the frequency modulation, equation (5.4.1) reveals the mechanisms

underlying the phenomena described in the previous sections. Specifically, the ten-

dency for the frequency of the oscillations to increase or decrease as a function of ε(a)

is determined by the sign of the product of 〈z〉 and (ELD − 〈vLC〉). (Note that c0(a)

is real and positive). In Figure 5.4.3, it can be seen that (a) for I = 6.4 μA/cm2, the

average value of the PRC is positive (〈z〉 = 0.0027 mV −1) , whereas (b) for I = 22.4

μA/cm2, the average value of the PRC is negative (〈z〉 = −0.0016mV −1). Therefore,

when ELD is less than 〈vLC〉 (i.e the dendritic load is hyperpolarizing), the frequency

of oscillations decreases in case (a) but increases in case (b) as ε(a) increases. When

ELD is greater than 〈vLC〉, the results are reversed. This simple explanation accounts

for all of the behavior in Figure 5.4.2, and it will hold in general whenever ΔωDC is

the dominant term in Δω, i.e. whenever 〈z〉 is not close to zero and/or 〈vLC〉 is not

close to ELD.
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Figure 5.4.3: Voltage component of the limit cycle for the Morris-Lecar
neuron and its corresponding phase response curve. (a) I = 6.4 μA/cm2 and
(b) I = 22.4 μA/cm2. The oscillator in (a) has a positive average value of its phase
response curve 〈z〉 = 0.0027 mV −1 and a mean membrane potential of 〈vLC〉 = −17.9
mV , while the oscillator in (b) has 〈z〉 = −.0016 mV −1 and 〈vLC〉 = 3.5 mV . The
dashed line in all plots is the approximation to the function using the first five Fourier
modes in its expansion.

ΔωDC (equation (5.4.1)) predicts that the effect of the dendritic load will switch

between decelerating and accelerating as ELD crosses 〈vLC〉. Figure 5.4.4 plots the

change in firing frequency as a function of ELD for the full model (dotted line), the

phase model (solid line), and the ΔωDC prediction (dash line) for three different

applied currents: (a) I = 6.4 μA/cm2 where 〈z〉 > 0, (b) I = 22.4 μA/cm2 where

〈z〉 < 0, and (c) I = 16.6 μA/cm2 where 〈z〉 is negative but is two orders of magnitude

smaller than that in (b). As expected from the signs of 〈z〉, the dendritic load

changes from having a decelerating effect to an accelerating effect in case (a) and

an accelerating effect to a decelerating effect in case (b) as ELD is increased. ΔωDC

predicts that the switch occurs at 〈vLC〉 = −17.9 mV for (a) and 〈vLC〉 = 3.5 mV for

(b). These are close to the actual switching points, which are ELD ∼ −22 mV in (a)

and ELD ∼ 0 mV in (b). Note that 〈z〉 does not only predict the increase/decrease
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in frequency, but it is also a measure of the sensitivity of the neuronal oscillator to

the dendritic load.

In the cases portrayed in Figure 5.4.4(a) and Figure 5.4.4(b), ΔωDC does an

excellent job of predicting both the sign and magnitude of the change in frequency

over a broad range of ELD. However, as ELD approaches 〈vLC〉, the magnitude of the

DC component becomes smaller than the AC component. As a consequence, ΔωDC

incorrectly predicts the sign of frequency change in the interval between the actual

and the predicted switching points. The size of this “interval of error” for the DC

prediction is

|ELD −〈vLC〉| =
τS
ε(a)

ΔωAC

〈z〉 c0(a) =
2
T 2

∑∞
n=1 |znvncn(a)| cos(ψn(a) + γn − φn)

〈z〉 c0(a) . (5.4.3)

The relative magnitude of 〈z〉 as compared to the AC component in the cases in

Figure 5.4.4 (a) and (b) is small and makes the interval of error small (3.5 and 3.8

mV respectively). However, for different parameters, 〈z〉 can be relatively small and

ΔωAC can be the dominant term in Δω. This can cause the interval of error to be

large. For example, in Figure 5.4.4(c), where 〈z〉 = −4.31 × 10−5 mV −1, the size of

the interval of error is 132.6 mV .

Over the range of applied currents tested (4.4-23.6 μA/cm2), 〈z〉 monotonically

decreases from 0.0074 to −0.0036 mV −1, and the magnitude of the normalized AC

components
∣∣∣ΔωAC

ε(a)

∣∣∣ ranges from 0.0059 to 0.027 for a = 2×10−6 cm (ε(a) = 0.01118).

Furthermore, c0(a) ∼ 1 and the magnitude of the normalized AC components ΔωAC

ε(a)

has a weak dependence on a for the parameters that we considered (i.e. T � τS and

L > 1.5λ(a), see appendix C). As a result, the size of the interval of error for the DC

prediction ranges from less than 1 mV near the edges of the applied current range
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to infinite when 〈z〉 = 0 near I = 16 μA/cm2. The range of the applied current over

which the size of the interval of error was greater than 20mV is 14.4 to 17.6 μA/cm2.

Within this range, the frequency modulation is primarily due to the AC component

and is very weak, i.e. Δω is on the order of 0.01ε(a). The dependence of frequency

modulation on ELD in this range is also very weak, as is seen in Figures 5.4.4(c) and

5.4.5 and by the fact that ΔωAC is independent of ELD.

5.4.3 Average Value of PRC and Frequency-Applied Current

(f-I ) Curve

The above results describe the mechanisms of frequency modulation due to the den-

drite in terms of the average value of the phase response curve 〈z〉, which is not a

commonly considered quantity. Here, we derive the relationship between the familiar

frequency-applied current (f-I ) curve and the average value of the oscillator’s phase

response curve, and we then link to this relationship back to the frequency effects of

the passive dendrite on neuronal oscillations.

Consider an isolated neuronal oscillator subjected to a constant applied current I,

and suppose that ω(I) and Z(s; I) are parameterizations of the frequency and PRC

of the oscillator in terms of the applied current. Now suppose that applied current is

increased by a small amount ΔI. According to the theory of weak coupling, the new

frequency of the oscillator is

ω(I + ΔI) =
dθ

dt
� ω(I) +

1

T

∫ T

0

Z(s; I)
ΔI

Cm

ds (5.4.4)

= ω(I) + 〈z(·; I)〉ΔI
Cm
, (5.4.5)
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(b) 〈z〉 < 0
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(c) 〈z〉 ≈ 0
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Figure 5.4.4: Dendritic load switches its effect on frequency as the dendritic
leakage reversal potential is increased. Percent change in firing frequency is
plotted as a function of the dendritic leakage reversal potential, ELD, for fixed ε(a) =
0.01118 when (a) 〈z〉 > 0, (b) 〈z〉 < 0, and (c) 〈z〉 ≈ 0 (I = 16.6 μA/cm2 and
〈z〉 = −4.31 × 10−5 mV −1). The dots represent simulations of full ball-and-stick
model (equations (5.2.1-5.2.3)), the solid line represents simulations of the phase
equation (5.3.7), and the dash-dotted line represents ΔωDC (equation (5.4.1)). In
(a), the dendritic load switches from having a decelerating effect on frequency to an
accelerating effect as ELD is increased. While in (b), the dendritic load switches from
having an accelerating effect on frequency to a decelerating effect as ELD is increased.
In both cases, the ‘interval of error’ in which ΔωDC incorrectly predicts the sign of
frequency change is small, and ΔωDC remains close to the full phase model prediction.
When 〈z〉 ≈ 0 as in (c), the interval of error is considerably larger. However, the
frequency modulation effects are much smaller in (c) than in either (a) or (b).
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Figure 5.4.5: When the average value of the PRC 〈z〉 ≈ 0, ΔωAC dominates
the behavior of the phase model. Percent change in firing frequency is plotted as
a function of ε(a) when 〈z〉 ≈ 0 (I = 16.32 μA/cm2 and 〈z〉 = 1.39×10−7 mV −1). The
dots represent simulations of full ball-and-stick model (equations (5.2.1-5.2.3)). The
simulations of the phase equation (5.3.7) (solid line) and ΔωAC (equations (5.4.1))
(the dashed line) overlap for the four values of the dendritic leakage reversal potential
ELD, indictating that Δω � ΔωAC in this case. This is due to the fact that ΔωDC is
close to zero as 〈z〉 ≈ 0. Also, because ΔωAC is independent of ELD, the phase model
behavior remains virtually unchanged for the four different values of ELD. Note that
the frequency modulation effects of the dendrite are smaller than those seen in Figure
5.4.2.
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where 〈z(·; I)〉 denotes the average of the PRC over one period of the oscillations

which is parameterized by the bias current I.

Rearranging equation (5.4.5) yields the relationship between the change in the

frequency of an oscillator due to the additional applied current and average value of

the oscillator’s PRC

dω

dI
� 1

Cm

ω(I + ΔI) − ω(I)

ΔI
=

1

Cm

〈z(·; I)〉. (5.4.6)

Thus, the average value of an oscillator’s phase response curve for a particular value

of applied current normalized by the membrane capacitance is equivalent to the in-

stantaneous slope of the oscillator’s f-I curve at that particular applied current value.

That is, 〈z〉 is a measure of the sensitivity of the neuron to constant input and is

proportional to the gain of the neuron. (Note that the right-hand side of equation

(5.4.5) is a Taylor series of ω(I + ΔI) with dω
dI

= 〈z(·;I)〉
Cm

).

In the typical case where the DC-component ΔωDC dominates the effect of the

dendrite on firing frequency, we can subsitute Cm
dω
dI

for 〈z(·; I)〉 into equation (5.4.1)

to obtain

dθ

dt
� ω +

ε(a)

τS
Cm
dω

dI
(ELD − 〈vLC〉)c0(a) (5.4.7)

� ω +
dω

dI
ε(a)gL(ELD − 〈vLC〉)c0(a). (5.4.8)

That is, the change in frequency of a neuronal oscillator due to the addition of a

passive dendrite is simply given by the product of the average axial current flowing

between the dendrite and the soma (i.e. a constant current) and the instantaneous
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slope of the neuronal oscillator’s f-I curve.

Figure 5.4.6(a) illustrates the relationship between the f-I curve, it’s derivative

and the average of the PRC 〈z〉 for the isolated Morris-Lecar neuron (i.e. the soma) as

a function of applied current. For this model neuron, the f-I curve is non-monotonic:

the frequency initially increases with increasing current, but the frequency reaches a

maximum and then decreases with increasing current. As a result, the addition of

a strictly hyperpolarizing dendritic load will lead to an decrease in firing frequency

for relatively low applied currents, but there will be a “counter-intuitive” increase in

firing frequency for relatively high applied currents, as shown in Figure 5.4.6(b).
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Figure 5.4.6: (a) Frequency and average value of the somatic oscillator’s
phase response curve〈z〉 versus I, for an isolated Morris-Lecar neuron.
The plot of the gain of the neuron, dω

dI
, is identical to that of 〈z〉/Cm. The point at

which the frequency of the limit cycle oscillations (light curve) reaches a maximum
occurs at the same point that 〈z〉 (black curve) reaches zero and subsequently becomes
negative as I is increased. (b) Change in frequency due to the presence of the
dendrite, Δω, as a function of I. The solid line plots Δω and the dashed line plots
ΔωDC . In this case, the dendrite is hyperpolarized relative to the voltage oscillations,
i.e. ΔI < 0. Thus, the dendritic load has a decelerating effect on frequency when
〈z〉 > 0 and an accelerating effect when 〈z〉 < 0. Note that for these values of ELD

and ε(a), ΔωDC remains very close to Δω, and both Δω and ΔωDC retain the shape
of the 〈z〉 versus I curve.
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Figure 5.4.7: ΔωDC dominates the behavior of the phase model for a more
detailed model neuronal oscillator. (a) Voltage component of the limit cycle for
the Traub et al. model neuron [104] when I = 1.2 μA/cm2 and its corresponding
phase response curve. The dotted line in both plots is the approximation to the func-
tion using the first five Fourier modes. 〈vLC〉 = −68.02 mV and 〈z〉 = 0.032 mV −1.
(b) Percent change in firing frequency is plotted as a function of the strength of the
dendritic perturbation, ε(a), for a hyperpolarized (−90 mV ) and depolarized (−20
mV ) value of ELD when I = 1.2 μA/cm2. The dots represent results from simula-
tions of the full ball-and-stick model (equations (5.2.1-5.2.3)) the solid line represents
results from simulations of the phase model (equation (5.3.7)) and the dash-dotted
line represents ΔωDC (equation (5.4.1)). As in Figure 5.4.2(a), the addition of the
dendrite with a hyperpolarized leakage reversal potential decreases the frequency of
oscillations as ε(a) is increased while the addition of the dendrite with a depolarized
leakage reversal potential increases the frequency of oscillations as ε(a) is increased.
It is important to note that ΔωDC remains close to the phase model for both values
of the dendritic leakage reversal potential.

5.5 Discussion

In this chapter, we examine how a passive dendritic load affects the firing frequency

of a ball-and-stick model neuron. Using the theory of weak coupling, we derive an

analytical expression that relates the change in frequency to the phase response prop-

erties of the model neuron and the properties of the dendrite [20]. We then elucidate

the mechanisms that control the sensitivity of the neuron to dendritic load, and, in
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doing so, identify the mechanisms underlying the counter-intuitive increases in firing

frequency that can occur due to a hyperpolarizing dendritic load. Appendix 5.9 ap-

plies similar analysis to the an oscillator electrically coupled to a passive compartment

in which case very similar results are obtained.

Three main observations in this article allow the clear identification of the funda-

mental mechanisms underlying the changes in a neuron’s firing frequency due to the

addition of a dendritic load: (i) The DC-component of the analytical expression for

firing frequency, ΔωDC , typically dominates higher modes. This is the case unless

the average of the PRC 〈z〉 is tuned to be close to zero and/or the average of the

oscillating membrane potential 〈vLC〉 is tuned to be close to the reversal potential of

the dendrite ELD (in these cases the change in frequency is very small). (ii) The form

of ΔωDC indicates that the change in frequency due to the dendritic load is primarily

determined by the product 〈z〉(ELD − 〈vLC〉). Along with the observation (i), this

implies that the effect of a passive dendritic load on a neuron’s firing frequency is

equivalent to that of an additional constant current. (iii) The average value of a PRC

〈z〉 measures the sensitivity of the neuron to dendritic load and is proportional to

the instantaneous slope of the neuron’s f-I curve. Thus, when 〈z〉 > 0 or equivalently

df
dI
> 0, the addition of a hyperpolarizing dendritic load causes the neuron’s frequency

to decrease. When 〈z〉 < 0 or equivalently df
dI
< 0, the addition of a hyperpolariz-

ing dendritic load leads to a “counter-intuitive” increase in the firing frequency of

a neuron. When 〈z〉 ≈ 0 or equivalently df
dI

≈ 0, the addition of a hyperpolarizing

dendritic load causes a negligible change in firing frequency. Note that the failure of

our intuition for this behavior arises from the preconception that frequency always

increases with increased applied current.

The mechanisms discussed above provide a general framework for understanding
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the influence of passive dendritic properties on the firing frequency of neuronal oscil-

lators. The numerical results presented in 5.4 are for the Morris-Lecar model, but we

have obtained similar results for several other neuronal models. For example, Figure

5.4.7 shows that the DC component quantitatively captures the frequency modula-

tion when somatic dynamics are described by the Traub et al. [47, 104] model, which

is a more biophysically detailed model (see appendix for equations). In fact, 〈z〉 is

relatively large over the entire oscillatory range for the Traub et al. model, and there-

fore the DC component correctly predicts the frequency modulation. On the other

hand, 〈z〉 is always positive, and therefore the counter-intuitive increase in response

to the addition of a hyperpolarizing dendritic load will not occur. Similar behavior

would occur for any stereotypical “type-I” neuron [32].

Counter-Intuitive Behavior and Non-monotonic f-I Curves

The counter-intuitive results that we have described occur in model neurons where

the f-I curve is non-monotonic. These type of curves are seen in real neurons, such

as in the auditory cortex of cats [76] and the lobster stomatogastric ganglion [97].

However, it is worth noting that most model and real neurons tend to display a

saturated f-I curve. Because of our analysis, we know that at the saturation point,

the neuron has a zero average value PRC. Thus, the neuron is very insensitive to

changes in ELD and thus insensitive to dendritic inputs at this point. Furthermore,

our results allow one to quantify the amount of frequency modulation caused by the

weak dendritic perturbation by simply observing the slope of the neuron’s f-I curve.
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Relationship to Previous Studies

Skinner et al. [97] found that cultured stomatogastric ganglion (STG) neurons can

exhibit either monotonic or non-monotonic f-I curves and that neurons are able to

switch between these two response properties with pharmacological manipulation.

They also demonstrated that modest changes of parameters can switch model neurons

between these two behaviors. Furthermore, they showed that, when model neurons

with non-monotonic f-I curves are coupled by reciprocal inhibition, the frequency of

the network can increase beyond the maximum frequency for an isolated cell. The

mechanisms responsible for this phenomena is intimately related to those described

in this article

As mentioned before, the well-known modeling study by Kepler et al. [51] has

previously examined the effects of electrically coupling a neuronal oscillator to a

hyperpolarized passive cell in context of central pattern generators in the lobster

stomatogastric ganglion. Kepler et al. found that, if the membrane potential of the

neuronal oscillator has a short duty-cycle (i.e. a predominantly hyperpolarized wave-

form as in Figure 5.4.3(a)), the electrical load of the passive cell acts to decrease the

frequency of oscillations as the strength of the electrical coupling is increased. On

the other hand, if the membrane potential of the neuron has a long duty-cycle (i.e.

a predominantly depolarized wave-form as in Figure 5.4.3(b)), the electrical load of

the passive cell can increase the frequency of oscillations. Their explanation for this

phenomenon was based on the balance of inward and outward currents in the oscil-

lator compartment. More specifically, they postulated that, during the depolarized

phase of the neuronal oscillations, the hyperpolarized passive compartment acts to

more rapidly repolarize the neuronal oscillator and therefore acts to decrease period

of oscillation. On the other hand, during the subthreshold phase of the neuronal
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oscillations, the hyperpolarized passive compartment acts to slow the rate of depo-

larization towards threshold, and therefore it acts to increase period of oscillation.

When the neuronal oscillators has a short duty-cycle, the cycle is dominated by the

subthreshold phase and therefore the net effect of the passive load is to decrease the

frequency of oscillations. When the neuronal oscillators has long duty-cycle, the cycle

is dominated by the depolarized phase and therefore the net effect of the passive load

is to increase the frequency of oscillations.

Inherent in the explanation provided by Kepler et al. are the assumptions that the

phase response curve of the oscillator will always be negative during the depolarized

phase of the cycle and positive during the subthreshold phase of the cycle. Although

this is the case for the simple model neuron that they used in their study, phase

response properties of neuronal oscillators are typical more complicated than this (see

Figure 5.4.3). For instance, neurons often have phase response curves with negative

portions during the subthreshold phase [64]. The explanation provided in this article

in terms of the oscillator’s phase response curve is still conceptually simple and yet

is more general in the sense that it can be applied to any oscillator.

Effect of Constant and Noisy Point Source Dendritic Inputs

We also consider the effects of dendritic inputs on firing frequency. In Appendix 5.10 ,

we show how constant point source synaptic inputs to the thin dendrite are equivalent

to shifting the value of the dendritic leakage reversal potential. Furthermore, if one

considers white noise input to the dendrite, the current that the soma receives from

this input will be a filtered version of the white noise due to the filtering properties

of the dendrite. However, the main effect that the noise will have on firing frequency

is through its mean value, i.e. because of the linearity of the cable, the mean of the



5.5. Discussion 105

noisy current would simply shift the value of Δω in the phase model (5.3.7). Once

the mean is taken out, the situation is equivalent to Teramae et al. [101] where they

considered filtered zero mean white noise input to a somatic oscillator. In [101], the

noisy input was scaled by a factor of σ. They showed that the filtered noise had

O(σ2) effects on the mean frequency of the oscillator. The O(σ2) term involved the

correlation time of the colored noise, the relaxation time back to the limit cycle, and

higher order phase response properties of the somatic limit cycle. If the correlation

time of the noisy current is comparable to the relaxation time back to the somatic

limit cycle, then the effects of the noisy input on firing frequency cannot be ignored.

The issue is that this effect is difficult to obtain computationally as it involves higher

order phase response properties of the limit cycle [115, 101]. However, in the case of

noisy inputs to the ball-and-stick model, the dendrite acts to filter the noisy input,

thereby increasing the correlation time of the noise. If the correlation time of the

noisy current that flows from the dendrite into the soma is larger than the relaxation

time back to the somatic limit cycle, then noisy input will have negligible effects on

firing frequency [101].

The Effects of Dendritic Morphology and Active Dendritic

Conductances

The analysis presented in this paper relies on the assumptions that (1) the dendrites

are thin relative to the diameter of the soma, and therefore only weakly perturb

the somatic dynamics, and (2) the dendrites are passive and do not contain active

membrane conductances. If the dendritic perturbation to a somatic oscillator is

large and/or there are highly active conductances in the dendrites, the dendritic load

can fundamentally change firing dynamics, e.g. quenching oscillations altogether or
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inducing bursting dynamics [9, 61], in which case our analysis breaks down. On the

other hand, our simulations show that the theory qualitatively predicts the firing

effects of moderately sized dendritic perturbations despite the fact that the analysis

takes the weak perturbation limit. Furthermore, we expect the addition of realistic

dendritic morphologies to not change our results substantially, as many dendritic

trees can be collapsed into an equivalent cylinder [79]. For these types of neurons,

it has been shown that changes in dendritic topology have small effects on firing

frequency [24, 107]. In this case, our analysis holds if the portion of the cylinder

closest to the soma has a diameter that is thin relative to the diameter to the soma.

Furthermore, our analysis can readily be extended to include weakly nonlinear

conductances in the dendrites [40, 10]. We note however that we have found no

fundamental changes in the results for this case. These observations suggest that

the mechanisms underlying frequency modulation described here are applicable to a

range of biologically relevant situations.

5.6 Appendix A: Morris-Lecar Neuron

Cm
dv

dt
= −gCam∞(v(t))(v(t) − ECa) − gKw(v(t) −EK) − gL(v(t) −EL) + I

dw

dt
= φ

w∞(v(t)) − w
τw(v(t))

where
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m∞(v) =
1

2

[
1 + tanh

(
v − V1

V2

)]

w∞(v) =
1

2

[
1 + tanh

(
v − V3

V4

)]

τw(v) =
1

cosh
(

v−V3

2V4

)

and the parameters are taken from [89, 97]

Cm = 1 μF/cm2 gCa = 0.6 mS/cm2 gK = 0.8 mS/cm2

gL = 0.2 mS/cm2 ECa = 100 mV EK = −80 mV

EL = −50 mV V1 = 0 mV V2 = 15 mV

V3 = 0 mV V4 = 15 mV φ = 0.08 ms−1

The cable parameters with the Morris-Lecar neuron are

gLD = 0.5 mS/cm2 d = .002 cm RC = 0.1 kΩ · cm
L = .02 cm

5.7 Appendix B: Traub Model Soma

Cm
dv

dt
= −gNam

3h(v(t) −ENa) − gKn4(v(t) − EK) − gL(v(t) − EL) + I

dm

dt
= αm(v)(1 −m) − βm(v)m

dh

dt
= αh(v)(1 − h) − βh(v)h

dn

dt
= αn(v)(1 − n) − βn(v)n
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where

αm(v) = 1.28 (v+54)/4
1−exp(−(v+54)/4)

βm(v) = 1.4 (v+27)/5
exp(−(v+27)/5)−1

αh(v) = 0.128 exp(−(v + 50)/18) βh(v) = 4.0 1
1+exp(−(v+27)/5)

αn(v) = 0.16 (v+52)/5
1−exp(−(v+52)/5)

βn(v) = 0.5 exp(−(v + 57)/40)

and the parameters are taken from [47]

Cm = 1 μF/cm2 gNa = 100 mS/cm2 gK = 80 mS/cm2

gL = 0.2 mS/cm2 gLD = 0.5 mS/cm2 ENa = 50 mV

EK = −100 mV EL = −67 mV

The cable parameters with the Traub model soma are

gLD = 0.5 mS/cm2 d = .002 cm RC = 0.1 kΩ · cm
L = .01 cm

5.8 Appendix C: Dendritic Effects in the Ball-and-

Stick Phase Model

Recall that the “filtering” effects of the dendrite are captured by cn(a) in equation

(5.3.7). In this section, we show that the cn(a) terms increase more slowly than the

Fourier components vn and zn decay and that, for the parameters considered here,

|cn(a)| ≈ 1 for small n. Therefore, the higher order cable properties of the dendrite

(i.e. effects beyond the leakage reversal potential, ELD) do not greatly influence the

behavior of the phase model for small n. Moreover, it is most often the case that

the Fourier series of the phase response curve is dominated by the first few modes

(see Figures 5.4.3 and 5.4.7). Therefore, even if ε(a)∂V
∂x

(0, t) contains higher modes in
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its Fourier expansion, they will be ‘zeroed out’ when multiplied by the PRC. Thus,

the phase model will not be greatly influenced by the cable properties and will be

dominated by the first few modes of the Fourier expansion of the Δω term.

Recall that cn(a) = bn tanh(bn
L

λ(a)
), with bn =

√
1 + gL

gLD
2πin/T̄ . For a sufficiently

long dendrite L
λ(a)

≥ 1.5, | tanh(bn
L

λ(a)
)| ∈ [0.9, 1.3]. Thus, cn(a) ≈ bn. Using the fact

that the nondimensional period, T̄ , is equal to the dimensional period, T , divided by

the somatic membrane time constant, τS , and the fact that τD = Cm

gLD
, we can rewrite

cn(a) as

cn(a) ≈ bn =

√
1 +

τD
τS

2πin
τS
T

=

√
1 +

τD
T

2πin. (5.8.1)

The magnitude and angle of the cn(a) terms is then given by

|cn(a)| =

(
1 + n2

(τD
T

2π
)2
) 1

4

(5.8.2)

φn =
1

2
arctan(2πn

τD
T

). (5.8.3)

Thus, |cn(a)| increases like n
1

2 . This implies that the effect of dendrite acts to amplify

the higher modes in the Fourier series. However, if τD

T
� 1, then |cn(a)| ≈ 1 for small

n.

For our simulations, the dendritic membrane time constant, τD, is set at 2 ms,

and the space constant, λ(a), ranges from O(10−3) to O(10−2) cm for the values of

dendritic radii that were used. For the Morris-Lecar and Traub et al. model neurons,

τD

T
∼ O(10−1). Thus, due to the facts that the Fourier coefficients zn rapidly decay

and that |cn(a)| ≈ 1 for small n, the higher order cable properties have a minimal
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effect on the phase model.

5.9 Appendix D: Two-Compartment Model

In this section we present the phase model reduction for the two compartment model

of a soma electrically coupled to a dendritic compartment. In this case, the phase

model can be obtained using two different limits: the limit of weak electrical cou-

pling and the limit of a large oscillator compartment attached to a smaller dendritic

compartment. However, in both limits, the behavior of the phase model qualitatively

matches that of the phase model derived from the ball-and-stick model. Thus, our

explanation for the non-intuitive frequency effects seen in the cable model can be

directly applied to the two-compartment model studied in Kepler et al. [51].

The soma is modeled as an isopotential compartment with Hodgkin-Huxley cur-

rents and the dendrite is modeled as a passive compartment electrically coupled to

the soma [59]

Cm
dvS
dt

= −Iion,S(vS(t), 	w) + I + gC

(
aD
aS

)2

(vD − vS) (5.9.1)

Cm
dvD
dt

= −gLD(vD − ELD) + gC(vS − vD), (5.9.2)

where vS(t) and vD(t) represent the voltage, inmV , of the somatic and dendritic com-

partment, respectively, at time t, gC is the gap junctional conductance inmS/cm2, aS

and aD represent the radii of the somatic and dendritic compartments, respectively,

in cm, and Iion,S(v, 	w) , Ī, gLD, Cm, and ELD are the same as in the ball-and-stick

model. In addition, I is assumed to be large enough so that the soma undergoes

periodic firing, i.e. limit cycle oscillations.
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Let VS,D = VS,D(t) =
vS,D(τD t̄)−EL

−EL
(where EL is the leakage reversal potential in

the soma), t̄ = t
τD

, and τD = Cm/gLD is the membrane time constant of the dendritic

compartment. Then, our equations become

dVS
dt̄

= −Īion,S(V (t̄), 	w) + Ī + εγ(VD − VS) (5.9.3)

dVD
dt̄

= −(VD − ĒLD) + ε(VS − VD), (5.9.4)

where γ =
(

aD

aS

)2

, ε = gC

gLD
, and ĒLD, Īion,S(V (t̄), 	w), and I are the same as for the

ball-and-stick model.

There are two possible approaches to the phase reduction at this point: (1) assume

that ε is the small parameter, or (2) assume that γ is the small parameter. Let us

first examine the case where ε is small and γ is O(1).

As with the ball-and-stick model, we can reduce the dynamics of our two com-

partment model to a single phase equation by assuming that gC � gLD and that γ is

O(1). Note, in this case, our assumption is that the coupling between the two com-

partments is what we are assuming is small while the ratio of the radii is assumed to

be O(1). Since ε appears in both equations (5.9.3) and (5.9.4), both compartments

will be behaving very similarly to their unperturbed (ε = 0) counterparts. Thus, the

dendritic compartment will go to its steady state, ĒLD, and the membrane potential

of the somatic compartment will go to its limit cycle, VLC(t̄). Our phase equation is

then

dθ

dt̄
= ω̄ + Δω̄ = ω̄ +

εγ

T̄

∫ T̄

0

Z(s)(ĒLD − VLC(s))ds, (5.9.5)
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where εγ(ĒLD − VLC) is the nondimensional coupling current under the assumption

that both VS and VD cling tightly to their steady states. Expanding Z(t̄) and VLC(t̄)

in Fourier series yields

dθ

dt̄
= ω̄ + εγ〈Z〉(ĒLD − 〈VLC〉) − εγ

T̄ 2

∑
n �=0

Z−nVn. (5.9.6)

where Vn are the coefficients of VLC , Zn are the coefficients of Z, and we have replaced

V0/T̄ and Z0/T̄ with 〈VLC〉, and 〈Z〉 as in equation (5.3.7). Note that this is the same

as the phase equation for the ball-and-stick model without the terms describing the

influence of the cable, i.e. cn(a).

Next, let us assume that γ is small and that ε is O(1). In this case, we are assuming

that the somatic compartment is much larger than the dendritic compartment. Thus,

the dendrite will have a minimal effect on the dynamics of the soma, implying that

the membrane potential of the somatic compartment will cling to its limit cycle,

VLC(t̄), while the somatic compartment will have an O(1) effect on the dynamics of

the dendritic compartment. Our phase equation is then

dθ

dt̄
= ω̄ + Δω̄ = ω̄ +

εγ

T̄

∫ T̄

0

Z(s)(VD(s) − VLC(s))ds, (5.9.7)

where the first order approximation to VD(t̄) is found by solving

dVD
dt̄

= −(VD − ĒLD) + ε(VLC(t̄) − VD). (5.9.8)
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Solving the above equation using Fourier series and plugging the result into equation

(5.9.7) yields

dθ

dt̄
= ω̄ + γ〈Z〉(ĒLD − 〈VLC〉)

[
ε

1 + ε

]
− γ

T̄ 2

∑
n �=0

Z−nVncn, (5.9.9)

where cn = ε(1+2πin/T̄ )

2πin/T̄+(1+ε)
. Thus, in this limit, there are filtering effects due to the ad-

dition of the dendritic compartment. Recall that time was nondimensionalized using

τD. This implies that T̄ = T/τD, where T is the dimensional period of oscillations.

Therefore, the magnitude of the cn terms can be written as

|cn| = ε

(
1 + (2πn τD

T
)2

(2πn τD

T
)2 + (1 + ε)2

) 1

2

. (5.9.10)

Equation (5.9.10) limits to 1 as n→ ∞. When τD

T
� 1, |cn| ≈ ε

1+ε
for small n, which

implies that the filtering effects are minimal.

In both scenarios presented above, the phase models qualitatively match the dy-

namics of the phase model derived from the ball-and-stick model.

5.10 Appendix E: The Effects of Dendritic Inputs

at Point Sources

In this section, we discuss how inputs to a thin dendrite affect the frequency of the

somatic oscillator. We show that point source inputs to the thin dendrite have the

same effect on the frequency as shifting the leakage reversal potential of the dendrite,
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ELD, by a constant value.

In the limit of ε� 1, a dendrite receiving K point source inputs and being driven

by an oscillatory soma is described by the following system of equations

g
∂V

∂t̄
=
∂2V

∂x̄2
− (V − ĒLD) +

K∑
n=1

Ānδ(x̄− x̄n) (5.10.1)

V (0, t̄) = VLC(t̄) (5.10.2)

∂V

∂x̄

(
L

λ(a)
, t̄

)
= 0. (5.10.3)

Due to the principle superposition, we can separate out the dendritic inputs and the

oscillatory boundary condition and solve

g
∂V

∂t̄
=
∂2V

∂x̄2
− V +

K∑
n=1

Ānδ(x̄− x̄n) (5.10.4)

V (0, t̄) = 0 (5.10.5)

∂V

∂x̄

(
L

λ(a)
, t̄

)
= 0, (5.10.6)

and

g
∂V

∂t̄
=
∂2V

∂x̄2
− (V − ĒLD) (5.10.7)

V (0, t̄) = VLC(t̄) (5.10.8)

∂V

∂x̄

(
L

λ(a)
, t̄

)
= 0, (5.10.9)

separately. Note that we solve equations (5.10.7-5.10.9) in section 5.3. Since we are
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concerned with the steady-state current that the dendritic inputs cause to be injected

into the soma, we can set the time derivative equal to zero in (5.10.4) and solve

−d
2V

dx̄2
+ V =

K∑
n=1

Ānδ(x̄− x̄n) (5.10.10)

V (0) = 0 (5.10.11)

dV

dx̄

(
L

λ(a)

)
= 0. (5.10.12)

The solution of the above system is given by the following Green’s function

g(x̄, x̄n) =

⎧⎪⎪⎨
⎪⎪⎩
Ān sinh(x̄) cosh

(
x̄n − L

λ(a)

)
/ cosh

(
L

λ(a)

)
if 0 ≤ x̄ ≤ x̄n ≤ L

λ(a)

Ān sinh(x̄n) cosh
(
x̄− L

λ(a)

)
/ cosh

(
L

λ(a)

)
if 0 ≤ x̄n ≤ x̄ ≤ L

λ(a)

(5.10.13)

Therefore, the current that the soma receives from these K dendritic inputs is given

by the following constant term

Īinput =

K∑
n=1

gx̄(0, x̄n) =

K∑
n=1

Ān

cosh
(
x̄n − L

λ(a)

)
cosh

(
L

λ(a)

) . (5.10.14)

Adding the above term to equation (5.3.5) yields

∂V

∂x̄
(0, t̄) =

(
ĒLD − V0

T̄

)
c0(a) − 1

T̄

∑
n �=0

cn(a)Vne
2πint̄/T̄ + Īinput. (5.10.15)

This changes the phase equation (5.3.7) to
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dθ

dt
= ω +

ε(a)

τS

[
〈z〉
(

(ELD − 〈vLC〉)c0(a) +
1

gLD
Iinput

)

− 2

T 2

∞∑
n=1

|znvncn(a)| cos(ψn(a) + γn − φn)
]
, (5.10.16)

where Iinput = −gLDELĪinput. Thus, the addition of point source inputs to the den-

drite can be completely incorporated into ELD, as c0(a) ∼ 1 for the parameter range

we considered.

If the point source input to the dendrite was noisy rather than constant, then the

current that the soma receives from this input will be a filtered version of the noise

due to the filtering properties of the dendrite. The main effect that this noisy input

will have on firing frequency is through its mean value, i.e. because of the linearity

of the cable, the mean of the noisy current would simply shift the value of Δω in the

phase model (5.3.7). This is due to the fact that the filtering effects of the dendrite

act to increase the correlation time of the noise. If the correlation time of the noisy

current that flows from the dendrite into the soma is larger than the relaxation time

back to the somatic limit cycle, then noisy input will have negligible effects on firing

frequency (see discussion) [101]. In this case, the noisy point source input will affect

firing frequency in the same way as a constant point source input which was discussed

above.

5.11 Summary and Closing Remarks

We have used the theory of weakly coupled oscillators to show that when the dendritic

influence is weak, its effect on the firing frequency of a nonlinear somatic oscillator
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is the same as an additional constant current injection to the soma. As such, the

dendrites’ affect on firing frequency can be understood in terms of the instantaneous

slope of the isolated neuronal oscillators frequency-applied current (f-I) curve (with

the caveat being that the cell is away from any saturation points).

The assumption that the dendritic influence on the somatic oscillator is weak

might be accurate for some neurons in certain areas of the brain. However, it could

certainly be the case that the dendrites of some neurons have a significant impact

on their electrical activity. Therefore, in the next chapter, we extend the results

presented in this chapter to examine how non-weak dendritic influences affect the

dynamics of neurons. We accomplish this by restricting the somatic dynamics to be

a variant of the leaky-integrate-fire neuron [1] that was discussed in Chapter 2. This

simplifies the ball-and-stick model since the integrate-and-fire model is linear until it

reaches a threshold nonlinearity.
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Chapter 6

Bistability in a Leaky

Integrate-and-Fire Neuron with a

Passive Dendrite

In this chapter, we examine the influence of dendritic load on the firing dynamics of a

spatially extended leaky-integrate-and-fire neuron that explicitly includes spiking dy-

namics. We obtain an exact analytical solution for this model using a non-orthogonal

basis expansion technique. We use this solution to derive a return map for the volt-

age of the dendrite. The map reveals that the addition of the dendrite can cause

the system to display bistable behavior between periodic firing and quiescence. The

periodic behavior arises from a “ping-pong” effect between the somatic and proximal

dendritic membrane potentials. This ping-pong effect was previously only described

in models that contain active dendritic conductances. We then show that the same

qualitative behavior is captured in a two-compartment model with a leaky-integrate-

and-fire compartment electrically coupled to a passive compartment.
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6.1 Introduction

Neurons are spatially extensive, heterogeneous objects. They typically consist of a

dendritic tree where the majority of inputs to the cell are received; a soma, or cell

body, where these inputs are integrated, an axon hillock where the integrated inputs

can cause the initiation of an action potential; and an axon where the action poten-

tial propagates along until it reaches the synaptic terminal and causes the release of

neurotransmitter onto a postsynaptic cell. The type of model one uses to represent

a neuron depends upon a balance between mathematical tractability and biological

realism and on the issue that is being addressed. A common technique in neuronal

modeling is to represent the neuron as a single-compartment object that ignores the

spatial anatomy of the cell. Although this simplification allows for greater mathemat-

ical tractability and computational efficiency, many neurons are not electrotonically

compact. Thus, single-compartment models cannot be expected to fully capture the

electrical behavior of neurons.

There are two main approaches utilized in examining the spatial properties of

neurons [11]. The first is using a system of ordinary differential equations connected

by electronic coupling (resistors) to model the neuron as a multi-compartmental ob-

ject [102]. Using this approach, various authors have shown that dendritic properties

can substantially change the firing pattern (e.g. induce bursting), encoding proper-

ties, and phase-locking behavior of neuronal oscillators [9, 22, 56, 59, 61, 77, 109].

Although this technique allows for greater flexibility in reproducing biological data,

the resulting models can be quite difficult to analyze when there is a large number

of compartments. The second technique involves using partial differential equations

to continuously model the spatial dynamics of the neuron [78, 79]. This approach

allows one to model the spatial voltage dynamics of the neuron continuously, and is
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somewhat more amenable to mathematical analysis. This is the approach we utilize

in this article.

In the previous work [94] (see also Chapter 5), we identified the mechanisms by

which weak dendritic influences modulate the firing frequency of a somatic oscillator.

We modeled the neuron as an isopotential somatic oscillator attached to a thin passive

dendritic cable, i.e. a “ball-and-stick” model [80], and as an isopotential somatic

oscillator compartment electrically coupled to a passive compartment, i.e. a two-

compartment model. We made no assumption about the dynamics of the somatic

oscillator, but we assumed that the dendrite was sufficiently thin so that the dynamics

of the soma were only weakly perturbed. Here, we extend our previous results to

examine the effects of non-weak dendritic influences. We make no assumptions about

the strength of the dendritic perturbation. Instead, we idealize our somatic dynamics

as a leaky-integrate-and-fire model that explicitly includes spike effects [17, 50, 58].

In this case, we obtain an exact analytical solution of the ball-and-stick model using

a non-orthogonal basis expansion technique [25, 18]. By examining the bifurcation

structure of the system under various parameter variations, we show that the influence

of the passive dendrite can cause the neuron to display bistability between periodic

firing and quiescence for certain somatic spike parameters. In this bistable regime,

the periodic behavior arises from a “ping-pong” effect [9, 109] between the somatic

and proximal dendritic membrane potentials. We then demonstrate that the same

qualitative behavior is captured in the two-compartment model.

6.2 Leaky-Integrate-and-Fire Ball-and-StickModel

We model a neuron as an isopotential spherical soma attached to a passive dendrite,

i.e. a ball-and-stick model [20]. The dendrite is modeled as a one-dimensional passive
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cable of electrotonic length � using the cable equation [78, 79, 80]

Cm
∂V̄

∂t̄
=

a

2Rc

∂2V̄

∂x̄2
− gLD(V̄ − ELD), (6.2.1)

where V̄ (x̄, t̄) is the voltage of the cable at position x̄ and time t̄, Cm is the membrane

capacitance, gLD is the leakage conductance, ELD is the leakage reversal potential, Rc

is the cytoplasmic resistivity, and a is the radius of the dendrite. Note that the cable

can be thought of as a single dendrite or as the equivalent cylinder of a branched

dendritic structure [79, 81].

No current is assumed to pass through the the distal end, x̄ = �, of the dendrite,

resulting in the boundary condition

∂V̄

∂x̄
(�, t̄) = 0. (6.2.2)

The boundary condition at x̄ = 0 is provided by the somatic dynamics and an

application of Kirchhoff’s law of current conservation. We use a leaky integrate-and-

fire neuron that includes a spike to model our isopotential soma [17, 50, 58]. Thus,

the non-spiking portion of the model is described by

Cm
∂V̄

∂t̄
(0, t̄) = −gL(V̄ (0, t̄) −EL) + Ī +

a2

d2Rc

∂V̄

∂x̄
(0, t̄), (6.2.3)

where gL is the somatic leakage conductances, EL is the somatic leakage reversal

potential, d is the diameter of the soma, and Ī is the current applied to the soma.
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Note that equations (6.2.1)-(6.2.3) describe the Rall lumped soma model (see section

3.5).

To incorporate spiking dynamics into the model, we require that when the somatic

membrane potential reaches a threshold potential of Vth at time t̄s, i.e. V̄ (0, t̄s) = Vth,

the proximal boundary condition (x̄ = 0) is changed to

V̄ (0, t̄) = h̄(t̄− t̄s); t̄ ∈ (t̄s, t̄s + T̄a], (6.2.4)

where h̄(t̄− t̄s) is some function to approximate the shape of the spike, and T̄a is the

duration of the spike.

In order to have the dynamics of the system uniquely determined, we also assume

that at time t̄ = 0, the initial voltage profile is described by some function V̄ 0(x̄)

V̄ (x̄, 0) = V̄ 0(x̄), x̄ ∈ [0, �], (6.2.5)

where the superscript in V̄ 0(x̄) is used to denote it as being the initial condition.

Thus, in non-dimensional form, the full leaky-integrate-and-fire ball-and-stick model

that incorporates spiking dynamics is given by
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∂V

∂t
=
∂2V

∂x2
− V, (6.2.6)⎧⎪⎪⎨

⎪⎪⎩
∂V

∂t
(0, t) = −GLV (0, t) + I + γ

∂V

∂x
(0, t) if V (0, t) ≤ 1 and t /∈ (ts, ts + Ta]

V (0, t) = h(t− ts) if V (0, t) > 1 or t ∈ (ts, ts + Ta]

(6.2.7)

∂V

∂x
(L, t) = 0 (6.2.8)

V (x, 0) = V 0(x), (6.2.9)

where V = V (x, t) = V̄ (x̄/λ,t̄/τD)−ELD

Vth−ELD
, λ =

√
a

2RcgLD
is the space constant of the

dendrite, τD = Cm/gLD is the time constant of the dendrite, ts = t̄s/τD, Ta = T̄a/τD,

h(t) = h̄(t̄/τD)−ELD

Vth−ELD
, L = �

λ
is the electrotonic length of the dendrite, GL = gL/gLD,

I = Ī+gL(EL−ELD)
gLD(Vth−ELD)

, and γ = a2

d2RcgLDλ
. Note that γ represents the strength of the

perturbation to the soma. The above model displays two types of characteristic

behavior depending on the value of I: (i) spatially constant steady-state behavior, or

(ii) repetitive firing.

6.3 Derivation of Return Map for the Cable Model

In this section, we outline the steps involved in obtaining the analytical solution to

the system described by equations (6.2.6)-(6.2.9). We construct a piecewise solution

to the entire system by piecing together the solution from time t = 0 to t = ts and

the solution from time t = ts to t = ts +Ta. More precisely, we first solve (6.2.6) with

the non-spiking proximal boundary condition in (6.2.7). If the somatic membrane

potential reaches 1, we call the time that is does so ts and then switch to the spike

proximal boundary condition and solve (6.2.6) in the time interval (ts, ts +Ta]. If the
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somatic membrane potential never reaches 1, then the full solution is given solving

the non-spiking portion of the model.

6.3.1 Non-Spiking Solution

In order to solve the non-spiking portion of the model, we first make the change of

variables W (x, t) = V (x, t) − V (x,∞), where

V (x,∞) = ρ cosh(L− x), (6.3.1)

is the steady state solution of the pre-spike system and ρ = I
γ sinh(L)+GL cosh(L)

. Using

separation of variables, W (x, t) can be written as

W (x, t) = [C1 sin(α(L− x)) + C2 cos(α(L− x))]e−(1+α2)t, (6.3.2)

where α is the separation constant.

Applying the non-spiking proximal boundary condition and the no-flux distal

boundary condition, one finds that C1 = 0 and that the eigenvalues α are the solutions

of the transcendental equation

1 =
GL − (1 + α2)

αγ
cot(αL), (6.3.3)

which has an infinite number of solutions (see Figure 6.3.1). W (x, t) can now be

written as an infinite series expansion in terms of eigenfunctions

W (x, t) =
∞∑

n=0

Bn cos(αn(L− x))e−(1+α2
n)t. (6.3.4)

Applying the initial condition (t = 0)
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Figure 6.3.1: Graphical representation of the eigenvalues (6.3.3). There are
an infinite number of solutions αn given by the intersection of the solid and dashed
lines. Since the eigenfunctions Xn = cos(αn(L− x)) are even, we need only consider
positive αn.

W (0, t) =

∞∑
n=0

Bn cos(αn(L− x)) = V 0(x) − V (x,∞). (6.3.5)

In order to find the coefficients Bn, the far right hand side of equation (6.3.5) must

be expanded in terms of the eigenfunctions Xn(x) = cos(αn(L−x)). The coefficients

of this expansion are easily determined if the set Xn(x) is orthogonal. In the limit

as γ → 0 and γ → ∞, the set of eigenfunctions Xn(x) are orthogonal. However,

for moderate values of γ, Xn(x) do not form an orthonormal set. This issue was

encountered in Durand [25] in their derivation of the somatic shunt cable model and

we follow their use of the modified orthogonality relation of Churchill [18] in order to

obtain the values for the expansion coefficients Bn. Specifically, Churchill [18] showed

that the set Xn(x) are orthogonal given the modified inner product
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B(f, g) =

∫ L

0

fgdx+ b0f(0)g(0) + b1f(L)g(L), (6.3.6)

i.e. B(Xn(x), Xm(x)) = 0. Since the boundary conditions are what make the set

Xn(x) non-orthogonal under the usual L1 inner product, equation (6.3.6) allows

Xn(x) to form an orthogonal set by modifying the usual L1 inner product to take

into account the boundary effects. Thus, the expansion coefficients are given by

Bn =
B(V 0(x) − V (x,∞), Xn(x))

B(Xn(x), Xn(x))
. (6.3.7)

The coefficients b0 and b1 in equation (6.3.6) are found to be 1
γ

and 0, respectively,

by converting the boundary conditions to the form

a0 V |x=0 +
dV

dx

∣∣∣∣
x=0

− b0 d
2V

dx2

∣∣∣∣
x=0

= 0 (6.3.8)

a1 V |x=L +
dV

dx

∣∣∣∣
x=L

+ b1
d2V

dx2

∣∣∣∣
x=L

= 0. (6.3.9)

Expanding V 0(x), and V (x,∞) in terms of the nonorthogonal basis elements Xn(x),

we can write the solution of the non-spiking portion of the model as

V (x, t) = W (x, t) + V (∞, t) (6.3.10)

=

∞∑
n=0

Bne
−(1+α2

n)t cos(αn(L− x)) + ρ

∞∑
n=0

gn cos(αn(L− x)), (6.3.11)

where
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Bn = V 0
n − ρgn (6.3.12)

V 0(x) =
∞∑

n=0

V 0
n cos(αn(L− x)) (6.3.13)

gn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 cosh(L)

cos(αnL)

1

1 + α2
n

γ tanh(L) +GL

βn + Lγ/ cos2(αnL) + 2
if αn �= 0

sinh(L) + 1
γ

cosh(L)

L+ 1/γ
if αn = 0

(6.3.14)

βn =
GL − (1 + α2

n)

α2
n

(6.3.15)

Equation (6.3.11) describes the non-spiking voltage of the dendrite. To obtain

the firing time, ts, of the soma, one must solve the following transcendental equation

V (0, ts) =
∞∑

n=0

(Bne
−(1+α2

n)ts + ρgn) cos(αnL) = 1. (6.3.16)

6.3.2 Dynamics During the Spike

Once the spike time ts is obtained, (6.2.6) is then solved with the spike boundary

condition from time ts to ts +Ta. To solve this system, we introduce the new variable

U(x, t) = V (x, t) − Y (x, t), where

Y (x, t) = h(t− ts)cosh(x− L)

cosh(L)
. (6.3.17)

This leads to the system
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∂U

∂t
=
∂2U

∂x2
− U − F (x, t) (6.3.18)

U(0, t) = 0 (6.3.19)

∂U

∂x
(L, t) = 0 (6.3.20)

U(x, ts) =
∞∑

n=0

(Bne
−(1+α2

n)ts + ρgn) cos(αn(L− x)) − Y (x, ts), (6.3.21)

where F (x, t) = h′(t − ts) cosh(x−L)
cosh(L)

. The solution of (6.3.18)-(6.3.21) is then found

using separation of variables, which yields the following solution for spiking portion

of the model

V (x, t) =

∞∑
m=0

Tm(t) cos(λm(x−L))+h(t− ts)cosh(x− L)

cosh(L)
; t ∈ (ts, ts +Ta], (6.3.22)

where

λm =
(2m+ 1)2π2

4L2
+ 1 (6.3.23)

Tm(t) = −e−λmt

∫ t

ts

Fm(s)eλmsds+ e−λm(t−ts)Tm(ts) (6.3.24)

Fm(t) =
2h′(t− ts)
L cosh(L)

2L(2m+ 1)π(−1)m cosh(L)

4L2 + (2m+ 1)2π2
(6.3.25)

F (x, t) =
∞∑

m=0

Fm(t) cos(λm(x− L)) (6.3.26)

Tm(ts) =
2

L

[ ∞∑
n=0

(
Bne

−(1+α2
n)ts + ρgn − h(0)

cosh(L)
gn

)

×2(2m+ 1) π
L
(−1)m cos(αnL)

[(2m+ 1) π
L
]2 − 4α2

n

]
. (6.3.27)
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6.3.3 Full Solution and Return Map

The full solution of system (6.2.6)-(6.2.9) from time t = 0 to t = ts + Ta is given by

V (x, t) =

⎧⎪⎪⎨
⎪⎪⎩
∑∞

n=0(Bne
−(1+α2

n)t + ρgn) cos(αn(L− x)) if 0 < t ≤ ts
∑∞

n=0(An(t) +H(t)gn) cos(αn(L− x)) if ts < t ≤ ts + Ta,

(6.3.28)

where

An(t) =

∑∞
m=0 Tm(t)

[
4γ(2n+1)π/L(−1)n

((2n+1)π/L)2−4α2
n

+ 2 cos( (2m+1)π
2

)
]

cos(αnL)(βn + Lγ/ cos2(αnL) + 2)
(6.3.29)

H(t) =
h(t− ts)
cosh(L)

. (6.3.30)

We have expanded the eigenfunctions of (6.3.18)-(6.3.21) in terms of the nonorthog-

onal eigenfunctions of the non-spiking solution for simplicity of notation. If we now

let tjs be the time of the jth somatic spike, the general solution can be written as

V (x, t) =

⎧⎪⎪⎨
⎪⎪⎩
∑∞

n=0(B
j
ne

−(1+α2
n)(t−(tj−1

s +Ta)) + ρgn) cos(αn(L− x)) if tj−1
s + Ta < t ≤ tjs∑∞

n=0(A
j
n(t) +H(t)gn) cos(αn(L− x)) if tjs < t ≤ tjs + Ta.

(6.3.31)

Let V j
n be the coefficients of the nonorthogonal basis expansion of the voltage trace

right after the jth spike. We can then define a return map for the coefficients of our

expansions
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φ1 : V j
n → Bj+1

n e−(1+α2
n)(tj+1

s −(tjs+Ta)) + ρgn

φ2 : Bj+1
n e−(1+α2

n)(tj+1
s −(tjs+Ta)) + ρgn → Aj+1

n (tj+1
s + Ta) +H(tj+1

s + Ta)gn = V j+1
n

Φ = φ2 ◦ φ1 : V j
n → V j+1

n , (6.3.32)

again where tj+1
s is found by solving

∞∑
n=0

(Bj+1
n e−(1+α2

n)(tj+1
s −(tjs+Ta)) + ρgn) cos(αnL) = 1, (6.3.33)

and Bj+1
n = V j

n −ρgn. Figure 6.3.2 plots an example of the return map (6.3.32). Fixed

points of this map correspond to either oscillatory or constant somatic dynamics.

In the next section, we use the analytic solution to probe the model’s behav-

ior. Although the solution is in the form of an infinite series, the coefficients decay

fairly rapidly as n is increased. Therefore, we truncate the series to include the

first 10 terms. We checked the accuracy of the truncated series against the solution

found from numerically simulating the model (6.2.6)-(6.2.9) using the Crank-Nicolson

method. We found that the two solutions were in very good agreement and that the

analytic solution was obtained in far less time than the numerically simulated one.

6.4 Model Behavior

In this section, we describe the results obtained by numerically iterating the map

found in the previous section using two different spike approximation functions, h(t):

a “sigmoidal” spike, and a “linear” spike. We analytically determine the param-
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(a) V j
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Figure 6.3.2: Return Map for the Leaky-Integrate-and-Fire Ball-and-Stick
Model. (a) φ1 maps the voltage profile of the dendrite immediately after the jth

somatic spike t = tjs + Ta to the voltage profile when the the somatic (x = 0) voltage
has reached 1, i.e. V (0, tj+1

s ) = 1. (b) φ2 jumps the voltage at the soma up to a value
β at time tj+1

s then maps the corresponding voltage profile to the voltage profile at
the end of the j+1st spike where the somatic voltage is reset to VR. The composition
of the two maps Φ = φ2 ◦ φ1 maps the voltage profile from immediately after the jth

somatic spike to the profile at the end of the j + 1st spike.

eter values where the quiescent state disappears and leads to periodic oscillations.

Furthermore, by using the map, we find regions in parameter where the system can

display bistability between periodic firing and quiescence. We then examine the ef-

fects of altering the various parameters on the size of the bistable region.
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6.4.1 “Sigmoidal” Spike

When the voltage at the soma reaches threshold, the sigmoidal spike jumps the

voltage up to a value β, holds it there for a time Ta, and then quickly, but smoothly,

resets the somatic voltage to a value of VR (see Figure 6.4.1). In equation form, the

sigmoidal spike is

h(t− ts) = β(1 − ep(t−ts−Ta))4 + VR(1 − (1 − ep(t−ts−Ta))4); t ∈ (ts, ts + Ta], (6.4.1)

where β represents the maximal somatic potential that is reached during the spike,

Ta is the duration of the spike, VR is the value of the somatic potential after the spike

has completed, and we set p = 80 in all of the figures shown. Note that the function

h(t) converges to the heaviside function (6.7.1) as p→ ∞. Thus, the sigmoidal spike

can be thought of a continuous approximation to the box function.

Somato-Dendritic “Ping-Pong”

Recall that the steady state voltage of equation (6.2.6) with the non-spiking proximal

boundary condition is described by equation (6.3.1). Using this equation, one can

determine that the amount of current needed to bring the steady state voltage of the

soma (x = 0) above threshold is

Īs = γ tanh(L) +GL. (6.4.2)

If a current greater than Īs is applied to the soma, i.e. I > Īs, then the steady-state

voltage of the soma is guaranteed to be above the threshold voltage of 1. This implies
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Figure 6.4.1: Voltage Trace at the Soma (x = 0) with the “Sigmoidal” Spike
Function (6.4.1). The sigmoidal spike jumps the voltage up to a value β, holds it
there for a time Ta, and then quickly, but smoothly, resets the somatic voltage to a
value of VR. In all of the subsequent figures, p = 80.

the steady-state voltage profile given by (6.3.1) has disappeared, and the soma will

fire periodically. On the other hand, if I < Īs, then the system will go to the steady-

state voltage profile given by equation (6.3.1). Notice that equation (6.4.2) separates

the influences of the dendrite from the intrinsic properties of the leaky-integrate-and-

fire soma. That is, the first term on the righthand side accounts for the effects of

the dendritic load on the firing dynamics of the soma. Since this term limits to γ

as L → ∞, an applied current greater than γ + GL guarantees that the soma will

fire periodically. Thus, the length of the dendrite has a limited effect on the firing

dynamics of the soma, while increasing the strength of the dendritic perturbation,

γ, will always increase the applied current necessary to guarantee periodic firing of

the soma. The second term on the righthand side of equation (6.4.2) is what one

would obtain for the standard leaky-integrate-and-fire model and it tells us that, as
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the soma gets leakier, more applied current is needed to guarantee periodic firing.

The frequency-applied current curve for the standard leaky-integrate-and-fire neu-

ron, which corresponds to γ = 0 in our model, is plotted in Figure 6.4.2 (a). As

expected from equation (6.4.2), an applied current greater than GL causes the stable

steady-state to disappear, and the system to fire periodically. If γ �= 0 as in Figure

6.4.2 (b), one can see that the system does indeed fire periodically when I > Īs ≈ 3.

However, the oscillatory regime also extends backwards beyond Īs. That is, the addi-

tion of the dendrite causes there to be a region of bistability between periodic firing

and a stable steady-state, i.e. quiescence.
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Figure 6.4.2: Addition of the Dendrite Causes Bistability in the Leaky-
Integrate-and-Fire Neuron. (a) Frequency-applied current curve for the standard
leaky-integrate-and-fire neuron, γ = 0 in our model, when GL = 2 and VR = −2. As
predicted from equation (6.4.2), an applied current greater than 2 causes the stable
steady-state corresponding to quiescence to disappear. As such, the system only
has a stable oscillatory solution and fires periodically. (b) Frequency-applied current
curve for the leaky-integrate-and-fire ball-and-stick model. For these parameters,
the current needed to bring the steady state voltage of the soma above threshold is
Īs ≈ 3. However, it is clearly seen that the periodic solution stably coexists with the
quiescent solution before the applied current reaches Īs.

The periodic firing of the soma when I < Īs seen in Figure 6.4.2 (b) can be

explained by examining the spatial voltage profiles at different times during the cycle
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Figure 6.4.3: Voltage Traces of the Dendrite at Different Times During
the Cycle Illustrating Somato-Dendritic “Ping-Pong” for the “Sigmoidal”
Spike. As the soma spikes, the dendrite is depolarized to a large enough potential
so that, when the somatic potential is reset, the the potential difference between
the soma and proximal dendrite causes a depolarizing current to flow into the soma.
This current brings the soma back above threshold even though the applied current is
below Īs. The parameters used in this simulation are L = 3, GL = 2, γ = 1, I = 1.5,
β = 28, VR = −2, Ta = .2. Note that for these parameter values, Īs = 3. The arrows
indicate the direction of depolarizing current flow between the soma and dendrite.

as in Figure 6.4.3. The portion of the dendrite proximal to the soma becomes so

depolarized during a spike that, once the soma has been reset, the potential gradient

between the soma and proximal dendrite causes a depolarizing current to flow into the

soma. This current brings the membrane potential of the soma back above threshold

even when the applied current to the soma is insufficient to bring the steady-state

somatic potential above threshold. Thus, the cell is held in the oscillatory regime by

a constant “ping-ponging” of the somatic and dendritic potentials. Note that this

behavior can only occur when the area of the spike is sufficiently large and when the
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dendrite has a non-weak effect on the soma, i.e. γ is not small. That is, the height

of the somatic spike β has to be sufficiently large and has to occur for a long enough

period of time so as to allow the proximal dendrite time to depolarize. When the soma

is reset, the current that flows into the soma due to potential gradient between the

soma and proximal dendrite is represented by the term γ ∂V
∂t

(0, t) in the non-spiking

boundary condition. Thus, if γ is very small, the current that flows into the soma

after the spike will not be sufficient to drive its voltage back above threshold.

In the next section, we examine the effects that changing the different system

parameters have on the size of the bistable region.

Effects of Parameters on the Region of Bistability

Figure 6.4.4 shows how the spike parameters β and Ta affect the region of bistability.

The figure shows two parameter bifurcation diagrams for the applied current to the

soma, I, versus the maximum somatic depolarization during the spike, β, and I versus

the duration of the spike, Ta. Note that, for all values of β and Ta, the neuron is in

the monostable firing regime when the applied current is above Īs (solid black line in

both plots). This is due to the fact that the spike parameters β and Ta do not affect

Īs. Figure 6.4.4 (a) shows that a sufficiently large amplitude of the spike is needed

in order for bistability to occur, and that, as β is increased, the size of the bistable

region increases as well, i.e. the dash-dotted line decreases as β is increased. This

is due to the fact that larger somatic spike heights cause a larger depolarizations of

the proximal dendrite. Figure 6.4.4 (b) shows that, as the duration of the spike is

increased, the size of the bistable region initially increases, but eventually reaches a

constant value with further increases in Ta. This can be explained as follows. When

Ta is large, the somatic potential is held at the depolarized value of β for a long
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time. This allows the potential of the dendrite time to equilibrate to the somatic

potential. This gives rise to a large amount of current that flows back into the soma

after the somatic reset, thus producing the ping-pong effect, i.e. the dash-dotted

line branching off from the solid line in the figure. However, further increases in

Ta will result in only minimal increases in the proximal dendritic potential, i.e. the

maximum amount of current that the dendrite can drive back into the soma after

reset saturates as Ta is increased. Thus, further increases in Ta do not decrease the

amount of applied current necessary to sustain the ping-pong effect.
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Figure 6.4.4: Effects of Altering Spike Parameters on the Size of the Bistable
Region Using the Sigmoidal Spike. In this figure and all subsequent figures, the
solid line represents Īs while the dash-dotted line represents the minimum amount of
applied current needed to sustain the ping-pong effect, i.e. the curve in parameter
space where the oscillatory solution first stably coexists with the quiescent solution.
(a) Two parameter bifurcation diagram for the applied current to the soma, I, versus
β reveals that a sufficiently large amplitude of the somatic spike is necessary for
the ping-pong effect to occur. (b) The I versus Ta bifurcation diagram shows that
increasing Ta initially decreases the applied current needed to sustain the ping-pong
effect (dash-dotted line), but a point is eventually reached where further increases in
Ta no longer affect the size of the bistable region.

Figure 6.4.5 illustrates how changes in the dendritic parameters affect the region

of bistability. Figure 6.4.5 (a) shows the two parameter bifurcation diagram of the
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applied current versus the parameter γ, which scales the dendritic current that flows

into the soma. The figure reveals that the amount of applied current needed to drive

the neuron into the monostable firing regime increases linearly as γ is increased.

Note that this relationship follows directly from equation (6.4.2). However, by non-

dimensionalizing the system, we have lost any dependence of Īs on the leakage reversal

potential of the dendrite ELD. Intuitively, if the dendrite acts as a “load” on the soma,

i.e. ELD < Vth, then the amount of applied current needed to sustain monostable

firing should increase as the dendritic influence on the soma, γ, is increased. On

the other hand, if ELD > Vth, the dendrite should drive depolarizing current into the

soma (when the somatic potential is subthreshold) and the amount of applied current

needed to sustain monostable firing should decrease with increasing γ. Therefore, for

further insight into system behavior, we present the dimensional form of Īs, īs

īs = γgLD(Vth − ELD) tanh(L) + gL(Vth − EL). (6.4.3)

When ELD < Vth (ELD > Vth), īs increases (decreases) with increasing γ. Thus, īs

agrees with our physical intuition about the load properties of the dendrite. Figure

6.4.5 (a) also shows that γ has to be sufficiently large in order for the ping-pong

effect to occur, and that further increases in γ decrease the amount of applied current

needed to sustain the ping-pong effect. This can be explained by considering the non-

spiking somatic boundary condition. That is, the dendritic current (γ ∂V
∂x

(0, t)) can

be quite large after the spike due to the potential gradient. Increasing γ increases

the depolarizing current that flows from the dendrite into the soma after the spike.

Thus, the soma requires less applied current to sustain the ping-pong effect as γ is

increased.

Figure 6.4.5 (b) plots the two parameter bifurcation diagram of the applied current
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Figure 6.4.5: Effects of Altering Intrinsic Parameters on the Size of the
Bistable Region Using the Sigmoidal Spike. (a) Two parameter bifurcation
diagram of the applied current versus the parameter γ which represents the strength
of the dendritic perturbation. The amount of current needed to drive the neuron
into the monostable firing regime increases linearly as γ is increased as illustrated
by equation (6.4.2). However, the amount of applied current needed to sustain the
ping-pong effect decreases and even becomes negative as γ is increased. (b) Two
parameter bifurcation diagram of the applied current versus the electrotonic length
of the dendrite, L. The diagram reveals that there is an optimal length of the dendrite
for which there is the largest range of applied current that sustains the ping-pong
effect. Also, the figure shows that it is possible for the system to transition from
monostable firing to quiescence to bistable firing and back to quiescence as L is
increased. (c) Two parameter bifurcation diagram of the applied current versus the
ratio of the somatic and dendritic leakage conductance, GL. As with increasing γ, the
amount of current needed to push the cell into the monostable firing regime increases
linearly as GL is increased (see equation (6.4.2)). The diagram reveals that, for the
spike parameters listed, the soma has to be “leakier” than the dendrite in order for
the ping-pong effect to occur. However, if the soma becomes too leaky, then the
oscillations can be killed off altogether.
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versus the electrotonic length of the dendrite, L. For small values of I, i.e. below

about .8, there are no values of L for which the cell fires periodically. For values of I

from around .8 to 2, the neuron does not fire periodically for small values of L. This

occurs because, when the length of dendrite is small, the dynamics of the dendritic

potential are dominated by the dynamics of the the somatic potential. Therefore, if

I < Īs, then the neuron goes to the stable steady-state (quiescence). Eventually, as

L is increased, the cable becomes long enough so that the dynamics of the dendritic

potential can differ from that of the somatic potential, i.e. the dendritic potential

can remain depolarized even after somatic reset. This causes the ping-pong effect to

occur, and the neuron can fire periodically. However, as L is increased further, the

neuron no longer fires periodically and goes back to quiescence. This is due to the

fact that when the length of the dendrite is large, the dendrite acts as a current sink

for the soma, and more applied current is needed to sustain the ping-pong effect.

For intermediate values of I, from 2 to about 2.48, the current is enough to bring

the potential soma above threshold for small L. However, as L is increased, the

applied current becomes insufficient to drive the somatic potential above threshold

and the neuron enters a small region of quiescence. This is due to the fact that Īs

is an increasing function of L. Therefore, as soon as Īs becomes greater than I, the

neuron goes back to quiescence because the dendrite is still short enough so that its

voltage dynamics are dominated by the somatic potential. As with the values of I

between .8 and 2, the neuron then goes to bistability followed by quiescence as L is

increased further. There is also a region of applied current, around 2.7 to 2.8, where

the neuron starts off in the monostable firing regime, and then enters and remains

in the bistable firing regime as L is increased. This occurs because I stays above

Īs even when L becomes large enough for the ping-pong effect to occur. Therefore,
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as soon as Īs becomes greater than I, the neuron goes into the bistable region, and

never goes into a state of only quiescence. The figure also reveals that there is an

optimal length of the cable for which there is the largest range of applied current that

sustains the ping-pong effect. This occurs at the point where the dendrite drives the

maximum amount of depolarizing current into the soma after somatic reset.

Figure 6.4.5 (c) plots the two parameter bifurcation diagram of the applied current

versus the ratio of the somatic and dendritic leakage conductance, GL. The figure

shows that if the dendrite is more leaky than the soma, i.e. GL < 1, the ping-pong

effect can not occur for the spike parameters given. Triggering the ping-pong effect

to when GL < 1 would require and even larger somatic spike height. When the

soma is more leaky, i.e. GL > 1, a greater amount of current is needed to drive it

above threshold. However, if the soma is started off spiking, the spike causes a large

depolarization in the dendrite, as it is less leaky than the soma, and the dendrite

drives a greater amount of depolarizing current into the soma after somatic reset.

Thus, less applied current is needed to sustain the ping-pong affect. However, since

the soma becomes more leaky as GL is increased, the amount of applied current

needed to sustain the ping-pong effect also increases.

6.4.2 “Linear” Spike

When the voltage at the soma reaches threshold, the linear spike jumps the voltage

up to a value β and then linearly decreases the voltage with slope VR−β
Ta

until it reaches

VR (see Figure 6.4.6). In equation form, the linear spike is

h(t− ts) =

(
VR − β
Ta

)
(t− ts) + β. (6.4.4)

Once again, β represents the maximum somatic potential that is reached during the
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Figure 6.4.6: Voltage Trace at the Soma (x = 0) with the “Linear” Spike
Function (6.4.4). After reaching threshold, the somatic potential is jumped up to
a value β. The potential then linearly decreases to VR.

spike, Ta is the duration of the spike, and VR is the value of the somatic potential

after the spike has completed.

As in the case of the sigmoidal spike, bistability between periodic firing and qui-

escence can also be seen with the linear spike. The bistability again occurs as a

result of a somato-dendritic ping-pong effect. The bifurcation diagrams for the linear

spike are all qualitatively similar to those for the sigmoidal spike except for the two

diagrams shown in Figure 6.4.7. Compare the diagram for I versus Ta in Figure 6.4.7

(a) to that of Figure 6.4.4 (b). Although the bifurcation to bistability occurs simi-

larly for both spike types, bistability eventually ceases as the duration of the linear

spike becomes too large. This is due to the fact that as the duration of the spike

becomes larger, the slope of the linear spike gets smaller, allowing the dendrite more

time to equilibrate to the somatic potential. Eventually, the duration of the spike
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is long enough so that the proximal dendritic potential is able to exactly track the

somatic potential as it decreases to the reset potential. Thus, there is no longer a

large potential gradient between the proximal dendrite and the soma after the spike,

and the ping-pong effect ceases to occur.
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Figure 6.4.7: Altering Spike Duration and Electrotonic Length of the Den-
drite Using the Linear Spike Reveal Differences in the Qualitative Behav-
ior of the System with the Different Spike Shapes. (a) Applied current versus
spike duration bifurcation diagram shows that there is an optimal length of the spike
for which there is the largest range of applied current that sustains the ping-pong
effect. This is due to the fact that the linear spike has a slower reset as Ta is increased.
(b) Applied current versus eletrotonic length bifurcation diagram for the linear spike
shows that there is a region of applied current for which the neuron can go from the
monostable firing regime to quiescence and never pass into the bistable region as L
is increased.

Figure 6.4.7 (b) reveals that the bifurcation diagram for applied current versus

electrotonic length for the linear spike is similar to the sigmoidal spike (see Figure

6.4.5 (b)) except that the linear spike causes there to be a region of applied current,

around 2 to 2.1, such that the cell can go from the monostable firing regime to

quiescence and never pass into the bistable region as L is increased. This is due to

the fact that the sigmoidal spike allows the dendrite more time to equilibrate to the
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maximum somatic potential during the spike. This causes more current to be driven

into the soma after reset, which means that less applied current is needed to sustain

the ping-pong effect. Thus, the size of the bistable region for the sigmoidal spike will

be larger than that of the linear spike.

6.5 Two Compartment Leaky-Integrate-and-Fire

Model

Although we are able to derive the analytical solution to the leaky-integrate-and-fire

ball-and-stick model, the form of the solution is difficult to analyze mathematically.

In order to obtain a more tractable solution, we reduce the complexity of the leaky-

integrate-and-fire ball-and-stick model by lumping the dendritic cable into a single

passive compartment that is electrically coupled to a leaky-integrate-and-fire neuron

that explicitly includes spike effects, i.e. a two-compartment model [9, 22, 59, 77]. In

this case, we obtain a one-dimensional map that completely captures the dynamics

of the system.

The dendrite is now modeled a single passive compartment that is electrically

coupled to the soma

Cm
dV̄D
dt̄

= −gLD(V̄D −ELD) +
gc
AD

(V̄S − V̄D) (6.5.1)

where V̄D is the voltage of the dendritic compartment, Cm is the membrane capaci-

tance, gLD is the dendritic leakage conductance, ELD is the dendritic leakage reversal

potential, gc is the gap junctional conductance, and AD is the area of the dendritic

compartment.

The soma is modeled as a leaky-integrate-and-fire compartment. The non-spiking
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voltage of the soma is governed by

Cm
dV̄S
dt̄

= −gLS(V̄S − ELS) +
gc
AS

(V̄D − V̄S) + Ī , (6.5.2)

where V̄S, is the voltage of the somatic compartment, ELS is the leakage reversal

potential of the somatic compartments, gLS is the somatic leakage conductance, Ī is

the applied current to the soma, and AS is the area of the somatic compartment. As

in the previous section, when VS reaches a threshold voltage at time t̄s, V̄S(t̄s) = Vth,

the voltage of the soma is then given by

V̄S(t̄) = h̄(t̄− t̄s), (6.5.3)

where h̄(t̄) is some function to approximate the shape of the spike for t̄ ∈ (t̄s, t̄s + T̄a].

In non-dimensional form, the leaky-integrate -and-fire two-compartment model is

given by

dVD
dt̄

= −VD + αg(VS − VD) (6.5.4)⎧⎪⎪⎨
⎪⎪⎩
dVS
dt

= −glkVS + g(VD − VS) + I if VS(t) ≤ 1 and t /∈ (ts, ts + Ta]

VS(t) = h(t− ts) if VS(t) > 1 or t ∈ (ts, ts + Ta],

(6.5.5)

where Vj(t) =
V̄j(t̄/τD)−ELD

Vth−ELD
and j = S,D, τD = Cm/gLD, α = AS

AD
, g = gc

ASgLD
,

glk = gLS/gLD, I = Ī+gLS(ELS−ELD)
gLD(Vth−ELD)

, and h(t) = h̄(t̄/τD)−ELD

Vth−ELD
.



6.6. One Dimensional Map for the Two Compartment Model 146

6.6 One Dimensional Map for the Two Compart-

ment Model

We reduce the dynamics of the full two-compartment model to a one-dimensional

return map. The idea behind this is as follows. When the steady-state of the non-

spiking somatic dynamics is above the threshold of 1, the soma fires periodically

and the system is in the monostable oscillatory regime. However, if the steady-

state is below 1, then there are three scenarios that can take place depending upon

initial value of the dendritic potential (see Figure 6.6.1). The first scenario is that

the system goes to its steady-state corresponding to quiescence (far left trajectory

in Figure 6.6.1). The second scenario is that the trajectory of the system crosses

threshold (far right trajectory in Figure 6.6.1), and the somatic dynamics are switched

to the spiking dynamics for a time Ta after which the potential is returned to a value

VR and everything starts all over again. The last scenario is that the trajectory

touches the threshold, but does not cross it and the system goes to the steady-

state (middle trajectory in Figure 6.6.1). This last scenario separates the system

trajectories into values of the initial dendritic voltage that will lead to steady-state

behavior, VD(0) < V ∗, and values of the initial dendritic voltage that will lead to

spiking, VD(0) > V ∗. The ping-pong effect has a chance of occurring only when

VD(0) > V ∗. Therefore, to derive the return map for the system we must first derive

the analytical solution for the non-spiking portion of the model, find the value for V ∗

that separates initial dendritic voltages that lead to steady-state behavior from those

that lead to spiking, and then derive the analytical solution for the spiking portion

of the model.
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Figure 6.6.1: Phase Plane for the Non-Spiking Portion of the Two-
Compartment Model. The trajectory that begins at (V ∗, VR) touches the somatic
threshold value of 1, but does not cross it. Therefore, V ∗ is the value of VD(0) (given
that VS(0) = VR) that separates trajectories between those that cross threshold and
those that converge to the steady state. Note that, once the trajectory crosses thresh-
old, the dynamics are then governed by the spiking portion of the model after which
the somatic potential is brought back to VR = −2.

6.6.1 Non-Spiking Solution

The solution to the non-spiking portion of the two-compartment model is given by

VS(t) = c1v11e
λ1t + c2v21e

λ2t + V ss
S (6.6.1)

VD(t) = c1v12e
λ1t + c2v22e

λ2t + V ss
D , (6.6.2)

where
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V ss
S =

I(1 + αg)

g + glk + gαglk
(6.6.3)

V ss
D =

Iαg

g + glk + gαglk
(6.6.4)

λ1 =
1

2

(
−1 − g − glk − gα−

√
(1 + g + glk + gα)2 − 4(g + glk + gαglk)

)
(6.6.5)

λ2 =
1

2

(
−1 − g − glk − gα+

√
(1 + g + glk + gα)2 − 4(g + glk + gαglk)

)
(6.6.6)

v11 =
1 + gα+ λ1

gα
(6.6.7)

v12 = 1 (6.6.8)

v21 =
1 + gα+ λ2

gα
(6.6.9)

v22 = 1 (6.6.10)

c1 =
v11v21(V

ss
D − VD(0)) + (v11 + v22)(VS(0) − V ss

S )

v11(v11 − v12v21 + v22)
(6.6.11)

c2 =
v12(VS(0) − V ss

S ) − v11(VD(0) − V ss
D )

v12v21 − v11v22 . (6.6.12)

An examination of the phase portrait in Figure 6.6.1 reveals that the system has

one stable fixed point given by (V ss
D , V

ss
S ). Using equation (6.6.3) one can determine

the amount of current needed to raise V ss
S above threshold

Īs =
g

1 + αg
+ glk. (6.6.13)

If I > Īs then V ss
S > 1 and the soma will be in the oscillatory regime. As with the ball-

and-stick model, equation (6.6.13) separates out the influences of the dendrite from

the intrinsic properties of the leaky-integrate-and-fire soma. That is, the first term

on the righthand side is the dendritic influence on the firing dynamics of the soma.

If g = 0, meaning the two compartments are uncoupled, this term disappears and
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Īs simplifies to what one would obtain from the usual leaky-integrate-and-fire model.

The first term on the righthand side also disappears if α� 1. This implies that the

soma is much larger than the dendrite, and its dynamics dominate the dynamics of

the two-compartment model. On the other hand, if the dendrite is much larger than

the soma, then α ≈ 0 and Īs = g + glk. Thus, it would appear that the dendrite

always acts as load on the soma, and increasing g would cause the amount of current

needed to drive the cell into the oscillatory regime, Īs, to also increase. However, as

with the ball-and-stick model, let us examine the dimensional version of Īs, īs

īs =
gc(Vth − ELD)

1 + αg
+ gLS(Vth −ELS). (6.6.14)

Now, when the dendrite is much larger than the soma, i.e. α ≈ 0, īs = gc(Vth −
ELD) + gLS(Vth − ELS). Therefore, when ELD < V th the dendrite acts as a load on

the soma, while when ELD > Vth the dendrite acts as a current source, and increasing

gc causes īs to decrease. Note that this is exactly what was found before with the

ball-and-stick model. However, for moderate values of α, Īs limits to 1
α

+ glk. Thus,

increasing g will have a limited effect on the behavior of the system for moderate

values of α. This is similar to increasing L in equation (6.4.2)

6.6.2 Derivation of V ∗

As stated earlier, even if the steady state somatic potential is below threshold, there

may still be initial values of the dendritic potential that will cause the trajectory

in phase space to cross the threshold. Given that the initial somatic voltage is VR,

the value of the initial dendritic potential that separates trajectories from those that

cross threshold and those that go to the steady state is given by V ∗. The trajectory

that starts at this value (V ∗, VR) touches the threshold, but does not cross it. Thus,
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we know that this trajectory passes through the point where dVS

dt
= 0 and VS = 1.

Using the nullcline for VS, we find that the solution curve must pass through the

point (VD, VS) =
(

glk+g−I
g

, 1
)
. The trajectory that passes through this point is given

by

V ∗
S (t) = c∗1v11e

λ1t + c∗2v21e
λ2t + V ss

S (6.6.15)

V ∗
D(t) = c∗1v12e

λ1t + c∗2v22e
λ2t + V ss

D (6.6.16)

c∗1 =
v11v21(V

ss
D −

(
glk+g−I

g

)
) + (v11 + v22)(1 − V ss

S )

v11(v11 − v12v21 + v22)
(6.6.17)

c∗2 =
v12(1 − V ss

S ) − v11(
(

glk+g−I
g

)
− V ss

D )

v12v21 − v11v22 . (6.6.18)

The following equation is then solved to find the time t∗ when V ∗
S (t∗) = VR

V ∗
S (t∗) = c∗1v11e

λ1t∗ + c∗2v21e
λ2t∗ + V ss

S = VR. (6.6.19)

The value of the initial dendritic potential that separates trajectories from those that

cross threshold and those that go to the steady state is then given by V ∗ = V ∗
D(t∗).

6.6.3 Spiking Solution and Return Map

The map that takes an initial value of VD when VS = VR to its value when VS = 1

can now be written as
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φ1(V
k
D) =

⎧⎪⎪⎨
⎪⎪⎩
c1(V

k
D)v12e

λ1tks + c2(V
k
D)v22e

λ2tks + V ss
D if V k

D > V
∗

V ss
D if V k

D ≤ V ∗,

(6.6.20)

where V k
D is the potential of the dendritic compartment immediately after the kth

somatic spike and

c1(V
k
D) =

v11v21(V
ss
D − V k

D) + (v11 + v22)(VR − V ss
S )

v11(v11 − v12v21 + v22)
(6.6.21)

c2(V
k
D) =

v12(VR − V ss
S ) − v11(V k

D − V ss
D )

v12v21 − v11v22 . (6.6.22)

The time of the kth somatic spike, tks , is obtained from solving

c1(V
k
D)v11e

λ1tks + c2(V
k
D)v21e

λ2tks + V ss
S = 1. (6.6.23)

Lastly, the value of VD after the cell has spiked is obtained by solving equation

(6.5.4) from time t = tks to t = tks + Ta using φ1(V
k
D) as the initial condition

V k+1
D = φ2 ◦ φ1(V

k
D) =

⎧⎪⎪⎨
⎪⎪⎩
e−(1+αg)Ta

(
φ1(V

k
D) + αg

∫ Ta

0
h(s)e(1+αg)sds

)
if V k

D > V
∗

V ss
D if V k

D ≤ V ∗.

(6.6.24)

Note that, when V k
D > V

∗, φ2 is a linear map and, in the limit as h(t) → βδ(t) and

Ta → 0, φ2 simply increases the value of φ1 by βαg. Fixed points of the above map
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when V k
D > V

∗ correspond to parameter values where the system exhibits periodic

firing.

6.7 Two-Compartment Model Behavior

We now examine the behavior of the two-compartment model with two different

spike functions a square spike and a linear spike, and we compare the results to those

obtained with the ball-and-stick model. As with the ball-and-stick model, we find

that the two compartment model exhibits bistable behavior caused by the ping-pong

effect between the somatic and dendritic potentials.

6.7.1 Square Spike

We describe the spike by a square pulse

h(t− ts) =

⎧⎪⎪⎨
⎪⎪⎩
β if ts < t < Ta

VR if t = ts + Ta.

(6.7.1)

As with the other spike functions, β represents the maximal somatic potential that

is reached during the spike, Ta is the duration of the spike, and VR is the value of the

somatic potential after the spike has completed. Figure 6.7.1 (a) plots an example of

the somatic and dendritic voltage traces found using the above spike function. Note

that the heaviside function described by equation (6.7.1) is the limit of the sigmoidal

spike function as p→ ∞.

Recall that if I > Īs, the system is guaranteed to be in the oscillatory regime

because V ss
S will be greater than 1. However, as with the ball-and-stick model, the
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Figure 6.7.1: The Ping-Pong Effect and Bistability in the Two-
Compartment Model with the Square Spike Function. (a) Voltage traces
of the somatic and dendritic compartments with the square spike as in equation
(6.7.1). For these parameter values, Īs = 2.6. Thus, the ping-pong effect between
the somatic and dendritic compartment potentials holds the system in the oscillatory
regime. (b) Return map (6.6.24) derived from the two compartment model with the
square spike. The black line is V k+1

D = V k
D. The map has two stable fixed points

revealing that the full system displays bistability between periodic firing and quies-
cence. The lower fixed point represents the stable fixed point (V ss

D , V
ss
S ) in the full

system, and the upper fixed point corresponds to periodic firing in the full system.

two compartment model can still exhibit periodic firing when I < Īs as seen in Figure

6.7.1 (a). The plot of the return map (6.6.24) in Figure 6.7.1 (b) reveals that the

map has two stable fixed points corresponding to bistability in the full system. All

subsequent bifurcation diagrams are generated by finding Īs and the location of the

upper stable fixed point of the return map.

Effects of Parameters on the Region of Bistability

Altering the spike amplitude β and spike duration duration Ta in the two compart-

ment model with the square spike yields very similar dynamics to the ball-and-stick

model with the sigmoidal spike as seen in Figure 6.7.2. A sufficient amplitude of
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the spike is needed in order for bistability to occur, and the size of the bistable re-

gion increases as β is increased. Also, as the duration of the spike is increased, the

amount of applied current needed to sustain the ping-pong effect initially decreases,

but eventually approaches a minimum value with further increases in Ta.
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Figure 6.7.2: Changing Spike Parameters in the Two-Compartment Model
with the Square Spike Yields Similar Dynamics to the Ball-and-Stick
Model with the Sigmoidal Spike. (a) Two parameter bifurcation diagram of
applied current versus the maximum somatic depolarization during the spike, β. (b)
Two parameter bifurcation diagram of applied current versus the duration of the
spike, Ta. Both diagrams reveal that the dynamics of the two compartment model
with the square spike are qualitatively similar to the ball-and-stick model with the
sigmoidal spike (Figure 6.4.4).

Figure 6.7.3 examines how changing other parameters in the two compartment

model affect the size of the region of bistability. Figure 6.7.3 (a) depicts the two

parameter bifurcation diagram of applied current versus the coupling conductance,

g. The diagram reveals that more applied current is required to drive the system into

the monostable firing regime as g is increased. This agrees with our interpretation of

equation (6.6.13) for moderate values of α. That is, Īs limits to 1
α

+ glk as g → ∞
which is 3 in the figure. However, increasing g also increases the size of the bistable

region. This can be explained by considering the non-spiking portion of the model.
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The coupling current that the soma receives (g(VD−VS)) can be quite large after the

spike due to the fact that the potential of the dendritic compartment is larger than

the potential of the somatic compartment. Increasing g increases this depolarizing

coupling current that flows into the soma after the spike. Thus, the soma requires

less applied current to sustain the ping-pong effect as g is increased. This is very

similar to increasing γ in the ball-and-stick model (see Figure 6.4.5 (a)).

Figure 6.7.3 (b) shows that less applied current is needed to sustain monostable

firing as α is increased. This again agrees with our interpretation of equation (6.6.13).

That is, increasing α causes the somatic compartment to become larger than the

dendritic compartment. Thus, when α is large, the somatic dynamics dominate the

behavior of the system. This is evidenced by the fact that Īs limits to glk as α→ ∞
which is 2 in the figure. Note since Īs limits to a constant value as α is increased,

this implies that I should really be interpreted as a non-dimensional current density.

The figure also shows that the amount of applied current needed to sustain the ping-

pong effect initially decreases with increasing α, but then reaches a minimum and

subsequently increases and closes off the bistable region as α is increased. This is due

to the fact that when α is small, the dendritic compartment is much larger than the

somatic compartment. In this case, the dendrite acts as a current sink for the soma,

and the ping-pong effect cannot occur. As α is increased the dendritic compartment

becomes less of a current sink allowing the ping-pong effect to occur. Increasing

α further causes the soma to become much larger than the dendrite. In this case,

the somatic dynamics dominate the dynamics of the dendritic compartment and the

ping-pong effect cannot occur. Thus, increasing α is similar to decreasing L in the

ball-and-stick model (see Figure 6.4.5 (b)).

Figure 6.7.3 (c) shows that altering the ratio of the leakage conductances in the
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two compartment model yields very similar results to the ball-and-stick model. That

is, for the spike parameters listed, the soma has to be sufficiently more leaky than

the dendrite in order for the ping-pong effect to occur.
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Figure 6.7.3: Effects of Altering Intrinsic Parameters on the Size of the
Bistable Region in the Two-Compartment Model with the Square Spike.
(a) Applied current versus coupling conductance, g, two parameter bifurcation dia-
gram. Once the bistable region appears, it increases in size as g is increased. This is
similar to changing the γ parameter in the ball-and-stick model. (b) Applied current
versus relative compartment size, α, two parameter bifurcation diagram. As α is
increased, the somatic compartment becomes large relative to the dendritic compart-
ment. The diagram reveals that , similar to changing L in the ball-and-stick model,
there is an optimal value of α for which you have the largest range of applied current
that sustains the ping-pong effect. (b) Applied current versus relative leakage con-
ductance, glk, two parameter bifurcation diagram. The dynamics are qualitatively
similar to changing GL in the ball-and-stick model.
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Figure 6.7.4: Voltage Traces of the Somatic and Dendritic Compartments
with the Linear Spike Function.

6.7.2 Linear Spike

The linear spike is described in section 6.4.2. Figure 6.7.4 plots an example of the

somatic and dendritic voltage traces found using the linear spike function. Somato-

dendritic ping-pong causes the system to display oscillatory behavior even when the

applied current to the soma is below Īs.

Figure 6.7.5 shows that altering the spike parameters with the linear spike yield

qualitatively similar dynamics to the ball-and-stick model with the linear spike (see

Figure 6.4.7 (a)). Thus, the two compartment model captures the qualitative behavior

of the cable model when considering alterations in the spike parameters. Changing

other parameters in the model with the linear spike also yield similar results to those

seen with the square spike.



6.8. Discussion 158

(a)

5 10 15 20 25 30 35 40

2.46

2.47

2.48

2.49

2.5

2.51

β

I
T

a
 = 0.2, V

R
 = −2, g = 1, g

lk
 = 2,

α = 1

No Firing

Monostability
Bistability

(b)

0 0.5 1 1.5 2 2.5

2.2

2.3

2.4

2.5

2.6

T
a

I

β = 30, V
R

 = −2, g = 1, g
lk

 = 2,

α = 1

No Firing

Bistability

Monostability

Figure 6.7.5: Altering Spike Parameters in the Two-Compartment Model
with the Linear Spike Yields Similar Dynamics to the Ball-and-Stick
Model with the Sigmoidal Spike.. (a) Two parameter bifurcation diagram of
applied current versus β. (b) Two parameter bifurcation diagram of applied current
versus Ta. Both diagrams reveal that the dynamics of the two compartment model
with the linear spike are qualitatively similar to the ball-and-stick model with the
linear spike function.

6.8 Discussion

In this chapter, we examine the effects of a passive dendrite on the firing dynamics of

a leaky-integrate-and-fire neuron that includes spike effects. We model the dendrite

as both a passive cable using the cable equation and as a passive compartment. In

each case, we analytically derive the amount of applied current necessary to guarantee

periodic firing of the soma. We also show that each of the model dynamics can be

reduced to a return map. Using the analytical form for the applied current necessary

to guarantee periodic firing of the soma and the return map, we show that the addition

of the dendrite can cause the system to display bistable behavior between periodic

firing and a quiescent state. We identify the mechanism that causes the periodic

behavior in the bistable regime as somato-dendritic ping-pong. We then examine the

effects of altering system parameters on the size of the bistable region. Lastly, we
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show that both models, the ball-and-stick model and the two-compartment model,

display qualitatively similar dynamics with regards to the aforementioned bistable

behavior.

In previous work, the interaction between the somatic and dendritic membrane

potentials has been shown to be important in generating neuronal bursting, in which

a cell periodically switches between a quiescent state and a rapidly spiking state

[9, 22, 55, 77, 109]. Somato-dendritic ping-pong has been identified in other two-

compartmental systems as a mechanism to sustain the repetitive firing seen during

neuronal bursts [9, 77, 109]. In the aforementioned systems, the dendritic com-

partment contained nonlinear active currents. These active currents play a role in

initiating the somato-dendritic ping-pong, and in shutting down the ping-pong effect

in order to bring the system back to quiescence in between bursts [9]. Active den-

dritic conductances have also been shown to play a role in different types of bursting

such as “ghostbursting” [22, 55]. Here, we show that somato-dendritic ping-pong

can occur in a completely passive dendritic compartment. However, adding active

currents in our system would make it easier for the ping-pong effect to occur. For

example, adding a persistent sodium channel to the dendrite could cause a larger and

faster depolarization of the dendritic potential after the somatic spike. Furthermore,

one could also induce bursting in our system by adding a slowly activating outward

current in the soma [9].

In a related study, Peercy and Keener [73] examined the effects of coupling an

ischemic cell to a normal excitatory cell using a two-compartment approach. They

found that when the excitatory cell is coupled to a cell with elevated extracellular

potassium (caused by ischemia), the two cells begin to oscillate even though each of

the isolated cells are non-oscillatory. The mechanisms responsible for this behavior
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are intimately tied to the results we found for the two-compartment model. That is,

raising the extracellular potassium levels raises the reversal potential of the potassium

channel, thus bringing the resting membrane potential closer to 0mV for the ischemic

cell. Our results with the two-compartment model show that, if ELD > Vth, the

dendritic compartment acts as a current source for the soma, and less applied current

is needed to sustain the periodic firing caused by somato-dendritic ping-pong. Thus,

the induced oscillatory behavior observed by Peercy and Keener when coupling an

ischemic cell to a normal excitatory cell could be a result of the ischemic cell acting

as a current source for the normal cell which would make it easier for the ping-pong

effect to occur.

Lánský and Rodriguez [56] showed how the addition of a passive compartment

can affect the firing dynamics of the leaky-integrate-and-fire neuron. Specifically, they

were interested in how the addition of the dendrite affects the encoding properties of

the leaky-integrate-and-fire neuron. They defined the encoding range of the neuron

as the portion of the f − I curve prior to saturation. They found that the addition

of passive dendritic compartment to the leaky-integrate-and-fire neuron increases the

encoding range of neuron. Here, we show that the addition of the dendrite not only

affects the encoding properties of the neuron by effectively flattening out its f − I
curve (see Figure 6.4.2), but it can also induce bistability between periodic firing

and quiescence. The fact that Lánský and Rodriguez did not include the effects of

the somatic spike on the dendritic compartment prevented them from observing the

bistable behavior that we describe here. Thus, we are able to extend their results to

show that, the inclusion of spatial properties not only alters the encoding properties of

the leaky-integrate-and-fire neuron, but it also affects the onset of oscillatory behavior

in the neuron.
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One can view the onset of oscillations in the leaky-integrate-and-fire neuron as

arising from a discontinuous infinite period bifurcation (e.g. a discontinuous saddle-

node-on-an-invariant-cycle bifurcation, see Figure 6.4.2 (a)). When the effects of the

dendrite are sufficiently large and a somatic spike is explicitly included, we find that

the addition of the dendrite causes the onset of oscillations in the leaky-integrate-and-

fire neuron to arise from a discontinuous subcritical Hopf bifurcation (Figure 6.4.2

(b)). Thus, the addition of the dendrite affects the neurons excitability classification

[45]. That is, the standard leaky-integrate-and-fire neuron can fire action potentials

at arbitrarily low frequencies, and is classified as Type I neural excitability. Neurons

where the onset of oscillations occur at a non-zero frequency, and whose frequency is

relatively insensitive to changes in applied current are in the Type II class of neural

excitability. We find that increasing the effects of the dendrite can cause the leaky-

integrate-and-fire neuron to transition from Type I to Type II neural excitability. This

is not the first time that cable properties have been shown to alter the bifurcation

structure of a system. Rinzel and Keener [90] found that, for an active cable modeled

with FitzHugh-Nagumo dynamics [35, 69], the onset of periodic oscillations can arise

out of either a supercritical or subcritical Hopf bifurcation depending upon the level

of excitability of the cable and the speed of the recovery dynamics.

6.9 Summary

We have examined how the influence of dendritic properties affect the dynamics of a

leaky-integrate-and-fire model neuron that explicitly includes spiking dynamics. We

found that addition of the dendrite can cause the leaky-integrate-and-fire neuron to

display bistable behavior between periodic firing and quiescence. The mechanism of

the periodic firing in the bistable regime was identified to be somato-dendritic ping-
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pong. We then showed that the same qualitative behavior is captured in a reduced

two-compartment model.
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Chapter 7

Effects of Dendritic Properties on

the Phase-Locking Dynamics of

Electrically Coupled Neuronal

Oscillators

7.1 Introduction

Synchronization of oscillatory activity in neuronal networks arises in many areas of

neuroscience and has been linked to various behavioral functions. There is little doubt

that the oscillatory behavior of these networks plays a major role in generating motor

patterns of repetitive activity such as locomotion, feeding, and breathing [86, 92, 105].

In the mammalian cortex, oscillatory behavior arises as a result of the synchronized

electrical activity of large populations of cortical neurons. This oscillatory behav-

ior is apparent in electroencephalogram (EEG) recordings and can occur in different
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frequency bands and in different areas of the cortex [14]. Oscillations within these

different frequency bands have been hypothesized to correspond with different behav-

ioral functions. For example, synchronized gamma-frequency (30-80Hz) oscillations

in the mammalian sensory cortex have been hypothesized to be important in sensory

information processing, e.g. in the olfactory system [57] and the visual system [42],

in motor programming [68], and associative learning [66]. However, directly linking

these cortical oscillations to precise functional roles is a difficult task and more work

has to be done before this can occur. Therefore, rather than directly addressing the

issue of the functional role of these oscillations, one can first address the question of

what are the biophysical mechanisms that underly the observed synchronous electri-

cal activity? A deep understanding of these mechanisms can allow one to extract the

functional role of the aforementioned synchronous oscillatory behavior.

The majority of neurons in the brain transmit electrical activity to one another

via either chemical synapses or electrical synapses. In neurons coupled with chemi-

cal synapses, an action potential initiated in the presynaptic cell causes the release

of a neurotransmitter at the site of the synapse onto the postsynaptic cell. If the

neurotransmitter causes the membrane potential of the postsynaptic cell to increase

(decrease), then the synapse is referred to as excitatory (inhibitory). In general,

one usually refers to a neuron as being excitatory (inhibitory) if it forms excitatory

(inhibitory) synapses onto other neurons. On the other hand, electrical coupling

between neurons is usually mediated by gap junctions, which are clusters of inter-

cellular channels formed from connexin proteins. They were first observed among

interneurons in invertebrates where they are now known to play an important role in

networks generating rhythmic motor outputs [72, 87]. These gap junctions are basi-

cally non-specific ion channels that allow ions to flow down their electrical gradient.
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As such, they are usually modeled as linear Ohmic resistors.

Networks of inhibitory neurons are thought to play a fundamental role in generat-

ing the oscillatory electrical behavior seen in the mammalian neocortex [4, 15, 93, 98].

As a result, synchronization in inhibitory networks is a topic of much theoretical and

experimental research [64, 65]. Many of these studies have revealed that inhibitory

interneurons of the same type1 are highly interconnected by electrical synapses and

that this electrical coupling aides in the synchronization of their electrical behavior

[85, 19, 37, 38, 39, 58, 64, 103]. This activity is not limited to inhibitory neurons in

the neocortex. For example, experimental evidence has been found to suggest that

gap junctions can enhance the synchrony of oscillations at gamma frequencies in spa-

tially extended networks of hippocampal interneurons [103]. Studies have also shown

that small clusters of electrically coupled neurons can drive synchronous activity in

the thalamic reticular nucleus [60].

In studying the synchronization properties of these inhibitory networks, many

theoretical studies model neurons as single-compartment objects ignoring the spatial

anatomy of the cell. This simplification is made for mathematical tractability and

computational efficiency. However, many neurons are not electrotonically compact,

and single-compartment models cannot be expected to fully capture their behavior.

Furthermore, experimental studies have revealed that cortical inhibitory neurons are

highly interconnected by electrical synapses on their dendrites [2, 36], and that the

dendrites of these inhibitory neurons appear to display effectively passive electrical

behavior [48]. Theoretical studies have shown that passive dendritic filtering can

change the phase-locking behavior in networks of neuronal oscillators [12, 20, 59].

Therefore, dendritic properties can be important in the flow of electrical activity

1Gibson et al [38] classified two types inhibitory interneurons in the neocortex according to
physiological properties; so-called fast-spiking (FS) cells and low-threshold-spiking (LTS) cells.
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between inhibitory neurons in the cortex, and, consequently, in the generation of the

synchronous electrical activity seen there.

Here, we investigate the effects of passive dendritic properties on the phase-locking

dynamics of electrically coupled neuronal oscillators. We model a neuron as an isopo-

tential somatic oscillator attached to a thin passive dendritic cable using the “ball-

and-stick” model [80]. Each neuron in the network is coupled to other neurons in the

network by a gap junction on the distal end of their dendrites. We use the theory of

weakly coupled oscillaors [29, 54, 71] to derive the corresponding phase model of each

neuron in the network. This reduces the dynamics of each neuron in the network

down to the consideration of a single phase variable which governs how quickly the

neuron moves around its underlying limit cycle. We then use the phase model to

examine how the different properties of the passive dendritic filtering can alter the

phase-locking dynamics of networks of electrically coupled neuronal oscillators.

7.2 Electrically Coupled Ball-and-Stick Model

We model the electrical activity of a single neuron using the “ball-and-stick” model

[12, 20] (see 3.6) that consists of a spherical active isopotential soma attached to a

single thin passive dendrite. We then make the assumption that the electrical synapse

between the two neurons is located on the dendrite at the end furthest away from

the cell body (see Figure 7.2.1). This assumption is made for ease of mathematical

computation and can easily be relaxed to place the synapse at any point along the

dendrite (e.g. [12]). However, by examining the case where the electrical synapse is

furthest away from the cell bodies, we can see how the maximum amount of dendritic

filtering of the electrical signal between the two cells affects phase-locking.

The dendrite of each neuron is modeled as a one-dimensional passive cable of
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physical length L [78, 84]

Cm
∂vj
∂t

=
a

2Rc

∂2vj
∂x2

− gLD(vj − Ej
LD), x ∈ (0, L), (7.2.1)

where vj(x, t) is the voltage (in units of mV ) in the dendrite of the jth neuron at

position x and time t, gLD is the leakage conductance in the dendrite in units of

mS/cm2, Rc is the cytoplasmic resistivity of the dendrite in units of kΩ · cm, a

is the radius of the dendrite in units of cm, Ej
LD is the reversal potential of the

leakage conductance in the dendrite of the jth neuron in units of mV , and Cm is the

specific membrane capacitance in units of μF/cm2, which is assumed to be constant

throughout each neuron. Note that we have assumed that all cable parameters are

the same for the two neurons except we allow for the possibility for their leakage

reversal potentials to be different.

Hodgkin-Huxley (HH) type equations are used to model the electrical activity

of each soma. An application of the conservation of current law at the junction

connecting the spherical soma and the thin dendrite (x = 0) yields the equation for

the proximal boundary condition

Cm
∂vj
∂t

(0, t) = −Iion,S(vj(0), 	w) + I +
a2

d2Rc

∂vj
∂x

(0, t), (7.2.2)

where Iion,S(vj , 	w) represents the sum of the HH-type ionic currents in the jth soma,

	w is a vector containing the gating variables of the ionic conductances, and d is the

diameter of the soma in cm. The gating variables in the vector 	w are described by

equations of the form
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d	w

dt
=

1

τ�w
(	w∞(v) − 	w). (7.2.3)

The last term in equation (7.2.2) represents the axial current flowing between the

dendrite and the soma. The parameter I is the somatic bias current in μA/cm2.

Note that changes in I are equivalent to changes in the leakage reversal potential,

EL, and therefore changes in I can be thought of as being due to current input into

the soma or due to the effects of a neuromodulator. The values of I and EL are

chosen such that the isolated soma undergoes T -periodic (limit cycle) oscillations.

Since the two isolated somata are assumed to be the same, we define vLC(t) to be the

membrane potential component of the isolated somatic oscillator’s limit cycle.

The two neurons are electrically coupled at the distal end (x = L) of their respec-

tive dendrites (see Figure 7.2.1). Invoking conservation of current once again yields

the distal boundary condition

πa2

Rc

∂vj
∂x

(L, t) = gc(vk(L, t) − vj(L, t)), (7.2.4)

where the electrical synapse is modeled as a linear ohmic resistor with conductance

gc in units of mS. It is important to note that, since the two neurons are electrically

coupled on their dendrites, the term a2

d2Rc

∂vj

∂x
(0, t) in equation (7.2.2) also incorporates

the effects of the electrical coupling on the dynamics of the somatic oscillator.

This model is similar to the one studied by Crook et al. [20] except for the fact

that they studied two ball-and-stick neurons coupled with chemical synapses. The

Fast-spiking interneuron model of Erisir et al. [27] is used in the simulations presented

here. However, the basic analysis that we use is general and can be applied to any
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neuronal oscillator.

hello
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a2

d2Rc
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(0, t)
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d2Rc

∂vj
∂x (0, t)
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Figure 7.2.1: Two Electrically Coupled Ball-and-Stick Neurons. Each neuron
is modeled as a ball-and-stick neuron which consists of an active soma attached to
a thin passive dendritic cable. The two neurons are then electrically coupled by a
linear ohmic resistor with conductance gc at the distal (x = L) end of the dendrite.
The terms next to the arrows represent axial currents flowing between the dendrites
and the somata.

The subsequent analysis relies on a certain combination of model parameters being

sufficiently “small”. To identify this small compound parameter, we nondimensional-

ize the model (7.2.1-7.2.4). We set Vj = Vj(x̄, t̄) =
vj(λx̄,τD t̄)

−EL
(where EL is the leakage

reversal potential in the soma), x̄ = x
λ
, t̄ = t

τD
, λ =

√
a

2RcgLD
is the length constant

of the dendrite, and τD = Cm

gLD
is the membrane time constant of the dendrite. The
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resulting nondimensional equations for the coupled ball-and-stick model neurons are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Vj
∂t̄

=
∂2Vj
∂x̄2

− (Vj − Ēj
LD)

∂Vj
∂t̄

(0, t̄) = −Īion,S(Vj(0, t̄), 	w) + Ī + ε
∂Vj
∂x̄

(0, t̄)

∂Vj
∂x̄

(
L

λ
, t̄

)
= g

(
Vk

(
L

λ
, t̄

)
− Vj

(
L

λ
, t̄

))
.

(7.2.5)

where j, k = 1, 2 with j �= k, L
λ

is the electrotonic length of the dendrite, g = gcRcλ
πa2 ,

ĒLD = ELD

−EL
, Īion,S(V (0, t̄), 	w) = 1

−gLDEL
Iion,S((−EL)V (0, t̄), 	w), Ī = 1

−gLDEL
I, and

ε = a2

d2gLDRcλ
. Also, equation (7.2.3) becomes d�w

dt̄
= τD

τ�w
(	w∞(−ELV (0, t̄)) − 	w). We

also define the nondimensionalized period of the limit cycle to be Tnd = T
τD

and the

nondimensional voltage component of the isolated soma’s limit cycle as VLC(t̄).

The term ε
∂Vj

∂x̄
(0, t̄) in equation (7.2.5) is the axial current at the soma-dendritic

junction and is the jth dendrites perturbation to the jth somas membrane dynamics

and incorporates the effects of the electrical coupling. To ensure that this perturba-

tion is weak, we assume that

ε =
a2

d2gLDRcλ
=
a2

d2

√
2

gLDRca

is small. This can be interpreted as a � d, i.e. that the radius of each dendrite is

small relative to the diameter of each of the somata, and that
√

2
gLDRca

is O(1) so

that ε � 1. It is important to note that under this assumption, it does not matter

if the conductance of the electrical synapse is small or large because the dendritic

influence on each of the somata is what is assumed to be weak.
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7.3 Theory of Weak Coupling and Reduction to a

Phase Model

The theory of weak coupling [29, 54, 71] (see also Chapter 4), has been widely used to

analyze dynamics in networks of oscillating neurons (e.g. [32, 46, 58, 74]). The theory

can also be used to analyze the phase-locking dynamics of neurons with dendritic

coupling under the assumption that the current flowing from each of the dendrites

into the respective somata only weakly affect the somatic dynamics [12, 20, 88]. In

this case, the complete state of each neuron can be approximated by its relative phase

on its Tnd-periodic limit cycle, φj(t̄) ∈ [0, Tnd). Thus, using this theory enables one to

reduce the number equations that describe a neuronal network. For example suppose

the network contained N model neurons each described by M equations. The total

number of equations for the network would be MN . The theory of weak coupling

reduces this number down to only N phase equations. For the sake of illustration,

we present the phase reduction technique on a pair of coupled neurons. The relative

phase of each cell is given by

dφj
dt̄

=
1

Tnd

∫ Tnd

0

Z(s+ φj)Icoupl(s, φj, φk)ds

=
1

Tnd

∫ Tnd

0

Z(s)Icoupl(s, 0, φk − φj)ds

= εH(φk − φj), j, k = 1, 2; j �= k, (7.3.1)

where
dφj

dt̄
is the small modulation of the jth oscillators instantaneous nondimensional

frequency due to the coupling. Icoupl(s, 0, φk − φj) is a nondimensional Tnd-periodic

coupling current, i.e. input stemming from coupling between the two neurons. Note
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that, Icoupl(s, 0, φk − φj) is a function of the relative phases of neuron j and neuron

k. Z(·) is the infinitesimal phase response curve (PRC) of the neuronal oscillator.

The PRC quantifies the change in phase due to a δ-function current perturbation at a

particular phase on the limit cycle. The PRC can be thought of as a Green’s function

or impulse response function for a linear oscillator. The term H(φk − φj) is known

as the interaction function and represents the modulation of the isolated oscillator’s

frequency due to the coupling averaged over one period of the oscillations.

As stated earlier, the theory of weak coupling can be applied to the ball-and-stick

model by considering the “dendritic current” as the weak perturbation to the soma,

following [12, 20, 88]. During steady oscillations in the coupled ball-and-stick model,

a current flows between the electrical synapse connecting the two cells, and, subse-

quently, between the soma and the dendrite of each of the two neurons. This current

then acts to modulate the intrinsic oscillations of each of the somata. In system

(7.2.5)-(7.2.5), the current that modulates the frequency of the jth somata is given

by ε
∂Vj

∂x̄
(0, t̄). However, as written, this term does not have an explicit dependence on

the phase of the two neurons. The way to obtain the explicit dependence on phase is

to solve the leading order approximation of system (7.2.5)-(7.2.5). That is, because

the dendritic perturbation is weak, the soma of each neuron clings tightly to its un-

derlying limit cycle so that Vj(0, t̄) � VLC(t̄+ φj). This approximation simplifies the

boundary condition at the soma (x̄ = 0) and yields the leading order approximation

for the system
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Vj
∂t̄

=
∂2Vj
∂x̄2

− (Vj − Ēj
LD)

Vj(0, t̄) = VLC(t̄+ φj)

∂Vj
∂x̄

(
L

λ
, t̄

)
= g

(
Vk

(
L

λ
, t̄

)
− Vj

(
L

λ
, t̄

))
.

(7.3.2)

Although system (7.3.2) may look complicated, it is a first-order linear partial differ-

ential equation with Tnd-periodic forcing at one end, and a time-dependent Neumann

boundary condition at the other end. As such, the solution can be found using

Fourier series. Expanding the somatic potential in a Fourier series, VLC(t̄ + φj) =

1
Tnd

∑
n∈Z
Vne

2πin(t̄+φj)/Tnd , and solving system (7.3.2) yields

Vj(x̄, t̄, φj, φk) =

[(
v0
Tnd

− Ēk
LD

)
c0 +

(
v0
Tnd

− Ēj
LD

)
d0

]
sinh(x̄)

+

(
v0
Tnd

− Ēj
LD

)
cosh(x̄) +

1

Tnd

∑
n �=0

[
vn

(
1

bn
cne

2πinφk/Tnd

+
1

bn
dne

2πinφj/Tnd

)
sinh(bnx̄) + vne

2πinφj/Tnd cosh(bnx̄)

]
e2πint̄/Tnd

+Ēj
LD (7.3.3)

where bn =
√

1 + 2πin/Tnd and
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cn =
g

cosh2
(
bn

L
λ

)
+ g

bn
sinh

(
2bn

L
λ

) (7.3.4)

dn =
g2

bn

1

cosh2
(
bn

L
λ

) 1

2 (g/bn)
2 tanh

(
bn

L
λ

)
+ 3(g/bn) + coth

(
bn

L
λ

) (7.3.5)

−bn
sinh

(
bn

L
λ

)
+ g

bn
cosh

(
bn

L
λ

)
cosh

(
bn

L
λ

)
+ g

bn
sinh

(
bn

L
λ

) .
Note that equation (7.3.3) reduces to equation (5.3.4)

V (x̄, t̄) =

(
V0

T̄
− ĒLD

)
cosh

(
x̄− L

λ

)
cosh

(
L
λ

) +
1

T̄

∑
n �=0

Vn
cosh

(
bn
(
x̄− L

λ

))
cosh

(
bn
(
L
λ

)) e2πint̄/T̄

+ĒLD, (7.3.6)

as g → 0. Furthermore, (7.3.5) reduces to the filtering coefficients cn = bn tanh
(
bn

L
λ

)
that were examined in Chapter 5.

Differentiating equation (7.3.3) with respect to x̄ and evaluating at x̄ = 0 gives

∂Vj
∂x̄

(0, t̄, 0, φk − φj) =

[(
V0

Tnd
− Ēk

LD

)
c0 +

(
V0

Tnd
− Ēj

LD

)
d0

]
(7.3.7)

+
1

Tnd

∑
n �=0

[
Vncne

2πin(φk−φj)/Tnd + Vndn
]
e2πint̄/Tnd .

Therefore, we now have an explicit dependence on phase in the dendritic current term

and we can set Icoupl(s, 0, φk − φj) = ε
∂Vj

∂x̄
(0, s, 0, φk − φj) in equation (7.3.1). This

yields the phase model for the system
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dφj
dt̄

=
1

Tnd

∫ Tnd

0

Z(s)ε
∂Vj
∂x̄

(0, s, 0, φk − φj)ds, j, k = 1, 2; j �= k. (7.3.8)

Substituting (7.3.7) into equation (7.3.8) and expanding the PRC in a Fourier series,

Z(t̄) = 1
Tnd

∑
m∈Z

Zme
2πimt̄/Tnd , yields

dφj
dt̄

= ε

(
Z0

Tnd

[(
V0

Tnd
− Ēk

LD

)
c0 +

(
V0

Tnd
− Ēj

LD

)
d0

]

+
1

T 2
nd

∑
n �=0

[
Z−nVncne

2πin(φk−φj)/Tnd + Z−nVndn
])

= ε

(
〈Z〉

(
〈VLC〉 − ẼLD

)
(c0 + d0)

+
1

T 2
nd

∑
n �=0

[
Z−nVncne

2πin(φk−φj)/Tnd + Z−nVndn
]− ωjk

)
(7.3.9)

where 〈VLC〉 = V0/Tnd and 〈Z〉 = Z0/Tnd are the mean values of VLC(t) and Z(t),

respectively, ωjk = 〈Z〉 [Cjc0 + Ckd0

]
is the heterogeneity between the two neurons

caused by the small difference in the leakage reversal potential of the dendrite, and

Cj,k = Ēj,k
LD − ẼLD is the difference between the leakage reversal potential of the den-

drite with and some common potential ẼLD. Using equation (7.3.9), we will examine

how the filtering properties of the passive dendrite, along with dendritic heterogeneity

affect the phase-locking dynamics of a pair of electrically coupled neurons.
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7.4 Phase-Locking Dynamics in a Pair of Electri-

cally Coupled Ball-and-Stick Neurons

If we set φ = φk−φj and subtract the the respective differential equations, we obtain

the equation for the evolution of the phase difference of the two oscillators

dφ

dt̄
= ε (γ +G(φ)) , (7.4.1)

where

γ = 〈Z〉α[Ēj
LD − Ēk

LD] (7.4.2)

α = c0 − d0 =
tanh

(
L
λ

)
+ 2g

1 + 2g tanh
(
L
λ

) (7.4.3)

G(φ) =
1

T 2
nd

∑
n �=0

Z−nVncn[e
−2πinφ/Tnd − e2πinφ/Tnd ] (7.4.4)

In the next section, we will consider the homogeneous case where Ēj
LD = Ēk

LD,

i.e. the neurons are identical, and examine how dendritic properties affect the phase-

locking dynamics of two identical ball-and-stick neurons.

7.4.1 Identical Neurons

If Ēj
LD = Ēk

LD, then γ = 0 in equation (7.4.1). Therefore, the zeros of the function

G(φ) will correspond to the steady-state phase difference φss between the two neurons.

A steady-state φss will be stable if G′(φss) < 0. We will now illustrate how dendritic

properties affect the steady-state phase difference of a pair of identical electrically

coupled ball-and-stick neurons using the fast-spiking neuron of Erisir et al. [27] to
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model our somatic dynamics.

Figure 7.4.1 plots the bifurcation diagrams showing the stability of the steady-

state phase difference of the two neurons as a function of the electrotonic length of

the dendrite. First off, when L
λ

= 0, one can see that for low firing frequencies2

(Figure 7.4.1 (a)) there is bistability between synchrony (φ/Tnd = 0, 1) and anti-

phase (φ/Tnd = .5). As the firing frequency is increased, this bistability is lost

leaving only synchrony to be stable when L
λ

= 0 (Figure 7.4.1 (b) and (c)). This

agrees with previous results for two single-compartment oscillatory neurons coupled

by a gap junction. More specifically, it has been shown that electrical coupling

promotes bistability between synchrony and anti-phase at low firing frequencies in

single-compartment neurons, and this bistability is lost as the firing frequency is

increased [58, 64].

When the electrical coupling is away from the soma on the dendrite, for example

L
λ

= 2, one can see that at low firing frequencies there is again bistability between

synchrony and anti-phase. At intermediate frequencies, only synchrony is stable,

while at high firing frequencies, anti-phase becomes the only stable state. This also

agrees with previous results that found that placing the electrical coupling away

from the soma in a two compartment model can substantially affect synchronization

patterns, i.e. see Figure 2 in [59]. However, since this study utilized two-compartment

model neurons. they were unable to examine how further increasing the distance

between the soma and the electrical coupling affected the stability of the phase-locked

states.

For low firing frequencies, as the electrotonic length of the dendrite is increased,

2Note that dimensional frequency is related to nondimensional frequency by 1

T
= 1

TndτD

, where
T is the dimensional period of the oscillations and τD is the dendritic membrane time constant
which we take to be 5 msec in the figures presented here. We present the frequency in terms of
dimensional units from now on for ease of physical interpretation.
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the anti-phase solution loses stability leaving synchrony as the only stable state.

When the firing frequency is in the intermediate range (Figure 7.4.1 (b)), the syn-

chronous solution loses stability as the electrotonic length of the dendrite is increased

leading to stable anti-phase. Although the figure only shows electrotonic lengths up

to 5, if L
λ

were increased further, there would be continual alternation between the

anti-phase and synchronous solutions being stable. Lastly, when the firing frequency

is high, there are sudden switches in the stability of the synchronous and anti-phase

states as L
λ

is increased. Note that this alternation of stability between synchrony

and anti-phase as the electrical synapse is mover further away from the soma was

also found by Crook et al [20] and Bressloff and Coombes [12]. We also find that

increasing the conductance of the electrical synapse g causes the bifurcation diagrams

to be shifted to the right (bottom of Figure 7.4.1). This implies that increasing the

conductance of the electrical synapse decreases the effect of the dendritic filtering,

so that the two coupled ball-and-stick cells display somewhat similar phase-locking

dynamics to two coupled single-compartment neurons.

By examining the filtering properties of the dendrite, we can explain the alterna-

tion in stability of synchrony and anti-phase that is seen at higher firing frequencies.

First, note that the effects of the dendritic filtering are completely captured by the

cn terms in equation (7.4.4). More specifically, since the cn are complex numbers,

they can be rewritten in terms of angles in the complex plane

cn = |cn|eiψn . (7.4.5)

Equation (7.3.4) reveals that the attenuation and phase shift from cn terms are a

function of the nondimensional gap junctional conductance, g, the electrotonic length



7.4. Phase-Locking Dynamics in a Pair of Neurons 179

(a
)

L
ow

F
re

q
u
en

cy

0
1

2
3

4
5

−
0.

20

0.
2

0.
4

0.
6

0.
81

1.
2

L
/λ

φ/Tnd

g 
=

 0
.2

5,
 I

 =
 1

.9
8 
μ

A
/c

m
2  (

7.
9 

H
z)

(b
)

In
te

rm
ed

ia
te

F
re

q
u
en

cy

0
1

2
3

4
5

−0
.20

0.
2

0.
4

0.
6

0.
81

1.
2

L
/λ

φ/Tnd

g 
= 

0.
25

, I
 =

 4
 μ

A
/c

m
2  (3

1.
52

 H
z)

(c
)

H
ig

h
F
re

q
u
en

cy

0
1

2
3

4
5

−
0.

20

0.
2

0.
4

0.
6

0.
81

1.
2

L
/λ

φ/Tnd

g 
=

 0
.2

5,
 I

 =
 1

0 
μ

A
/c

m
2  (

94
.3

 H
z)

0
1

2
3

4
5

−0
.20

0.
2

0.
4

0.
6

0.
81

1.
2

L
/λ

φ/Tnd

g 
= 

25
, I

 =
 1

.9
8 
μA

/c
m

2  (7
.9

 H
z)

0
1

2
3

4
5

−0
.20

0.
2

0.
4

0.
6

0.
81

1.
2

L
/λ

φ/Tnd

g 
= 

25
, I

 =
 4

 μ
A

/c
m

2  (3
1.

52
 H

z)

0
1

2
3

4
5

−0
.20

0.
2

0.
4

0.
6

0.
81

1.
2

L
/λ

φ/Tnd

g 
= 

25
, I

 =
 1

0 
μA

/c
m

2  (9
4.

3 
H

z)

F
ig

u
re

7.
4.

1:
S
ta
b
il
it
y
o
f
th
e
S
te
a
d
y
-S
ta
te
s
o
f
(7
.4
.1
)
w
it
h
γ

=
0
a
s
a
F
u
n
c
ti
o
n
o
f
th
e
E
le
c
tr
o
to
n
ic
L
e
n
g
th

o
f
th
e
D
e
n
d
ri
te

.
In

al
l

si
m

u
la

ti
on

s,
τ D

=
5
m
se
c.

T
h
e

so
li
d

(d
as

h
-d

ot
te

d
)

li
n
e

co
rr

es
p
on

d
s

to
st

ab
le

(u
n
st

ab
le

)
fi
x
ed

st
at

es
.
φ
/T

n
d

=
0,

1
co

rr
es

p
on

d
s

to
sy

n
ch

ro
n
y,
φ
/T

n
d

=
.5

co
rr

es
p
on

d
s

to
an

ti
-p

h
as

e,
an

d
an

y
ot

h
er

fi
x
ed

p
oi

n
ts

ar
e

as
y
n
ch

ro
n
ou

s
st

at
es

.
T

h
e

p
lo

ts
ar

e
sh

ow
n

fo
r
g

=
0.

25
(t

op
)

an
d
g

=
25

(b
ot

to
m

)
w

it
h

n
eu

ro
n
s

fi
ri

n
g

at
(a

)
7.

9
H
z,

(b
)

31
.5

2
H
z,

(c
)

94
.3
H
z.

N
ot

ic
e

th
at

th
er

e
is

b
is

ta
b
il
it
y

b
et

w
ee

n
an

ti
-p

h
as

e
an

d
sy

n
ch

ro
n
y

fo
r

lo
w

fr
eq

u
en

cy
os

ci
ll
at

io
n
s

(a
).

T
h
is

b
is

ta
b
il
ty

d
is

ap
p
ea

rs
as

th
e

fr
eq

u
en

cy
is

in
cr

ea
se

d
(b

)
le

ad
in

g
to

al
te

rn
at

in
g

re
gi

m
es

of
sy

n
ch

ro
n
y

an
d

an
ti

-p
h
as

e
b
ei

n
g

st
ab

le
as

L λ
is

in
cr

ea
se

d
(c

).
N

ot
e

al
so

th
at

an
in

cr
ea

se
in
g

ca
u
se

s
al

l
b
if
u
rc

at
io

n
d
ia

gr
am

s
to

b
e

sh
if
te

d
to

th
e

ri
gh

t.



7.4. Phase-Locking Dynamics in a Pair of Neurons 180

of the dendrite, L
λ
, and the frequency of the oscillations3, 1

Tnd
. Figure 7.4.2 plots |cn|/g

and ψn as a function of L
λ

(left-hand side) and n (right-hand side) for g = 0.25 and

firing frequency (a) 20 Hz and (b) 100 Hz. Because the dendrites are passive, it is

no surprise that cn acts like a low pass filter, with |cn| the attenuation factor and ψn

the phase shift. We can then rewrite G(φ) as

G(φ) =
1

T 2
nd

∑
n �=0

|Z−nVncn|ei(ξn+ψn)[e−2πinφ/Tnd − e2πinφ/Tnd ], (7.4.6)

where ξn is the angle in the complex plane corresponding to Z−nVn.

From the top panels in Figure 7.4.2 (a) and (b), it is clear that increasing the

firing frequency increases the relative dendritic attenuation of the higher modes in

the Fourier expansion of G(φ). Thus, at high frequencies, the n = 1 mode will

dominate the sum in equation (7.4.4) and

G(φ) ≈ 2
1

T 2
nd

|Z1V1c1| [cos(ξ1 + ψ1 − 2πφ/Tnd) − cos(ξ1 + ψ1 + 2πφ/Tnd)]

=

[
2

1

T 2
nd

|Z1V1c1| sin(ξ1 + ψ1)

]
sin(2πφ/Tnd), (7.4.7)

where the term in brackets determines the amplitude of G(φ) while the other term

determines the shape. Recall that, G(φss) = 0. This implies that, at high frequencies,

G′(φss) =

[
4π

T 3
nd

|Z1V1c1|
]

sin(ξ1 + ψ1). (7.4.8)

Thus, the stability of the synchronous or anti-phase state will be determined by the

sign of sin(ξ1 +ψ1), while the term in brackets in (7.4.8) affects the robustness of the

3cn depends on 1

Tnd

through bn =
√

1 + 2πin/Tnd
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Figure 7.4.2: Dendritic Filtering Properties (a) The attenuation factor |cn|/g
and the phase shift ψn as a function of L

λ
(left) and n (right) when g = 0.25 and

the neuron is firing at a frequency of 20 Hz. On the left (right) hand side, the solid
line corresponds to n = 1 (L

λ
= 1) while the dash-dotted line corresponds to n = 10

(L
λ

= 2). (b) Same as in (a) except that the neuron is firing at 100 Hz. Notice that
increasing the frequency increases the attenuation of the higher modes, top half of
(a) and (b), and also increases the frequency of the phase shift oscillations, lower half
of (a) and (b).
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Figure 7.4.3: Increasing the Nondimensional Gap Junctional Conductance
g Causes the Dendritic Phase Shift Factor ψn to be Shifted to the Right
as Function of the Electrotonic Dendritic Length. The phase shift ψn as a
function of L

λ
when g = 25 and the neuron is firing at a frequency of (a) 20 Hz

and (b) 100 Hz. As in Figure 7.4.2, the solid line corresponds to n = 1 while the
dash-dotted line corresponds to n = 10. Notice that, in comparison to the lower left
plots in Figure 7.4.2 (a) and (b), ψn is shifted rightward.

stable states. Since sin(ξ1 +ψ1) alternates between being positive and negative as ψ1

changes with increasing L
λ

(see lower left of Figure 7.4.2 (a) and (b)), the stability of

the synchronous and anti-phase states will also alternate. Also, increasing g causes

the phase shift factor ψ1 to shift rightwards as a function of L
λ

(Figure 7.4.3). Thus,

increasing g acts to decrease the effects of the dendritic phase shift which, in turn,

causes the rightwards shift in the bifurcation diagrams of Figure 7.4.1.

7.4.2 Weakly Heterogeneous Neurons

We examine how weak heterogeneity can affect the phase-locking dynamics we have

observed for identical neurons. When Ēj
LD �= Ēk

LD, we can rewrite equation (7.4.1)

as
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dφ

dt̄
= ε (γ +G(φ)) , (7.4.9)

where γ = 〈Z〉α[Ēj
LD − Ēk

LD] and

α = c0 − d0 =
tanh

(
L
λ

)
+ 2g

1 + 2g tanh
(
L
λ

) . (7.4.10)

Therefore, steady-state phase differences now correspond to the zeros of G(φ) + γ.

Figure 7.4.4 plots the bifurcation diagrams of the heterogeneous system when Ēj
LD −

Ēk
LD = −7.143× 10−4 and all other parameters are the same as in Figure 7.4.1. One

can see that this small amount of heterogeneity alters the bifurcation structure of the

system in a significant way. The most striking difference is perhaps the disappearance

of any steady-states as the electrotonic length of the dendrite becomes large. This is

primarily due to the contribution of the term α in γ. α is a function of L
λ

and starts

off at 2g and asymptotes to 1 as L
λ

increases from 0 (see Figure 7.4.5). Since the cn

terms in G(φ) decrease to 0 as L
λ

increases, this means that −γ will eventually be

larger than the maximum of G(φ) causing the disappearance of the fixed points that

is seen in Figure 7.4.4.

7.5 Phase-Locking Dynamics in a One-Dimensional

Network of Electrically Coupled Ball-and-Stick

Neurons

Equation (7.4.1) can be generalized to model a network of N electrically coupled ball-

and-stick neurons by summing up the effects of the pairwise interactions between the

neurons in the network (see Chapter 4 also [46]):
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Figure 7.4.5: Dependence of the Heterogeneity on the Electrotonic Length
of the Dendrite. Plot of the function α as L

λ
is increased for different values of g.

One can see that α starts off at 2g when L
λ

= 0 and asymptotes to 1 as L
λ

increases.
The fact that α asymptotes to 1 causes the disappearance of the fixed points seen in
Figure 7.4.4 since The cn terms in G(φ) limit to 0 as L

λ
increases.

dφj
dt̄

=
ε

N − 1

N∑
k=1

{
〈Z〉

(
〈V 〉 − ẼLD

)(
c0

(
Ljk

λ

)
+ d0

(
Ljk

λ

))
(7.5.1)

+
1

T 2
nd

∑
n �=0

[
Z−nVncn

(
Ljk

λ

)
e2πin(φk−φj)/Tnd + Z−nVndn

(
Ljk

λ

)]
− ωjk

}
,

where the factor of 1
N−1

is included to ensure that the sum in the above equation is

O(1) and we have now explicitly included the dependence of cn and dn on the length

of the dendrite. Ljk is the length of the dendrite connecting the jth soma to the

electrical synapse with the kth neuron, and j = 1, ..., N . Note that it is assumed that

Ljk = Lkj .

System (7.5.1) can be quite difficult to analyze when N � 1. However, the system
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can be simplified if we assume that the network of neuronal oscillators forms a spatial

continuum [12, 21, 30, 41].

7.5.1 Continuum Limit

Suppose that we are examining a one-dimensional array of neurons in a domain Ω.

If the length of the domain is D and there are N neurons, then the cell body of

each neuron is located at a position xj = jΔx, where Δx = D
N−1

. Furthermore, the

electrotonic length of each dendrite is now given by
Ljk

λ
= 1

2
D

N−1
|j − k| (see Figure

7.5.1). Next, if we multiply equation (7.5.1) by a factor of D(N−1)
D(N−1)

and assume that

D
N−1

� 1, then we can use the continuum approximation

2 D
N−1

D
N−1

1
2

D
N−1

1
2

D
N−1j k �

Ljk

λ
Lkj

λ

Lj�

λ = D
N−1

L�j

λ = D
N−1

Figure 7.5.1: Schematic Diagram of the Continuum Ball-and-Stick Network.
The soma (cell body) of each neuron is located at a position xj = jΔx, where
Δx = D

N−1
and D is the length of the domain. Since the neurons are coupled by

gap junctions at the distal end of their dendrites, the dendrite of each neuron now
has an electrotonic length equal to half the distance between the cell bodies, i.e.
Ljk

λ
= 1

2
D

N−1
|j − k|.
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∂φ

∂t̄
(x, t̄) =

ε

D

∫
Ω

{
〈Z〉

(
〈V 〉 − ẼLD

)(
c0

( |x− x̂|
2

)
+ d0

( |x− x̂|
2

))
(7.5.2)

+
1

T 2
nd

∑
n �=0

[
Z−nVncn

( |x− x̂|
2

)
e2πin(φ(x̂,t)−φ(x,t))/Tnd + Z−nVndn

( |x− x̂|
2

)]

−ω(x, x̂)

}
dx̂,

If we let y = x− x̂, we can rewrite the above equation as

∂φ

∂t̄
(x, t̄) =

1

D

ε

T 2
nd

∑
n �=0

Z−nVn

∫ ∞

−∞

{
cn

( |y|
2

)
e2πin(φ(x−y,t)−φ(x,t))/Tnd − ω(x, x− y)

}
dy

+KDC +K, (7.5.3)

where

KDC =
1

D
ε

∫ ∞

−∞

{
〈Z〉

(
〈V 〉 − ẼLD

)(
c0

( |y|
2

)
+ d0 (|y|)

)}
(7.5.4)

K =
1

D

ε

T 2
nd

∑
n �=0

Z−nVn

∫ ∞

−∞
dn

( |y|
2

)
dy, (7.5.5)

and the domain is taken to be the real line. Note that the magnitude of the function

cn(
|y|
2

), which describes the filtering effects of the dendrites, also acts as the weight

function for the network in that it controls how large of an effect neurons have on

each other as a function of the nondimensional distance y.
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7.5.2 Solutions and Stability for a Homogeneous Network

Using the continuum approximation, we will now analyze the network behavior by

seeking the conditions under various solutions are stable. For the sake of simplicity,

we first find the the stability conditions for spatially periodic waves and the spatially

homogenous synchronous solution on a domain of length D. We assume that all the

neurons in the network are identical. Thus, ω(·, ·) = 0 and we can rewrite equation

(7.5.3) as

∂φ

∂t̄
(x, t̄) =

1

D

2ε

T 2
nd

∞∑
n=1

|Z−nVn|

×
[ ∫ ∞

−∞

∣∣∣∣cn
( |y|

2

)∣∣∣∣ cos(ξn + ψn(|y|/2) + 2πn(φ(x− y, t) − φ(x, t))/Tnd)dy
]

+KDC +K, (7.5.6)

where ξn and ψn(|y|/2) are the angles in the complex plane corresponding to Z−nVn

and cn

(
|y|
2

)
, respectively. By plugging the ansatz φαS(x, t̄) = αx+ Ωαt̄ into equation

(7.5.6), one finds that there is a one parameter family of spatially periodic traveling

wave solutions with

Ωα =
1

D

2ε

T 2
nd

∞∑
n=1

|Z−nVn|
∫ ∞

−∞

∣∣∣∣cn
( |y|

2

)∣∣∣∣ cos(ξn+ψn(|y|/2)−2πnαy/Tnd)dy+KDC+K,

(7.5.7)

and α = hTnd

D
is the wave number with h ∈ Z

+ (the nonnegative integers). Note that

α = 0 corresponds to the spatially homogeneous synchronous solution φ0
S(x, t̄) = Ω0t̄,

while α > 0 corresponds to spatially periodic traveling wave solutions.

We can now linearize around φαS to find the conditions under which the different
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solutions are stable. Setting φ = φαS + p(x, t̄) and linearizing equation (7.5.6) around

φS yields the variational equation

∂p

∂t̄
(x, t̄) = − 1

D

2πε

T 3
nd

∞∑
n=1

n|Z−nVn|

×
∫ ∞

−∞

∣∣∣∣cn
( |y|

2

)∣∣∣∣ sin(ξn + ψn(|y|/2)− 2πnαy/Tnd) [p(x− y, t̄) − p(x, t̄)] dy.

(7.5.8)

Equation (7.5.8) has solutions of the form p(x, t̄) = eλk t̄eikx, where

λk = − 1

D

4πε

T 3
nd

∞∑
n=1

n|Z−nVn|

×
∫ ∞

−∞

∣∣∣∣cn
( |y|

2

)∣∣∣∣ sin(ξn + ψn(|y|/2)− 2πnαy/Tnd)
[
e−iky − 1

]
dy. (7.5.9)

Thus, a solution φαS will be stable if

Re(λk) = − 1

D

4πε

T 3
nd

∞∑
n=1

n|Z−nVn|

×
∫ ∞

−∞

∣∣∣∣cn
( |y|

2

)∣∣∣∣ sin(ξn + ψn(|y|/2)− 2πnαy/Tnd) [cos(ky) − 1] dy,

(7.5.10)

is less than zero for all k ∈ Z. Note that the k = 0 eigenvalue is always zero, which

corresponds to the arbitrary phase shift of the synchronous solution. Therefore, we

really need Re(λk) < 0 for all k �= 0.
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Figure 7.5.2: Inclusion of the Dendritic Phase Shift Can Alter the Stability
of Solutions of (7.5.6). Re(λk) as a function of k for wave numbers α D

Tind
= 0

(solid), α D
Tind

= 2 (dash-dotted), and α D
Tind

= 8 (dashed) for a neuron firing at 74.57

Hz and g = 0.25 and D = 40 when the dendritic phase shift ψn is (a) included and
(b) excluded. Notice that inclusion of ψn causes the synchronous, α D

Tind
= 0, and 8th

traveling wave solution to be stable.

Recall that the function |cn(|y|/2)| describes the attenuation of the signal due to

dendritic filtering as a function of the distance between the neurons. Thus, |cn(|y|/2)|
acts as the weight function for the network (see 4.7) since closer neurons are more

strongly coupled to each other than to neurons that are further apart. The function

ψn(|y|/2) describes the phase shift that occurs as a result of the dendritic filtering.

Therefore, we can use equation (7.5.10) to examine how the different properties of

dendritic filtering, i.e. attenuation and phase shift, affect the stability of the various

solutions of equation (7.5.6). Figure 7.5.2 plots the real part of λk as a function of

k for a neuron firing at 74.57 Hz when the dendritic phase shift ψn is included (a),

and when it is excluded (b). Notice that in (a), the wave numbers 0, 2, and 8 are all

stable, while in (b) only wave number 2 is stable.

We confirm the results found in Figure 7.5.2 by discretizing and numerically sim-

ulating equation (7.5.6). Figure 7.5.3 plots the numerical solution of (7.5.6) starting
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near the traveling wave initial condition with wave number α D
Tind

= 8 when ψn is

included (a) and excluded (b). Notice that the network converges to the traveling

wave solution with wavenumber α D
Tind

= 8 in (a), and diverges in (b).

Figure 7.5.4 plots the stability of the various traveling wave solutions as a function

of the firing frequency of the neurons with the dendritic phase shift (top) and without

the dendritic phase shift (bottom). One can see that, in the top plots, increasing g

encourages the stability of the lower wave numbers at higher frequencies. While

increasing g without the dendritic phase shift (bottom) decreases the number stable

waves in the middle of the firing frequency range shown. More interestingly, there is

a significant difference between the plots with the dendritic phase shift and without

the dendritic phase shift. That is, the inclusion of the dendritic phase shift causes a

wider range of traveling wave solutions to be stable at all firing frequencies.

7.6 Dynamics in a Two-Dimensional Network of

Electrically Coupled Ball-and-Stick Neurons

Equation (7.5.1) can be extended to model a two-dimensional N × N network of

electrically coupled ball-and-stick neurons [46]:

dφj�
dt̄

=
ε

(N − 1)2

N∑
k=1

N∑
m=1

{
〈Z〉

(
〈V 〉 − ẼLD

)(
c0

(
Lj�km

λ

)
+ d0

(
Lj�km

λ

))
(7.6.1)

+
1

T 2
nd

∑
n �=0

[
Z−nVncn

(
Lj�km

λ

)
e2πin(φkm−φj�)/Tnd + Z−nVndn

(
Lj�km

λ

)]}
,

where φj� is the phase of the neuron at position (j, �) and Lj�km is the length of the

dendrite connecting the soma of the neuron at (j, �) to the electrical synapse with the
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Figure 7.5.3: Traveling Wave Solutions of (7.5.6). Numerical simulation of
equation (7.5.6) with N = 2001, D = 40, and ε = .1 when the dendritic phase shift
is included (a), and excluded (b). All other parameters are the same as in Figure
7.5.2. The network is given initial conditions close to the traveling wave solution with
wave number α D

Tind
= 8. The y − axis is time in msec, while the x − axis is the

neuron number, which ranges from 1 to 2001. The colorscale represents the phase
of the neurons which goes from 0 to T = 13.4 msec. The leftmost panels show the
activity of the network from time 0 to 30 msec, while the rightmost panels show the
activity from time 9965 to 9995 msec. As predicted in Figure 7.5.2, the network
with the dendritic phase shift, (a), converges to traveling wave solution, while the
network without the phase shift, (b), diverges away from the traveling wave solution
with wavenumber α D

Tind
= 8.
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neuron whose soma is at position (k,m). This network can display many different

types of behavior such as traveling waves and spiral waves (see Figure 7.6.1).
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Figure 7.6.1: Examples of Two-Dimensional Network Behavior. Numerical
simulation of (7.6.1) with a network of 51× 51 neurons. The plots show the network
behavior at a single point in time. The colorscale represents the phase of the neurons
which goes from 0 to T = 13.4 msec. The two-dimensional electrically coupled
ball-and-stick network can display different types of interesting behavior such as (a)
traveling waves and (b) spiral waves of activity.

7.7 Future Directions

In the future, we plan to further examine the behavior of networks of electrically

coupled ball-and-stick neurons. For example, in the two-cell case, we can examine

the effects of different length dendrites on the phase-locking behavior of the two cells.

We will also see how adding noise to the system can affect the phase-locking behavior

using the recent extensions in the theory of weakly coupled oscillators to include

the effects of noise, e.g. [101, 115]. In the one-dimensional network case, we will

examine how heterogeneity and different network topologies will affect the phase-

locking dynamics we have observed here. Lastly, we would like to first quantify

the different types of phase-locking behavior we have seen in the two-dimensional
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network, and then see how heterogeneity and different network topologies alter these

results.
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