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Abstract
During forward swimming, crayfish and other long-tailed crustaceans rhythmicallymove four pairs of limbs called swimmerets
to propel themselves through the water. This behavior is characterized by a particular stroke pattern in which themost posterior
limb pair leads the rhythmic cycle and adjacent swimmerets paddle sequentially with a delay of roughly 25% of the period.
The neural circuit underlying limb coordination consists of a chain of local modules, each of which controls a pair of limbs.
All modules are directly coupled to one another, but the inter-module coupling strengths decrease with the distance of the
connection. Priormodeling studies of the swimmeret neural circuit have included only the dominant nearest-neighbor coupling.
Here, we investigate the potential modulatory role of long-range connections between modules. Numerical simulations and
analytical arguments show that these connections cause decreases in the phase-differences between neighboring modules.
Combined with previous results from a computational fluid dynamics model, we posit that this phenomenon might ensure
that the resultant limb coordination lies within a range where propulsion is optimal. To further assess the effects of long-range
coupling, we modify the model to reflect an experimental preparation where synaptic transmission from a middle module is
blocked, and we generate predictions for the phase-locking properties in this system.

Keywords Phase-locking · Synchronization · Phase-wave · Central pattern generator · Half-center oscillator · Metachronal
wave · Locomotor control · Long-tail crustacean · Perturbation analysis · Limb coordination · Locomotion

1 Introduction

Efficient limbed locomotion results from motor patterns that
preserve particular phase relationships between limbs. In var-
ious studies of invertebrate systems, it has been shown that
the basic motor pattern controlling locomotor movements
can be produced by CPGs (pattern-generating circuits in the
central nervous system) or networks of CPGs (Hughes and
Wiersma 1960; Marder and Bucher 2001). Thus, the neural
mechanisms that underlie complex locomotor behavior can
be assessed by examining how intrinsic neuronal properties
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and network connectivity combine to generate and coordi-
nate rhythmic activity in these circuits.

Forward swimming of crayfish provides an example of
robust coordinated limb activity. During this behavior, limbs
called swimmerets generate thrust by paddling rhythmically
with alternating power and return strokes. These limbs occur
in four bilateral pairs that are aligned along the abdomen of
the segmental body of the crayfish. The swimmerets within
each pair move synchronously, but the activation of limb
pairs occurs in a back-to-front metachronal wave. The most
posterior limb pair begins the cycle and is followed by the
sequential activation of neighboring limb pairs, which are
delayedby approximately 25%of the overall period.This dis-
tinct coordinated limb movement is robust; it is maintained
over a large range of swimming frequencies [less than 0.5 to
greater than 6 Hz (Mulloney et al. 2006)] and is preserved
over the full range of body sizes of crayfish. Furthermore, this
phenomenon generalizes beyond the crayfish to other long-
tailed crustaceans (Laverack et al. 1976). The swimmeret
system rarely exhibits any other behavior.

The crayfish swimmeret system is ideal for studying the
neural mechanisms of coordinated motor behavior for sev-
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eral reasons: (1) The system generates the metachronal wave
with 25% inter-limb phase-differences almost exclusively, as
described above, (2) the isolated ventral nerve cord is capa-
ble of producing this pattern without the influence of sensory
feedback, and thus the behavior can be examined by study-
ing the neural circuitry alone, and (3) the neural circuitry
that produces this behavior has been well characterized and
is made up of a relatively small number of neurons and inter-
connecting axons (Mulloney and Smarandache-Wellmann
2012). The circuit is comprised of a series of interconnected
local modules (CPGs) in which the pattern-generating kernel
is a half-center oscillator (HCO). Each module can inde-
pendently produce the rhythmic motor output that drives
a corresponding limb. Connections between the oscillating
modules adjust the phases of activity to produce the observed
coordinated metachronal behavior.

Previous studies have modeled the segmented neural cir-
cuit of the crayfish swimmeret system as a chain of coupled
oscillators. This body of work explored the capabilities of
various connection topologies and suggested conditions nec-
essary to generate the back-to-front progression with 25%
phase-differences that characterize the swimming stroke pat-
tern (Skinner et al. 1997; Jones et al. 2003; Jones and
Kopell 2006). More recently, Zhang et al. incorporated cur-
rent knowledge of the network connectivity and concluded
that the circuit architecture provides a robust mechanism
for metachronal swimming (Zhang et al. 2014; Zhang and
Lewis 2016). All of these models have represented the cir-
cuitry with coupling between nearest-neighbor oscillators
only. However, longer-range connections exist. The strengths
of these connections are weaker than those between nearest-
neighbors (Smarandache et al. 2009), but they have the ability
to coordinate activity when a middle oscillating module is
blocked (Tschuluun et al. 2001). These results suggest that
the long-range connections may play a functional role in
coordinating limb movements of the swimmerets.

Here, we consider the effects of long-range coupling on
coordination in chains of oscillators that capture known fea-
tures of the crayfish swimmeret neural circuit. First, we
perform numerical simulations of both a conductance-based
model and a phase model of a chain of half-center oscilla-
tors with long-range connections and examine the effect of
varying the strength of long-range connections in these two
models. In both cases, we show that the addition of next-
nearest-neighbor coupling decreases the phase-differences
between neighboring oscillators, thus speeding up the back-
to-front metachronal wave of limb paddling. To explain the
nature of this phenomenon, we use a perturbation analy-
sis of the phase model to derive expressions that describe
how long-range coupling and the phase response proper-
ties of the oscillators combine to influence phase-locking in
the swimmeret system. We show that the necessary condi-
tions for decreases in phase-differences due to the presence

of next-nearest-neighbor coupling appear to be met generi-
cally by the crayfish swimmeret neural circuit. Finally, we
probe the system further by examining the circuit’s behav-
ior when a middle oscillator is blocked, as in experimental
studies (Tschuluun et al. 2001). Our results generate phase-
locking predictions that depend on the relative ratio of two
key parameters that correspond to the strength of the long-
range coupling and the phase response properties of the
oscillators. Our main focus is to understand the role of the
next-nearest-neighbor connections (whichwewill often refer
to simply as long-range connections), and in the main text,
we largely ignore the effects of the significantly weaker
next-next-nearest-neighbor coupling (which we refer to as
longest-range connections). However, we address the contri-
bution of these longest-range connections in “Appendix B.”

2 Long-range connections decrease
phase-differences between neighboring
limbs

2.1 The swimmeret neural circuit as a chain of
half-center oscillators (HCOs)

The coordinated movements of crayfish swimmerets are
driven by a motor pattern that is generated by a neural circuit
within its central nervous system. This system is segmented
into four distinct ganglia, each of which contains two neural
modules. Each module includes a pattern-generating kernel,
a set of coordinating neurons, and a set of motor neurons
that constitutes the complete motor innervation of an indi-
vidual swimmeret (Mulloney and Smarandache 2010). Thus,
the swimmeret neural circuit is a chain of four intercon-
nected local sub-circuits. The circuit is shown schematically
in Fig. 1a. Note that the diagram only depicts the circuit for
one side of the crayfish’s body.

The pattern-generating kernel of each module is formed
by nonspiking local interneurons, IPS neurons (inhibitors of
power stroke), and IRS neurons (inhibitors of return stroke)
(Smarandache-Wellmann et al. 2013) that are connected by
reciprocal inhibition. This “half-center” structure generates
robust antiphase oscillations that are responsible for the coor-
dination of the power and return strokemotor neurons. These
antiphase oscillations are intrinsic to the local half-center
oscillator (HCO), i.e., activation of the oscillations does not
rely on the intersegmental coupling or proprioceptive feed-
back. Moreover, while the intrinsic frequencies of the HCOs
can vary widely, the intrinsic frequencies of the oscillators
are not significantly different from one another (Paul and
Mulloney 1986; Mulloney 1997).

Activity in the HCO kernels drive spiking neurons, ASC
and DSC, whose axons project in the anterior and poste-
rior directions, respectively. The ASC neurons fire bursts
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of spikes that are in-phase with the activity of their corre-
spondingmodule’s power strokemotor neurons, and theDSC
neurons fire bursts of spikes that are in-phase with activity
of the module’s return stroke motor neurons (Mulloney et al.
2006). The ASC and DSC neurons reliably encode infor-
mation about the phase, duty cycle, and strength of their
presynaptic partners (Mulloney et al. 2006). Ascending and
descending intersegmental input arriving at each module is
transmitted to a local nonspiking interneuron, ComInt1 (C1).
C1 then transfers the input to the IRS component of the
HCO.While the filtering processes of C1 have not been fully
explored, preliminary studies suggest that it is well described
by a linear process (Smarandache-Wellmann et al. 2014).

All modules in the neural circuit are coupled with one
another. The intersegmental coupling in the ascending and
descending directions is approximately equal, but the cou-
pling strength substantially weakens with distance between
modules. EPSPs from axons originating in next-nearest-
neighbors have strengths between 10 and 40% of the strength
of EPSPs from axons generated from neighbors, and next-
next-nearest-neighbors have exhibited EPSP strengths at
10–15% of those between neighbors (Smarandache et al.
2009).

In summary, the crayfish swimmeret neural circuit is com-
prised of a chain of HCOs in which there is asymmetry
in the ascending and descending connection topology and
a decrease in coupling strength with distance between the
HCOs. Note that the HCOs are coupled to each other by a
sequence of three synaptic connections: Information travels
from one HCO to a coordinating neuron (ASC or DSC) and
then to a C1 interneuron which in turn projects onto the next
HCO. However, because the ASC and DSC neurons provide
reliable information about the timing and duration of HCO
activity, andbecauseC1 seemsnot to strongly influence infor-
mation in the signal it receives, this trisynaptic connection
can be modeled as a monosynaptic connection, and therefore
the HCOs can be modeled as being directly connected to one
another as in Fig. 1b. Indeed, we will model the swimmeret
systemusing this configuration, andwewill include the prop-
erty that the connectivity strength decreases with distance by
appropriately scaling the longer range coupling strengths.

2.2 Phase-locking in a conductance-basedmodel of
the swimmeret neural circuit

As an initial exploration of the effects of long-range coupling
on intersegmental limb coordination, we use the network
architecture and assumptions outlined in Sect. 2.1 and Fig. 1b
to construct a conductance-based model of (one side of)
the swimmeret neural circuit. The intrinsic dynamics of
the HCOs are described by the Wang–Rinzel model (Wang
and Rinzel 1992). Each HCO consists of two “cells”: a
P cell and an R cell. The ionic currents in the P and R

cells include a rapidly-activating slowly-inactivating inward
“post-inhibitory rebound” current and a voltage-independent
leakage current. Note that the cells in the HCOs of the swim-
meret circuit are nonspiking, and therefore ionic currents that
underlie fast spikes are not present in the model. The strong
reciprocal inhibitory synapses between cells in eachHCOare
modeled as “fast threshold modulation” synapses (Somers
and Kopell 1993). The cells in the HCOs are nonoscillatory
when isolated. However, when coupled through recipro-
cal inhibition, alternating oscillations with a duty cycle of
approximately one half are generated via post-inhibitory
rebound (Perkel and Mulloney 1974). The intersegmental
connections, i.e., the coupling between the HCOs, are also
modeled as “fast thresholdmodulation” synapses. The synap-
tic strengths of next-nearest-neighbor connections are scaled
by the parameter β to reflect their strength, which is weak
relative to synaptic strengths between neighboring HCOs.
Details of the conductance-based model are provided in
“Appendix A.”

We define 0 ≤ φ j < 1 to be the intersegmental phase-
difference between the j + 1th and j th HCO. For the
conductance-based model, we compute φ j by measuring the
difference between times of peak activity in the P cells of the
j + 1th and j th HCO and normalize this by the period of the
oscillations.

Figure 2a, b shows the P cell activity formodel simulations
with nearest-neighbor coupling alone (β = 0) and with both
nearest-neighbor and next-nearest-neighbor coupling (β =
0.3), respectively. In both cases, activation of power stroke
neurons occurs sequentially from the most posterior HCO to
the most anterior HCO with roughly 25% phase-differences
between HCOs. In the simulation with nearest-neighbor cou-
pling alone, the intersegmental differences are (φ1, φ2, φ3) =
(0.302, 0.313, 0.272).When long-range coupling is incorpo-
rated, the intersegmental phase-differences in the simulation
are (φ1, φ2, φ3) = (0.239, 0.196, 0.240). That is, the inter-
segmental phase-differences in the network that includes
next-nearest-neighbor coupling are significantly smaller than
those in the networkwith nearest-neighbor coupling alone. In
fact, Fig. 2c shows that the intersegmental phase-differences
tend to decrease as the relative next-nearest-neighbor cou-
pling strength (β) increases well beyond the biophysically
realistic range of next-nearest-neighbor coupling strengths.

2.3 Phasemodel of the swimmeret neural circuitry

The simulation results for the conductance-based model
show that in a chain of asymmetrically connected Wang–
Rinzel HCOs, long-range connections cause decreases in
the phase-differences between neighboring HCOs. In this
section, we use an analytically tractable phase model that
captures the essential properties of the internal HCO struc-
ture and the inter-HCO connectivity to determine the explicit
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(a)

(b) (c)

Fig. 1 Neural circuitry responsible for coordination in the crayfish
swimmeret system. The system is modular, with each swimmeret con-
trolled by a distinct local pattern generator. Note that the diagrams
represent the circuitry innervating swimmerets on one side of the cray-
fish’s body. a The circuit is composed of four interconnected local
modules in a chain of segmental ganglia. IPS and IRS neurons in
each module form a half-center oscillator (HCO) and project in the
ascending and descending directions through coordinating neurons,
ASC and DSC. Intersegmental input is assimilated within C1 neu-
rons. The connections to C1 are color coordinated to correspond with
each presynaptic module. Relative synaptic strength is indicated by tri-
angle size—neighboring coupling strengths are significantly stronger
than longer-range connections. b Effective configuration of the neural

circuitry. A chain of HCOs with asymmetric ascending and descend-
ing coupling. P and R neurons represent units that are in-phase with
the power and return strokes, respectively. c Phase model representa-
tion. Each node tracks the activity of a particular HCO and hence the
corresponding activity of the neurons within each local module (i.e.,
ganglion). To represent the fact that ascending and descending con-
nections come from distinct origins within the local HCO (see a and
b), the phase of the descending input is shifted by half of the period
relative to ascending input, i.e., ascending connections with phase θ j
are shown as solid lines, whereas the descending connections have
phase θ j + 0.5, indicated with dashed lines. Figure a adapted from
Smarandache-Wellmann and Grätsch (2014) (color figure online)

conditions necessary for this phenomenon. [Note that the
conductance-based model can be systematically reduced to
the phase model in the limit of weak inter-HCO connectiv-
ity (Schwemmer and Lewis 2012).]

2.3.1 Description of the phase model

Neural circuits consisting of interconnected CPGs have been
often modeled mathematically as chains of coupled phase
oscillators, for example, Cohen et al. (1992), Williams et al.
(1990), and Skinner et al. (1997). In phase models, the state
of the kth oscillator is described completely by its phase θk ∈
[0, 1). In isolation, the phase θk evolves according to some
constant intrinsic frequency. The inputs coming from other

units can speed up or slow down the oscillators, depending
on the structure of the synaptic input, the phase at which it
is received, and the oscillators’ response properties. These
effects are captured by interaction functions, which quantify
the magnitude of acceleration or deceleration as a function
of the phase-difference between the coupled oscillators.

To represent the neural circuit of the crayfish swimmeret
system, we augment the phase model described in Zhang et
al. (2014) by including long-range coupling,

θ̇1 = ω + HA(θ2 − θ1) + βHA(θ3 − θ1)

θ̇2 = ω + HD(θ1 − θ2) + HA(θ3 − θ2) + βHA(θ4 − θ2)

θ̇3 = ω + HD(θ2 − θ3) + HA(θ4 − θ3) + βHD(θ1 − θ3)

θ̇4 = ω + HD(θ3 − θ4) + βHD(θ2 − θ4). (1)
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Fig. 2 Numerical simulations for the chain ofWang–Rinzel HCOswith
asymmetric coupling. a Time course of power stroke neuronal activity
for the network with nearest-neighbor intersegmental coupling only.
Blue, magenta, gold, and green curves correspond to activity in the
fourth, third, second, and first HCOs, respectively (i.e., colors of the
curves correspond to the module color in Fig. 1). b Neuronal activity
when both nearest-neighbor and long-range connections are present.

Long-range synaptic strength was chosen to be 30% of the nearest-
neighbor strength (β = 0.3). Line color and style correspond to (a).
The phase-differences are smaller than in the nearest-neighbor simula-
tion, see text for details. c Phase-differences decrease as the long-range
coupling strength increases from 0 to 100% of the nearest-neighbor
strength (β ∈ [0, 1]). Phase-differences φ1, φ2, φ3 shown with solid,
dashed, and dotted lines, respectively (color figure online)

Because the isolated swimmeret CPGs have similar frequen-
cies (Paul and Mulloney 1986), the intrinsic frequencies
of the oscillators are modeled by a common parameter, ω.
The interaction functions HA and HD represent the effects
in response to inputs from ascending and descending con-
nections, respectively. The outputs of an oscillator in the
ascending and descending directions emanate from distinct
subunits of each HCO, as shown in Fig. 1a, b, and are out of
phase with each other by half of the period. Other than this,
the outputs are very similar (Smarandache-Wellmann et al.
2013). We can capture this feature of the circuit by shifting
the phase of the descending output by 0.5 relative to the phase
of the ascending output (Zhang et al. 2014). That is, we can
define the phase of the ascending and descending outputs of
the oscillator j to be θ j and θ j +0.5, respectively. Then, if we
set the interaction function for an ascending connection from
oscillator k to oscillator j to be H(θk − θ j ) = HA(θk − θ j ),
the interaction function for a descending connection from
oscillator i to oscillator j can be written as

HD(θi − θ j ) = H(θi + 0.5 − θ j ) = H(θi − θ j + 0.5).

Thenext-nearest-neighbors interaction functions are scaled
by the parameter β to reflect the fact that these connec-
tions are weak relative to the nearest-neighbor connections.
The nearest-neighbor coupling strength is absorbed into the
amplitude of the interaction functions. As mentioned earlier,
experimental measurements indicate that the next-nearest-

neighbors coupling strength is β ∼ 0.1 − 0.4. However, to
get a more complete picture of the effects of this long-range
coupling, we will vary β between 0 and 1 in simulations of
the phase model. β = 0 corresponds to the case of nearest-
neighbor connectivity alone, whereas β = 1 corresponds
to the case where the next-nearest-neighbor and nearest-
neighbor coupling strengths are of equal strengths. (Note,
however, that the analytical arguments in Sect. 2.3.4 will
rely on the assumption that β is sufficiently small.)

In terms of phase-differences between neighboring oscil-
lators (φk = θk+1 − θk), the phase model for the swimmeret
neural circuit with long-range coupling is

φ̇1 = H(−φ1 + 0.5) + H(φ2) − H(φ1)

+ β[H(φ2 + φ3) − H(φ1 + φ2)]
φ̇2 = H(−φ2 + 0.5) + H(φ3) − H(−φ1 + 0.5) − H(φ2)

+ β[H(−φ1 − φ2 + 0.5) − H(φ2 + φ3)]
φ̇3 = H(−φ3 + 0.5) − H(−φ2 + 0.5) − H(φ3)

+ β[H(−φ2 − φ3 + 0.5) − H(−φ1 − φ2 + 0.5)]. (2)

Steady states of system (2) correspond to phase-locked states
of the chain of HCOs (system 1).

2.3.2 Interaction functions of local modules

It is clear from the form of the phase model that the shape of
the interaction function H(φ) is fundamental in determining
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Fig. 3 Experimental, numerical, and idealized interaction functions. a
Experimental data from this figure in Zhang et al. (2014). Data were fit
to a function of the form H(φ) = −a cos(2π(φ + δ)), for a = 0.0905
and δ = −0.1007, shown in red. The H function has a preferred
phase (zero-crossing) of φ = 0.3507. b H function generated by the
Wang–Rinzel numerical simulation with a zero-crossing at φ = 0.1511
(shown in blue). This H function was fit to −a cos(2π(φ + δ)), for

a = 0.0784 and δ = 0.1222 (shown in red). c Idealized interaction func-
tion H̃(φ) = − 1

2π cos(2πφ) has a zero-crossing at exactly 0.25 (dashed
curve in black). In our analysis,we consider interaction functions shifted
slightly away from this preferred phase, with H(φ) = H̃(φ + δ) for δ

small. H(φ) is shown for δ = −0.1,−0.05,−0.025, 0.025, 0.05, 0.1,
which corresponds to red, blue, green, sienna, purple, and yellow,
respectively (color figure online)

the phase-locked states of the system. Therefore, in order to
understand the mechanisms underlying swimmeret coordi-
nation using the phase model, we must consider interaction
functions H(φ) that capture the essential phase response
properties of local modules in the crayfish swimmeret cir-
cuit.

Figure 3a depicts an experimentally measured H function
for a crayfish CPG (Smarandache-Wellmann et al. 2014),
and Fig. 3b shows the H function computed numerically for
the Wang–Rinzel HCO model (as used in Sect. 2.2). Both
of these functions are well fit by sinusoids that have zeroes
with positive slope at φ � 0.25. The zero of an H function
with positive slope is called the preferred phase. Previous
modeling work on the crayfish swimmeret circuitry studied
phase-locking in a chain of phase oscillators using sinu-
soidal H functions (Skinner et al. 1997). Notably, this study
showed that a chain of nearest-neighbor oscillators exhibited
stable 25% phase-locking when the sinusoidal interaction
function was shifted to have a preferred phase at exactly
φ = 0.25.

In our analysis of the phase model, we represent the inter-
action functionmore generically as an arbitrary function such
that H(φ) = H̃(φ + δ), where H̃ is the “unperturbed” inter-
action function with a preferred phase at exactly φ = 0.25,
i.e., where H̃(0.25) = 0 and H̃ ′(0.25) > 0. Provided that δ

is small, H will be close to H̃ but the preferred phase will
be shifted to φ = 0.25 − δ. This formulation allows us to
evaluate the effects of small perturbations to the preferred
phase of the H function.

In numerical simulations of the phase model below, we
choose explicitly H̃(φ) = − 1

2π cos(2πφ). The interaction
function will inherent certain symmetries from this descrip-
tion, but our analytical results in Sect. 2.3.4 do not rely on

these symmetries. In Fig. 3c, H(φ) = H̃(φ + δ) is plotted
for various values of δ. The unperturbed H̃(φ) crosses the φ-
axis at exactly 0.25. When δ > 0, H(φ) is shifted to the left
relative to H̃(φ) and H(0.25) > 0; for δ < 0, the interaction
function H(φ) is shifted to the right, which corresponds to
H(0.25) < 0.

2.3.3 Phase model simulations of the crayfish neural
circuitry

We simulate the phase model for the chain of HCOs (sys-
tem (2)) and compute the phase-differences as the relative
strength of the long-range coupling (β) and the shift of the
interaction function (δ) vary. The results of these simulations
are plotted inFig. 4.The three frames indicate the steady-state
values of φ1, φ2, and φ3 as the long-range coupling strength
β varies. Each colored curve corresponds to a different value
of δ, with colors that correspond to the interaction functions
shown in Fig. 3c. For small values of δ, the phasesφ1, φ2, and
φ3 decrease as β increases. The H function computed for the
Wang–Rinzel model has a zero close to φ = 0.15 (Fig. 3b);
this corresponds to the idealized sinusoidal H function with
δ = 0.1 (the yellow curve in Fig. 3c). Note the qualitative
match between the phase-differences φ1, φ2 and φ3 in the
simulations of the chain ofWang–Rinzel HCOs (Fig. 2c) and
the chain of phase oscillators with δ = 0.1 (yellow curves
in Fig. 4). As in the conductance-based model, the phase
model simulations show that long-range connections in the
crayfish neural circuitry decrease phase-differences, com-
pared to those generated by the nearest-neighbor connectivity
alone.
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Fig. 4 The phase-locking of system (2) as δ (shift of the H function, see
Fig. 3) and β, the strength of the long-range coupling vary. Steady-state
values of φ1 are shown in (a), φ2 in (b), φ3 in (c). Colors correspond

to values of δ in Fig. 3. Steady-state values of φ j tend to decrease as β

increases well beyond the coupling strength’s physiological range, for
all j (color figure online)

2.3.4 Perturbation analysis of the phase model for the
crayfish neural circuit

In this subsection, a perturbation argument is used to
derive expressions that describe how the steady-state phase-
differences of system (2) are modulated in response to
changes in the long-range coupling strength, β, and shifts
in the preferred phase of the interaction function away from
0.25, δ. In this analysis, we will assume that δ and β are suffi-
ciently small,which are biologically reasonable assumptions.
We introduce a small parameter ε << 1 that scales δ and β,
i.e., δ = δ̃ε and β = β̃ε. (One could instead expand in the
parameter δ or β and obtain identical results; however, we
choose ε in order to explicitly retain the influence of the indi-
vidual terms.)We then seek steady-state phase-differences of
the form

φ j = φ0 + εφ∗
j + O(ε2),

where εφ∗
j will capture theO(ε) modulatory effects of long-

range coupling and the shifts in preferred phase.
Expanding H in terms of ε,

H(φ j )= H̃(φ j + δ)= H̃(φ0) + ε H̃ ′(φ0)(φ
∗
j + δ̃) + O(ε2).

We substitute these expressions for φ and H in system (2)
and collect like terms of ε. The resulting leading order (O(1))
steady-state equations are

0 = H̃(−φ0 + 0.5)

0 = −H̃(φ0). (3)

Note that φ0 = 0.25 always satisfies this system. Thus, the
phase-differences are of the form φ j = 0.25+ εφ∗

j +O(ε2).

This phase-locked state will be stable if H̃ ′(0.25) > 0.
This indicates that the system exhibits a metachronal wave

with approximately 25% intersegmental phase-differences
(Zhang et al. 2014). (If β is not O(ε), φ0 = 0.25 would not
be an invariant solution to the leading order equations unless
H̃(0) = H̃(0.5), which is not the case for experimentally
measured interaction functions.)

The leading order system (3) does not include the effects
of shifts of the preferred phase of the interaction function
or the effects of long-range connections. To characterize the
influence of these properties, we consider the O(ε) steady-
state equations for system (2)

0 = −2φ∗
1 H̃

′(0.25) + φ∗
2 H̃

′(0.25) + δ̃ H̃ ′(0.25)
0 = φ∗

1 H̃
′(0.25) − 2φ∗

2 H̃
′(0.25) + φ∗

3 H̃
′(0.25)

+ β̃(H̃(0) − H̃(0.5))

0 = φ∗
2 H̃

′(0.25) − 2φ∗
3 H̃

′(0.25) − δ̃ H̃ ′(0.25). (4)

This set of linear equations has a solution that quantifies the
O(ε) deviation from exact 25% phase-locking

⎛
⎝

εφ∗
1

εφ∗
2

εφ∗
3

⎞
⎠ =

shift term︷ ︸︸ ︷
δ

2

⎛
⎝

1
0

−1

⎞
⎠ +

long-range coupling term︷ ︸︸ ︷
β(H̃(0) − H̃(0.5))

H̃ ′(0.25)

⎛
⎝

1
2
1
1
2

⎞
⎠ . (5)

The right-hand side of Eq. (5) has been decomposed into two
terms: The first accounts for the effects due to the shift of
the H function away from a preferred phase of 0.25, and the
second term reflects the influence of long-range connections.
Thus, we can consider the influence of each separately.

Deviations from exact 25%phase-differences due to shifts
in the preferred phase (δ) are captured by

φ∗
shift = δ

2

⎛
⎝

1
0

−1

⎞
⎠ .
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Previously, Zhang et al. studied the nearest-neighbor crayfish
system in the coupled oscillator framework and showed that

the systemphase-locked at a state of the form
(
0.25+ H(0.25)

2H ′(0.25) ,

0.25, 0.25− H(0.25)
2H ′(0.25)

)
(Zhang et al. 2014; Zhang and Lewis

2016). Our derivation reproduces that result, i.e., the expan-
sion of the interaction function above implies that δ ≈
H(0.25)
H ′(0.25) . The form of φ∗

shift highlights the asymmetric effects
at the boundary of the chain of HCOs—the most anterior
phase-difference differs from 0.25 by the opposite amount of
the most posterior phase-difference (an amount that depends
on the sign and magnitude of δ). This effect can be seen in
Fig. 4. When β = 0 and δ is positive, φ1 is larger than 0.25,
andφ3 is smaller than 0.25 by that same amount (the opposite
holds when δ is negative).

Deviations from exact 25% phase-differences due to the
effects of long-range coupling (β) are captured by

φ∗
lr = β

H̃(0) − H̃(0.5)

H̃ ′(0.25)

⎛
⎝

1
2
1
1
2

⎞
⎠ .

If H̃(0)−H̃(0.5)
H̃ ′(0.25) > 0, then φ∗

lr is positive, and long-range cou-

pling leads to increases in the phase-differences between

neighboring oscillators. If H̃(0)−H̃(0.5)
H̃ ′(0.25) < 0, then φ∗

lr is

negative, corresponding to decreases in phase-differences.
Two generic properties of the interaction functions mea-
sured experimentally for the local modules in the crayfish
swimmeret system and those computed for theWang–Rinzel
HCO model are that H(0) < H(0.5) and H ′(0.25) > 0 (see
Fig. 3). These properties are quite robust. H(0) is close to the
minimum of the H function, and H(0.5) near the maximum
value of the H function. Furthermore, H is fairly smooth,
so H ′(0.25) is expected to be positive. Thus, in the crayfish

system, H̃(0)−H̃(0.5)
H̃ ′(0.25) < 0, and long-range coupling decreases

the phase-differences between neighboring oscillators in a
robust manner, confirming our simulation results.

3 The effect of long-range coupling during a
blocked oscillator experiment

While it is difficult to directly and exclusively modulate the
long-range coupling, the contribution and functional signifi-
cance of these connections have been examined indirectly
in experiments that blocked activity in a middle mod-
ule (Tschuluun et al. 2001). These experiments eliminated
nearest-neighbor inputs to either the most anterior or most
posterior oscillator in the chain, leaving that oscillator to be
influenced only by long-range connections. In some cases,
the network retained phase-locking across this block, which
provides evidence that long-range coupling can be sufficient

θ1 θ2 θ4

Fig. 5 Model schematic of the blocked ganglion system. The block
eliminates nearest-neighbor inputs to the most posterior oscillator (θ4),
leaving it only weakly connected to the well-coupled members of the
chain (θ1 and θ2). Dashed lines indicate the asymmetric connectivity
scheme. The weak longest-range connections (between θ1 and θ4) are
shown for biological accuracy, but their effects are not included in the
analysis of the phase model

to maintain limb coordination. In this section, we utilize our
phase model to further probe the dynamics of the swimmeret
neural circuit and to make predictions about the steady-state
phase-locking behavior in the “blocked oscillator” experi-
ments.

3.1 Phasemodel for the blocked oscillator system

To model the swimmeret neural circuit with a blocked oscil-
lator, we eliminate all terms dependent on θ3 in system 1 (see
schematic of the system in Fig. 5),

θ̇1 = ω + H(θ2 − θ1)

θ̇2 = ω + H(θ1 − θ2 + 0.5) + βH(θ4 − θ2)

θ̇4 = ω + βH(θ2 − θ4 + 0.5). (6)

The equations governing the evolution of phase-differences
between the oscillators are

φ̇1 = H(−φ1 + 0.5) − H(φ1) + βH(φ24)

˙φ24 = −H(−φ1 + 0.5) + β[H(−φ24 + 0.5) − H(φ24)],
(7)

where φ1 = θ2 − θ1 and φ24 = θ4 − θ2.
First, note that if β = 0, there is no coupling across the

block, and oscillator 4will not robustly phase-lockwith oscil-
lators 1 and 2. On the other hand, if the long-range coupling
strength is increased beyond the biophysically realistic range
to β = 1, the system reduces to a three-oscillator version
of the nearest-neighbor configuration discussed in Sect. 2
and considered in Zhang et al. (2014) and Zhang and Lewis
(2016). In that case, φ24 would approach a steady state of
approximately 0.25.

This raises the following questions: What is the criti-
cal value of β (i.e., critical coupling strength) above which
phase-locking exists; is this critical value in the range of
experimentally measured values for next-nearest-neighbor
coupling in the crayfish swimmeret system (β ∼ 0.3) ; and
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what are the dynamics of the system when β is close to this
critical value?

3.2 Simulations of the blocked oscillator system

Simulation results of the blocked oscillator system (system
(7)) are presented in Fig. 6 with each frame corresponding
to a different value of β, the strength of coupling across
the block. φ1 is shown with a dotted black line, and φ24 is
shown with a solid red line. In these simulations, H(φ) =
− 1

2π cos(2π(φ + δ) with δ = −0.05 (chosen arbitrarily,
shown in blue in Fig. 3c).

Figure 6a shows the case where the oscillators are uncou-
pled across the block, β = 0. The well-coupled anterior
oscillators (oscillators 1 and 2) phase-lock with a phase-
difference of φ1 = 0.25. On the other hand, the oscillator
uncoupled across the block (oscillator 4) is unable to coordi-
nate its activity with the other two oscillators, and φ24 slowly
“walks through” all possible phase-differences in a linear
manner. Note that this phase walk-through occurs despite
the fact that all of the oscillators have the same intrinsic
frequency ω. In Fig. 6b where β = 0.1, φ1 exhibits small-
amplitude oscillations around 0.25. The oscillators across the
block remain largely uncoordinated. As before, φ24 walks
through all phases but the influence of the coupling across
the block is now apparent in the nonlinear profile of φ24 in
time. In Fig. 6c where β = 0.2, the dynamics are similar to
those shown in Fig. 6b, but φ24 remains near 0.5 (antiphase)
for an elongated period of time and the period of phase walk-
through is increased. Finally, in Fig. 6d, where β = 0.3,
phase-locking across the block is achieved. Note that φ1 set-
tles at a steady state very close to 0.25 (φ1 = 0.258), whereas
φ24 evolves to a steady-state value of φ24 = 0.36.

We also performed analogous simulations with δ > 0
(not shown). Qualitatively similar dynamics were observed,
except that in this case the phase-differences φ24 (i) decrease
in time during the phasewalk-throughs rather than increasing
in time and (ii) exhibit prolongated activity around 0 (syn-
chrony) instead of around 0.5 (antiphase).

3.3 Perturbation analysis of the blocked oscillator
system

In order to understand the mechanisms underlying the
simulation results described above, we use a perturbation
argument to analyze the blocked oscillator system (system
(7)) for “small” β (i.e., weak coupling across the block) and
“small” δ (i.e., small shifts away from a preferred phase of
0.25) .

When long-range coupling is absent (β = 0), the system
is described by

φ̇1 = H(−φ1 + 0.5) − H(φ1) := G(φ1) (8)
˙φ24 = −H(−φ1 + 0.5). (9)

Equation (8) describes the evolution of φ1, the phase-
difference between the coupled anterior oscillators (1 and
2). The steady-state behavior of φ1 is prescribed by the zeros
ofG(φ). Notice thatG(0.25) = 0, regardless of the choice of
H . This occurs because the ascending and descending out-
puts of each oscillator are a half period out of phase with
one another (see Sect. 2.3.1). Thus, φ1 = 0.25 is always
a phase-locked state for oscillators 1 and 2. Furthermore, it
is stable since H ′(0.25) > 0. When oscillators 1 and 2 are
phase-locked with φ1 = 0.25, the phase-difference across
the block can be solved for explicitly as

φ24(t) = −H(0.25)t + φ24(0).

This implies that, despite all oscillators having the same
intrinsic frequency ω, the phase-difference between oscil-
lators 2 and 4 (φ24) is constant only if H(0.25) = 0, i.e., if
the preferred phase is exactly 0.25. The coupling between
oscillators 1 and 2 adjusts their instantaneous frequency
by H(0.25) (see system (6)), introducing a frequency het-
erogeneity between oscillators 2 and 4. As a result, φ24(t)
exhibits a linear-phase walk-through in time. If δ < 0, then
H(0.25) < 0 and the phase-difference φ24 increases with
time. This explains the simulation results in Fig. 6a (β = 0
and δ < 0) in which φ24(t) increases linearly with time.
The increase is particularly slow because δ is small and
H(0.25) � H̃ ′(0.25)δ. Note that if δ > 0, then H(0.25) > 0
and the phase-difference φ24 decreases with time, whereas if
δ = 0, then H(0.25) = 0 and φ24 would remain constant at
φ24(0).

When long-range coupling is weak (0 < β << 1), the
leading order terms in system (7) (Eqs. 8–9) dominate the
dynamics of oscillators 1 and 2. Thus, φ1 evolves rapidly
toward and remains close to 0.25, as in the simulation results
illustrated in Fig. 6. On the other hand, across the block, coor-
dination depends on the δ-dependent size of H(0.25) (i.e.,
−H(−φ1+0.5)with φ1 = 0.25) relative to the β-dependent
magnitude of the long-range coupling terms in system (7).
For sufficiently small β and δ, the equations that govern the
slow-time evolution of φ24, as well as the small amplitude
variations of φ1 around 0.25, can be well approximated using
the perturbation argument presented below.

As in Sect. 2.3.4, we assume that δ = δ̃ε and β = β̃ε with
ε small, and we further assume that φ1 has relaxed to 0.25
but allows for small (O(ε)) variations around this value,

φ1 = 0.25 + εφ̃1.
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Fig. 6 Time course of phase-differences φ1 (black dashed) and φ24
(red solid) with a β = 0, b β = 0.1, c β = 0.2, and d β = 0.3. In
all frames, δ = −0.05. a In the absence of long-range coupling, the
phase-difference between θ1 and θ2 evolves to exactly 0.25, a result
that holds regardless of the choice of H . The phase-difference between
the uncoupled oscillators walks through all possible values. b For weak
(nonzero) long-range coupling strengths, the well-coupled oscillators

exhibit small-amplitude oscillations around 25%. The oscillators across
the block exhibit a “wavy” phasewalk-through. cAs the long-range cou-
pling strength increases, the frequency of the walk-through decreases
and the phase-difference φ24 spends more time near the antiphase state,
φ24 = 0.5. d For sufficiently large long-range coupling strengths, sys-
tem phase-locks with phase-differences close to 25% (φ1 = 0.2593 and
φ24 = 0.36) (color figure online)

Substituting this expression into the blocked oscillator model
(system (7)) and expanding in ε, we obtain

ε
˙̃

φ1 = H(0.25 − εφ̃1) − H(0.25 + εφ̃1) + β̃εH(φ24)

= ε[−2φ̃1(t)H̃
′(0.25) + β̃ H̃(φ24)] + O(ε2)

˙φ24 = −H(0.25 − εφ̃1(t)) + β̃εG(φ24)

= ε[(φ̃1(t) − δ̃)H̃ ′(0.25) + β̃G̃(φ24)] + O(ε2),

where G̃(φ) = H̃(−φ+0.5)−H̃(φ). Here,we have assumed
that H ′(0.25 ± φ24), H ′(0.5 ± φ24), and H ′(0 ± φ24) are
O(1). To explicitly show that φ24 evolves on a much slower
timescale than φ1, we cancel the common ε in the first equa-
tion and rewrite the leading order equations as

˙̃
φ1 = [−2φ̃1(t)H̃

′(0.25) + β̃ H̃(φ24)] (10)

˙φ24 = ε[(φ̃1(t) − δ̃)H̃ ′(0.25) + β̃G̃(φ24)], (11)

According to Eq. (10), φ̃1 evolves relatively rapidly to the
quasi-steady state

φ̃1(t) = β̃ H̃(φ24(t))

2H̃ ′(0.25)
.

Substituting this expression into Eq. (11), we obtain a scalar
differential equation that governs the slow-time evolution of
the phase-difference between oscillators 2 and 4

˙φ24 = εβ̃ H̃ ′(0.25)
(
F̃(φ24) − δ̃/β̃

)
, (12)
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where

F̃(φ24) =
H̃(φ24)

2 + G̃(φ24)

H̃ ′(0.25)
.

The steady-state solutions of Eq. (12), which correspond to
phase-locked states between oscillator 2 and 4, must satisfy

δ/β = F̃(φ24).

(The tildes on δ and β are omitted by multiplying through
by the common scaling factor ε.) F̃(φ) is a continuous
1-periodic function with a zero at 0.25, and therefore phase-
locked states will exist for δ/β sufficiently small, i.e., when
the long-range coupling strength (β) is sufficiently large rel-
ative to the shift in the preferred phase of the interaction
function away from 0.25 (δ). Phase-locked states at φ24 are
stable when F̃ ′(φ24) < 0 and unstable when F̃ ′(φ24) > 0.

The behavior of φ24, according to Eq. (12), is readily
captured graphically by plotting F̃(φ) along with horizon-
tal lines that correspond to various values of δ/β. Figure 7
plots an example using the interaction function H̃(φ) =
− 1

2π cos(2πφ) and the values of δ/β that correspond to the
simulations of the blocked oscillator model shown in Fig. 6.
Recall that δ = −0.05 in these simulations.

(i) δ/β = −1/2 (labeled (b) in Fig. 7) corresponds to the
parameter values used in Fig. 6b (β = 0.1). In this case,
|δ/β| is sufficiently large so that F̃(φ) > δ/β, i.e., ˙φ24

is always positive. Therefore, there are no phase-locked
states, and φ24 will walk through all possible phases in
an increasing manner, as observed in Fig. 6b.

(ii) δ/β = −1/4 (labeled (c) in Fig. 7) corresponds to the
parameter values used in Fig. 6c (β = 0.2). Again
F̃(φ) > δ/β, and φ24 will walk through all possible
phases in an increasing manner. However, in this case,
δ/β is very close to, but just below, the minimum of
F̃(φ), which occurs at φ = 0.5, i.e., ˙φ24 is small near
φ = 0.5. Therefore, φ24 will remain close to 0.5 for an
extended period of time during the phase walk-through,
as observed in Fig. 6c.

(iii) δ/β = −1/6 (labeled (d) in Fig. 7) corresponds to the
parameter values used in Fig. 6d (β = 0.3). Here, the
intersection between δ/β and F̃(φ)with F̃ ′(φ) < 0 indi-
cates a stable phase-locked state at 0.25 < φ24 < 0.5.
Note the excellent agreement between the value of φ24 at
this phase-locked state and the value from the simulation
depicted in Fig. 6d (shown with a black dot).

An analogous discussion can be made for δ > 0. If δ/β is
sufficiently large, φ24 will exhibit phase walk-throughs that
decrease with time. If δ/β is very close to, but just above,
the maximum of F̃(φ), we expect phase walk-throughs that

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 7 Graphical representation of the dynamics of φ24, according to
Eq. 12. F̃(θ) (blue) is plotted along with three values of δ

β
(red). δ/β =

−0.5,−0.25, and − 0.16667 correspond to the parameter values in
Fig. 6b–d, respectively. Intersections of F̃(θ) and δ/β correspond to
phase-locked states with stability indicated by F̃ ′(φ). No phase-locking
is expected for |δ/β| sufficiently large. The black dot indicates the value
of φ24 in the phase-locked state obtained by the numerical simulation of
the full blocked oscillator system with parameters corresponding to (d)
(color figure online)

spend extended periods of time near φ24 = 0 (synchrony), as
opposed to φ24 = 0.5 (antiphase). For sufficiently small δ/β,
we expect there to be a stable phase-locked at 0 < φ24 <

0.25. Note that in the case of both δ > 0 and δ < 0, the
phase walk-throughs of φ24 lead to oscillations of amplitude
of O(ε) in φ1.

Figure 8 provides a more complete picture of the depen-
dence of phase-locking across the block on long-range
coupling (β) and the shift in preferred phase (δ). The val-
ues of φ24 in the phase-locked states are plotted as a function
of β for two fixed values of δ (positive and negative). Red
solid lines indicate stable phase-locked states, and dashed
blue lines indicate unstable phase-locked states. In Fig. 8a,
δ = −0.05, as in Figs. 6 and 7. When β is sufficiently small,
no phase-locked states exist. As β increases, a saddle-node
bifurcation occurs at a critical value β ∼ 0.2 with φ24 ∼ 0.5
(antiphase), giving rise to a stable and unstable phase-locked
states. As β increases toward 1, the phase-difference φ24 at
the stable phase-locked state decreases from ∼ 0.5 toward
0.25. In Fig. 8b, δ = 0.1, and a saddle-node bifurcation
occurs near φ24 = 0 (synchrony), and φ24 decreases toward
0.25 as β approaches 1.

The critical values of β and δ for phase-locking accord-
ing to our perturbation analysis can be summarized in the
two-parameter bifurcation diagram shown in Fig. 9. The
red solid curve traces out an Arnold tongue. For values of
δ and β inside this tongue, phase-locking is predicted to
exist. Outside this region, phase walk-through (or higher
order phase-locking) is expected. The parameter values cor-

123



316 Biological Cybernetics (2018) 112:305–321

0 0.2 0.4 0.6 0.8 1
long range coupling strength ( )

0

0.2

0.4

0.6

0.8

1

24

(a)

0 0.2 0.4 0.6 0.8 1
long range coupling strength ( )

0

0.2

0.4

0.6

0.8

1

24

(b)

Fig. 8 Bifurcation diagrams plotting the value of φ24 in phase-locked
states as the long-range coupling strength varies, for the two qualita-
tively different cases a δ = −0.05 and b δ = 0.1. Stable steady states
are indicated with a red solid line; unstable steady states are indicated
with a blue dotted line. In (a), the interaction function has a zero to the
right of 0.25. There is no phase-locking for sufficiently small values of
β. As β is increased, a saddle-node bifurcation occurs with φ24 close

to 0.5. This corresponds to antiphase activity across the block. In (b),
the interaction function is shifted to the left. In this case, the saddle-
node bifurcation occurs with φ24 near 0, corresponding to synchrony
across the block. In either case, the value of φ24 corresponding to the
stable phase-locked state approaches 0.25 as β increases past the bifur-
cation point and beyond the physiological range of long-range coupling
strengths in the intact system (color figure online)
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Fig. 9 Curves representing the phase-locking boundary as δ and β vary.
Approximations from our perturbation argument are shown with a red
lines; simulation results for the full blocked oscillator model are shown
as dotted blue lines. Parameter values as in Fig. 6 are indicated (color
figure online)

responding to the frames in Fig. 6a–d are indicated by dots
labeled (a–d). The blue dotted curve denotes the phase-
locking boundary predicted by simulations of the full blocked
oscillator model. Note the good agreement between results
from the perturbation analysis and the simulations, especially
for β < 0.5, which includes physiological values of long-
range coupling strengths.

The analysis we have presented indicates that coordina-
tion across a block depends on the ratio of the long-range
coupling strength to the shift of the H function (δ/β). If this
ratio is sufficiently small, our model predicts a robust phase-
locked state with inter-oscillator phase-differences close to
25%. This implies that when a middle oscillator is blocked,
the remaining three oscillators recover the metachronal wave
with 25% inter-oscillator phase-differences. For higher val-
ues of |δ/β|, synchrony or antiphase phase-locking across
the block may be possible, but we would not expect these
states to be very robust and would predict that they would be
mixed with episodes of phase walk-throughs.

4 Discussion

Effective locomotion is an inherently complex behavior.
The neural circuitry that drives relevant muscles and motor
neurons must generate a signal that is stable and robust,
yet adaptable enough to properly respond to environmental
cues. Various locomotor mechanisms, including undulatory
swimming in the lamprey and leech, and walking gates in
the salamander (Chevallier et al. 2008), cockroach (Fuchs
et al. 2011), and stick insect (Daun-Gruhn 2011) can be
characterized by phase-differences between rhythmically
moving limbs or body segments. For crayfish and other long-
tailed crustaceans, a particular coordinated back-to-front
metachronal pattern is exhibited during forward swimming,
with roughly 25% phase-differences between limbs called
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swimmerets. This approximately 25% delay is maintained
over a wide range of frequencies and body sizes. The neu-
ral network controlling this robust behavior in the crayfish
swimmeret system is comprised of a segmented chain of
half-center oscillators that are all-to-all coupled, with cou-
pling strengths that decrease with the distance of connection
(Mulloney and Smarandache 2010). Previous phase models
of the crayfish swimmeret circuitry have shown that the cou-
pling topology of the nearest-neighbor connections promotes
the approximately 25% phase-differences, provided that the
interaction function has a zero with a positive slope near
25% (Zhang et al. 2014; Zhang and Lewis 2016). Exper-
imentally measured interaction functions verify that this
condition is met in the crayfish system (Zhang et al. 2014;
Smarandache-Wellmann et al. 2014). However, these stud-
ies have simplified the coupling architecture by ignoring the
presence of long-range connections. Our work explores the
functional role of long-range coupling by considering how
these connections influence metachronal coordination.

In this manuscript, we demonstrate that the long-range
(next-nearest-neighbor) coupling in the swimmeret neural
circuit decreases the phase-differences between neighbor-
ing oscillators, thus increasing the speed of the back-to-front
metachronal wave of limb movement. We show this result
in numerical simulations of a chain of half-center oscilla-
tors described by a conductance-based model and in a phase
model—both of these models capture the essential network
architecture and oscillator response properties of the swim-
meret neural circuit. The decrease in phase-differences does
not rely on fine tuning and persists over a wide range of
long-range coupling strengths. We then make these obser-
vations rigorous using a perturbation argument in the phase
model, which assumes that the long-range coupling strength
is small and that the interaction function has a zero-crossing
with a positive slope close to 25%. This analysis allows
us to quantify the precise deviation from exact 25% phase-
locking, as this deviation depends on terms which control the
coupling strength and the preferred phase. When the zero-
crossing is shifted away from 25%, the metachronal wave no
longer exhibits uniform phase-differences. This detuning of
the interaction function leads to edge effects which were pre-
viously described in Zhang et al. (2014). The long-range cou-
pling causes additional heterogeneities in the metachronal
wave state, which we now describe. The term quantifying the
heterogeneity caused by the next-nearest-neighbor coupling
is scaled by H(0)−H(0.5). Experimentally measured inter-
action functions exhibit an approximately shifted sinusoidal
shape where H(0) is negative and H(0.5) is positive. Results
from Zhang and Lewis (2013) show that this appears to be
a generic property of half-center oscillators. Thus, the long-
range coupling affects the metachronal wave by decreasing
phase-differences between limbs. Since it is highly likely that
their coupling structure is similar, long-range couplingwould

perform the same functional role in five-limbed crustaceans
like the shrimp or krill, which also exhibit approximately
25% phase-locking while swimming (see “Appendix C”).

According to results fromacomputational fluidmechanics
model of the crayfish swimmeret system, paddlingwith phase
delays that are slightly smaller than 25% might be advan-
tageous (Zhang et al. 2014). In this model study, uniform
phase-differences between swimmerets were prescribed over
a range of values from synchrony to the natural 25% and
even to antiphase. Swimming efficiency peaked between 18
and 25%, suggesting that inter-limb phase-differences near
but slightly less than 25% may be optimal. Thus, while the
nearest-neighbor connectivity sets the phase-differences at
approximately 25%, the next-nearest-neighbor connectivity
may play an important functional role by decreasing the
phase-differences so that they lie within a regime that is max-
imally efficient.

Another potential functional role of long-range coupling
could be robustness to injury. Experiments show that in
some cases, long-range coupling is sufficient to maintain
coordination across a blocked middle oscillator (Tschu-
luun et al. 2001). We use a perturbation argument to detail
the conditions necessary for phase-locking in this case.
We again consider how coordination is influenced by the
relative strength of the long-range coupling (β) and the
extent to which the preferred phase of the H function is
detuned (δ) away from 25%. Our analysis suggests that
if the ratio δ/β is sufficiently small, the oscillators across
the block would likely abandon their “normal” antiphase
phase relationship and instead tend toward values closer to
25%. These predictions are corroborated by mean phase-
differences computed from data presented in Tschuluun et al.
(2001) (Brian Mulloney, private communication). There-
fore, long-range coupling could help preserve the maximally
efficient stroke pattern—a metachronal stroke with approxi-
mately 25% phase lags—even in an event where an oscillator
ceases activity, especially if the long-range coupling is poten-
tiated following injury.

We have also explored the role of longest-range (next-
next-nearest-neighbor) coupling. In “Appendix B,” we show
that the longest-range coupling influences the phase-
differences in a fundamentally different way than the long-
range (next-nearest-neighbor) coupling. The connection
between the most anterior and most posterior oscillators
causes deviations in phase-differences that are scaled by the
term H(0.75). Unlike in the next-nearest-neighbor case, the
sign of this term is not invariant over experimentally mea-
sured H functions, and thus a universal role for longest-range
inputs cannot be concluded. The analysis does suggest, how-
ever, that this coupling generates edge effects only, similar to
those caused by a detuned interaction function (δ 	= 0). Thus,
the longest-range coupling could either exacerbate or coun-
teract the nonuniformity in the phase-differences caused by
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this detuning. In the case of the experimental H function pre-
sented here (Fig. 3a), the latter would occur. However, since
the longest-range coupling strength is quite small compared
to the nearest and next-nearest-neighbor coupling strengths,
and H(0.75)/H ′(0.25) itself is likely to be small, the influ-
ence of this term might not have significant effects on the
phase-difference. Indeed, if we assume that the coupling
strengths take physiologically relevant values (β = 0.3
and γ = 0.1), then the long-range coupling could vary the
phase-differences on the order of 10−1, but the longest-range
coupling could influence the phase-differences on the order
of 10−2 (estimated using the curve fitted to the experimental
data shown in Fig. 3a).

Longer range coupling has been studied previously in
generic chains of oscillators by Kopell et al. (1990). The
network structure used in their study was motivated by
the lamprey swimming neural circuit, which generates a
metachronal wave with 1% phase delays across 100 seg-
ments. They proved that an approximate metachronal wave
solution exists given certain restrictions on the H function.
Under these assumptions, they showed that increasing the
range of connections between oscillators tends to decrease
phase-differences between neighboring oscillators. Despite
the apparent similarities in some of the results in Kopell et
al. to the results shown here, there are fundamental differ-
ences in the two systems. First, their work assumes that the
chain of oscillators is “long,” i.e., the chain of oscillators
is much longer than the coupling length, and phase-locking
results only apply to the interior of the chain. The chain of
oscillators controlling swimmeret movement is “short,” and
all oscillators are connected to one another and experience
boundary effects. Moreover, the H function restrictions out-
lined by Kopell et al. do not hold for the interaction functions
we consider here, which are based on experimental data. Fur-
thermore, while we show that the long-range coupling tends
to decrease phase-differences, we also reveal that the con-
tribution from the longest-range coupling is quite different.
This coupling term contributes edge effects, which decrease
the phase-difference at one end of the chain and increase the
phase-difference at the other end. Thus, phase-differences
between oscillators do not decrease monotonically with
the number of neighboring connections between oscillators.
Thus, the long-range analysis on short chains presented here
is distinct from that presented by Kopell et al.

The functional implications of long-range connections
have been considered in other systems. In a model of undu-
latory swimming in the lamprey, Cohen et al. (1992) showed
that long-range coupling could alleviate the strict conditions
necessary for 1% phase delays. Specifically, in nearest-
neighbor oscillator models of that system, the interaction
functions must be finely tuned in order to generate such
small and precise phase-differences.When this model is aug-
mented with far-reaching and sparse long-range connections

and the oscillators are preferentially tuned to long-range
inputs, the swimming pattern could be maintained under
slight detuning. In the crayfish model, we consider H func-
tions which are experimentally motivated, and thus the
oscillators do not respond differently to neighboring and
long-range connections. The crayfish systemdoes not require
such precision since the phase-differences are quite large, so
a wider range of values could support phase-locking with
roughly 25% delays. In fact, perturbation arguments suggest
that in an intact chain, long-range inputs do not promote
exact 25% differences, nor do the long-range connections
tend to promote stability (see “Appendix D”). In another
model, Daun-Gruhn (2011) considered long-range inputs by
augmenting the knownneural circuitry of the stick insectwith
a long-range connection that completes the circuitry as a uni-
directional ring. This proposed coupling was shown to play a
crucial role in the mechanism controlling switching between
gaits. While the long-range coupling is not necessary for the
generation of the crayfish swimming behavior, it does control
features of the pattern which may ensure maximal efficiency.
Collectively, these analyses suggest that long-range coupling
may play an important role—either as a critical component
for rhythm generation or through more subtle contributions
to stability or efficiency.
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Appendices

A Details of the conductance-basedmodel

In Sect. 2.2, we describe numerical simulations of a chain of
half-center oscillators (HCO) in which the dynamics of each
HCO are governed by the Wang–Rinzel model. Each HCO
contains a “P” and “R” neuron (see Fig. 1b). The membrane
potentials and gating variables of the neurons in the j th HCO
are governed by

CV ′
j P = −gpirm

3∞(V )h j P(Vj P − Vpir ) − gL(Vj P − VL)

− gSynI s(Vj R, θI )(Vj P − VSynI )

h′
j P = φ[h∞(Vj P ) − h j P ]/τh(Vj P )

CV ′
j R = −gpirm

3∞(V )h j RVj R − Vpir ) − gL(Vj R − VL)

− gSynI s(Vi P , θI )(Vi R − VSynI )

−
∑

i∈exc( j)
gSynE s(Vi , θE )(Vj R − VSynE )

h′
j R = φ[h∞(Vj R) − h j ]/τh(Vj R)
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with j ∈ {1, 2, 3, 4} and m∞(V ) = 1
1+e(V+65)/7.8 , h∞(V ) =

1
1+e(V+81)/11 , τh(V ) = h∞(V )e(V+162.3)/17.8, and s(V , θ) =

1
1+e−(V−θ)/kSyn

(Wang and Rinzel 1992). The excitatory inputs

to neuron j R are indexed by exc( j), respectively, and corre-
spond to the schematic shown in Fig. 1b. Parameters were
adapted from (Wang and Rinzel 1992): C = 1µF/cm2,
Vpir = 120mV, gL = 0.1mS/cm2, VL = −60mV,
VSynI = −80mV, φ = 3, VSynE = 0mV, gSynI =
0.2mS/cm2, gSynE = 0.03 · gSynI mS/cm2, θI = −44mV,
kSyn = 2mV, θE = −56mV, gPi R = 0.3mS/cm2.

B The effects of the longest-range connec-
tions

Here, we consider the effects from the connections between
the most posterior and the most anterior oscillators, i.e., the
coupling between next-next-nearest-neighbors.

B.1 Phasemodel of the complete neural circuitry

We augment the phase model (system (1)) with connections
between oscillators 1 and 4 to obtain

θ̇1 = ω + HA(θ2 − θ1) + βHA(θ3 − θ1) + γ HA(θ4 − θ1)

θ̇2 = ω + HD(θ1 − θ2) + HA(θ3 − θ2) + βHA(θ4 − θ2)

θ̇3 = ω + HD(θ2 − θ3) + HA(θ4 − θ3) + βHD(θ1 − θ3)

θ̇4 = ω + HD(θ3 − θ4) + βHD(θ2 − θ4) + γ HD(θ1 − θ4).

(13)

Similar to the parameter β that scales the long-range (next-
nearest-neighbor) connections, we scale the longest-range
connections by the parameter γ . Recall that the long-range
coupling strength (β) has been shown in experiments to be
roughly 30% of the strength between nearest-neighbors, and
the longest-range coupling strength (γ ) has been shown to
be roughly 10% of the strength between neighbors.

By incorporating the topology of the connections into our
model as we did in Sect. 2.3.1, we obtain an analogous sys-
tem that governs the evolution of phase-differences between
neighboring HCOs

φ̇1 = H(−φ1 + 0.5) + H(φ2) − H(φ1)

+ β[H(φ2 + φ3) − H(φ1 + φ2)] − γ H(φ1 + φ2 + φ3)

φ̇2 = H(−φ2 + 0.5) + H(φ3) − H(−φ1 + 0.5) − H(φ2)

+ β[H(−φ1 − φ2 + 0.5) − H(φ2 + φ3)]
φ̇3 = H(−φ3 + 0.5) − H(−φ2 + 0.5) − H(φ3)

+ β[H(−φ2 − φ3 + 0.5) − H(−φ1 − φ2 + 0.5)]
+ γ H(−φ1 − φ2 − φ3 + 0.5). (14)

B.2 The influence of “longest-range” coupling is
different than the influence of
next-nearest-neighbor coupling

Weperform a perturbation analysis as in Sect. 2.3.4, and look
for steady-state phase-differences for system (14) of the form

φ j = φ0 + εφ∗
j + O(ε2).

As before, we assume that ε scales the shift term δ, the
long-range coupling strength β, and now the longest-range
coupling strength γ , i.e., γ = γ̃ ε. With these assump-
tions, the leading order equations for system (14) remain
system (3), and therefore, φ j = 0.25+εφ∗

j +O(ε2). Includ-
ing the longest-range connections augments theO(ε) system
with two additional γ dependent terms

0 = −2φ∗
1 H̃

′(0.25) + φ∗
2 H̃

′(0.25) + δ̃ H̃ ′(0.25) − γ̃ H̃(0.75)

0 = φ∗
1 H̃

′(0.25) − 2φ∗
2 H̃

′(0.25) + φ∗
3 H̃

′(0.25) + β̃(H̃(0) − H̃(0.5))

0 = φ∗
2 H̃

′(0.25) − 2φ∗
3 H̃

′(0.25) − δ̃ H̃ ′(0.25) + γ̃ H̃(0.75).

The φ∗
j now satisfy the linear system

⎛
⎝

−2 1 0
1 −2 1
0 1 −2

⎞
⎠

⎛
⎝

φ∗
1

φ∗
2

φ∗
3

⎞
⎠ = δ̃

shift term︷ ︸︸ ︷⎛
⎝

−1
0
1

⎞
⎠

+

long-range coupling term︷ ︸︸ ︷
β̃

H̃ ′(0.25)

⎛
⎝

0
H̃(0.5) − H̃(0)

0

⎞
⎠ +

longest-range coupling︷ ︸︸ ︷
γ̃ H̃(0.75)

H̃ ′(0.25)

⎛
⎝

1
0

−1

⎞
⎠,

which implies

⎛
⎝

εφ∗
1

εφ∗
2

εφ∗
3

⎞
⎠ =

shift term︷ ︸︸ ︷
δ

2

⎛
⎝

1
0

−1

⎞
⎠ +

long-range coupling term︷ ︸︸ ︷
β(H̃(0) − H̃(0.5))

H̃ ′(0.25)

⎛
⎝

1
2
1
1
2

⎞
⎠

+

longest-range coupling︷ ︸︸ ︷
γ H̃(0.75)

2H̃ ′(0.25)

⎛
⎝

−1
0
1

⎞
⎠ .

This equation is identical to Eq. (5), except for an additional
term that quantifies the effects of the longest-range coupling

φ∗
llr = γ

H̃(0.75)

2H̃ ′(0.25)

⎛
⎝

−1
0
1

⎞
⎠ .

The longest-range coupling modulates the most anterior and
posterior phase-differences by equal but opposite amounts.
The direction of the modulation depends on the sign of the
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interaction function at 0.75. Note that for the HCOs under
consideration, H̃ ′(0.25) > 0. The longest-range (γ ) term
and the H function shift (δ) term have similar formulas but
differ only by a scalar multiple; thus, the long-range coupling
could either exacerbate the edge effects due to the shift of the
H function, or counteract them. For all of the H functions
we consider here, including the experimentally measured H
function in Fig. 3a, the γ term exacerbates the edge effects
caused by the δ term, leading to an increased gradient in
phase-differences between oscillators.

C Next-nearest-neighbor connections in
longer chains

Along with the crayfish, some five-limbed crustaceans
exhibit the approximately 25% phase lag during forward
swimming; therefore, we extend our analysis to consider
longer finite chains of HCOs with nearest-neighbor and
next-nearest-neighbor coupling. We show that for an asym-
metrically coupled chain of arbitrary length, next-nearest
coupling tends to decrease phase-difference between oscil-
lators. For a chain of arbitrary length n ≥ 5,

θ̇1 = ω + HA(θ2 − θ1) + βHA(θ3 − θ1)

= ω + H(φ1) + βH(φ1 + φ2)

θ̇2 = ω + H(φ1) + βH(φ1 + φ2)

= ω + H(−φ1 + 0.5) + H(φ2) + βH(φ2 + φ3)

θ̇k = ω + HD(θk−1 − θk) + HA(θk+1 − θk)

+βHD(θk−2 − θk) + βHA(θk+2 − θk)

= ω + H(−φk−1 + 0.5) + H(φk)

+βH(−φk−2 − φk−1 + 0.5) + βH(φk + φk+1)

θ̇n−1 = ω + HD(θn−2 − θn−1) + HA(θn − θn−1)

+βHD(θn−3 − θn−1)

= ω + H(−φn−2 + 0.5) + H(φn−1)

+βH(−φn−2 − φn−3 + 0.5)

θ̇n = ω + HD(θn−1 − θn) + βHD(θn−2 − θn)

= ω + H(−φn−1 + 0.5) + βH(−φn−2 − φn−1 + 0.5)

This gives us the system of phase-differences

φ̇1 = H(−φ1 + 0.5) + H(φ2) − H(φ1)

+βH(φ2 + φ3) − βH(φ1 + φ2)

φ̇2 = H(−φ2 + 0.5) + H(φ3) − H(−φ1 + 0.5)

−H(φ2) + βH(−φ1 − φ2 + 0.5)

+βH(φ3 + φ4) − βH(φ2 + φ3)

φ̇k = H(−φk + 0.5) + H(φk+1)

−H(−φk−1 + 0.5) − H(φk)

+βH(−φk−1 − φk + 0.5) + βH(φk+1 + φk+2)

−βH(−φk−2 − φk−1 + 0.5) − βH(φk + φk+1)

φ̇n−2 = H(−φn−2 + 0.5) + H(φn−1) − H(−φn−3 + 0.5)

−H(φn−2) + βH(−φn−2 − φn−3 + 0.5)

−βH(−φn−4 − φn−3 + 0.5) − βH(φn−2 + φn−1)

φ̇n−1 = H(−φn−1 + 0.5) − H(−φn−2 + 0.5)

−H(φn−1) + βH(−φn−2 − φn−1 + 0.5)

−βH(−φn−2 − φn−3 + 0.5)

Using a perturbation argument with assumptions as in the
main text, theO(1) system yields φ0 = 0.25. Here, the con-
tribution from the long-range coupling satisfies

Aφ∗
lr = β̃

H̃ ′(0.25)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−H̃(0)

0
...

0
H̃(0.5)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where A is an (n− 1) by (n− 1) tridiagonal Topelitz matrix,
with − 2 on the main diagonal and ones along the off diag-
onals. Independent of n, the inverse of this matrix has all
nonpositive components, causing φ∗

lr ≤ 0, as claimed.

D Effects of long-range coupling on stability
of phase-locking

The25%phase-locked state in the phasemodel of the chain of
HCOs (system (2)) inherits its stability from the leading order
system in which there are no effects of long-range coupling
(β = εβ̃ = 0) and the preferred phase is 0.25 (δ = εδ̃ = 0).
That is, it is stable if H̃ ′(0.25). Here, we assess the modula-
tory influence of long-range coupling and shifts in preferred
phase on the stability of the ∼ 25% phase-locked state by
determining theirO(ε) effects on the eigenvalues of the sys-
tem linearized around the phase-locked state.

By computing the Jacobian of the system, evaluating it at
φk = 0.25, and substituting in the solution form found in
Eq. 5, we obtain (to O(ε))

J = J0 + ε J1

= H̃ ′(0.25)

⎛
⎝

−2 1 0
1 −2 1
0 1 −2

⎞
⎠

+ δ̃ε H̃ ′′(0.25)

⎛
⎝

−2 1 0
1
2 −2 1

2
0 1 −2

⎞
⎠
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+ β̃ε
H̃(0) − H̃(0.5)

H̃ ′(0.25)
H̃ ′′(0.25)

⎛
⎝

0 1 0
− 1

2 0 1
2

0 −1 0

⎞
⎠

+ β̃ε H̃ ′(0.5)

⎛
⎝

−1 0 1
0 −1 −1
0 0 0

⎞
⎠

+ β̃ε H̃ ′(0)

⎛
⎝

0 0 0
−1 −1 0
1 0 −1

⎞
⎠

We seek the eigenvalues λ of this Jacobian, that is JΦ = λΦ.
We take the eigenvalues and eigenvectors of J to be of the
form λ = λ0 + ελ1 and Φ = Φ0 + εΦ1 and note that λ1 =<

J1Φ0, Φ0 >. Assuming that H̃ ′(0.25), the eigenvalues of
J0 are all negative. Therefore, to assess stability of the ∼
25% phase-locked state, we need only consider the smallest
eigenvalue, which is λ0 = H̃ ′(0.25)(−2 + √

2) and has a
corresponding eigenvector Φ0 = − 1

2 (1,
√
2, 1)T. A simple

calculation shows that

λ1 = δ̃ H̃ ′′(0.25)−8 + 3
√
2

4
+ β̃(H̃ ′(0.5)

+H̃ ′(0))−2 − √
2

4
.

Both of the numerical fractions take values close to− 1. Fur-
thermore, for the idealized interaction functions that we have
considered here, H̃ ′′(0.25), H̃ ′(0.5), and H̃ ′(0) are small.
This implies that long-range coupling and shifts in preferred
phase have negligible (O(ε2)) effects on stability.
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