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Abstract

This thesis contains two parts. Part 1 of this thesis has two goals. The first is to understand

the phase response properties of half-center oscillators (HCOs) using idealized models. The

second is to begin developing an understanding of the phase-locking mechanisms between

coupled half-center oscillators using numerical simulations and the theory of weakly coupled

oscillators. This work is a starting point towards a greater understanding of the mechanisms

underlying coordinated limb movement during locomotion in the crayfish swimmeret system.

The analysis is compared to experimental data from the crayfish swimmeret system and

possible experiments are suggested.

The goal of Part 2 of this thesis is to build mathematical models to study the effects of

volatile anesthetic on neural networks in the spinal cord. The network under consideration

is composed of excitatory interneurons in the lamprey central pattern generator (CPG), a

spinal cord neuronal network responsible for generating rhythmic locomotor movement in

vertebrates such as swimming or walking. It is thought that the excitatory interneurons of

the CPGs are the main target of the volatile anesthetic isoflurane, leading to immobility

under anesthesia. We model these interneurons and incorporate the most relevant effects

of the volatile anesthetic isoflurane on intracellular conductances using bifurcation analysis

and numerical simulations.
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CHAPTER 1

General Introduction

This thesis contains two parts. Part 1 uses idealized models to determine the phase

response properties of a half-center oscillator (HCO) and the phase-locking properties in a

chain of HCOs. Part 2 builds mathematical models to study the effects of volatile anes-

thesia on neural networks in the lamprey spinal cord. Both parts concern central pattern

generators (CPGs) for locomotor rhythms. In part 1, we try to understand the mechanism

underlying phase maintenance in the crayfish swimmeret system during normal locomotion.

In part 2, we try to understand how the volatile anesthetic isoflurane stops the pattern

generating neural activity in the lamprey spinal cord to cause immobility (lack of motion).

Central pattern generators (CPGs) are neural networks that produce rhythmic motor pat-

terns such as walking, swimming, breathing, pumping blood, digestion, and flying (reviewed

in [MC96] [MB01] [MBST05]). They were first introduced in 1911 by Brown [Bro11] [Bro14]

as the mechanism behind the rhythmic flexion and extension of limbs in a deafferented cat.

Evidence that locomotor CPGs exist and can operate without sensory or supraspinal feed-

back is seen when the spinal cord is isolated [Wil61] [IW64] [GMS+81] (reviewed in [MS10]).

An isolated spinal cord that is placed in a bath of artificial cerebrospinal fluid may intrinsi-

cally demonstrate neural activity similar to that during locomotor behavior or may produce

this activity upon the application of certain neuromodulators. This is known as fictive lo-

comotion and is seen in many animals including the leech [KC76], lamprey [CW80], and

crayfish [HW60] [IW64].

The size of CPGs can range from one cell to hundreds of cells [MC96]. The CPGs of inver-

tebrates usually contain small networks where individual neurons can be clearly identified

(as in the crayfish). On the other hand, vertebrate CPGs usually contain large numbers of

neurons that can only be identified in terms of broadly defined classes (as in the lamprey
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[KHKA+01]). In all CPG networks, both synaptic dynamics and intrinsic neural properties

of network components play a role in shaping the dynamics of the full network. Under-

standing this interplay is a main focus throughout this thesis.

Often, CPGs are coupled forming networks that coordinate rhythmic activity, as in coordi-

nated limb movement during locomotion [Gri81]. In segmental animals such as the crayfish

and lamprey, each segment contains one or more CPGs. The segments are coupled through

ascending and descending interneurons whose relative timing and strengths are crucial to

coordination.

Part 1 of this thesis is motivated by the crayfish swimmeret system. In chapters 3-5,

we use both biophysical and idealized models of the crayfish CPG to develop a greater

understanding of how an individual CPG responds to input. In chapter 6, we present

preliminary work on what factors might be involved in achieving coordination in a chain

of CPGs. Part 2 is motivated by the lamprey locomotor system. In the isolated lamprey

spinal cord, application of volatile anesthetics leads to cessation of rhythmic activity, which

corresponds to immobility. The mechanisms underlying this anesthetic action are the focus

of part 2.
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Part 1

Mechanisms Underlying Locomotion in

the Crayfish Swimmeret System
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Summary

Part 1 of this thesis has two goals. The first is to understand the phase response

properties of half-center oscillators (HCOs) using idealized models. The second is to begin

developing an understanding of the phase-locking mechanisms between coupled half-center

oscillators using numerical simulations and the theory of weakly coupled oscillators. This

work is a starting point towards a greater understanding of the mechanisms underlying

coordinated limb movement during locomotion in the crayfish swimmeret system. The

analysis is compared to experimental data from the crayfish swimmeret system and possible

experiments are suggested.

Part 1 is broken down into three topics:

1. The phase response properties of idealized models of half-center oscillators are

examined. The dynamics of the cells in the half-center oscillator are described by

either coupled Morris-Lecar neurons, leaky integrate-and-fire neurons or coupled

one-variable phase models. The coupling between the cells is described by either

delta-function pulse coupling or current-based exponential synapses. Analytical or

semi-analytical solutions for the phase response curves (PRCs) of the latter two

idealized half-center oscillators are obtained. The form of these solutions for the

PRCs show how the cell’s individual PRC and the coupling properties produce the

PRC of the half-center oscillator. We find that the PRC of the HCO is piecewise

defined with two halves centered around half-period. Each half of the HCO’s PRC

is described by a product of the single cell PRC with an attenuating factor. This

implies that the single PRC determines the qualitative shape of the PRC of the

HCO, while the strength of coupling between the cells determines the amount of

attenuation in each half.

2. The phase-locking properties of a chain of idealized HCOs are studied using nu-

merical simulations and the theory of weakly coupled oscillators. The length of the

chain varies from two to four segments long. How the phase-locked state depends

on the PRC of the HCO, the coupling dynamics between HCOs, and the number

of HCOs in a chain are studied. Results show that phase-locking is not guaranteed

and the ability of one length of chain to phase lock does not predict phase-locking
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in a different length chain. The duty cycle of intersegmental coupling is found to

play a substantial role in determining the ability of the chain to phase lock.

3. The bifurcation structure of the phase model HCO is analyzed as the strength of

the coupling between cells in the HCO is varied. The dependence of the stability of

the anti-phase state on the type and strength of coupling is determined. Coupling

is described by either current-based synapses or standard δ-pulse coupling. Results

show that when HCOs are coupled with the standard δ-pulse, the stable anti-phase

state undergoes a period-doubling cascade to chaos as coupling strength increases.

However, when coupling is described by current-based synapses, there is only one

stable anti-phase state despite changes in coupling strength. This indicates that

standard δ-pulse coupling does not match the limit of the current-based synapses

to the δ-pulse. We show why this is the case and determine a “corrected” δ-pulse

coupling model which provides the correct limit.
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CHAPTER 2

Introduction

2.1. Neural mechanisms generating locomotion are complex and largely

unknown

How do animals move in a coordinated fashion? For locomotion in most mammals

and arthropods, limbs must maintain a constant phase difference over a range of speeds

([SM98a] and references therein). This is known as phase constancy or phase maintenance.

The cellular mechanisms that accomplish this coordination are poorly understood.

In an intact animal, the CNS is capable of coordinating limb movement to create normal

locomotion. In some animals, when the neural circuitry underlying locomotion is dissected

out, it is still able to generate the coordinated neuronal activity required for locomotion

[HW60] [WW84]. This activity, which is called fictive locomotion, can be analyzed to

elucidate the neural mechanisms by which the animal generates locomotor activity.

An example of a model system that lends itself to experimental study and mathematical

modeling is the crayfish swimmeret system [HW60] [MHH06] [MH07] [SHM09] [SM98b]

[JMKK03]. While much is known, many questions remain surrounding how the crayfish

swimmeret system maintains coordinated locomotion. Here, we use mathematical modeling

to compliment past and future experimental preparations to accelerate our understanding.

The overall goal of the following chapters is to use idealized phase models to begin to

understand the phase maintenance mechanism in the crayfish swimmeret system. We use

the knowledge from the experimental laboratory of Dr. Brian Mulloney (University of

California, Davis), who has worked to describe the neural circuitry of the crayfish and in

doing so, identifying the mechanisms underlying coordinated locomotion in the crayfish

[NM99] [THM01] [MHH06] [MH07] [Mul96] [SHM09] [Mul96].
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Figure 2.1. A) Lateral view of the crayfish. Stars mark the four swimmerets. B) Diagram

of the crayfish CNS. B: brain. T: Thoracic ganglia. A1: Initial abdominal ganglia. A6: terminal

abdominal ganglia. The six abdominal ganglia are expanded to show the four swimmeret ganglia
A2 through A5. C) Simultaneous recordings from power-stroke (PS) branches of the swimmeret

nerves from ganglia A2 (PS2), A3 (PS3), A4 (PS4), and A5 (PS5) that show three cycles of bursts

of spikes in PS axons. (D) Simultaneous extracellular recordings from coordinating axons (ASC4,
DSC4) and PS and return-stroke (RS) branches from A4 (arrows). ASCE spikes are the smaller of

the two sizes on ASC4, and occur simultaneously with PS bursts. DCS bursts occur simultaneously
with RS bursts.

2.2. The crayfish locomotor neural circuit

2.2.1. Four pairs of bilateral modules drive four pairs of bilateral swim-

merets. The crayfish is a lobster-like animal that has four bilateral pairs of swimmerets

responsible for generating forward thrust (starred figure 2.1A). Each swimmeret is associ-

ated with one of four segments in the crayfish abdomen (labeled A2 through A5 in figure

2.2A and 2.1B) [MH00]. Figure 2.2A shows a schematic of the main neural circuitry in one

hemicord of the crayfish swimmeret system, where the hemicord is the left or right half of the

ventral nerve cord. Each segment contains intersegmental coordinating neurons [MHH06]

[MH07], motor neurons [MH00], and a pattern-generating module of neurons responsible

for rhythm generation and coordination in the swimmeret system [MCM93] [MMC93].
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Motor neurons in each module innervate the muscles of their associated swimmeret to elicit

swimming. During forward swimming, the swimmerets in each segment produce alternat-

ing cycles of power-stroke (PS) and return-stroke (RS) movements driven by the home

module’s PS and RS motor neurons (seen in figure 2.1D). The PS and RS neurons are

labeled PS2 through PS5 and RS2 through RS5 in figure 2.2A. Figure 2.1C shows simulta-

neous recordings from PS branches in all four segments and figure 2.1D shows simultaneous

recordings from PS and RS branches in segment 4. These motor neurons are driven by a

pair of non-spiking local interneurons whose synaptic organization forms the core of the

local pattern-generating circuit within each module (box in figure 2.2A, expanded in 2.2B)

[Mul96].

Mulloney and co-workers have shown that the intersegmental projections act to coordinate

the modules to achieve a posterior-to-anterior progression of power strokes with a near

25% phase lag between neighboring swimmerets (see figure 2.1C). This phase lag persists

despite changes in frequency, i.e. the system exhibits phase maintenance [MHH06]. Figure

2.1C shows recordings from power-stroke nerves in each segment during fictive swimming.

Notice the phase-locked rhythm with about 25% phase lag between segments with the most

posterior segment leading the rhythm. How the CNS coordinates neural activity in the

modules to create and maintain this specific phase-locked rhythm is the long-term goal of

this project.

2.2.2. Local non-spiking neurons make up each segmental CPG. In each hemiseg-

ment, a pair of non-spiking local interneurons form reciprocal inhibitory connections, cre-

ating a local half-center oscillator (HCO) [PM85]. HCOs occur in many rhythm generat-

ing networks such as in Clione swimming [Sat85] [AOP+93], Xenopus embryo swimming

[AOP+93], crayfish locomotion [Mul96], lamprey swimming [GW99], and leech heartbeat

[CDS92]. However, the crayfish is an especially simple case in that the CPG can be accu-

rately modeled as one HCO with only two cells. HCO models for central pattern generators,

which usually consist of two large groups of neurons, are widely studied [MS90] [PM74]

[JMKK03] [JK06]. HCOs consist of two cells (or groups of cells) connected by relatively

strong reciprocal inhibition [Bro11] [Bro14] (figure 2.2B). Typically, the cells in a HCO are

phase-locked in an anti-phase state: the cells rhythmically switch between states in which
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Figure 2.2. (A) Main circuitry of the crayfish swimmeret system. Horizontal dotted lines

separate each of the four segments. Each segment contains power-stroke (PS) and return-stroke

(RS) motor neurons driven by a pair of non-spiking local interneurons (1) and (2). Cell 1 drives the
descending interneurons (DSC) which relay information to the commissural interneurons (C1) in

each posterior segment. Cell 2 drives the ascending interneurons (ASC) which relay information to

the commissural interneurons (C1) in each anterior segment. The commissural interneurons (C1)
then relay that information through a graded synapse to cell 2 in their home segments. Circles

represent inhibitory connections. Triangles represent excitatory connections. (B) The pattern
generating circuit in each segment is a half-center oscillator (two cells coupled with reciprocal
inhibition), which we study independently of all other segments.

one cell is active while the other is suppressed. This allows for the alternating order of two

antagonistic movements. In the case of the crayfish, this neural behavior drives the power

stroke and return stroke movements of the swimmerets. Depending on the strength and

type of synaptic connection between the cells within a HCO, the cells may exhibit other

behaviors such as synchrony, alternating order firing, a stable asymmetric steady state, and

even chaos [WR92] [TKB98] [LR03] [OM09]. However, for purposes of studying the crayfish

swimmeret system, we are only interested in the stable anti-phase state.

2.2.3. Intersegmental coordinating neurons connect modules. Each segmental

module contains two coordinating neurons that project axons to influence other modules

[Ste71] [NM99]. The ascending coordinating neuron (ASC), which receives input in phase

with PS motor neurons, projects in an ascending direction to influence more anterior mod-

ules. The descending coordinating neuron (DSC), which receives input in phase with RS

motor neurons, projects in a descending direction to influence more posterior modules (see
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figure 2.2A). However, the coordinating neurons do not exert their influence on the HCO

neurons in their target modules directly. Rather, they synapse onto commissural interneu-

rons within each module, which are called ComInt 1 (labeled C1 in figure 2.2A) [SHM09].

In each module, ComInt 1 integrates the input from ASC and DSC neurons, then relays

the information to the local interneurons via a graded synapse [MH03]. The connection

through ComInt 1 is a recent discovery and creates a novel form of intersegmental circuitry

with unknown consequences. Previous modeling work and experimental study had assumed

modules were directly connected via coordinating neurons [JMKK03] [SM98b] [MH07].

2.3. Phase Response Curve (PRC)

To understand phase-locking in the crayfish swimmeret system, we must first understand

how the HCOs in each module respond to external stimuli. The oscillatory dynamics of the

HCO are shaped by the synapses between the two cells as well as the intrinsic dynamics

of the cells, i.e. it is the entire HCO that controls the oscillation in each segment. To

understand how the HCO will respond to external input, we use phase response curves

(PRCs). In neurophysiology, PRCs are usually measured for single cells. However, we want

to understand how the entire HCO in each module will respond to perturbations from other

segments, and therefore we need the PRC of the HCO. Treating the HCO as a ‘single unit’,

we examine how its phase resetting properties are generated from the intrinsic dynamics of

the cells within the HCO and the coupling properties between the cells.

A PRC quantifies the relationship between the timing of a current stimulus delivered to

a neuronal oscillator and the resulting phase shift [Win80]. Phase identifies the location

of the oscillator on its limit cycle. To measure the PRC, the neuron must first be at its

oscillatory steady state. Then, a small brief depolarizing current pulse is given to the cell at

a particular phase which causes a phase shift. This shift is recorded as the phase response

of the cell. As a simple example, we consider the phase response properties of the single

cell Morris Lecar model (figure 2.3). The phase shift can be seen in figure 2.3A,C,E. In

figure 2.3A, the solid blue line is the voltage trajectory of the cell after receiving a brief

depolarizing current pulse near time t = 50 msec. The blue dotted line is the trajectory

that the cell would have taken had it not received a brief current pulse. Figure 2.3C shows
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the corresponding phase of the cell. The arrows in 2.3A indicate the timing change that

occurred as a result of the stimulus, which is recorded as the change in phase. Figure 2.3E

shows this process on the phase circle. Each point on the circle represents a different phase,

and as the cell oscillates in time (figure 2.3A), it circulates around the circle repeatedly with

a constant velocity [Win80]. The perturbations to measure phase responses are delivered at

different times in the cycle, and the resulting phase shifts at each point in the period make

up the PRC (figure 2.3F).

To understand how to read a PRC, consider figure 2.3B,D,F. Figure 2.3B shows the voltage

trajectory over a single period, and figure 2.3D shows the corresponding phase of the cell.

Figure 2.3F is the PRC, showing the sign and magnitude of the phase shift of the cell as a

function of the phase that the stimulus is given. Positive phase shifts correspond to phase

advances and negative phase shifts to phase delays. If a stimulus arrives just after phase 0,

the cell will advance in phase. If a stimulus arrives near phase T/3, it will have little-to-no

effect on the phase of the cell. If a stimulus arrives near phase 3T/4, the cell will undergo

a relatively large phase delay.

Using different sizes and shapes of stimuli to measure the PRC generates different results.

Generating PRCs with small stimuli (in duration and amplitude) approximating a small δ-

function pulse and normalizing by the total charge of the stimulus generates the infinitesimal

PRC (iPRC). The iPRC can be thought of as the Green’s function or impulse response

function for the periodically oscillating cell because it describes the reaction of the cell to a

small δ-function perturbation. The oscillators receive small perturbations due to coupling.

When the perturbations are small enough, they sum approximately linearly, i.e. the total

phase response of the oscillator can be found by convolving the perturbation with the iPRC.

The iPRC is required for the theory of weakly coupled oscillators [EK90], which is used to

determine phase-locked states in chains of oscillators where coupling between oscillators is

weak [Neu79] [Kur84], as appears to be the case in the crayfish swimmeret system [SHM09].

iPRCs can also be measured by linearizing the system around the limit cycle solution, solving

the adjoint equation, and normalizing [Neu79]. Both methods produce the same result for
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Figure 2.3. (A)(C): Example of how to measure PRC. (A) A small pulse is given to
the voltage trace to measure the PRC. (C) The corresponding change in phase. (E) The circle

represents the phase of the cell. The pink electrode stimulates the cell at various phases, (only

one phase is shown). The cell is either advanced or delayed, and this change is recorded as part
of the PRC. Small I vs t graph shows a ‘small’ current pulse given to the cell at each phase.
(B)(D)(F): Example of PRC for a Morris Lecar cell. (B) Voltage trace over one period, T . (D)
The corresponding phase of the cell. (F The PRC.

sufficiently small, brief perturbations. If the neuronal oscillator model is described by

(2.1)
dX

dt
= F (X)

where X is an N -dimensional state variable vector and F (X) is a vector function describing

the rate of change of the state variables, then the iPRC is the T-periodic solution to

(2.2)
dz̄

dt
= −DF (XLC(t))T z̄



2.4. THEORY OF WEAKLY COUPLED OSCILLATORS (TWCO) 13

subject to

(2.3) z̄(0) · F (XLC(0)) = 1.

The iPRC is the component of the vector z̄ corresponding to to the voltage V . DF (XLC) is

the Jacobian of F (X) evaluated along the limit cycle solution XLC(t). In chapter 3 we find

the iPRC numerically using the adjoint method [EK91], which is automated in the software

package XPPAUT [Erm02].

2.4. Theory of Weakly Coupled Oscillators (TWCO)

The theory of weakly coupled oscillators is often used to predict phase-locking in net-

works where the coupling between oscillators is relatively weak. In this theory, the phase

shifts of small perturbations due to coupling sum approximately linearly, so the evolution of

each oscillator can be described by a convolution of the coupling input and the oscillator’s

iPRC [Kur84] [KE02] (equation (2.5)). This substantially reduces the complexity of the

system and allows the analysis of phase-locking to be much more tractable.

Consider two weakly coupled neuronal oscillators with intrinsic periods T. The network

equations corresponding to equation (2.1) are

(2.4)
dxi

dt
= F (xi) + Ij,i(xj)

Let the phase of neuron i at time t be φi = t+ ψi(t), where ψi(t) is relative phase. zi(t) is

the iPRC of oscillator i and is defined by F . Ij,i describes the weak coupling from oscillator

j to oscillator i. Because the coupling is weak, it only has a small effect on the oscillator

in one period, but these effects accumulate over time and can lead to phase-locking. The

TWCO uses averaging methods to reduce the dynamics of each oscillator to a single equation

describing the evolution of its relative phase (equation (2.5)). Equation (2.5) is an example

for which cell i receives input only from cell j.

(2.5)
dψi

dt
=

1
T

∫ T

0
zi(t̃+ ψi)Ij,i(XLC(t̃+ ψj))dt̃ = Hi(−∆ψ)
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where ∆ψ = ψi −ψj . Hi(−∆ψ) is interaction function, and XLC is the limit cycle solution

to equation (2.4). Steady states of these equations correspond to phase-locked states of the

coupled oscillators.

This theory uses singular perturbation methods to separate the properties of the circuit

controlling the rhythmic activity in each module (the iPRC of the local oscillators, z) from

the properties of the coordinating information arriving from other modules (the coupling

between oscillators, Ij,i), as seen in equation (2.5). We exploit this separation in this thesis.

We first study the phase response properties of each segment separately from the coordinat-

ing circuitry. We study how the intrinsic properties of HCO cells and coupling determine

the phase response properties of the HCO. These properties can be studied separately in the

experimental setting, as well [MMC93] [MH07] [SHM09]. We then use the phase response

properties of the HCO along with coupling information to determining the phase-locking

ability of a chain of HCOs. We use the TWCO in chapter 6 to obtain qualitative insights

into intersegmental phase-locking and identify possible biophysical mechanisms underlying

coordination.

2.5. Previous modeling work

2.5.1. Phase maintenance and intersegmental circuitry in the crayfish swim-

meret system. Several modeling papers have paved the way for future progress towards

our goal. Skinner et al. [SKM97] modeled the crayfish swimmeret system as a chain of four

phase oscillators with bidirectional nearest neighbor coupling. They only describe the gen-

eral form of the interaction functions HASC and HDSC , but include no detail. They tested

the ability of this system to maintain a constant phase lag of 25% between each segment

despite changes in frequency [BM95]. Using coupled oscillator theory to study phase-locking

in the system leads to the following predictions. First, coupling between segments must be

asymmetric, but ascending and descending coordinating neurons must have approximately

equal strengths. Second, intersegmental coupling must have little effect on the period of

the system.

To gain insight into how asymmetric coupling between segments might arise, Skinner & Mul-

loney [SM98b] used extensive numerical simulations of a biophysical model to test which
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alternative configurations of intersegmental circuits agreed with experimental results. They

modeled the pattern-generating oscillator in each segment with three non-spiking interneu-

rons. Each interneuron was described by Morris-Lecar type equations, which are often used

as a ‘minimal’ biophysical model for electrically excitable cells. They modeled the coordi-

nating neurons indirectly with a simple synaptic current injection into their target neurons.

They tested seven possible intersegmental circuits for the ability to maintain a 25% phase

lag and preserve the relative burst duration over a range of frequencies, and found that

only one of the seven configurations worked. They proposed that this configuration is a

possible pattern of intersegmental circuitry in the crayfish swimmeret system. Note that in

this case they modeled each oscillator with three non-spiking interneurons. The synaptic

connections in the proposed intersegmental circuit are not collapsable to a two-cell model.

Therefore, this results is not applicable here.

Jones et al. [JMKK03] used the intersegmental circuitry proposed in Skinner et al. [SM98b]

to investigate the biophysical mechanisms that help maintain a phase difference of 25% be-

tween two segments. They reduced the biophysical model to a phase model using the

TWCO. They showed that ascending and/or descending connections are sufficient to main-

tain 25% phase lag over a range of frequencies due to the shape of their respective H

interaction functions, where the H function describes the effect of the connection on the

phase of the module. They generated PRCs for input to each of the two coordinating in-

terneurons using the biophysical model introduced in Skinner & Mulloney and compared

them to experimentally generated PRCs (stimulating the interneurons and recording the

change in phase through the PS motor neuron). The experimental data is consistent with

the types of connections predicted by the model.

Similar to Skinner et al., we also use phase models in chapter 6 to study phase locking in

a chain of oscillators. However, we use recent knowledge of intersegmental circuitry and

strengths to expand the model from nearest neighbor only coupling. More importantly, we

don’t use a specific form of H. Instead, we take a step back and get H from the HCO PRC

and coupling. This is a step towards a more realistic model.
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Both the Skinner & Mulloney [SM98b] and Jones et al. [JMKK03] studies used three in-

terneurons to model the local pattern-generating circuit. However, new evidence suggests

that one of these interneurons is actually ComInt1. Furthermore, both studies consider only

pairs of HCOs. The intersegmental circuitry and strengths have since been experimentally

described [MHH06] [MH07] [SHM09]. We use this knowledge when we study phase-locking

between segments in chapter 6. The intrinsic cellular dynamics and synapses from biophys-

ical model modified from Skinner & Mulloney are used in chapter 3 to begin to understand

the phase response properties of the HCO. In chapter 6, we consider chains of lengths one

through four and show that positive results in a pair of oscillators does not necessarily

translate to a larger chain.

2.5.2. PRCs of CPGs and phase-locking between coupled HCOs. Few theo-

retical studies have explicitly examined how the intrinsic neuronal properties and synaptic

dynamics within a network CPG affect the PRC of the CPG or the phase-locking between

coupled CPGs [VKH+08] [KE09] [JK06]. Perhaps the most relevant work to ours is Ko &

Ermentrout [KE09]. In their study, the PRC of a HCO composed of two coupled phase

models is obtained in terms of the PRCs of the individual oscillators and the interaction

functions H obtained from a phase reduction. They find that the PRC of the HCO has

the same qualitative shape as the single cell PRC. This work is similar to our analysis in

chapter 4, where we derive the PRC of a phase model HCO, but it differs from our analysis

because they measure the PRC of their system by giving weak, instantaneous perturbations

to both oscillators at the same time. This facilitates analysis of the system. We, however,

measure the PRC of the HCO by giving weak, instantaneous perturbations to only one cell.

This is a key difference because intersegmental coupling in the crayfish swimmeret system

has input into only one cell in the HCO. Therefore, phase-locking predictions from Ko &

Ermentrout are not applicable to the crayfish.

The study by Jones & Kopell [JK06] was motivated by Skinner & Mulloney [SM98b] and

studied how phase lags are produced between two weakly coupled HCOs. Each HCO is

composed of two strongly and reciprocally-coupled relaxation oscillators. The local HCO

networks are described using canonical Morris-Lecar type models in the relaxation oscillator

limit, and are assumed to be in a stable anti-phase state. The weak coupling between
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the HCOs is unidirectional, instantaneous, and can have either inhibitory or excitatory

effects. Using geometric singular perturbation theory, they find that the time constant of the

inhibition in the local network can affect the phase lag between HCOs without changing the

phase lag between the two cells within the HCO. However, in chapter 6 when we study phase

locking between networks, we use the TWCO rather than geometric singular perturbation

theory and focus on how shapes of the PRCs of the local networks and intersegmental

coupling affect the phase lag between HCOs, rather than intrinsic parameters in model for

the single cells of the local network. Specifically, as a step towards a more realistic model,

we use bidirectional intersegmental coupling, a chain of up to four HCOs, and do not use

relaxation oscillators in the HCO.

2.5.3. Coupled oscillator work in lamprey. Many papers study the mechanisms

underlying intersegmental coordination and phase lag in the lamprey locomotor system.

Locomotion in the lamprey is produced by alternating activation of muscles on opposite

sides of the body with a rostral-to-caudal delay. This generates a wave of curvature down

the length the lamprey with a wavelength of approximately one body length. The lamprey

has approximately 100 body segments, and the spinal cord produces a constant interseg-

mental phase lag of 1% despite changes in frequency [WW84]. There is a large collection

of work by Williams & Sigvardt et al., Buchanan and coworkers, Ermentrout & Kopell,

Cohen et al. (e.g. [SW96] and references therein). They combine theory and experiments

to investigate the mechanisms underlying intersegmental coordination. In these papers,

the lamprey CPG is modeled as a chain of coupled phase oscillators each described by an

intrinsic frequency and nearest neighbor interaction functions H. Experimentally, ventral

root recordings are performed during fictive locomotion [WSK+90] [WS94] and sometimes

in split-bath preparations to study the effects of unequal activation [Sig93] [SW96]. The

model is tailored by experimental results, and a variant of the model is developed for

which variables can be experimentally measured [Wil92b] [WS95]. Mathematical analysis

predicted that asymmetric coupling is dominant in determining the intersegmental phase

lag, but that descending coupling is dominant in determining the frequency of the coupled

oscillators [WSK+90] [Wil92b] [Wil92a] [WS95] [SW96]. Experiments confirmed these pre-

dictions [Sig93] [SW96]. Analysis also predicted the existence of a boundary region in the



2.6. AIMS OF PART 1 18

rostral end of the chain where the phase lag differs from the rest of the cord [Wil92b], and

experiments confirmed this prediction [WS94]. These studies provide a framework that is

useful for gaining insights into the mechanisms underlying intersegmental phase lag and

phase maintenance in the crayfish swimmeret system. We use similar tactics of combining

theory and experiments, as the modeling and analysis in chapters 3-6 are motivated by

experimental results. We also apply the TWCO to begin to understand phase maintenance

in a chain of oscillators and generate experimentally testable predictions. Specifically, these

studies begin with the interaction function H and combine CPGs in a long chain with near-

est neighbor coupling. As previously mentioned, we take a step towards a more realistic

model by studying the phase response properties of the oscillators and generating H from

the HCO PRC and coupling.

2.6. Aims of Part 1

The goal of this project is to use mathematical modeling and analysis to develop a

greater understanding of the mechanisms underlying phase maintenance in the crayfish

swimmeret system. The TWCO (section 2.4) uses singular perturbation methods to sepa-

rate the response properties of the circuit controlling each module (in terms of the PRC of

the local oscillators) from the properties of the coordinating information arriving from other

modules (the coupling between oscillators). These properties can be studied separately in

the experimental setting, as well [MMC93] [MH07] [SHM09]. We utilize this separation to

understand phase maintenance in two steps. First, we study the phase response properties

of models of the local CPGs in a single segment (figure 2.2B). Second, with a description

of the connectivity between segments stemming from experiments, we use the TWCO to

begin to understand which PRC shapes of the CPGs and connectivity properties might play

a role in phase maintenance (chapter 6). We look at how the duty cycle of intersegmental

coupling, as well as the shape of the HCO PRC effect phase locking.

To study the phase response properties of the local CPG, we connect two non-spiking

local interneurons via inhibitory synapses. The cells and their synapses form a half-center

oscillator (HCO) with one cell active while the other is suppressed and vice versa. We treat

the entire HCO as a ‘single oscillatory unit’ and examine the phase response curve (PRC)
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of the HCO in terms of the PRC of the individual cells and the synaptic properties between

the cells. We use a Morris-Lecar model (chapter 3), phase models (chapter 4), and the leaky

integrate-and-fire model (chapter 5) to describe the single cells within the HCO.

As part of the analysis of HCOs, we examine the bifurcation structure of the phase model

HCO using the strength of coupling between cells within the HCO as the bifurcation param-

eter (chapter 7). Diagrams for both δ-function pulse coupling and current-based exponential

synapses are studied. Standard δ-pulse coupling is often used in phase models as an approx-

imation to very fast current-based synapses [KE09] [GE02]. We demonstrate that this is

not a good approximation. We show that when the appropriate limit to a delta-function is

taken, a new δ-pulse coupling function can be derived that provides a good approximation

to current-based exponential synapses with small time constants.
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CHAPTER 3

Phase Response Properties of Half-Center Oscillators using

Morris-Lecar Intrinsic Dynamics

The goal of this chapter is to begin to explore how the phase response properties of

HCOs are determined from the intrinsic cellular properties and synaptic properties within

the HCO. We use a modified version of the Morris-Lecar network model of the crayfish

central pattern generator (CPG) from Jones et al. [JMKK03] [SM98b]. In the original

model of Jones et al., there were three local interneurons forming the CPG: cells 1A, 1B, and

2. Here, we use only two local interneurons, cells 1 and 2, when modeling the HCO. In our

model, the cells in the HCO are identical and coupling is symmetric. We are most interested

in anti-phase behavior in the HCO case because the HCO in the crayfish swimmeret system

operates in anti-phase.

In addition to exploring the phase response properties of HCOs, we also examine a single

cell and a single cell with an autapse (figure 3.1). This chapter compares the PRCs of

each case and examines how changing various parameters lead to changes in the PRCs.

The aim is to highlight the fact that understanding how these changes come about is very

HCO

1

2AutapseCell
Single

Figure 3.1. Three cases analyzed in this chapter. Right to left: Single cell, single cell with
inhibitory autapse, two identical cells coupled with reciprocal inhibition.
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Figure 3.2. Comparing the three cases in figure 3.1 using the Morris-Lecar model and
parameters from Jones et al. [JMKK03] with the exception of gsyn. Here, gsyn = .1. Iapp = 1

for autapse and HCO. Iapp = 0 for single cell. Membrane potential has units mV, n and s are

in arbitrary units, and the PRCs have units msec/mV. (A) Single Cell. Top to bottom: Single
cell voltage trace, n, PRC for single cell. (B) Autapse. Top to bottom: Single cell with autapse

voltage trace, n (black) and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom:

Voltage trace of cell 1 (pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of
HCO when measured by stimulating cell 1 (pink) and cell 2 (blue).

complicated. We do this through a series of examples. In each example, parameters are

altered and the resulting PRCs are compared.

In this chapter, the PRCs are computed in XPPAUT [Erm02] using the adjoint method,

i.e. they are the iPRCs, but one can think of them as being computed by stimulating cell

1 or cell 2, with brief small current pulses. Initially, all parameters are taken to be the

same as in Jones et al. except the local synaptic conductance, which is taken to be 0.1

mS/cm2 rather than 0.5 mS/cm2. This change is made to counter the effect of going from

a three-cell interneuron circuit to a two-cell circuit.

The Jones et al. study uses weakly coupled oscillator theory to derive interaction functions

that predict phase differences between neurons in neighboring segments. They study how

phase differences are effected by changes in frequency, intersegmental coupling strength,

and intersegmental coupling pattern. To compare the interaction functions in Jones et al.
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with the PRCs presented here, one must convolve the PRCs with the synaptic waveform

used in Jones et al.

The dynamics of the isolated cells in each case (the single cell, the single cell with an autapse,

and the HCO) are modeled by a Morris-Lecar model containing two variables: membrane

potential (V ) and the fraction of open potassium channels (n). The time constants in the

Jones et al. model dictate that the evolution of n is much slower than V , putting the single

cell in the relaxation oscillator regime. As the parameter controlling the time constant

for n (ε1) is increased, the cells move out of the relaxation regime and into a smoother

oscillation that more closely resembles the voltage profiles seen in the crayfish non-spiking

interneurons. In the case of the HCO and the single cell with the autapse, the synapses

are described by a conductance-based model. The synaptic gating variable s is modeled

to activate quickly when the presynaptic membrane potential is above a certain threshold,

and decay slowly when the presynaptic membrane potential is below the same threshold.

See the appendix for a full description of the model.

Figure 3.2 compares the PRCs for each case in figure 3.1 using the parameters given in

Jones et al. (except for gsyn). These parameters allow the cell to oscillate on its own

without applied current. Column (A) in figure 3.2 shows the voltage (upper), fraction of

open potassium channels n (middle, black), and PRC (bottom) for one period in the single

cell. Column (B) shows the same for the single cell with the autapse. The middle panel in

(B) also plots the synaptic activation variable s (red). Column (C) shows the same for the

HCO. The top panel in (C) plots the voltage for cell 1 (pink) and cell 2 (blue). The bottom

panel in (C) plots the PRC of the HCO with respect to cell 1 (pink) and cell 2 (blue), i.e.

the PRC corresponding to stimulating cell 1 or cell 2, respectively. When the HCO is in

anti-phase, stimulating cell 2 produces an identical PRC to cell 1 shifted by one-half of the

period because the HCO is symmetric. Each figure in this chapter is organized in a similar

manner to figure 3.2.

For the default parameters, the qualitative shape of the PRCs are similar for each case

(bottom row of figure 3.2). They each begin with an interval of small phase advances

followed immediately by a large negative lobe (referred to as the ‘delay lobe’). The delay
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Figure 3.3. Effect of decreasing the applied current in the Morris-Lecar model. Iapp = 0 for

all three cases. Membrane potential has units mV, n and s are in arbitrary units, and the PRCs

have units msec/mV. (A) Single Cell. Top to bottom: Single cell voltage trace, n, PRC for single
cell. (B) Autapse. Top to bottom: Single cell with autapse voltage trace, n (black) and s (red),

PRC for single cell with autapse. (C) HCO. Top to bottom: Voltage trace of cell 1 (pink) and cell
2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of HCO when measured by stimulating cell
1 (pink) and cell 2 (blue).

lobe corresponds to the phase around which the voltage ‘jumps down’ to the hyperpolarized

state. The delay lobe is followed by a period of small phase delays and then a large positive

lobe (referred to as the ‘advance lobe’). The advance lobe corresponds to the phase around

which the voltage ‘jumps up’ to the depolarized state. The delay lobe for the single cell

PRC occurs later in the period than in the other cases (bottom of A versus bottom of B

and C). Also, the delay lobe of the single cell PRC is larger in magnitude than the advance

lobe. The opposite is true for the single cell with the autapse and the HCO. However, the

magnitude of the advance lobe is similar for all three cases.

The period of each case varies, as well. The single cell and HCO periods are similar,

whereas the period of the single cell with the autapse is significantly smaller. Because the

applied current is 0 nA for the single cell case and 1 nA for the other two cases, the exact

reason for the similarities and differences in the period between the three cases is difficult

to understand [SKM94] [DRR09]. Furthermore, it is unclear how valid it is to compare the
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Figure 3.4. Effect of increasing the synaptic time constant (slow synaptic decay) in the

autapse and HCO. ε2 = .0015. Membrane potential has units mV, n and s are in arbitrary units,
and the PRCs have units msec/mV. (A) Single Cell. Top to bottom: Single cell voltage trace, n,

PRC for single cell. (B) Autapse. Top to bottom: Single cell with autapse voltage trace, n (black)

and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom: Voltage trace of cell 1
(pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of HCO when measured by
stimulating cell 1 (pink) and cell 2 (blue).

single cell PRC to the other two considering the difference in applied current. However,

if the single cell received 1 nA of applied current, it would not oscillate. These factors

compound the difficulty in pinpointing the cause for any differences.

Figure 3.3 compares the PRCs of each case when the injected current (Iapp) is set to 0 nA

for the autapse and HCO cases. It should be noted that initially the single cell has an

injected current of 0 nA and the autapse and two-cell network have an injected current of

1 nA. If the single cell receives an injected current of 1 nA, it enters depolarization block

and does not oscillate. When Iapp = 0 nA, the HCO quickly converges to synchronous

behavior rather than anti-phase. The synchronous behavior displayed here is contrary to

intuition that inhibitory synapses lead to anti-synchrony behavior. It has been shown that

inhibitory synapses that decay sufficiently slowly can lead to synchrony [VVAE94] [TKB98]

[WR92]. However, the rate of decay has not changed here and the period has changed very

little. A noticeable difference is that the duty cycle of the autapse and HCO oscillations
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Figure 3.5. Effect of decreasing the synaptic time constant (fast synaptic decay) in the
autapse and HCO. ε2 = .06. Membrane potential has units mV, n and s are in arbitrary units,

and the PRCs have units msec/mV. (A) Single cell. Top to bottom: Single cell voltage trace, n,

PRC for single cell. (B) Autapse. Top to bottom: Single cell with autapse voltage trace, n (black)
and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom: Voltage trace of cell 1

(pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of HCO when measured by
stimulating cell 1 (pink) and cell 2 (blue).

are significantly shorter. This allows the synaptic activation variable s to reach a lower

minimum, which might play into why the HCO is synchronous. The HCO and single cell

periods are very similar to the default parameter case. However, the period of the single

cell with the autapse is now identical (486 msec) to the HCO. Furthermore, the PRC for

the single cell with the autapse has exactly twice the amplitude of the HCO PRC. As in

figure 3.2, the autapse and HCO PRCs are qualitatively similar to the single cell PRC, with

differences in magnitude and location of the advance and delay lobes.

Figures 3.4, 3.5, and 3.6 study how altering the decay rate of the synapse affects the PRCs.

Figure 3.4 compares the PRCs of each case when the synaptic time constant is increased

(ε2 = .0015), causing the synapses to decay more slowly. Figure 3.5 compares the PRCs of

each case when the synaptic time constant is decreased (ε2 = .06), causing the synapses to

decay very quickly. When the synapses are slower (figure 3.4), the period in all three cases

is similar. With faster synapses (figure 3.5), the period of the single cell with the autapse is



26

0 200 400−80
−60
−40
−20
0
20

Time

Vo
lta
ge

0 100 200 300−80
−60
−40
−20
0
20

Time

Vo
lta
ge

0 200 400 600−80
−60
−40
−20
0
20

Time

Vo
lta
ge

0 200 4000

0.5

1

Time

n

0 100 200 3000

0.5

1

Time

n 
, s

0 200 400 6000

0.5

1

Time

n 
, s

(A) 0 T/2 T
−4

−2

0

2

4

Phase

z

(B) 0 T/2 T
−4

−2

0

2

4

Phase

z

(C) 0 T/2 T
−4

−2

0

2

4

Phase

z

Figure 3.6. Effect of decreasing the synaptic time constant and decreasing the applied

current in the autapse and HCO. ε2 = .06. Iapp = 0. Membrane potential has units mV, n and s
are in arbitrary units, and the PRCs have units msec/mV. (A) Single cell. Top to bottom: Single

cell voltage trace, n, PRC for single cell. (B) Autapse. Top to bottom: Single cell with autapse

voltage trace, n (black) and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom:
Voltage trace of cell 1 (pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of
HCO when measured by stimulating cell 1 (pink) and cell 2 (blue).

much smaller than the single cell, and the period of the HCO is much larger than the single

cell. Comparing the duty cycles in each figure, the autapse and HCO duty cycles are smaller

when the synapse is slower. However, the qualitative shapes of the PRCs and voltage traces

are very similar in both figures for all cases, and are similar to the default parameters

(figure 3.2). Thus, the qualitative shape of the PRCs are not sensitive to changes in the

synaptic time constant for these parameters, despite the significant change in behavior of

the synaptic activation variable.

Figure 3.6 compares the PRCs of each case when the rate constant of the synaptic current

is decreased (ε2 = 0.06) and the injected current is decreased (Iapp = 0 nA). As in figure

3.5, decreasing ε2 causes faster synaptic decay. Here, the HCO is near anti-synchrony, i.e.

the cells are not in exact anti-phase, but they are close to it. The period of the autapse and

HCO are similar to figure 3.5, but the duty cycles are slightly decreased. The qualitative

shape of the PRCs for the autapse and HCO are also similar to figure 3.5, however the PRC
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Figure 3.7. Effect of increasing the rate constant of the potassium current in the Morris-

Lecar model for all three cases. ε1 = .1. Membrane potential has units mV, n and s are in

arbitrary units, and the PRCs have units msec/mV. (A) Single cell. Top to bottom: Single cell
voltage trace, n, PRC for single cell. (B) Autapse. Top to bottom: Single cell with autapse voltage

trace, n (black) and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom: Voltage
trace of cell 1 (pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of HCO when
measured by stimulating cell 1 (pink) and cell 2 (blue).

of the HCO now displays opposite magnitudes for the delay and advance lobes. In figure

3.5, the delay lobe in the PRC of the HCO was significantly smaller in magnitude than

the advance lobe. The opposite is true in figure 3.6. This demonstrates that altering the

synaptic time constant can sometimes have a significant effect on the PRC.

Figure 3.7 compares the PRCs of each case when the rate constant of the potassium current

is increased (ε1 = 0.1). This change is made to obtain a smoother oscillation that more

closely resembles what is seen in the crayfish non-spiking interneurons. Again, we see that

the cells in the HCO converge to synchrony. The PRCs for all three cases are ‘broader’

than in the previous figures. The magnitude of the PRC for the autapse is exactly twice

that of the HCO. Both PRCs are qualitatively similar, and significantly different from the

single cell PRC. The PRCs for the autapse and HCO have broad small delay lobes and

broad large advance lobes, whereas the delay and advance lobes in the single cell PRC are
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Figure 3.8. Effect of increasing the rate constant of the potassium current in the Morris-

Lecar model in all three cases and decreasing the synaptic conductance in the autapse and HCO.

ε1 = .1. gsyn = .02. Membrane potential has units mV, n and s are in arbitrary units, and the
PRCs have units msec/mV. (A) Single cell. Top to bottom: Single cell voltage trace, n, PRC

for single cell. (B) Autapse. Top to bottom: Single cell with autapse voltage trace, n (black)
and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom: Voltage trace of cell 1

(pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of HCO when measured by
stimulating cell 1 (pink) and cell 2 (blue).

of similar magnitude. Also, compared to default parameters (figure 3.2), the period for all

three cases is significantly smaller.

Figure 3.8 compares the PRCs of each case when the rate constant of the potassium current

is increased (ε1 = 0.1) and the synaptic conductance is decreased (gsyn = 0.02). With the

addition of decreased coupling, the HCO returns to near anti-phase. Of note is that the

duty cycle for the autapse and HCO cases is very different between figures 3.7 and 3.8. The

period for the autapse and HCO cases are slightly smaller than in figure 3.7, but are still

very different from default (figure 3.2). However, in figure 3.8 the delay lobes in the PRCs

for the autapse and HCO are larger than the advance lobes, which is opposite to figure

3.7. The PRC found from stimulating either cell is shown in the bottom panel of figure

3.8C. If the HCO were in true anti-phase, the PRCs would be shifted versions of each other.

However, here we see that the PRC of the HCO is larger in magnitude when generated by
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Figure 3.9. Effect of increasing the rate constant of the potassium current in the Morris-

Lecar model, and decreasing the synaptic conductance and applied current in the autapse and
HCO. ε1 = .1. gsyn = .02. Iapp = 0. Membrane potential has units mV, n and s are in arbitrary

units, and the PRCs have units msec/mV. (A) Single cell. Top to bottom: Single cell voltage
trace, n, PRC for single cell. (B) Autapse. Top to bottom: Single cell with autapse voltage trace,

n (black) and s (red), PRC for single cell with autapse. (C) HCO. Top to bottom: Voltage trace

of cell 1 (pink) and cell 2 (blue) in HCO, n (black) and s (red) for cell 1, PRC of HCO when
measured by stimulating cell 1 (pink) and cell 2 (blue).

stimulating cell 2 (dark gray line) compared to when the PRC is generated by stimulating

cell 1 (light gray line).

Figure 3.9 compares the PRCs of each case when the rate constant of the potassium current

is increased (ε1 = 0.1), the synaptic conductance is decreased (gsyn = 0.02), and the injected

current is decreased (Iapp = 0 mV). As in figure 3.8, the HCO displays near anti-synchrony

behavior and the period for all three cases are similar to figure 3.8. However, there are big

differences between the PRC for the single cell with the autapse and the HCO. The PRC of

the single cell with the autapse has a small delay lobe followed by a large advance lobe. But

when the PRC of the HCO is generated by stimulating cell 1 (light gray line), it has a small

advance lobe followed by a large delay lobe. The PRC of the HCO found by stimulating

cell 2 (dark gray line) is not simply a shift by one-half period. It has a large advance lobe

followed by a small delay lobe. In other words, the PRC derived from stimulating cell 2
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(dark gray line) is a reflected (over the x-axis) and shifted version of the PRC derived from

stimulating cell 1 (light gray line). If the cells were in true anti-synchrony, the two PRCs

would simply be shifted by one-half of the period. Furthermore, the PRC of the HCO has a

significantly larger magnitude than that for the single cell with the autapse and the single

cell.

3.1. Summary

This chapter demonstrates how various parameters in a biophysical model can alter

the PRC of the HCO in a seemingly unpredictable manner. For example, increasing the

rate constant of the potassium current (figure 3.7) caused the cells in the HCO to oscillate

synchronously and caused the advance and delay lobes of the PRCs to broaden and change

in magnitude. Identifying the cause of these differences is a difficult task because there are

numerous variables, parameters, and time scales to consider. In order to build a framework

for understanding these results, chapters 4 and 5 examine analytically tractable models.

Chapter 4 uses phase models and chapter 5 uses leaky integrate-and-fire models for the

single cells. The coupling between the cells is either instantaneous or current-based with

fast decay times. The analysis in each chapter provides insight into how the PRC of a HCO

is determined from the single cell PRCs and the coupling between the cells.
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CHAPTER 4

Phase Response Properties of Half-Center Oscillators using

Phase Models

The previous chapter highlighted the difficulty in understanding how the phase response

properties of a HCO arise from the single cell properties and synaptic dynamics even when

relatively simple biophysical models are used. In this chapter, we use an idealized model

for the intrinsic dynamics of cells within the HCO, which allows us to derive and analyze an

analytic expression for the PRC of the HCO. From this, we can begin to see directly how

the single cell and synaptic properties influence the PRC of the HCO [KE09]. Specifically,

each cell is described by only its phase and its PRC. The synapses between cells are modeled

by exponential current-based synapses in the limiting case of very fast synapses.

4.1. The HCO phase model

The dynamics of each cell within the HCO are described with a single equation defining

the evolution of the phase of the cell during oscillations and its response to input. The state

of each cell is completely described by its phase in the oscillation φ ∈ [0, T ], where T is the

intrinsic period of the cell. The response of the individual cells to input is given in a phase

dependent manner as prescribed by their PRC, z(φ). The cells are coupled by inhibitory

exponential synapses [VVAE94]. When a cell reaches phase φ = T , it “fires” and elicits a

synaptic current in the postsynaptic cell. The equations governing the HCO phase model

φ1

α

φ2

α

Figure 4.1. Idealized HCO phase model. Two cells described only by their phases φ1 and
φ2 are coupled through reciprocal inhibitory synapses of strength α.
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are

dφ1

dt
=1− α s2(t) z(φ1(t)) if φ1 = T , φ1 → 0

dφ2

dt
=1− α s1(t) z(φ2(t)) if φ2 = T , φ2 → 0

ds1
dt

=
−s1
τ

if φ1 = T , s1 = s1 + (1/τ)

ds2
dt

=
−s2
τ

if φ2 = T , s2 = s2 + (1/τ)

(4.1)

where φi is the phase of cell i. The term αsi(t) is the synaptic current, where α is the

synaptic strength and si(t) describes the synaptic waveform. If α > 0, the synapse is

inhibitory; if α < 0, the synapse is excitatory. In this chapter, we consider only inhibitory

synapses (α > 0). The parameter τ describes the rate of decay of the synaptic current.

Each cell is assumed to have an identical PRC, z(φi). Note that we can prescribe any PRC

z(φ) to the cells. Figure 4.2 shows an example of the dynamics in this model. The phase

of each cell (top) and the synaptic current generated by each cell are plotted as functions

of time (bottom).

4.1.1. Reduction to appropriately capture the effects of exponential synapses

using δ-function synapses. Even though this is an idealized model, it is still difficult to

analyze because it is 4-dimensional and non-linear. We simplify the model by using instan-

taneous synapses so that the effects of every inhibitory post-synaptic current (IPSC) results

in an instantaneous jump in phase. However, simply replacing the synaptic conductance

(s(t)) with a standard δ-function, as discussed in chapter 7, causes a discontinuity in time

where only the phase response of the cell at the time of the pulse is accounted for and all

other phases are ignored. Exponential synapses do not do this. Therefore, we systemati-

cally reduce the model by approximating the synaptic coupling term (αs(t)z(φ(t))) with a

new function in the case where the time constant for decay is very small, i.e. the synapses

are very fast (τ << T ). When τ << T , sj(t) = 1
τ e
−t/τ >> 1 (j = 1, 2) on the short time

scale (when t << τ). This is a reasonable approximation because τ << T indicates that

the synapses decay very fast, and there is little-to-no synaptic conductance remaining at

larger values of t. If α and z(φ) are such that αs(t)z(φ(t)) >> 1 when t << τ , we can

approximate dφi

dt by
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Figure 4.2. Phase and synaptic conductance of cells 1 and 2 over time. T = 2π. α = 1.

τ = 0.1. z(φ) = − sin(φ). (Top) Two phase oscillators in anti-phase. (Bottom) The synaptic
conductance triggered when each cell fires and is reset.

(4.2)
dφi

dt
≈ −αs(t)z(φi(t)) = −α

τ
e−t/τz(φi(t)).

Let φ0
i be the phase of cell i when a synaptic current is delivered to it, and let φi+∆φ be the

phase of cell i when the synaptic current is approximately zero. Integrating the differential

equation in (4.2),

(4.3)
∫ φ0

i +∆φ

φ0
i

dφ

z(φ)
≈ −α

τ

∫ ∞

0
e−t/τdt.

We can integrate to infinity on the right-hand side because we are considering very fast

decay, so the exponential decays to zero almost immediately. The right-hand side integrates

to −α,

(4.4)
∫ φ0

i +∆φ

φ0
i

dφ

z(φ)
≈ −α.

Let Z(φ) be the antiderivative of 1
z(φ) , then

(4.5) Z(φ0
i + ∆φ)− Z(φ0

i ) ≈ −α.

By solving the nonlinear algebraic equation (4.5) for ∆φ(φ0
i ), we obtain a phase response

curve for fast synaptic input, i.e. the phase shifts caused by a current of strength α delivered

at a particular phase φ. We call ∆φ(φ) the synaptic phase response curve. Note that as

α → 0, ∆φ(φ) → −αz(φ). In this reduction, we explicitly use exponential synapses, but

the reduction is identical for any synaptic current that is delivered sufficiently fast. That
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is, the reduction does not depend on the shape of the input, it only depends on the total

charge and the assumption that the input decays very fast.

The above argument reduces system (4.1) to the δ-pulse-coupled HCO phase model

dφ1

dt
=1 + δ(φ2)∆φ(φ1)

dφ2

dt
=1 + δ(φ1)∆φ(φ2).

(4.6)

The dynamics of this system are as follows. The phase of each cell increases linearly ac-

cording to its intrinsic dynamics dφ1

dt = dφ2

dt = 1 until the phase of cell i reaches T . At this

time, cell i is reset to 0 and an instantaneous pulse of strength α is delivered to cell j. The

phase of cell j is immediately shifted by ∆φ(φj).

The relative simplicity of the δ-pulse-coupled HCO allows us to analytically derive its PRC.

The following sections define a firing map for the model. The PRC is derived by giving

small perturbations to one of the cells at various times throughout its cycle and finding the

next firing time in the HCO. This firing time can then be used as an initial condition for

the firing time map, which determines each subsequent firing time of the cells in the HCO.

The differences between the firing times in the perturbed and unperturbed systems yields

the PRC for the HCO.

4.2. Derivation of map for firing times

Using the δ-pulse-coupled HCO phase model (system (4.6)), we derive a map to describe

the phase of cell 1 when cell 2 fires and vice versa. The discrete-time firing map captures

the intrinsic (i.e. unperturbed) dynamics of the HCO model in a single finite-difference

equation.

We derive the firing map as follows. Assume that at time tk cell 1 has just fired and has

been reset to phase 0 (labeled ‘Start’ in figure 4.3 cell 1) and that cell 2 has just been phase

shifted by an inhibitory synaptic pulse and is at phase φk (labeled ‘Start’ in figure 4.3 cell

2). The superscript represents the number of firings that have occurred in the system since
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CELL 1 CELL 2

Start

Start

0, T 0, TT/2 T/2

φk

T − φk

φk+1 = (T − φk) + ∆φ(T − φk;−α)

Figure 4.3. Deriving the firing map. The circles represent the phase of each cell.

time 0. The phases of the cells increase linearly (i.e. evolve at a rate of 1) until cell 2 reaches

phase T , at which time (tk+1) cell 2 fires, is reset to phase 0, and triggers an inhibitory

synaptic pulse of strength α in cell 1. At this point, both cells have moved a distance of

T − φk, putting cell 1 at phase T − φk prior to the inhibitory pulse. Therefore, the phase

shift of cell 1 due to the inhibitory synaptic pulse is ∆φ (T − φk), making the phase of cell

1 immediately after the pulse

φk+1 = T − φk + ∆φ (T − φk) = h(φk).(4.7)

This relationship is the firing map. The map has also been referred to as the spike time

response curve map [GE02] [NBD+05] [OM09]. That is, when this map is iterated, it gives

the phase of cell 1 after cell 2 fires and vice versa. For example, let cell 1 be at phase φ0
1 = 0

and cell 2 be at phase φ0
2. After one firing in the system, cell 2 is at phase φ1

2 = 0 and cell

1 is at phase φ1
1 = h(φ0

2) = T − φ0
2 + ∆φ (T − φ0

2). After a second firing in the system, cell

1 is at phase φ2
1 = 0 and cell 2 is at phase φ2

2 = h(φ1
1) = T − φ1

1 + ∆φ (T − φ1
1). When an

appropriate form for the synaptic PRC ∆φ is chosen (discussed in section 4.2.1), this firing

map converges to a fixed point that corresponds to anti-phase, as illustrated graphically in

figure 4.4.

4.2.1. Fixed point of the firing map corresponds to anti-phase. We now find the

fixed point of the firing map along with conditions for its stability because we are interested

in stable anti-phase oscillations in the HCO. During steady state anti-phase oscillations,

when cell 1 is at phase 0 and cell 2 is at phase φ∗, after one firing in the system (i.e. at

half-period of the HCO) cell 1 will be at phase φ∗ and cell 2 will be at phase 0, and this

pattern repeats. Thus, φ∗ is the fixed point of the firing map (as shown in figure 4.4); i.e.,
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Figure 4.4. Iterations of the firing map φk+1 = h(φk) (map shown in blue). z(φ) =
β − sin(φ + sin−1(β)). α = 1. β = 0.6. Map converges to stable fixed point φ∗.

φ∗ can be found by solving

φ∗ = h(φ∗) = T − φ∗ + ∆φ (T − φ∗).(4.8)

The fixed point φ∗ is stable if and only if |h′(φ∗)| < 1, i.e.

(4.9) −1 < h′(φ∗) = −1−∆φ′(T − φ∗) < 1

which implies

(4.10) −2 < ∆φ′(T − φ∗) < 0.

Therefore, if the slope of the synaptic PRC at phase T −φ∗, ∆φ′(T −φ∗), is between -2 and

0, then the fixed point φ∗ is stable. This corresponds to the criterion for stable anti-phase

behavior in the HCO.

We define T ∗ as the period of the steady state oscillation of the HCO. When the above

conditions for stable anti-phase are met, each inhibitory synaptic pulse arrives at phase

T ∗/2, as seen in figure 4.5. The period T ∗ is a combination of the intrinsic period and the

phase shift due to the inhibitory pulse.

(4.11) T ∗ = T −∆φ(T ∗/2).

Note that T ∗ is implicitly dependent on synaptic strength α and the PRC of the single cells

z(φ) through ∆φ(φ). Because T − φ∗ = T ∗/2, we can also write the fixed point equation
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CELL 1 CELL 2

Start

Start

0, T 0, TT/2 T/2

φ∗

T ∗/2

φ∗ = (T ∗/2) + ∆φ(T ∗/2;−α)

Figure 4.5. The fixed point of the firing map is φ∗.

(4.8) as

(4.12) φ∗ = T ∗/2 + ∆φ(T ∗/2).

4.2.2. Linearize the firing map. When determining the PRC of the HCO, we give

small perturbations to cell 1 when the HCO system is in anti-phase, and therefore the

corresponding state in the firing map (equation 4.7) will not be moved far from the stable

fixed point of the firing map φ∗. Thus, we can linearize the firing map around φ∗ and

obtain a good approximation of the full map. The linear map can be solved exactly for the

change in phase that results from the small perturbation. The full details regarding the

linearization are in the appendix.

Let φk = φ∗ + φ̃k. φ̃k is a small perturbation away from the steady state, φ∗. Substituting

this into our firing map (equation (4.7)) and linearizing around φk = φ∗, we obtain the

linearized map

φ̃k+1 = h′(φ∗)φ̃k.(4.13)

If φ∗ + φ̃0 is the initial condition for the firing map, then

φ̃k = [h′(φ∗)]kφ̃0, k = 0, 1, 2, ...(4.14)

Note that when deriving the PRC for the HCO, the initial condition φ∗ + φ̃0 for the map

depends on the timing of the pulse. The firing map only captures the dynamics of the
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Figure 4.6. (A) Scenario 1: cell 1 is lagging when it receives the ε-pulse. (B) Scenario 2:

cell 1 is leading when it receives the ε-pulse.

system after the first cell fires following the perturbation. This issue will be discussed in

sections 4.3.1 and 4.3.2.

4.3. PRC of HCO

To measure the PRC of the HCO, a δ-function perturbation of size ε (ε << 1) is delivered

only to cell 1 at various times (tθ) in the period of the HCO during steady state oscillations.

There are two scenarios to consider. In scenario 1, the pulse is given to cell 1 while cell 1

is lagging, i.e. the next cell to fire in the system is cell 2. In scenario 2, the pulse is given

to cell 1 while cell 1 is leading, i.e. the next cell to fire in the system is cell 1. φ̃0 is the

change in phase of the lagging cell after the leading cell fires. We denote the phase of the

HCO by θ and the time at which the perturbation is given by tθ (0 < tθ < T ∗). The phase

of the cells within the HCO are denoted by φ1 and φ2, respectively, with 0 < φi < T .

4.3.1. Scenario 1: Cell 1 is lagging. At time 0, we let cell 1 begin at phase φ1 = 0

and cell 2 begin at phase φ2 = φ∗, i.e. the cells are in anti-phase (see figure 4.6A). The

perturbation is given to cell 1 between time 0 < tθ < T ∗/2, where the phase of cell 1 is

between 0 < φ1 < T ∗/2 (figure 4.7A). Note that this scenario will give the HCO PRC for

phases 0 < θ < T ∗/2. Figure 4.7B shows the firing times for scenario 1. Vertical lines

represent the time at which the cells fire and are reset. Blue lines indicate times at which

cell 1 fires and pink lines indicate times at which cell 2 fires. The dotted lines indicate the

unperturbed firing times. The solid lines indicate firing times following the perturbation.

We denote the firing times as ti and the phase of the cell that does not fire at time ti as φi

(recall the phase of the cell that fires at time ti is T → 0). The small perturbation causes



4.3. PRC OF HCO 39

(B)(A)

R
es

et
tin

g 
of

 C
el

l

0

Electrode
CELL 1

time

T − φ1

tθ

∆θ
1 121 2

T ∗/2 T ∗ 2T ∗3T ∗/2

T − φ2

t1 t2 t3

ε-
p
u
ls

eT ∗/2

0, T

t0

T − φ0

Figure 4.7. Scenario 1: 0 < φ1 < T ∗/2. The ε-pulse is given to cell 1 when cell 1 is following

cell 2. The firing times are denoted by vertical lines with the number of the firing cell above them.

The unperturbed firing times are denoted by dotted lines. The perturbed firing times are denoted
by solid lines. The difference between where cell 1 would have fired and where it did fire after the

ε-pulse is recorded as the change in phase, ∆θ.

cell 1 to instantaneously shift its phase by εz(φ1). When cell 2 fires at time

(4.15) t0 = T ∗/2,

cell 1 is at phase T ∗/2+εz(φ1), and therefore the inhibitory synaptic pulse from cell 2 shifts

the phase of cell 1 by ∆φ(T ∗/2 + εz(φ1)). Thus, immediately after cell 2 has fired and has

been reset to phase 0, the phase of cell 1 is

φ0 = T ∗/2 + εz(φ1) + ∆φ(T ∗/2 + εz(φ1))(4.16)

From here on, the dynamics of the system, i.e. the return to anti-phase, are governed by

the firing map in equation (4.7) with φ0 serving as the initial condition when iterating the

map.

Because the size of the perturbation ε is small, we can do a Taylor series expansion of

∆φ(T ∗/2− εz(φ1)) about ε = 0 to obtain

φ0 = T ∗/2 + ∆φ(T ∗/2) + εz(φ1)[1 + ∆φ′(T ∗/2)] +O(ε2)(4.17)

= φ∗ + φ̃0,(4.18)
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where we have used φ∗ = T ∗/2 + ∆θ(T ∗/2) (equation (4.12)). Thus, for scenario 1, i.e. for

perturbations of the HCO when the phase of cell 1 is 0 < φ1 < T ∗/2

(4.19) φ̃0 ≈ εz(φ1)[1 + ∆φ′(T ∗/2)].

4.3.2. Scenario 2: Cell 1 is leading. At time 0, we let cell 1 begin at phase φ1 = φ∗

and cell 2 begin at phase φ2 = 0 (see figure 4.6B). The perturbation is given to cell 1

between time 0 < tθ < T ∗/2, where the phase of cell 1 is between φ∗ < φ1 < T (figure

4.8A). Note that this scenario will give the HCO PRC for phases T ∗/2 < θ < T ∗. We

shift it here for convenience in calculating the PRC. Figure 4.8B shows the firing times for

scenario 2, similar to figure 4.7B. The perturbation causes cell 1 to instantaneously shift its

phase by εz(φ1). Instead of firing at time T ∗/2, cell 1 fires at time

(4.20) t0 = T ∗/2− εz(φ1).

At this time, cell 2, which is now at phase T ∗/2−εz(φ1), receives an inhibitory synaptic pulse

from cell 1 that instantaneously shifts its phase by ∆φ(T ∗/2− εz(φ1)). Thus, immediately

after cell 1 has fired and been reset, the phase of cell 2 is

φ0 = T ∗/2− εz(φ1) + ∆φ(T ∗/2− εz(φ1))(4.21)

= T ∗/2 + ∆φ(T ∗/2)− εz(φ1)[1 + ∆φ′(T ∗/2)] +O(ε2)(4.22)

= φ∗ + φ̃0,(4.23)
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where we have used the same argument as in scenario 1. Thus, for scenario 2, i.e. for

perturbations of the HCO when the phase of cell 1 is φ∗ < φ1 < T

(4.24) φ̃0 ≈ −εz(φ1)[1 + ∆φ′(T ∗/2)].

4.3.3. Timing. For the two scenarios, we now have the initial firing time t0 and the

initial conditions for the firing map φ0.

Scenario 1: t0 = T ∗/2 φ̃0 = εz(φ1)[1 + ∆φ′(T ∗/2)]

Scenario 2: t0 = T ∗/2− εz(φ1) φ̃0 = −εz(φ1)[1 + ∆φ′(T ∗/2)].
(4.25)

To calculate the PRC of the HCO, we take the difference in firing times from the perturbed

and unperturbed system (denoted by ∆θ in figures 4.7 and 4.8). If no perturbation is given

to the system, then the firing times during steady state oscillations are

(4.26) tUP
k = (k + 1)

T ∗

2
, k ∈ Z,

where UP stands for ‘unperturbed’. Following the perturbation, the time intervals between

firings are given by T − φk (as shown in figures 4.7 and 4.8). Thus, the firing times of the

perturbed system are

tk = t0 +
k−1∑
i=0

(T − φi)(4.27)

= t0 +
k−1∑
i=0

(T − (φ∗ + φ̃i))(4.28)

= t0 + k(T − φ∗)− φ̃0

k−1∑
i=0

[h′(φ∗)]i = t0 + k
T ∗

2
− φ̃0 1− [h′(φ∗)]k

1− h′(φ∗)
(4.29)

= t0 + k(T ∗/2)− φ̃0 1− [−1−∆φ′(T ∗/2)]k

2 + ∆φ′(T ∗/2)
.(4.30)

We have used the linearized firing map (equation (4.14)) in (4.28) and (4.29), as well as the

fact that
∑k−1

i=0 [h′(φ∗)]i is a geometric series with |h′(φ∗)| < 1 (equation (4.9)).
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The change in phase ∆θk of the HCO is given by the change in firing times tUP
k − tk.

∆θk = tUP
k − tk(4.31)

= T ∗/2− t0 + φ̃0 1− [−1−∆φ′(T ∗/2;−α)]k

2 + ∆φ′(T ∗/2;−α)
.(4.32)

Note that ∆θk is the k/2th order PRC, i.e. the PRC after k/2 firings in the system. The

PRC of the HCO is the asymptotic change in phase that results from the perturbation,

lim(k→∞) ∆θk. If the stability condition for the anti-phase state is met (equation (4.10)),

then 0 < | − 1 − ∆φ′(T ∗/2)| < 1 and as k → ∞, [−1 − ∆φ′(T ∗/2)]k → 0. The resulting

PRC of the HCO is

(4.33) ∆θ = T ∗/2− t0 +
φ̃0

2 + ∆φ′(T ∗/2)]
.

Equation 4.33 depends on t0 and φ̃0, which were derived in sections 4.3.1 and 4.3.2.

4.3.4. Analytically derived PRC of HCO. To obtain the PRC for the HCO, we

combine results in sections 4.3.1 - 4.3.3 as follows. Consider the HCO oscillating at steady

state. At time t = 0, let cell 1 be at phase φ1 = 0 and cell 2 at phase φ2 = φ∗. If the

perturbation is given to cell 1 between times 0 < tθ < T ∗/2, then cell 1 is lagging behind

cell 2 and the PRC of the HCO is found using t0 and φ̃0 from scenario 1. If the pulse is

given to cell 1 between times T ∗/2 < tθ < T ∗, then cell 1 is leading cell 2 and the PRC

of the HCO is found using t0 and φ̃0 from scenario 2, using an appropriate shift in phase.

Combining the two scenarios and normalizing by the size of the perturbation ε, we get the

piecewise defined PRC of the HCO.

(4.34) ∆θ =

{
z(tθ)

1+∆φ′(T ∗/2)
2+∆φ′(T ∗/2) , 0 ≤ tθ < T ∗/2

z(tθ − (T ∗/2− φ∗)) 1
2+∆φ′(T ∗/2) , T ∗/2 ≤ tθ < T ∗.

Equation 4.34 shows that the PRC for the HCO is a product of the single cell PRC and

an attenuation factor. When using the synaptic PRC ∆φ, the HCO PRC ∆θ is continuous

at T ∗/2, but ∆θ′ can be discontinuous at T ∗/2. In each half of the PRC, the attenuation

factor is a function of the slope of the synaptic PRC at anti-phase (∆φ′(T ∗/2)). Recall

that ∆φ′(T ∗/2), as well as T ∗ and φ∗, are determined by z(φ) and α (see section 4.1.1).
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Note that the attenuation factor in the first half differs from that in the second half only

in the numerator. Recall that we have assumed −2 < ∆φ′(T ∗/2) < 0, so the extra term

in the first half of the PRC leads to greater attenuation than the second half. For large

α, ∆φ is the distance between where a pulse is given and the zero of z(φ). Therefore, as

the coupling strength α increases, ∆φ′(T ∗/2)→ −1. This means the attenuating factor in

the first half of the PRC goes to 0 and the attenuating factor in the second half goes to 1.

Therefore, for sufficiently strong and fast coupling in the HCO, external input arriving in

the first half of the period will have little or no effect on the timing of the HCO, and input

arriving in the second half of the period will cause a shift in phase determined solely by

the single cell PRC. Also note that as α → 0, φ∗ → T/2 and T ∗/2 → T/2. Therefore, as

α→ 0, ∆φ→ −αz(φ)→ 0 and ∆θ → z(tθ)/2.

4.3.5. k/2th order PRC of HCO. The analytic PRC of the HCO is the infinitesimal

PRC, or iPRC, for the HCO. It is derived by taking the limk→∞∆θk, where ∆θk is the

k/2th order PRC.

(4.35)

∆θk =

{
z(tθ)[1 + ∆φ′(T ∗/2)]1−[−1−∆φ′(T ∗/2)]k

2+∆φ′(T ∗/2) , 0 < tθ < T ∗/2

z(tθ − (T ∗/2− φ∗))
(
1− [1 + ∆φ′(T ∗/2)]1−[−1−∆φ′(T ∗/2)]k

2+∆φ′(T ∗/2)

)
, T ∗/2 < tθ < T ∗.

4.4. Application to sinusoidal PRCs

In this section, we use z(φ) = β − sin(φ+ sin−1(β)) with T = 2π and β ∈ [−1, 1] as the

single cell PRC. z(φ) is defined so that z(0) = z(T ) = 0, as is the case for most neuronal

PRCs. The following examples compare the analytic PRC of the HCO to the numerically

generated PRC of the HCO for a range of synaptic strengths α and various values of β. The

parameter β can be thought of as the single cell skewness factor of the PRC, but note that

it also changes the average of the PRC [ZS09]. Note that β ∈ [−1, 1] does not guarantee

that the HCO is in anti-phase, as the stability condition for anti-phase in equation (4.10)

must be met, as well.

In figure 4.9, α = 1 and β = 0.5, and in figure 4.10, α = 4 and β = 0.2. Figures 4.9A

and 4.10A show the synaptic PRC (blue) and the convolution of the synaptic strength and
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Figure 4.9. α = 1 and β = 0.5. (A) −αz(φ) and ∆φ(φ;−α). (B) Numerical and analytic
PRC of the HCO. (C) kth order PRC.

single cell iPRC (pink). In figure 4.9A, the shape of the synaptic PRC ∆φ(φ) is similar to

−αz(φ), but the positive and negative peaks of ∆φ(φ) are further skewed towards phases 0

and T . In figure 4.10A, this skew is dramatic, because α is much larger. In figure 4.9A and

4.10A, anti-phase T ∗/2 is shown with a blue dot on the synaptic PRC.

We compare the synaptic PRC to the single cell iPRC because important differences occur

if the correct limit to the delta function is not taken. If, in section 4.1, the standard δ-

function was used to replace the synaptic conductance, this alternate phase model would

have −αδ(φj)z(φi) as the coupling term instead of δ(φj)∆φ(φi), i.e. the two models use

different PRCs. The differences are dramatic. If −αδ(φj)z(φi) is the coupling term, the anti-

phase state T ∗/2 is different (pink dot on single cell iPRC). Upon inspection it is clear that

that the slopes of the two curves at their respective anti-phase states are very different,

which can lead to very different HCO PRCs. The consequences of this are discussed in

chapter 7.
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Figure 4.10. α = 4 and β = 0.2. (A) −αz(φ) and ∆φ(φ;−α). (B) Numerical and analytic

PRC of the HCO. (C) kth order PRC.

4.4.1. Attentuation. Recall that the slope of the synaptic PRC at anti-phase ∆φ′(T ∗/2)

determines the amount of attenuation in each half of the PRC of the HCO, as in equation

(4.34). The attenuation in each half of HCO PRC is shown in figure 4.11, as indicated by the

form of ∆θ (equation 4.34). For all β, as the coupling strength α increases, ∆φ′(T ∗/2)→ −1,

and the attenuation of the PRC goes to zero in the first half and one in the second half.

The numerical and analytical HCO PRCs are compared in figures 4.9B and 4.10B. In figure

4.9B, the qualitative shape of the HCO PRC is similar to the single cell PRC z(φ), but the

amplitude is decreased due to the attenuation. The discontinuity in ∆θ′ at T ∗/2 is due to

the change in attenuation between the two halves of the HCO PRC. In figure 4.10B, α is

significantly larger than in figure 4.9B. In figure 4.11 we see that when α = 4 and β = 0.2,

the attenuation in the first half of the HCO PRC is almost zero and in the second half

is almost 1. That is exactly what we see in figure 4.10B, as indicated by the form of ∆θ

(equation 4.34). For these parameters, external input arriving in the first half of the period

will have no effect on the timing of the HCO.
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Figure 4.11. Attenuation factors for the PRC of the HCO (equation (4.34)). (A) First half
of the PRC (0 < tθ < T ∗/2). (B) Second half of the PRC (T ∗/2 < tθ < T ∗).

4.4.2. Convergence rate. The analytically derived PRC of the HCO is the infinites-

imal PRC, or iPRC, for the HCO. It is derived by taking the limk→∞∆θk, where ∆θk is

the kth order PRC. Letting k → ∞ ensures that the HCO has returned to steady state

oscillations. In the interim, there is a ringing effect in the HCO. For example, say cell 1 is

about to fire when it receives a stimulus and as a result fires sooner. The change in firing

time causes a phase shift in cell 2 making it fire at a new time. This causes another phase

shift in cell 1, and so on. This ringing effect lasts longer when the coupling between the

two cells is weak. We note that in order to study phase-locking in a chain of HCOs using

the TWCO, the ringing effect must be small, i.e. the PRC of the HCO must converge close

enough to the iPRC before another input to the HCO arrives.

In figures 4.9C, 4.10C, 4.12, and 4.13, we look at how long it takes the kth order PRC ∆θk

to approach the analytic iPRC ∆θ. We examine the convergence using the norm of the

difference between the kth order PRC and the iPRC, normalized by the iPRC:

norm(k) =
‖∆θk(tθ)−∆θ(tθ)‖2

‖∆θ(tθ)‖2
,(4.36)

where ‖ · ‖2 is the standard `2-norm. Figures 4.9C and 4.10C show the kth order PRCs

compared to the iPRC. We say the kth order PRC has converged when norm(k) < 10−2,

which was chosen arbitrarily. Note that this is a strict constraint because it gives a 1%

difference between the two functions. When β = 0.5 and α = 1 (figure 4.9C), the kth

order PRC converges 2 HCO periods after the perturbation. When β = 0.2 and α = 4
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Figure 4.12. Natural logarithm of the norm in equation (4.36). k is the number of HCO

oscillations. (A) α = 1 and (B) α = 2.

(figure 4.10C), the kth order PRC converges after 1 HCO period. The dependence of the

convergence on α and β are shown in figures 4.12 and 4.13.

The convergence rate of the kth order PRC is determined by the slope of the firing time

map at the fixed point, h(φ∗), which measures the rate of relaxation back to the anti-phase

oscillation following the perturbation. If |h′(φ∗)| < 1 the firing map will be stable and the

kth order PRCs will always converge to the iPRC. The smaller |h′(φ∗)| is, the faster the kth

order PRCs will converge. The convergence rate is

(4.37) |h′(φ∗)| = | − 1−∆φ′(T ∗/2)|,

which depends on the slope of the synaptic PRC at T ∗/2 and therefore indirectly on α. We

know that as α increases, ∆φ′(T ∗/2)→ −1. Therefore, as α increases, |h′(φ∗)| → 0, which

increases the convergence rate. As α → 0, ∆φ → 0 and h′(φ∗) → −1, which decreases

the convergence rate. This is exactly what we see in figures 4.12 and 4.13. In figure 4.12,

the log of the norm in equation (4.36) is plotted as a function of the number periods it

takes to converge. Here, linearity implies exponential convergence. In figure 4.13, we see

that −1 < h′(φ∗) < 0, which means the kth order PRCs oscillate around the iPRC as they

converge to it. Figures 4.12 and 4.13 also show the dependence of the convergence rate on

β. The closer the single cell PRC is to − sin(φ) (β = 0), the faster the convergence. This

is because the slope at anti-phase is closest to −1 when β = 0. As |β| increases, − sin(φ)

shifts and the slope at anti-phase moves toward −2 or 0.
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Figure 4.13. Convergence rate of the kth order PRC (equation (4.35)) for various α and β.

As previously mentioned, the convergence rate of the approximation must be fast when

studying phase-locking in a chain of HCOs using the TWCO. These results indicate that if

α is large and/or |β| is small, then a sufficiently fast convergence rate is expected. If α and

β are such that the approximations to the iPRC sufficiently converge before the next input

to the HCO, then we can use the TWCO to derive the phase-locked states. Phase-locking

is discussed in chapter 6.

4.4.3. Exponential synapses. In figures 4.14 and 4.15, we numerically generate the

PRC of the HCO using the idealized phase model with exponential synapses (equation 4.1)

and compare the numerical PRC to the analytically derived PRC as the time constant for

decay τ increases. In figure 4.14, α = 1 and β = 0.5. In figure 4.15, α = 4 and β = 0.2.

When τ = .001, τ << T = 1 and the synaptic decay is nearly instantaneous (figure 4.14A

& 4.15A). In this case, the analytically derived PRC closely approximates numerical PRC,

indicating that the analytically derived PRC is a good approximation to the actual PRC

for models that contain synapses with a fast decay time. Note that this is not the case if

the standard δ-function is used to calculate the analytic PRC. When τ = .3, (figures 4.14B

& 4.15B), the synaptic conductance decays to approximately zero within half of the HCO

period. In figure 4.14B, the analytic PRC closely approximates numerical PRC, and in

figure 4.15B, the analytic approximation begins to deviate from the numerical PRC, due

to the increased coupling strength α. When τ = .7 (figures 4.14C & 4.15C), the synaptic

conductance decays to approximately zero within one period, and the analytic PRC varies

further from the numerical PRC. The analytically derived PRC still captures the qualitative

shape of the numerically derived PRCs with slow synaptic coupling in the HCO. In both
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Figure 4.14. Comparing the analytic HCO PRC to the idealized phase model with expo-
nential synapses when α = 1 and β = 0.5. (A) τ = .001. Very fast decay. (B) τ = .3. Synapse
decays within one period. (C) τ = .7. Synaptic conductance sums.

figures, the period of the phase model with exponential synapses is larger than the δ-pulse

coupled phase model due to the increase in the synaptic time constant. Figure 4.14 indicates

that the analytic PRC can be used as a good approximation the numerical PRC for a wide

range of synaptic time constants when the coupling between the two cells is not very strong.

However, if the coupling between the two cells is strong as in figure 4.15, the analytic PRC

is only a good quantitative approximation for small synaptic time constants and a good

qualitative approximation for larger synaptic time constants.

4.5. Summary

• When the cells in the HCO are described by one-variable phase models and coupled

with δ-function synapses, the PRC of the HCO is a product of the single cell PRC

and an attenuation factor. Considering the results in chapter 3, we see that the

HCO PRC often has the same qualitative shape as the single cell PRC and might

be the product of the single cell PRC with an attenuation factor.
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Figure 4.15. Comparing the analytic HCO PRC to the idealized phase model with expo-
nential synapses when α = 4 and β = 0.2. (A) τ = .001. Very fast decay. (B) τ = .3. Synapse
decays within one period. (C) τ = .7. Synaptic conductance sums.

• The analytically derived PRC of the HCO with δ-function synapses is a good qual-

itative and quantitative approximation to the PRC of the HCO with exponential

synapses with sufficiently fast decay. The analytic PRC is also a good qualita-

tive approximation to the PRC of the HCO with exponential synapses with slower

decay.

• This work differs from that in Ko & Ermentrout [KE09]. Ko & Ermentrout derive

the PRC of the HCO by delivering small pulses to both cells in the HCO at the

same time. We deliver the pulse to only one cell in the HCO. If we added the HCO

PRC generated from delivering the pulse cell 1 to the HCO PRC generated from

delivering the pulse to cell 2, the result would be equivalent to stimulating both

cells simultaneously, i.e. it would be directly comparable to Ko & Ermentrout. In

most cases in this and the previous chapter, this would result in a HCO PRC that
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is much smaller, and contains less phase information. The resulting PRCs would

give less robust phase-locking results.
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CHAPTER 5

Phase Response Properties of Half-Center Oscillators using

Leaky Integrate-and-Fire Models

In this chapter, we use the leaky integrate-and-fire (LIF) model to describe the intrinsic

dynamics of the cells within the HCO and derive an analytic expression for the PRC of the

HCO. The LIF model describes the subthreshold dynamics of a cell equipped only with a

leakage conductance and an external applied current. It is relatively easy to analytically

compute the iPRC for the LIF model (see section A.3 in appendix). In the HCO, two LIF

cells are coupled through either δ-function synapses or exponential synapses with sufficiently

fast decay (as in chapter 4). The simplicity of the LIF HCO model allows for greater

analytic tractability compared to the general phase model when the effects of slower synapses

between the cells are included. Therefore, analyzing the LIF HCO with exponential synapses

gives insight into how the decay rate of the synapses effect the PRCs.

5.1. General form of PRC for HCO

In this section, we derive a general form for the iPRC of a HCO modeled with two

intrinsically oscillating LIF cells coupled through reciprocal inhibition. We introduce the

model with exponential synaptic coupling, but note that δ-function coupling can be thought

of as taking limτ→0 s(t), where τ is the rate of decay of the synaptic current. We assume

that within one-half HCO period, the synapses have decayed sufficiently fast.

The equations governing the HCO are

dV1

dt
=I − V1 − αs2(t) if V1 = 1, V1 → 0;

dV2

dt
=I − V2 − αs1(t) if V2 = 1, V2 → 0;

ds1
dt

=
−s1
τ

if V1 = 1, s1 = 1/τ

ds2
dt

=
−s2
τ

if V2 = 1, s2 = 1/τ

(5.1)
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Figure 5.1. The voltage trace for the HCO where each cell is modeled with the LIF model.
The two cells oscillate in anti-phase. α = 0.1 and I = 1.1. (A) The cells are coupled through
δ-function synapses. (B) The cells are coupled through exponential synapses, τ = 0.1.

where Vi is the membrane potential of cell i and I is a constant applied current. The

term αsi(t) is the synaptic current, where α is the synaptic strength and si(t) describes

the synaptic waveform. If α > 0, the synapse is inhibitory, and if α < 0, the synapse is

excitatory. In this chapter, we consider only inhibitory synapses (α > 0). The parameter

τ describes the rate of decay of the exponential synapse. If I > 1, then each cell oscillates

intrinsically with single cell period T = ln(I/(I − 1)). The associated iPRC of the single

LIF cell is z(t) = et/I, t ∈ (0, T ) [LR03] (see appendix for derivation). Figure 5.1 shows

an example of the dynamics in this model. Figure 5.1A shows the voltage trace of cells

1 and 2 during steady state oscillations when α = .1, I = 1.1 when s(t) is modeled with

δ-functions, i.e. limτ→0 s(t). Figure 5.1B shows the voltage trace of cells 1 and 2 when

the cells are coupled through exponential synpases and τ = 0.1. When Vi = 1, cell i fires

an action potential and triggers a synaptic current into cell j and Vi is reset to 0. For

exponential synapses, when cell i fires, the synaptic current is instantaneously increased

to α(1/τ) and then decreases exponentially with time constant τ . Note that the model

synapses are non-summing. For the parameters that we consider, the two cells oscillate in

anti-phase creating a HCO [SKM94] [WR92].

The following subsections define a firing map for this model, which we use to derive the

PRC for the HCO, similar to chapter 4.
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5.1.1. Firing map. To derive the firing map, assume that cell 1 begins at V1(tk) = 0

and cell 2 at V2(tk) = V k, i.e. cell 1 is lagging and cell 2 is leading. Superscript represents

the number of firings that have occurred in the system since time 0, i.e. tk is the time of

the kth spike. For synapses with sufficiently fast decay, we assume that s1(tk) = 1/τ and

s2(tk) = 0. Let VA(t; 0) and VB(t;V k) be the half-cycle solution for the LIF HCO model

(equation 5.1) with these ‘initial’ conditions for cell 1 and cell 2, respectively.

VA(t; 0) = I
(
1− e−t

)
(5.2)

VB(t;V k) = I
(
1− e−t

)
+

α

τ − 1

(
e−t − e−t/τ

)
+ V ke−t.(5.3)

Let ∆tk = tk+1 − tk. The next firing in the system occurs when the leading cell (cell 2)

reaches VB(∆tk;V k) = 1. By solving this last equation for V k or tk, we obtain V k = G(∆tk)

or ∆tk = G−1(V k), respectively. The functions G and G−1 can be found analytically or

numerically depending on τ . We define F (t) = VA(t; 0) and find the voltage V k+1 of the

the lagging cell (cell 1) at ∆tk by V k+1 = F (∆tk). The firing time map is thus

∆tk+1 = G−1(V k+1) = G−1(F (∆tk))(5.4)

Note that there is a corresponding map for voltages V k+1 = F (G−1(V k)). Sections 5.2 and

5.3 find specific forms for G(t) and F (t) for δ-function synapses and exponential synapses.

5.1.2. Fixed point of the firing map corresponds to anti-phase. Here, we con-

sider the fixed point of the firing map (5.4) along with conditions for its stability using F (t)

and G(t). Suppose ∆tk = T ∗/2 is the fixed point of the firing map

(5.5) T ∗/2 = G−1(V ∗) = G−1(F (T ∗/2)).

The fixed point corresponds to anti-phase oscillations in the HCO where the time interval

between subsequent firings is T ∗/2 (i.e. T ∗ is the period of the steady anti-phase oscillation

of the HCO). V ∗ corresponds to the voltage of the lagging cell when the leading cell fires

during anti-phase oscillations. During anti-phase oscillations, cells fire at times k T ∗

2 , k ∈

Z. T ∗/2 and V ∗ can be found analytically for δ-function synapses, and numerically for

exponential synapses by solving equation (5.5).
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5.1.3. Linearization of the firing map and stability of fixed points. As in

chapter 4, we give small perturbations to the HCO to determine the PRC of the HCO.

Therefore, we can linearize the firing map to obtain a good approximation of the full map

when these small perturbations are given. The linear map can be solved exactly for the

change in phase that results from the perturbation.

Let ∆tk = T ∗/2 + ∆t̃k, i.e. ∆t̃k is a small perturbation away from the steady state, T ∗/2.

Substituting this into the firing map (equation (5.4)) and linearizing, we obtain

∆t̃k+1 ≈
[
F ′(T ∗/2)
G′(T ∗/2)

]
∆t̃k(5.6)

where we have used

(5.7) [(G−1)′(F (t))]

∣∣∣∣∣
t=T ∗/2

=
F ′(T ∗/2)
G′(T ∗/2)

,

which follows from F (T ∗/2) = V ∗ and (G−1)′(V ∗) = 1
G′(T ∗/2) . If ∆t0 = ∆t̃0 + T ∗/2 is the

initial condition for the firing map, then

(5.8) ∆t̃k = ∆t̃0
[
F ′(T ∗/2)
G′(T ∗/2)

]k

.

It follows that the fixed point T ∗/2 is stable when

(5.9) −1 <
F ′(T ∗/2)
G′(T ∗/2)

< 1.

Sections 5.2 and 5.3 find specific values for T ∗/2, V ∗, F ′(T ∗/2), and G′(T ∗/2) for δ-function

synapses and exponential synapses.

5.1.4. Calculate PRC of HCO. We calculate the PRC of the HCO by giving small

pulses of size ε (ε << 1) to cell 1 at various phases (tθ) in the period of the HCO during

stable anti-phase oscillations. We take ∆t̃0 as the change in firing time of cell 1 following

the perturbation. If ∆t0 is the firing time of cell 1 following the perturbation, then

(5.10) ∆t0 = T ∗/2 + ∆t̃0.

Once we know the small perturbation ∆t̃0, we can use the linearized firing map to find each

subsequent firing times. When finding ∆t̃0, there are two scenarios to consider. In scenario
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1, the pulse is given to cell 1 while cell 1 is lagging, and in scenario 2, the pulse is given to

cell 1 while cell 1 is leading. We denote the phase of the HCO by θ, and the time of the

perturbation used to measure the PRC by tθ (0 < tθ < T ∗).

5.1.5. Scenario 1: 0 < tθ < T ∗/2. For this scenario, we let cell 1 begin at V1(0) = 0

and cell 2 begin at V2(0) = V ∗, i.e. cell 1 is lagging and cell 2 is leading. If the perturbation

is given to cell 1 between time 0 < tθ < T ∗/2, then the next cell to fire is cell 2 at time

T ∗/2. At this time, cell 1 has moved to

(5.11) V 0 = VA(T ∗/2; 0) + εetθ−T ∗/2 = V ∗ + εetθ−T ∗/2

where εetθ−T ∗/2 is the phase response of cell 1 to the small perturbation given at tθ. After

cell 2 is reset at t = T ∗/2, cell 1 is the leading cell until it fires when

(5.12) VB(∆t0;V 0) = 1.

5.1.6. Scenario 2: T ∗/2 < tθ < T ∗. For this scenario, we let cell 1 begin at V1(T ∗/2) =

V ∗ and cell 2 begin at V2(T ∗/2) = 0, i.e. cell 1 is leading and cell 2 is lagging. If the per-

turbation is given to cell 1 between time T ∗/2 < tθ < T ∗, then the next cell to fire is cell 1

when

(5.13) VB(∆t0;V ∗) + εetθ−∆t0 = 1

where εetθ−∆t0 is the phase response of cell 1 to the perturbation given at tθ. ∆t0 is found

analytically for δ-function synapses in section 5.2 and numerically for exponential synapses

in section 5.3. ∆t̃0 is found from equation (5.10).

5.1.7. Timing. To calculate the PRC of the HCO, we take the difference in firing

times from the perturbed and unperturbed system (denoted by ∆θ). If no perturbation is

given to the system, then the firing times during steady state oscillations are

(5.14) tkUP = (k + 1)
T ∗

2
, k ∈ Z
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where UP stands for ‘unperturbed’. When the ε-pulse is given to cell 1, the new firing times

are

tk = ∆t0 +
k−1∑
i=0

∆ti+1(5.15)

tk = ∆t0 +
k−1∑
i=0

G−1(F (∆ti))(5.16)

tk ≈ ∆t0 +
k−1∑
i=0

G−1(F (T ∗/2 + ε∆t̃i))(5.17)

tk ≈ ∆t0 +
k−1∑
i=0

[
G−1(F (T ∗/2)) + ε∆t̃iF ′(T ∗/2)(G−1)′(F (T ∗/2))

]
(5.18)

tk ≈ ∆t0 + kG−1(F (T ∗/2)) + εF ′(T ∗/2)(G−1)′(F (T ∗/2))
k−1∑
i=0

∆t̃i(5.19)

tk ≈ ∆t0 + k
T ∗

2
+ ε

F ′(T ∗/2)
G′(T ∗/2)

∆t̃0
k−1∑
i=0

[
F ′(T ∗/2)
G′(T ∗/2)

]i

(5.20)

tk ≈ (k + 1)
T ∗

2
+ ε∆t̃0 + ε

F ′(T ∗/2)
G′(T ∗/2)

∆t̃0
1−

[
F ′(T ∗/2)
G′(T ∗/2)

]k
1− F ′(T ∗/2)

G′(T ∗/2)

.(5.21)

We used the linearized firing map (equation (5.8)) in (5.17)-(5.20), and solved the summa-

tion in (5.21).

5.1.8. k/2th order PRC of HCO. The change in phase ∆θk is given by the change

in firing times tkUP − tk, normalized for the size of the ε-pulse.

∆θk = ∆t̃0

−1−
1−

[
F ′(T ∗/2)
G′(T ∗/2)

]k
G′(T ∗/2)
F ′(T ∗/2) − 1

 .(5.22)

∆θk is the k/2th order PRC, i.e. the PRC after k/2 firings. Note that ∆θk has the same

form as in chapter 4.

5.1.9. Semi-Analytic PRC of HCO. The PRC of the HCO is the asymptotic change

in phase shift that results from the perturbation, lim(k→∞) ∆θk. If the stability condition
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for the anti-phase state is met (equation (5.9)), then the resulting PRC of the HCO is

∆θ = ∆t̃0

−1− 1
G′(T ∗/2)
F ′(T ∗/2) − 1

 .(5.23)

Equation (5.23) is analytic or semi-analytic, depending on τ .

5.2. δ-function synapses

In this section, we consider the limiting case of τ → 0, i.e. the two LIF cells are

coupled with δ-function synapses. To find the PRC of the HCO we first find the half-cycle

solutions VLC(t; 0) and VLC(t;V k) as well as functions G(t) and F (t). We then find the

stable fixed point T ∗/2 and the corresponding voltage V ∗. Finally, we find ∆t̃0 and combine

the information to get the k/2th order PRC and infinitesimal PRC of the HCO.

Half-cycle solution. The equations governing the HCO coupled with δ-function synapses

are

dV1

dt
=I − V1 − αδ(V2) if V1 = 1, V1 ← 0; V1(0) = 0

dV2

dt
=I − V2 − αδ(V1) if V2 = 1, V2 ← 0; V2(0) = V k − α.

(5.24)

The half-cycle solution is

VA(t; 0) = I(1− e−t)(5.25)

VB(t;V k − α) = I(1− e−t) + (V k − α)e−t.(5.26)

Note that as τ → 0 in equation (5.2), α
τ−1(e−t − e−t/τ )→ −αe−t.

G(t) and F(t). We find functions G(t) and F (t) as described in section 5.1.1. We then

find G′(t) and F ′(t) to use in the PRC for the HCO. We find V k from VB(t;V k − α) = 1

and call this function G(t).

G(t) = (1− I)et + α+ I.(5.27)

Then

G′(T ∗/2) = (1− I)eT ∗/2.(5.28)



5.2. δ-FUNCTION SYNAPSES 59

Let F (t) = VA(t; 0). Then

F (t) = I(1− e−t),(5.29)

and

F ′(T ∗/2) = Ie−T ∗/2.(5.30)

T ∗/2, V ∗, and ∆t̃0. We use the firing map T ∗/2 = G−1(F (T ∗/2)) where F (T ∗/2) = V ∗

to solve for V ∗ and T ∗/2.

T ∗/2 = ln
(
I − (V ∗ − α)

I − 1

)
(5.31)

V ∗ =
1
2
((α+ 2I)−

√
(α+ 2I)2 − 4I(1 + α)).(5.32)

For scenario 1, we use

VB(∆t0;V ∗ + εetθ−T ∗/2) = 1(5.33)

to find ∆t0.

∆t0 = ln

(
I − (V ∗ − α)− εetθ−T ∗/2

I − 1

)
(5.34)

≈ ln
(
I − (V ∗ − α)

I − 1

)
− εetθ−T ∗/2 1

I − (V ∗ − α)

≈ T ∗/2− εetθ−T ∗/2 1
I − (V ∗ − α)

where we have linearized about ε = 0. Since ∆t0 = T ∗/2 + ε∆t̃0,

(5.35) ∆t̃0 = −etθ−T ∗/2 1
I − (V ∗ − α)

.

For scenario 2, we use

VB(∆t0;V ∗) + εetθ−∆t0 = 1(5.36)
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to find ∆t0.

∆t0 = ln
(
I − (V ∗ − α)− εetθ

I − 1

)
(5.37)

≈ ln
(
I − (V ∗ − α)

I − 1

)
− εetθ 1

I − (V ∗ − α)

≈ T ∗/2− εetθ 1
I − (V ∗ − α)

where we have linearized about ε = 0. Since ∆t0 = T ∗/2 + ε∆t̃0,

(5.38) ∆t̃0 = −etθ 1
I − (V ∗ − α)

.

k/2th order PRC of HCO.

(5.39) ∆θk =

{ e−T ∗/2 · etθ

I ·
I

I−(V ∗−α)

1 +
1−

»
Ie−T∗

(1−I)

–k

(1−I)

Ie−T∗ −1

 , 0 < tθ < T ∗/2

etθ

I ·
I

I−(V ∗−α)

1 +
1−

»
Ie−T∗

(1−I)

–k

(1−I)

Ie−T∗ −1

 , T ∗/2 < tθ < T ∗.

Analytically derived PRC of HCO.

(5.40) ∆θ =

{ e−T ∗/2 · etθ

I ·
I

I−(V ∗−α)

(
1 + 1

(1−I)

Ie−T∗ −1

)
, 0 < tθ < T ∗/2

etθ

I ·
I

I−(V ∗−α)

(
1 + 1

(1−I)

Ie−T∗ −1

)
, T ∗/2 < tθ < T ∗.

Equations (5.39) and (5.40) show that the PRC of the HCO is a product of the single cell

PRC and an attenuation factor, as in chapter 4. In each half of the PRC, the attenuation

factor is a function of the applied current I, the synaptic strength α, the fixed point T ∗/2,

and the corresponding voltage V ∗. Recall that T ∗ and V ∗ are parameterized by I and α.

Note that the attenuation factor in the first half has an extra term e−T ∗/2. Figure 5.2 shows

the attenuation of each half of the HCO PRC when the LIF cells are coupled with δ-function

synapses. The extra term in the first half of the HCO PRC leads to greater attenuation in

the first half compared to the second half.
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Figure 5.2. Attenuation factors for the PRC of the HCO with δ-function synapses (equation

(5.40)). (A) First half of the PRC (0 < tθ < T ∗/2). (B) Second half of the PRC (T ∗/2 < tθ < T ∗).

5.3. Exponential synapses

In this section we consider exponential synapses with sufficiently fast decay, i.e. τ is

such that

(5.41)
∫ T ∗/2

0
e−t/τ ≥ pτ =⇒ τ

T ∗
≤ 1
−2 ln(1− p)

,

i.e. within one-half HCO period, p% or more of the synaptic current has been triggered.

For instance, if p = 95%, then the rate of decay relative to the HCO period is τ/T ∗ ≤ 17%.

As p → 1, τ/T ∗ decreases. To find semi-analytical solutions for the PRC of the HCO, we

first use the half-cycle solutions VA(t; 0) and VB(t;V k) to find functions G(t) and F (t). We

find V ∗, T ∗, t̃0, and Ṽ 0 numerically to get the k/2th order PRC and the infinitesimal PRC

of the HCO.

Half-cycle solution (τ 6= 1).

VA(t; 0) = I
(
1− e−t

)
(5.42)

VB(t;V k) = I
(
1− e−t

)
+

α

τ − 1

(
e−t − e−t/τ

)
+ V ke−t(5.43)

G(t) and F(t). Solve VB(t;V k) = 1 for V k and call this function G(t).

G(t) = et + I(1− et)− α

τ − 1
(1− et(

τ−1
τ

))(5.44)

G′(T ∗/2) = (1− I)eT ∗/2 +
α

τ
eT

∗/2( τ−1
τ

))(5.45)
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Let F (t) = VA(t)

F (t) = I(1− e−t)(5.46)

F ′(T ∗/2) = Ie−T ∗/2(5.47)

T ∗/2, V ∗, and ∆t̃0. We use the firing map T ∗/2 = G−1(F (T ∗/2)) where F (T ∗/2) =

V ∗ to solve for V ∗ and T ∗/2. This is done numerically because the e−t/τ term makes it

impossible to solve analytically.

For scenario 1, i.e. small perturbations delivered to cell 1 in the first half of the HCO cycle

(0 ≤ tθ < T ∗/2 ), we use

VB(∆t0;V ∗ + εetθ−T ∗/2) = 1(5.48)

to find ∆t0 numerically.

For scenario 2, i.e. small perturbations delivered to cell 1 in the second half of the HCO

cycle (T ∗/2 ≤ tθ < T ∗ ), we use

VB(∆t0;V ∗) + εetθ−∆t0 = 1(5.49)

to find ∆t0 numerically. We find ∆t̃0 from equation (5.10).

5.4. Examples

In this section we explore how the PRC of the HCO depends on the single cell intrinsic

dynamics and synaptic coupling within the HCO. Figure 5.3A shows the single cell PRC

for α = .1 and I = 1.1. Figure 5.3B shows the analytical PRC (dark blue), the numerically

generated PRC (pink), and the kth order PRCs of the HCO with δ-function synapses.

Figure 5.4A,B shows the same data for the HCO with exponential synapses when τ = 0.3

(τ/T ∗ = 10.7%) and τ = 0.5 (τ/T ∗ = 17.5%). Comparing the PRCs of the HCOs to the

single cell PRC, we see that the qualitative shape is similar, but there is attenuation in

both halves of the PRC. Figure 5.2 shows how this attenuation depends on α and I for

δ-function synapses only.
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Figure 5.3. Single cell PRC and PRC of HCO with δ-function synapses. α = .1 and I = 1.1.
(A) Single cell PRC. (B) Numerically generated PRC, analytic PRC, and kth order PRC of the

HCO.

When τ = 0.3, the synapse decays according to condition (5.41), i.e. the synapse decays

sufficiently fast. When τ = 0.5 and larger, the synapse does not obey equation (5.41),

but the analytic HCO PRC is still a close approximation to the numerically generated

PRC. Note that condition (5.41) ensures the synapse will decay sufficiently fast and the

analytically derived PRC will be a good approximation to the numerically derived PRC.

However, this condition can be relaxed substantially. In fact, the analytic HCO PRC using

δ-function synapses also gives a close approximation to the numerically generated HCO

PRC for larger values of τ because only small quantitative differences appear in the HCO

PRC, as for the phase model. This implies that the PRC of the LIF HCO with δ-function

synapses is a good approximation to the PRC of the LIF HCO with synapses that decay

within one-half HCO period.

Figures 5.5, and 5.6 show the convergence rate of the k/2th order PRCs for various α. We

determine the rate of convergence using the norm from chapter 4, equation (4.36). We say

the kth order PRC has converged when this norm is less than 1 × 10−2. The convergence

rate of the approximation is determined by the slope of the firing map at the fixed point.

If |F ′(T ∗/2)/G′(T ∗/2)| < 1 then the fixed point will be stable, but the smaller this ratio

is, the faster the approximations will converge. If the cells in the HCO are coupled with

δ-function synapses, then

(5.50)
F ′(T ∗/2)
G′(T ∗/2)

=
I

(1− I)
e−T ∗ .
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Figure 5.4. PRC of HCO with exponential synapses. α = .1 and I = 1.1. Numerically

generated PRC, analytic PRC, and kth order PRC of the HCO. (A) τ = 0.3. (B) τ = 0.5.
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Figure 5.5. Convergence rate of the kth order PRC (equation (5.22)) for a range of synaptic
strengths α when the cells are coupled with δ-function synapses. (A) I = 1.1 and (B) I = 1.3.

If the cells are coupled with non-summing exponential synapses, then

(5.51)
F ′(T ∗/2)
G′(T ∗/2)

=
Ie−T ∗

(1− I) + α
τ e

( τ−1
τ

)
.

In equations (5.50) - (5.51) we see that the convergence rate depends on α. As α increases,

T ∗ increases, and the convergence rate decreases. This is clear in figures 5.5, and 5.6 as well.

We can also see that as I increases, the convergence rate decreases. Finally, as τ increases,

T ∗ increases and the convergence rate increases. As τ increases, the synapses decay slower,

which makes the HCO more sensitive to perturbations. The increased sensitivity is most

notable in the second half of the period. This translates to a larger amplitude in the PRC

of the HCO.
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Figure 5.6. Convergence rate of the kth order PRC (equation (5.22)) for a range of synaptic

strengths α when the cells are coupled with non-summing exponential synapses. (A) I = 1.1 and
(B) I = 1.3.

5.5. Summary

• When the cells in the HCO are described by the LIF model and coupled with

δ-function synapses or exponential synapses, the PRC of the HCO is a product of

the single cell PRC and an attenuation factor, as in chapter 4.

• As opposed to the phase model in chapter 4, using the LIF model in the HCO

allowed us to find a semi-analytic solution to the HCO PRC when the cells are

coupled with exponential synapses with sufficiently fast decay.

• The analysis in this chapter can be extended to synapses with slower decay and

summing synapses by using higher order firing maps.
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CHAPTER 6

Phase Locking Dynamics in a Chain of Half-Center

Oscillators

In this chapter, we use numerical simulations and the theory of weakly coupled oscillators

(TWCO) to study the phase-locking properties of short chains of idealized HCOs. The

dynamics of the cells in each HCO are described by either coupled one-variable phase

models (as in chapter 4) or leaky integrate-and-fire neurons (as in chapter 5). The chain of

four HCOs models the crayfish swimmeret system.

As described in chapter 2, activity in the isolated neural circuit of crayfish swimmeret

system is controlled by four pairs of CPGs, with one CPG per hemisegment. The CPGs

are coupled through ascending and descending intersegmental interneurons to create a dis-

tributed system of coupled non-linear oscillators. The isolated nervous system can exhibit

fictive swimming, with power stroke and return stroke motor neurons in each segment firing

in anti-phase. The system demonstrates a phase lag of 25% between segments, with the

most posterior segments leading the rhythm. As few as two segments can reproduce this

characteristic phase lag.

Here, we model the chain of CPGs from one segment to four segments. We model the

intersegmental connectivity with a square pulse I(φi), i.e. the current has instantaneous

activation and deactivation. In equation (6.1), dc represents the duty cycle of the coupling,

and φi is the phase of HCO i.

(6.1) I(φi) =

{
0.2, for 0 ≤ φi < dc · T ∗

0, for dc · T ∗ ≤ φi < T ∗.

Recently, the gradient of intersegmental synaptic strengths have been elucidated [SHM09].

We incorporate this information into the amplitude of the square pulse (see figure 6.1).
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Figure 6.1. Schematic diagram of the intersegmental coupling and strengths for (A) one
(B) two (C) three and (D) four segments. Labels on connections indicate relative strengths.

In this chapter, the duty cycle of intersegmental input is altered and found to play an

important role in determining the ability of chains of HCOs to phase-lock.

6.1. Intersegmental Connectivity

Figure 6.1 shows a schematic diagram of the intersegmental coupling and strengths for

one, two, three, and four segments. The one segment “network” is an externally forced

HCO; the other cases are synaptically coupled HCOs. Note the two asymmetries in the

coupling: First, in these models, ascending connections originate from return-stroke (RS)

neurons and descending connections originate from the power-stroke (PS) neurons in their

home segment. All connections project to the RS neurons in their target segment. Second,

ascending projections are stronger their descending counterparts. There is a gradient of

strengths with nearest neighbor connections being the strongest and the farthest connections

have the weakest strength [SHM09] (the relative coupling strengths are shown in figure 6.1).

6.2. Numerical simulations in a chain of HCOs

The following numerical simulations use the δ-pulse-coupled HCO phase model (equa-

tion 4.6) described in chapter 4 and the δ-pulse-coupled HCO LIF model (equation 5.1
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Figure 6.2. Numerical simulations in chain lengths of (A) one segment, (B) two segments,
(C) three segments, (D) four segments. (A) Cycle number represents the number of cycles in the

external input. The phase of the PS neuron is shown relative to the external input. (B-D) Cycle

number represents the number of cycles in the most posterior PS neuron in the chain. The phase of
each PS neuron in the chain is taken at the beginning of each cycle. The phase difference between

each segment and the most posterior segment in the chain is shown. Each segment is modeling
using the phase model from chapter 4. β = 0.25, α = 2 and duty cycle is 0.5T ∗.

with τ → 0) described in chapter 5. The connectivity between the HCOs is described in

section 6.1. Figures 6.2, 6.3, and 6.4 examine the phase-locking dynamics that occur in

chain lengths of one through four segments. Figures 6.2 and 6.3 use the phase model HCO

from chapter 4 and figure 6.4 uses the LIF HCO model from chapter 5. In panels (A),

cycle number represents the number of cycles in an external T ∗-periodic input. The phase

of the PS neuron is shown relative to the external input. In panels (B)-(D), cycle number

represents the number of cycles in the most posterior PS neuron in the chain. The phase of

each PS neuron in the chain is taken at the beginning of each cycle when the most posterior

segment is reset to 0. The phase difference between each segment and the most posterior

segment in the chain is shown.
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In figure 6.2, we use β = 0.25 and α = 2. Recall that β describes the single cell skewness

factor of the single cell PRC and α is the synaptic strength between the cells in the HCO.

The duty cycle of intersegmental connections is 0.5T ∗, i.e. the synapse is ‘on’ for one-

half HCO period and ‘off’ for one-half HCO period. Here, cycle number is equivalent to

time progressing. With these parameters, the system phase-locks for each chain length.

In figure 6.2A, the phase of the PS neuron is shown relative to the external input. The

phase delay is almost one period. This shows that the HCOs are capable of phase-locking

with an external force of the same period as the HCO. It also suggests that in a chain of

HCOs with nearest-neighbor ascending-only coupling, there would be a quick wave moving

from anterior to posterior followed by a period of silence. In figure 6.2B, phase-locking is

shown for a chain length of 2 segments. The phase lag between segments is approximately

25%. This is the same phase delay seen in the crayfish swimmeret system. When the chain

length increases to 3 segments in figure 6.2C, the phase lag between the two most posterior

segments remains at 25%, and the phase lag between the two anterior segments decreases

to slightly less than 25%. However, when the chain length is increased to four segments in

figure 6.2D, the phase lag between segments 4 and 5 is substantially less than 25% and the

phase-lag between segments in the chain is not constant. The phase lag between segments

decreases from 25% moving anteriorly, i.e. as the length of the chain increases, there is no

apparent predictable behavior in the phase difference between segments.

In figure 6.3, the duty cycle of intersegmental connections is 0.9T ∗. With the increased

duty cycle, phase-locking is still possible in chain lengths of 1 and 2 segments, but is no

longer possible in chain lengths of 3 and 4 segments. This demonstrates that phase-locking

in short chain lengths does not imply that phase-locking will persist in longer chains. In

figure 6.3A, the phase lag is 50% and in figure 6.3B, the phase lag between segments is

slightly greater than 75%. Neither exhibit a phase lag close to the 25% phase lag seen in

the crayfish. In figure 6.3C, the phase lag between segments exhibits periodic oscillations.

In figure 6.3D, the phase lag between segments demonstrates very complex behavior with

no phase-locking and no periodic activity.
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Figure 6.3. Numerical simulations in chain lengths of (A) one segment, (B) two segments,

(C) three segments, (D) four segments. (A) Cycle number represents the number of cycles in the

external input. The phase of the PS neuron is shown relative to the external input. (B-D) Cycle
number represents the number of cycles in the most posterior PS neuron in the chain. The phase of

each PS neuron in the chain is taken at the beginning of each cycle. The phase difference between
each segment and the most posterior segment in the chain is shown. Each segment is modeling
using the phase model from chapter 4. β = 0.25, α = 2 and duty cycle is 0.9T ∗.

For the phase model HCO, duty cycle of coupling was found to play the biggest role in phase-

locking ability. Figure 6.5 details the phase-locking ability of each chain length for various

skewness factors (β) and synaptic strengths (α). ‘Yes PL’ means the chain does phase-lock

and ‘No PL’ means the chain does not phase-lock. A duty cycle of 0.5T ∗ maintains the best

phase-locking ability for all chain lengths, skewness factors and synaptic strengths explored.

In figure 6.4, the LIF model from chapter 5 is used. We use parameters I = 1.1, α = 1 and

a duty cycle of 0.5T ∗. With these parameters, phase-locking only exists in the chain of two

segments. In figure 6.4A, the phase of the PS neuron is shown relative to the external input.

The PS neuron does not phase-lock with external input. In figure 6.2B, phase-locking is

shown for a chain length of 2 segments. We see that the phase lag between segments is

approximately 75%, very different from the phase lag of 25% seen in the crayfish. When
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Figure 6.4. Numerical simulations in chain lengths of (A) one segment, (B) two segments,

(C) three segments, (D) four segments. (A) Cycle number represents the number of cycles in the
external input. The phase of the PS neuron is shown relative to the external input. (B-D) Cycle

number represents the number of cycles in the most posterior PS neuron in the chain. The phase of

each PS neuron in the chain is taken at the beginning of each cycle. The phase difference between
each segment and the most posterior segment in the chain is shown. Each segment is modeling
using the LIF model from chapter 5. α = 0.1, I = 1.1 and duty cycle is 0.5T ∗.

the chain length increases to three and four segments in figure 6.4C and 6.4D, phase-locking

is lost. These figures further demonstrate that there is no apparent predictable behavior

in the phase lag between segments for different chain lengths. Furthermore, phase-locking

is not seen for different duty cycles, applied currents, or synaptic strengths. This suggests

that the LIF HCO model is not a good model for the crayfish swimmeret system because

it can not replicate the phase-locking ability.

6.3. Applying the theory of weakly coupled oscillators (TWCO)

The TWCO uses singular perturbation methods to separate the properties of the circuit

controlling each module (the local oscillators) from the properties of the coordinating infor-

mation arriving from other modules (the coupling between oscillators). A phase response
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Figure 6.5. Bar graphs detailing phase-locking in various chain lengths for duty cycles of

0.1T ∗, 0.5T ∗, and 0.9T ∗. ’Yes PL’ means the chain does phase-lock. ’No PL’ means the chain does
not phase-lock. Each segment is modeling using the phase model from chapter 4. (A) β = 0.25
and α = 2. (B) β = 0 and α = 1. (C) β = −0.4 and α = 1. (D) β = 0 and α = 2.

curve (PRC) quantifies the phase shifts of an oscillator in response to an abrupt perturba-

tion as a function of the phase at which the perturbation occurs. When the perturbation

from coupling between oscillators is not too large, the dynamics of the oscillators can be

completely captured by their phase and their PRCs. This reduces the dimension of the

system and allows the analysis of phase-locking to be more tractable. We apply the TWCO

to the coupled HCO system in which each HCO is an oscillatory unit, not the single cells.

Equation (6.2) describes how the relative phase of HCO i (i.e. the phase of the oscillator

relative to the unperturbed oscillator) changes over time as a function of the phase response

curve of HCO i, z(φi), and the input coming into the HCO from the other oscillators I. For

the four segment system,

(6.2)
dφi

dt
=

1
T ∗

∫ T ∗

0
z(t̃+ φi)

4∑
j=1

wj,iI

(
t̃+ φj + dj,i

T ∗

2

)
dt̃, i = 1, .., 4
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Figure 6.6. Phase differences using the TWCO for chain lengths of one through three
segments. (A) Phase-locking of PS neuron relative to external input. Arrows indicate phase-

locked states. (B) Phase-locking between PS neurons in a chain length of two segments. Arrows

indicate phase-locked states. (C) Phase-locking between PS neurons in a chain of length three
segments, shown on the phase-plane. Each segment is modeling using the phase model from
chapter 4. β = 0.25, α = 2 and duty cycle is 0.5T ∗.

where

(6.3) I(φi) =

{
0.2, for 0 ≤ φi < dc · T ∗

0, for dc · T ∗ ≤ φi < T ∗.

The coefficient wj,i represents the relative strength of the connection from segment j to

segment i, and dj,i represents the phase shift present in descending projections. The values

for wj,i and dj,i are shown in (6.4) and (6.5), respectively.

(6.4) [wj,i] =


0 .8 .4 .1

1 0 .8 .4

.5 1 0 .8

.2 .5 1 0


.
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(6.5) [dj,i] =


0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0


.

Note that by considering all phases relative to the phase of the most posterior HCO in the

chain, we can reduce the system by one variable, e.g.

dφ2

dt
− dφ4

dt
=
dφ2,4

dt

=
1
T ∗

∫ T ∗

0
z(t̃+ φ2)

(
0.8I

(
t̃+ φ1 +

T ∗

2

)
+ I(t̃+ φ3) + 0.5I(t̃+ φ4)

)
− z(t̃+ φ4)

(
0.1I

(
t̃+ φ1 +

T ∗

2

)
+ 0.4I

(
t̃+ φ2 +

T ∗

2

)
+ 0.8I(t̃+ φ3 +

T ∗

2
)
)
dt̃

(6.6)

Let s = t̃ + φ2 where φ1,4 = φ1 − φ4, φ3,4 = φ3 − φ4, and φ2,4 = φ2 − φ4. Then t̃ + φ1 =

s− φ2,4 + φ1,4, t̃+ φ3 = s− φ2,4 + φ3,4, and t̃+ φ4 = s− φ2,4. Then equation (6.6) becomes

dφ2,4

dt
=

1
T ∗

∫ T ∗

0
z(s)

(
0.8I

(
s− φ2,4 + φ1,4 +

T ∗

2

)
+ I(s− φ2,4 + φ3,4) + 0.5I(s− φ2,4)

)
−z(s− φ2,4)

(
0.1I

(
s− φ2,4 + φ1,4 +

T ∗

2

)
+ 0.4I

(
s+

T ∗

2

)
+ 0.8I(s− φ2,4 + φ3,4 +

T ∗

2
)
)
ds

Figures 6.6, 6.7 and 6.8 use the TWCO to examine the phase-locking dynamics in chain

lengths of one through three segments for the phase model HCO and LIF HCO model used

earlier. Panels (A) show the interaction function for the PS neuron in one segment. Panels

(B) show the interaction function for two segments. The zeros in the curves correspond to

phase-locked states. Negative (positive) slopes at the zeros correspond to stability (instabil-

ity) of the phase-locked state. Panels (C) show phase-plane for chain lengths of 3 segments.

The blue (pink) curve is the nullcline to the following equation, which describes the phase

difference between segments two and four (three and four).

The intersection point(s) of the pink and blue nullclines are the fixed points, or phase-locked

states for the chain of 3 HCOs. The gradient of the direction field shows the basic stability

for each fixed point. Phase-locking in a chain length of 4 segments requires a 3-D figure,
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Figure 6.7. Phase differences using the TWCO for chain lengths of one through three

segments. (A) Phase-locking of PS neuron relative to external input. Arrows indicate phase-

locked states. (B) Phase-locking between PS neurons in a chain length of two segments. Arrows
indicate phase-locked states. (C) Phase-locking between PS neurons in a chain of length three

segments, shown on the phase-plane. Each segment is modeling using the phase model from
chapter 4. β = 0.25, α = 2 and duty cycle is 0.9T ∗.

which would be difficult to visualize. Figures 6.6 and 6.7 use the phase model HCO from

chapter 4 and figure 6.8 uses the LIF HCO model from chapter 5.

Figure 6.6 uses the same parameters as figure 6.2 with β = 0.25, α = 2 and a duty cycle

of 0.5T ∗. The interaction function in figure 6.6A shows that the PS neuron is phase-locked

with the external input with a phase lag of slightly less than 100%. This is in agreement with

simulations of the full model (figure 6.2A). The interaction function in figure 6.6B shows

that in a chain of 2 HCOs, the segments are phase-locked with a phase lag of approximately

25%. This is predicted by the numerical simulations in figure 6.2B. In the phase plane in

figure 6.6C, the gradient of the direction field shows that the only stable phase-locked state

is near (φ34, φ24) = (T ∗/2, 0). This corresponds to synchrony between segments 2 and 4,

and a 50% phase difference between segments 3 and 4. This is not what is seen in figure
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6.2C, where the phase difference between segments 3 and 4 is 25% and the phase difference

between segments 2 and 4 is near 50%.

Figure 6.7 uses the same parameters as figure 6.3 with β = 0.25, α = 2 and a duty cycle

of 0.9T ∗. The interaction function in figure 6.7A shows that the PS neuron is phase-locked

with the external input with a phase lag of approximately 10%. This does not agree with

simulations of the full model (figure 6.3A) where the PS neuron is phase-locked with the

external input with a phase lag of 50%. The interaction function in figure 6.7B shows the

existence of two possible phase-locked states in a chain of 2 HCOs. The segments can be

phase-locked with a phase delay of approximately 10% or 50%. This is not predicted by

the numerical simulations in figure 6.3B, where the phase lag between segments is slightly

greater than 75%. In the phase plane in figure 6.7C, the gradient of the direction field shows

that there is no stable fixed point, which is predicted by the numerical simulations in figure

6.3C.

Figure 6.8 uses the same parameters as figure 6.4 with I = 1.1, α = 0.1 and a duty cycle of

0.5T ∗. The interaction function in figure 6.8A shows that the PS neuron does not phase-

lock with the external input. This is in agreement with simulations of the full model (figure

6.4A). The interaction function in figure 6.8B shows that in a chain of 2 HCOs, the segments

are phase-locked with a phase delay of approximately 30%. This is not predicted by the

numerical simulations in figure 6.4B, where the phase lag between segments is approximately

75%. In the phase plane in figure 6.8C, it appears there is a stable phase-locked state is near

(V34, V24) = (T ∗/2, T ∗/8). This corresponds to a phase difference of 50% between segments

3 and 4, and a phase difference of approximately 12% between segments 2 and 4. This is

not predicted by numerical simulations in figure 6.4C, where there is no phase-locked state.

The TWCO was not able to provide any additional insight into the mechanisms underlying

phase-locking in a chain of HCOs. Perhaps the coupling was out of the sufficiently weak

regime. Regardless, the benefit of using the TWCO is the structure of the equations.

Looking at equation 6.3, it is unclear how the PRC combines with the coupling to give

phase-locking. This is largely a result of the asymmetries in the coupling mentioned in

section 6.1.
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Figure 6.8. Phase differences using the TWCO for chain lengths of one through three
segments. (A) Phase-locking of PS neuron relative to external input. (B) Phase-locking between

PS neurons in a chain length of two segments. Arrows indicate phase-locked states. (C) Phase-
locking between PS neurons in a chain of length three segments, shown on the phase-plane. Each
segment is modeling using the LIF model from chapter 5. α = 0.1, I = 1.1 and duty cycle is 0.5T ∗.

6.4. Summary

• In chains of HCOs with cells described by one-variable phase models with sinusoidal

PRCs, phase-locking depends strongly on the duty cycle of input to each HCO. A

duty cycle of 0.5T ∗ appears to give the best phase-locking of all parameter sets. If

the duty cycle is larger, the input from coupling connections is almost constant. If

the duty cycle is smaller, the input provides very little phase information. Perhaps

a duty cycle of 0.5T ∗ gives the best phase-locking because it provides the most

phase information to and from other oscillators.

• When the dynamics of the cells within the HCO are described by leaky integrate-

and-fire neurons, even a duty cycle of 0.5T ∗ did not guarantee phase-locking in

all chain lengths simultaneously. This implies that the LIF model is probably not

a useful model for studying phase-locking behavior in the crayfish. One possible



6.4. SUMMARY 78

reason is that the LIF model has a non-periodic, positive PRC. Perhaps reliable

phase-locking requires a biphasic PRC.

• It is clear that stable phase-locking in a chain of a certain length does not predict

stable phase-locking in a chain of a different length. This implies that the mecha-

nisms underlying phase-locking in a chain of two segments in the crayfish may act

in different ways to generate phase-locking in the full system of four segments.

• Results from numerical simulations do not always match results from the TWCO.

The discrepancies may be due to the intersegmental coupling strength. However,

the TWCO is usually a good approximation for non-weak coupling unless the

system is sensitive, i.e. it takes a few cycles for the system to return to steady

state after a brief pulse. More work must be done to see if there are these types of

sensitivities in the system.

• The TWCO separates changes in intersegmental coupling from changes in HCO

intrinsic properties. More work may be done to study phase-locking with different,

more realistic, connectivity schemes and HCO PRCs.

• The desired phase lag of 25% existed for one parameter set only (sinusoidal PRCs

with β = 0.25, α = 2 and duty cycle of 0.5T ∗). More work must be done to

determine how to achieve phase-locking in all chain lengths, how to maintain a

phase lag of 25% between segments, and how to take results from shorter chains

to make predictions about behavior in longer chains.

• Perhaps phase-locking in the crayfish swimmeret system stems from a sinusoidal

HCO PRC with an intersegmental connectivity duty cycle of 0.5T ∗ between seg-

ments.
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CHAPTER 7

Addendum: Analysis of HCO phase models

When studying phase models, the “instantaneous” Dirac-delta function is often used as

an approximation to continuous synaptic currents with fast decay [KE09] [GE02]. In this

chapter, we show that, for coupled phase models, this approximation does not match the

limit of current-based synapses to the δ-function except in the weak coupling limit. We

show why this is the case and determine a “corrected” δ-function coupling for phase models

that provides the correct limit.

7.1. HCO phase model with standard δ-function synapses

Consider the half-center oscillator (HCO) model introduced first in chapter 4. The

dynamics of each cell within the HCO are described with a single equation describing the

evolution of the phase of the cell during oscillations and its response to input. The state of

each cell is completely described by its phase in the oscillation φ (φ ∈ [0, T ]), where T is

the intrinsic period of the cell. The response to input is given in a phase dependent manner

by its PRC, z(φ). The cells are coupled by “standard” δ-function synapses. When a cell

reaches phase φ = T (equivalent to φ = 0), it “fires” and elicits an instantaneous synaptic

current in the postsynaptic cell. The equations governing the HCO phase model are

dφ1

dt
=1− α δ(φ2) z(φ1(t)), if φ1 = T , φ1 → 0

dφ2

dt
=1− α δ(φ1) z(φ2(t)), if φ2 = T , φ2 → 0

(7.1)

where φi is the phase of cell i. The term αδ(φi) is the synaptic current, where α is the

synaptic strength and δ(φi) is the Dirac-delta function. In this chapter, we consider only

inhibitory synapses (α > 0). Each cell is assumed to have an identical PRC z(φi) and

identical period T . In this chapter, we use z(θ) = β − sin(θ + arcsin(β)). Figure 7.1 shows

the single cell PRC for β = 0.8.
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We define T ∗ as the period of the steady-state anti-phase oscillation of the HCO. During

steady state anti-phase oscillations, each inhibitory synaptic pulse arrives at phase φi =

T ∗/2. T ∗ is a combination of the intrinsic period and the phase shift due to the coupling,

(7.2) T ∗ = T + αz(T ∗/2).

See chapter 4 for details. Figure 7.2A shows the number of possible anti-phase states of

the HCO for various α. They are found by rearranging equation (7.2).

(7.3) T/2− T ∗/2 = −α/2 z(T ∗/2).

Figure 7.2 shows a special case, when β = 0. In figure 7.2A, the blue line is T/2−T ∗/2. The

sinusoidal curves are −(α/2)z(T ∗/2) for various α, i.e. scaled PRCs. The intersection point

of the scaled PRCs with the blue diagonal line correspond to the anti-phase states of the
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α = 0.5, (B) α = 1, and (C) α = 1.8. (D) Bifurcation diagram showing the number of fixed points
and cycles of the system (7.1) as α increases.

system. When inhibitory coupling is sufficiently weak, the sole anti-phase state T ∗/2 = π

is stable. As α increases, the number of anti-phase states increases from 1 to 3. That

is, near α = 2.5, T ∗/2 = π becomes unstable and the two new stable anti-phase states

appear through a supercritical pitchfork bifurcation. Figure 7.2B shows an example of the

bistability in the anti-phase solution for β = 0, α = 3. Beginning in one anti-phase state,

a precisely timed depolarizing perturbation causes the system to switch to the other stable

anti-phase state. When a precisely timed hyperpolarizing perturbation is given, the system

transitions back to the first anti-phase state.

Following the same logic as in section 4.2, we define the firing map for the HCO phase model

with δ-function synapses (system (7.1)). This map completely captures the unperturbed

firing dynamics of the HCO system.

(7.4) φk+1 = (T − φk)− αz(T − φk).
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Note that fixed points of this map correspond to anti-phase oscillations in the HCO.

Figure 7.3A-C shows cobweb diagrams for the firing map when β = 0.8. In figure 7.3A,

α = 0.6 and the map has one stable fixed point. In figure 7.3B, α = 1 and the map

has a period-2 orbit. In figure 7.3C, α = 1.8 and the map displays chaotic behavior, never

converging to one fixed point or periodic orbit. The bifurcation diagram of the map in figure

7.3D shows the fixed points and cycles of the system (7.1) as α increases (β = 0.8). For

α < .7 there is one fixed point, which corresponds to a stable anti-phase state. Near α = .7,

there is a period doubling bifurcation, after which there is a period-2 orbit corresponding

to an asynchronous periodic state. The period doubling cascade [OM09] [Str94] continues

as α increases, eventually leading to chaos near α = 1.8.

7.2. HCO phase model with exponential synapses

As previously mentioned, δ-function synapses are often used in phase models as an

approximation to continuous synaptic currents with fast decay. If, instead of the δ-function,

we use exponential synapses in the HCO phase model, the governing equations become

dφ1

dt
=1− α s2(t) z(φ1(t)) if φ1 = T , φ1 → 0

dφ2

dt
=1− α s1(t) z(φ2(t)) if φ2 = T , φ2 → 0

ds1
dt

=
−s1
τ

if φ1 = 0, s1 = s1 + (1/τ)

ds2
dt

=
−s2
τ

if φ2 = 0, s2 = s2 + (1/τ)

(7.5)

where α is the synaptic strength and si(t) describes the synaptic waveform. The parameter

τ describes the rate of decay of the synaptic current.

When τ = 0.001, the synaptic waveform approximates the δ-function on the timescale

O(T ). The bifurcation diagram in figure 7.4 shows the number of stable anti-phase states

for system (7.5) with exponential synapses when τ = 0.001. If the δ-function were indeed

a good approximation to synaptic currents with very fast decay, then figure 7.4 should be

very similar to figure 7.3D. Clearly, there are striking qualitative differences: there is only
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Figure 7.4. Bifurcation diagram showing the number of stable anti-phase states for system
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one stable anti-phase state for system (7.5) when τ = 0.001 despite changes in α, and there

is no period-doubling bifurcation into chaos.

Figure 7.5 illustrates the mechanisms underlying the differences between the system’s dy-

namics with δ-function synapses and continuous synapses (in this case exponential synapses).

Suppose that the cells in the HCO are coupled with δ-function synapses (figure 7.5A) and

an inhibitory perturbation into one cell arrives at phase φA. The cell responds according

to the PRC and jumps to phase φB = φA − αz(φA), i.e. only the phase at which the

perturbation was received is taken into account. Now consider that the cells in the HCO

are coupled with continuous synapses (figure 7.5B). To demonstrate the cell’s response to

input, we approximate the continuous synaptic current by discretizing time with small ∆t.

If the inhibitory perturbation into one cell arrives at phase φA, the cell responds according

to the PRC and jumps to phase φA − α∆tz(φA). The cell continues to respond according

to the PRC and makes small jumps approaching phase φB, where z(φB) = 0. Once the

cell reaches phase φB, it can not move on because a perturbed cell cannot move past a

zero in the single cell PRC. Here, each phase between φA and φB is taken into account.

Simply replacing the synaptic conductance (s(t)) with a δ-function in system (7.1), creates

a discontinuity in time where the phase response of the cell at any phase other than the

phase where it receives the inhibitory pulse are ignored. Continuous synaptic currents do

not do this. This implies that the standard δ-function is the incorrect limit to synaptic

currents with very fast decay.
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7.3. The correct limit to synaptic currents with fast decay

In order to determine the correct limit to synaptic currents with fast decay, we system-

atically reduce system (7.5) by approximating the synaptic coupling term αs(t)z(φ(t)) with

a new function in the case where the time constant for synaptic decay is very small, i.e.

the synapses are very fast (τ << T ). When τ << T , sj(t) = 1
τ e
−t/τ >> 1 (j = 1, 2) on

the short time scale (when t << τ). This is a reasonable approximation because τ << T

indicates that the synapses decay very fast, and there is little-to-no synaptic conductance

remaining at larger values of t. If α and z(φ) are such that αs(t)z(φ(t)) >> 1 when t << τ ,

we can approximate dφi

dt by

(7.6)
dφi

dt
≈ −αs(t)z(φi(t)) = −α

τ
e−t/τz(φi(t)).

Let φ0
i be the phase of cell i when a synaptic current is delivered to it, and let φi+∆φ be the

phase of cell i when the synaptic current is approximately zero. Integrating the differential

equation in (7.6),

(7.7)
∫ φ0

i +∆φ

φ0
i

dφ

z(φ)
≈ −α

τ

∫ ∞

0
e−t/τdt.

We can integrate to infinity on the right-hand side because we are considering very fast

decay, so the exponential decays to zero almost immediately. The right-hand side integrates

to −α,

(7.8)
∫ φ0

i +∆φ

φ0
i

dφ

z(φ)
≈ −α.
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Let Z(φ) be the antiderivative of 1
z(φ) , then

(7.9) Z(φ0
i + ∆φ)− Z(φ0

i ) ≈ −α.

We solve the nonlinear algebraic equation (7.9) for the phase response of the single cell with

the synapse, ∆φ(φ0
i ). Note that ∆φ(φ) describes a phase response curve for the synaptic

input, i.e. the phase shift caused by a current of strength α delivered at a particular phase

φ. It takes into account the phase response at all phases between where the perturbation

was initiated and “terminated”. This ensures that the cell cannot move past a zero in the

single cell PRC. We call ∆φ(φ) the synaptic phase response curve.

The above argument reduces system (7.1) to an alternate δ-pulse-coupled HCO phase model

dφ1

dt
=1 + δ(φ2)∆φ(φ1)

dφ2

dt
=1 + δ(φ1)∆φ(φ2).

(7.10)

The basic dynamics of this system are qualitatively the same as system (7.1). The phase of

each cell increases linearly according to its intrinsic dynamics dφi

dt = 1 until the phase of a

cell i reaches T . At phase T , cell i is reset to 0 and an instantaneous pulse of strength α is

delivered to cell j. The phase of cell j is immediately shifted by ∆φ(φj), instead of simply

−αz(φj) as in system (7.1).

As before, we define the firing map for the alternate HCO phase model (system (7.10)).

(7.11) φk+1 = (T − φk) + ∆φ(T − φk).

Figure 7.6A shows a cobweb diagram for this firing map when α = 1.8, β = 0.8. The map

converges to a unique fixed point, whereas the map for the standard δ-function displayed

chaotic behavior (figure 7.3A). The bifurcation diagram in figure 7.6B shows the fixed points

and cycles for system (7.1) as α increases (β = 0.8). For all α, there is only one stable anti-

phase state. This diagram is indistinguishable from the bifurcation diagram for exponential

synapses when τ = .001 (figure 7.4), indicating that the alternate δ-function is the correct

limit to synaptic currents with very fast decay.
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Figure 7.6. (A) Cobweb diagram for the firing map in equation (7.11) when α = 1.8 and
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Figure 7.7. Bifurcation diagram showing the number of stable anti-phase states for system
(7.5) as α increases. (A) τ = .3 (B) τ = .7

The bifurcation diagrams in figure 7.7 show the fixed points and cycles for system (7.5) with

more slowly decaying synapses. In figure 7.7A, τ = 0.3 and in figure 7.7B, τ = 0.7 (both are

non-summing synapses). As τ increases, the bifurcation diagrams deviate from figures 7.6B

and 7.4, but the qualitative dynamics are captured and the number of anti-phase states

remains at 1. There is no period doubling cascade to chaos because the synaptic PRC ∆φ

cannot cross a zero of z(φ), which means we cannot get a non-monotonic map as in figure

7.3. Note that when τ = 0.7 and α ≈ 1.5, the system transitions from anti-phase behavior

to synchrony. The transition to synchrony is probably a bifurcation and not a smooth

transition, but we did not run the simulation long enough to see this.
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7.4. Summary

When the standard δ-function is used in networks of phase models as an approximation

to synapses with very fast decay, the results from the approximation can differ signifi-

cantly from the original model (as in figures 7.3D and 7.4). Therefore, when approximating

synapses with very fast decay in phase models, the alternate δ-function found in section 7.3

should be used instead of the standard δ-function. Note that the reduction explicitly uses

exponential synapses, but it is identical for any synaptic current that is delivered sufficiently

fast. That is, the reduction does not depend on the shape of the input, it only depends on

the total charge and the assumption that the input decays very fast.
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CHAPTER 8

Crayfish Conclusion

The crayfish swimmeret system can serve as a useful tool to investigate the cellular

mechanisms that underlie phase maintenance over a range of locomotor frequencies from

both an experimental and modeling approach. Working in collaboration with the Mulloney

lab, we have been able to construct and analyze mathematical models of the crayfish neural

circuitry, and in doing so, we have begun to uncover the mechanisms underlying phase

maintenance during locomotion.

8.1. Summary

The goal of this work is to begin to identify the biophysical mechanisms and dynamical

structures underlying phase-locking in the crayfish swimmeret system. The theory of weakly

coupled oscillators (TWCO) is a useful tool because it allows us to study phase-locking

in two steps. The TWCO combines information about the phase response curve (PRC)

of the individual oscillators with information about the coupling between oscillators to

determine the phase-locking in the system. Therefore, we study the intrinsic properties

of the oscillators (chapters 3 - 5) separately from the connectivity and synaptic dynamics

between oscillators (chapter 6) to develop a greater understanding of phase-locking in the

crayfish swimmeret system.

Chapters 3 - 5 explored how the phase response properties of HCOs are determined from

the intrinsic cellular properties and synaptic properties within the HCO. In chapter 3, a

numerical study using a modified Morris-Lecar HCO model demonstrated the difficulty in

understanding how changes in parameters can lead to changes in the HCO PRC. Chapter 4

examined an analytically tractable phase model and chapter 5 examined the leaky integrate-

and-fire model. In both chapters, the PRC of the HCO is found to be a product of the

single cell PRC and a piecewise constant attenuating factor. In the case of the phase model,

the attenuating factor depends on slope of the synaptic PRC at anti-phase, which is derived
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from the single cell PRC (see chapter 4). In the case of the leaky integrate-and-fire model,

the attenuating factor depends on the applied current, which scales the single cell PRC,

and synaptic strength. These results imply that the PRC of a more realistic conductance-

based HCO is related to the single cell PRCs by a constant attenuating factor. In fact, one

approximation to the PRC of a physiological HCO is simply the PRC of a single cell within

the HCO.

Chapter 6 is a preliminary study of phase-locking in a chain of HCOs. Using the phase

model from chapter 4, we found that phase-locking depends strongly on the duty cycle of

input to each HCO and that there is no predictable behavior between chains lengths. In

other words, phase-locking in a chain of three segments does not imply that a chain of

two or four segments will also exhibit phase-locking. This implies that the mechanisms

underlying phase-locking in the crayfish swimmeret system for chain of two segments are

not necessarily the same mechanisms underlying phase-locking in the full swimmeret system

of four segments. Furthermore, using the leaky integrate-and-fire model from chapter 5, we

found no parameter set that allowed phase-locking in all four chain lengths simultaneously.

Therefore, the LIF model is not a useful model for studying phase-locking behavior in the

crayfish.

8.2. Future Modeling and Experimental Work

This work is a starting point towards a greater understanding of the mechanisms under-

lying coordinated limb movement during locomotion in the crayfish swimmeret system. We

use idealized models of HCOs where the cells are described by either Morris-Lecar neurons,

LIF neurons or one-variable phase models. Coupling between the cells is either δ-function

pulse coupling or current-based exponential synapses with very fast decay. The interseg-

mental circuitry is modeled as a square-pulse with a direct synapse from presynaptic to

postsynaptic cell.

Future modeling efforts can expand this work by studying conductance-based models with

biophysical details related to the crayfish swimmeret system. Experimentally, PRCs can be

generated from the oscillatory system of non-spiking local interneurons. This data will allow

modelers to either modify the Morris-Lecar type equations by adding relevant currents, or
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replace them with a more appropriate model. The coupling between the cells can also

be expanded to more realistic, conductance-based synapses. Then phase-locking between

segments can be studied using numerical simulations and the TWCO.

Models can also focus on the implications of including ComInt 1 in a model of the inter-

segmental circuitry. Recent experiments have shown that ComInt 1 receives monosynaptic

connections from coordinating neurons in other modules (see figure 2.2). ComInt 1 neurons

then integrate and transmit this information to their home module through graded poten-

tials. This novel circuitry has not been studied in the context of phase-locking of coupled

oscillators and may have non-intuitive consequences. By developing and analyzing a math-

ematical model of this intersegmental circuit, one can clarify how ComInt 1 is connected to

its home module and as a result gain insight into how this circuitry assists in maintaining

a constant intersegmental phase despite changes in frequency.

Finally, one may model the asymmetric coupling between modules via ascending and de-

scending coordinating neurons. Smarandache and Mulloney recently found that the as-

cending and descending intersegmental coordinating neurons synapse onto ComInt 1 with

different synaptic strengths, but it is still unknown what effect this has on the response

of the non-spiking local interneurons. One can use a network model to generate PRCs as

a way to test the effects of varying synaptic current strengths and timing of inputs from

ascending and descending coordinating neurons to compare with experimentally generated

PRCs.
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APPENDIX A

A.1. Morris Lecar Model

A.1.1. Morris Lecar Model used for Crayfish Modeling. The modified Morris-

Lecar network model of the crayfish CPG presented in Jones et al. [JMKK03]. In the

original model of Jones et al., there were three local interneurons forming the CPG: 1A,

1B, and 2. Here, we use only two local interneurons 1 and 2 when modeling the HCO. The

model parameters are identical for each of the two cells. All parameters are taken to be

the same as in Jones et al. except the local synaptic conductance, which is taken to be 0.1

mS/cm2 rather than 0.5 mS/cm2. This change is made to counter the effect of going from

a three-cell interneuron circuit to a two-cell circuit.

C
dVi

dt
= Iapp − (IL + ICa + IK + Isyn)(A.1)

dni

dt
= ε1λn(Vi)(n∞(Vi)− ni)(A.2)

dsj

dt
=

ε2
k
· s∞(Vj)− sj

1− s∞(Vj)
(A.3)

IL = gL(Vi − EL)(A.4)

ICa = gCam∞(Vi)(Vi − ECa)(A.5)

IK = gKni(Vi − EK)(A.6)

Isyn = gsynsj(Vi − Esyn)(A.7)

λ(Vi) = cosh (
Vi −A3

2A4
)(A.8)

n∞(Vi) =
1
2
(1 + tanh (

Vi −A3

A4
))(A.9)

m∞(Vi) =
1
2
(1 + tanh (

Vi −A1

A2
))(A.10)

s∞(Vj) = tanh (
Vj − VTH

Vslope
) if Vj > VTH else 0(A.11)
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Model Parameters:

gL = 0.2 mS/cm2 EL = −60 mV A1 = −25 mV A2 = −20 mV

gCa = 0.3 mS/cm2 ECa = 100 mV A3 = −30 mV A4 = 15 mV

gK = 0.3 mS/cm2 EK = −80 mV VTH = −50 mV Vslope = 10 mV

gsyn = 0.1 mS/cm2 Esyn = −60 mV C = 1 µF/cm2 Iext = 1 µA/cm2

ε1 = 0.006 ε2 = 0.006 k = 3

Definition of Model Parameters and Variables:

Iapp = external applied current (µA/cm2)

IL = leak current (µA/cm2)

ICa = calcium current (µA/cm2)

IK = potassium current (µA/cm2)

Isyn = synaptic current (µA/cm2)

gL, gCa, gK , gsyn = maximal conductance for leak, calcium, potassium, and synaptic cur-

rents (mS/cm2)

EL, ECa, EK , Esyn = reversal potentials for leak, calcium, potassium, and synaptic currents

(mV)

Vi = membrane potential of cell i (mV)

C = membrane capacitance (µF/cm2)

t = time (msec)

εiλn(Vi) = rate constant of potassium channel opening

ε1 = small parameter that represents the minimum of λn

A1, A3 = voltages at which one-half of the channels are open at steady state

A2, A4 = voltages with reciprocals that are the slopes of the voltage dependence of calcium

and potassium channel opening at steady state

n∞(Vi),m∞(Vi) = fractions of open potassium and calcium channels at steady state

n = fraction of potassium channels that are actually open

sj = synaptic gating variable controlling the synapse from cell j to cell i

ε2/k(1− s∞) = rate constant of si

s∞(Vj) = steady-state synaptic activation value of the postsynaptic cell i as a function of

the voltage of the presynaptic cell j
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A.2. Linearization of Firing Map

The firing map of the HCO phase model in chapter 4 is

φk+1 = T − φk + ∆φ (T − φk) = h(φk).(A.12)

We linearize the firing map around the fixed point φ∗. Let φk = φ∗ + εφ̃k. εφ̃k is a small

perturbation away from the steady state φ∗ (ε << 1). Substituting this into the firing map

(equation (A.12)) gives

(A.13) φ∗ + εφ̃k+1 = h(φ∗ + εφ̃k).

We linearize about ε = 0.

φ∗ + εφ̃k+1 = h(φ∗) + εφ̃kh′(φ∗) +O(ε2)(A.14)

εφ̃k+1 = εφ̃kh′(φ∗) +O(ε2).(A.15)

The coefficients in the ε2 term cannot be ignored if they are on the order of O(1/ε) or

greater. The O(ε2) term is

(A.16)
1
2
[φ̃k]2h′′(φ∗)ε2

where

(A.17) φ̃k ≈ φ̃0 = ±z(φ1)[1 + ∆φ′(T ∗/2)]

where |1+∆φ′(T ∗/2)| < 1 is a requirement for anti-phase oscillations. Here, φ1 is the phase

of cell 1 when the perturbation used to determine the PRC of the HCO is given. z(φ1) is

the PRC of cell 1 evaluated at that phase. Also,

(A.18) h′′(φ∗) = ∆φ′′(T − φ∗) = ∆φ′′(T ∗/2).

So,

(A.19)
∣∣∣∣12[φ̃k]2h′′(φ∗)

∣∣∣∣ ≈ ∣∣∣∣12∆φ′′(T ∗/2)[z(φ1)[1 + ∆φ′(T ∗/2)]]2
∣∣∣∣ < 1

2

∣∣∆φ′′(T ∗/2)
∣∣ z2(φ1).
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We want to ensure that

(A.20)
1
2

∣∣∆φ′′(T ∗/2)
∣∣ z2(φ1)� 1/ε,

so the O(ε2) term can be ignored. Since z(φ1) will vary, we require

(A.21) ε� 2 /
(
α
∣∣∆φ′′(T ∗/2)

∣∣max[z2(φ1)]
)
.

As long as ε is ‘small’ and satisfies the above requirement, we may ignore the O(ε2) term

in our expansion and we are left with:

(A.22) φ̃k+1 = φ̃kh′(φ∗),

which has the solution

(A.23) φ̃k =
[
h′(φ∗)

]k
φ̃0.

A.3. iPRC for LIF model

The equation governing the single LIF cell is

(A.24)
dV

dt
= I − V, when V = 1, V → 0.

If the cell has initial conditions V (0) = 0, the cell evolves according to

(A.25) V (t) = I(1− e−t).

When I > 1, the cell oscillates intrinsically with single cell period

(A.26) T = ln
(

I

I − 1

)
.

We let φ denote the phase of the cell, φ ∈ (0, T ). To find the iPRC, we give an instantaneous

ε-sized perturbation (ε << 1) to the cell at phase φ which corresponds to time t = tφ.

Immediately after the perturbation, the cell is at

(A.27) V (tφ) = I(1− e−tφ) + ε.
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We use V (tφ) as the initial condition to find the new firing time. After the perturbation

the cell advances according to

(A.28) V (t) = I(1− e−t) + εe−(t−tφ).

The cell fires at time T −∆φ, when V (T −∆φ) = 1.

V (T −∆φ) = I(1− e−(T−∆φ)) + εe−(T−∆φ−tφ) = 1.(A.29)

Solving for T −∆φ,

T −∆φ = ln
(
I − εetφ
I − 1

)
.(A.30)

The phase advance is

∆φ = T − ln
(
I − εetφ
I − 1

)
(A.31)

∆φ = ln
(

I

I − 1

)
− ln

(
I − εetφ
I − 1

)
(A.32)

∆φ = ln
(

I

I − εetφ

)
.(A.33)

To find the iPRC, we expand about ε = 0,

(A.34) ∆φ = ε
etφ

I
+O(ε2).

Therefore, the iPRC is

(A.35) z(φ) = eφ/I, φ ∈ (0, T ).
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Part 2

Dynamical and Biophysical Mechanisms

of Anesthetic Action
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Summary

The goal of Part 2 of this thesis is to build mathematical models to study the effects of

volatile anesthetic on neural networks in the spinal cord. The network under consideration

is composed of excitatory interneurons in the lamprey central pattern generator (CPG), a

spinal cord neuronal network responsible for generating rhythmic locomotor movement in

vertebrates such as swimming or walking. It is thought that the excitatory interneurons of

the CPGs are the main target of the volatile anesthetic isoflurane, leading to immobility

under anesthesia. The following chapters will model these interneurons and incorporate the

most relevant effects of the volatile anesthetic isoflurane on intracellular conductances using

bifurcation analysis and numerical simulations.

Part 2 is broken down as follows:

1. This work develops a mathematical model for the two-pore potassium conductances

TREK and TASK based on experimental data, and incorporates these targets of

volatile anesthetics into two existing conductance-based models of single neurons.

2. The Butera et al. model [BRS99a] is modified by adding TREK and TASK cur-

rents. The Brodin et al. model [BTL+91] is reduced to a minimal form that

captures the qualitative results of the original model, then modified by adding

TREK, TASK and persistent sodium currents.

3. The Butera et al. model is used as a canonical bursting model and the Brodin

et al. model as a detailed biophysical model of a lamprey excitatory interneuron.

The most important parameters are explored using numerical simulations to gain

insight into each model’s capabilities, specifically how bursting dynamics change

as parameters are varied.

4. A fast-slow decomposition and bifurcation analysis are performed on the reduced

models in order to determine the bursting mechanism of the full models and pos-

sible transitions between firing states they may exhibit.

5. This work develops an understanding of the possible dynamical changes occurring

in the isolated lamprey spinal cord due to the hypothesized mechanisms of volatile

anesthetic action and determines possible experiments to further elucidate these

mechanisms.
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CHAPTER 9

Physiological Background

9.1. Volatile anesthesia in the lamprey spinal cord

Anesthesia has been used worldwide for over 150 years, yet the underlying physiologi-

cal mechanisms of their action remain unclear [SPLIB98] [RA04] [UB02] [McC07] [Ors07].

Effective administration of anesthetics may be vastly improved with greater understanding

of how anesthesia acts. Desired anesthetic endpoints include amnesia, analgesia, sedation,

unconsciousness, and immobility [RA04]. Anesthetics have been shown to modulate activ-

ity of a variety of voltage-gated and ligand-gated ion channels. However, the mechanisms

by which one or more of these effects produces general anesthesia and the specific sites of

action are poorly understood [GH03].

Immobility is an especially important and desired endpoint of anesthesia during surgical

procedures. Recent data indicate that anesthetics can produce immobility predominantly

through a direct action on the spinal cord [AJC05] [JBH08]. Because the lamprey spinal cen-

tral pattern generator (CPG) is one of the best-characterized vertebrate neuronal systems

in terms of cellular properties and interactions, it makes an excellent experimental model to

study anesthetic action (the neural underpinnings of immobility) in the spinal cord. It also

has the potential to serve as a “simple” network model to study principles of anesthetic

action in higher order networks that underlie consciousness and memory. Experimental

studies in both rodents [JBH08] and lamprey suggests that isoflurane acts preferentially

at ventral spinal sites where locomotor CPG neurons and motoneurons are situated, but

anesthetic effects on specific populations of locomotor interneurons have not been studied

[Jin05]. Elucidating the mechanisms that underlie isoflurane’s effect on locomotor interneu-

rons will allow development of safer anesthesia methods. Multiple possible mechanisms have

been hypothesized. Inherent difficulty in experimentally identifying locomotor interneurons

warrants the aid of mathematical models.



9.2. NEURAL NETWORK UNDERLYING FICTIVE LOCOMOTION IN LAMPREY SPINAL
CORD 99

(A)

MIDLINE

LIN

(NMDA agonist)VENTRAL
ROOT

CONTRA
SEGMENT

CAUDAL

D−glutamate

SEGMENTS

EIN CC EIN

MN

(B)

EIN

MN

EIN

Ventral
Root

ELECTRODE

Figure 9.1. (A) A proposed model for the single segment locomotor network (Buchanan et

al, 1999). Cross commissural inhibitory interneurons (CC interneurons) provide reciprocal inhibi-
tion to mediate left-right coordination of rhythmic activity. Lateral inhibitory interneurons (LIN)

provide one mechanism for burst termination. Excitatory interneurons (EIN) provide excitatory
input to each hemisegment. Large circles represent populations of neurons, the dotted line is the

midline, forked terminals are excitatory synapses, small circles are inhibitory synapses. (B) The

disinhibited hemisegment. The excitatory interneurons provide the sole input to the motoneurons
(MN) once inhibition is blocked. This work ignores the long range EIN connections for simplicity.
The trace recordings in figures 9.2B, 9.4B, and 9.5 are electrode recordings of lamprey ventral

roots.

The lamprey CPG has been subject to a number of modeling studies (see [LHKG98] and ref-

erences therein). However, very little modeling work has incorporated sufficient biophysical

details in order to study the effects of anesthesia [MBK08] and little to no modeling work

of anesthesia has been conducted in conjunction with ’simple’ biological preparations. The

goal of the following chapters is to construct and analyze mathematical models to examine

the effects of anesthesia in the lamprey spinal cord. Mathematical modeling is a useful tool

to test anesthetic effects on networks and to facilitate biological experiments. This work

was performed in collaboration with Dr. Steven Jinks, Department of Anesthesiology &

Pain Medicine, University of California, Davis. Jinks uses the lamprey isolated spinal cord

to investigate the immobilizing actions of isoflurane [JAD+05]. The aim is to create a model

whose dynamics are consistent with experimental data from the lamprey spinal cord under

the volatile anesthetic isoflurane and to generate experimentally testable predictions.

9.2. Neural network underlying fictive locomotion in lamprey spinal cord

Central pattern generators generate swimming patterns in lamprey spinal

cord. Lampreys swim forward with an undulating motion, contracting muscles on opposite

sides of each segment in an alternating left-right pattern, creating a wave of contraction
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Figure 9.2. A sample trace recording (B) with a schematic of the experimental preparation

(A). The top recording is from the caudal ventral root and the bottom recording is from the rostral
ventral root.

that travels rostrocaudally down their body length [LHKG98]. The swimming pattern is

generated by a chain of coupled segmental CPGs in the spinal cord [CG05]. Each CPG is

made up of two halves on opposite sides, each with excitatory interneurons (EIN), cross-

commissural inhibitory interneurons (CC) and lateral inhibitory interneurons (LIN) with

connectivity shown in Figure 9.1A [Buc99]. Also shown are the intersegmental projections

of varying distances from CC and EIN interneurons that act to create a phase lag between

segments during fictive swimming [WS95]. The motor neurons in each segment receive

input from the EINs and project axons through a ventral root to the muscle tissue [CG05].

Bath-application of excitatory amino acid agonists induce fictive swimming

in the isolated spinal cord. In experiments, the lamprey spinal cord is isolated and

placed in a bath of artificial cerebrospinal fluid. A suction electrode is used on a ventral

root to record motor neuron activity, as illustrated in figure 9.2A. Each ventral root con-

tains axons of numerous nearby motor neurons. The suction electrode records the action

potentials in these axons.

When activated by bath-application of excitatory amino acids such as glutamate or N-

methyl-D-aspartate (NMDA) [WEL+92], motor neuron firing patterns in the isolated spinal

cord correspond to the pattern of muscle activation seen in the intact lamprey during

swimming behavior. For this reason, one calls the motor pattern observed in the isolated

spinal cord ‘fictive swimming’. A long-lasting stable ‘fictive’ swimming pattern similar to in
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Figure 9.3. An example of bursting showing how a slowly changing variable can shape a burst.

vivo swimming can be induced in the isolated spinal cord by application of NMDA agonists

[GMS+81] [SGWVD85]. A sample recording is shown in figure 9.2B. Here, bursts describe

the ‘average’ behavior of motor neurons, as motor neuron axons project via the ventral root.

Isolated network of excitatory interneurons generate the disinhibited rhythm.

During fictive swimming, a “disinhibited rhythm” can be induced by blocking the inhibitory

GABAA and glycine receptors in the CPG using picrotoxin and strychnine, respectively.

As a result, CPG hemisegments in the disinhibited rhythm are no longer coupled via CC

interneurons. The LIN interneurons are rendered ineffective, as well. This causes large, low

frequency bursts to occur synchronously throughout the spinal cord as the network of EINs

are left to generate the CPG rhythm in each segment. The resulting disinhibited rhythm

reduces the complexity of the rhythm generating network (figure 9.1B), and permits testing

anesthetic effects on excitatory networks alone (figure 9.5A).

Bursting is seen in lamprey CPG. A burst is two or more closely spaced spikes

followed by a period of quiescence and generally arises as a result of the interplay between

the fast and slow ionic conductances in a neuron [Izh07]. Bursting behavior is seen in a wide

range of neurons including the respiratory pacemaker neurons in the pre-Bötzinger complex

[BRS99a], leech heart interneurons [ONC95], cat sensorimotor cortical neurons [NAS+01],

the crayfish swimmeret system (see chapter 2), and lamprey EINs [BG87] [GWD+87]

[WG87] [HBG89]. Bursting is also seen in ventral root recordings from the disinhibited

rhythm of the isolated lamprey spinal cord (figure 9.5A). Since the EINs are capable of
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bursting intrinsically and they are connected via excitatory synapses, it is possible that

bursts seen in ventral root recordings are due to both intrinsic and network effects. For our

purposes, we assume that the intrinsic properties of the EINs are generating the bursts, and

we assume that ventral root recordings closely follow EIN activity. Figure 9.3 uses a bio-

physical model for an isolated lamprey EIN to demonstrate such activity [BTL+91]. During

the burst, the slowly changing variable, e.g. intracellular calcium, increases (bottom). The

fast currents react to the slow change, leading to cessation of the burst (top). During the

interburst interval, or quiescent phase, the slow variable decreases until the cell is able to

burst again. This will be explained in more detail in section 10.4.

9.3. Isoflurane action on the isolated spinal cord preparation

The volatile anesthetic isoflurane has multiple target sites. Volatile anesthetics

are one class of general anesthetic drugs. They are lipophilic, liquid at room temperature

and evaporate easily for administration by inhalation. Isoflurane is a typical volatile anes-

thetic commonly used in an experimental and clinical setting. When isoflurane is applied to

the intact lamprey or the isolated lamprey spinal cord, it causes immobility, or cessation of

ventral root activity, with similar doses [Jin05]. However, volatile anesthetics are not simple

compounds [RA04]. No single ligand-gated ion channel antagonist or synaptic blocker can

mimic their effects, indicating more than one mechanism of action [Nas02]. This makes the

task of elucidating the mechanisms underlying the effects of isoflurane a difficult task.

Experimentally study the effects of isoflurane on isolated spinal cord prepa-

ration. A schematic of how isoflurane is applied to the bath is shown in figure 9.4. The

perfusion system for the preparation has an isoflurane vaporizer in line with the gas flow to

permit delivery of isoflurane [JAD+05]. In a typical preparation, the isolated spinal cord

is placed in a bath of artificial cerebrospinal fluid which is then partitioned into rostral,

middle, and caudal thirds. Fictive swimming is induced by applying equal concentrations

of D-glutamate (an NMDA agonist) to each compartment to activate all glutamatergic re-

ceptors. Isoflurane is then delivered only to the middle compartment, and the effect of

isoflurane on ventral root activity is observed. This allows one to assess the effects of

isoflurane on CPG activity and coordination [JAD+05].
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Figure 9.4. A schematic of adding isoflurane to the experimental preparation.

Experimental results: isoflurane acts to inhibit EINs via intrinsic and synap-

tic currents. It was first shown that isoflurane blocks neural activity underlying organized

movement in the isolated spinal cord at concentrations similar to those that cause immobil-

ity in intact lampreys. Then, in the bath-partitioned preparation, isoflurane was selectively

applied to the middle compartment. The neural activity in the ventral root was dose-

dependently reduced in all three compartments despite the presence of D-glutamate as a

stimulus. The greatest depression of activity occurred in the middle compartment where

isoflurane was selectively applied, as expected. More importantly, coordination between

outlying anesthetic-free regions is blocked when the middle segment becomes immobile.

This demonstrates a direct CPG effect, however, from these results it is not possible to

determine how much of isoflurane’s immobilizing action is due to direct effects on motor

neurons or the CPG. It is conceivable that the majority of isoflurane’s immobilizing action

is due to direct effects on CPG neurons [Jin05] [JAD+05].

It is plausible that isoflurane may lead to immobilization by (1) enhancing inhibitory

synapses, (2) depressing recurrent excitatory synapses, or (3) reducing the excitability of

EINs directly. To uncover if the inhibitory cell population is fundamental to the effects

of isoflurane on the CPG activity, Jinks applied isoflurane to the disinhibited spinal cord

preparation during fictive swimming. Preliminary work shows that this set-up does not

change the anesthetic requirements for blocking motor output, suggesting that isoflurane

may act through direct suppression of the EIN network. Jinks then applied NMDA and

AMPA/kainate antagonists to the disinhibited rhythm. The AMPA/kainate antagonists

decrease burst frequency, and the NMDA antagonists decrease burst duration and burst

frequency. These effects are inconsistent with isoflurane’s effect on the disinhibited rhythm.
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Figure 9.5. Effect of isoflurane on the disinhibited rhythm. (A) A disinhibited rhythm

was induced by blocking GABAA and glycine receptors with picrotoxin. The resulting large, low
frequency bursts occur synchronously throughout the spinal cord from the lack of intersegmental

coupling caused by blocking inhibition. (B) 0.5% isoflurane slowed the disinhibited rhythm by

decreasing burst duration (from 21 sec to 2.8 sec) while burst frequency was increased (from .02
Hz to .04 Hz). (C) 0.9% isoflurane caused transient tonic spiking behavior before eliminating the

disinhibited rhythm. The concentration needed to abolish the disinhibited rhythm is the same
needed to block the normal rhythm.

Transitions in spiking behavior when isoflurane is applied to disinhibited

preparation. The effect of isoflurane on the disinhibited rhythm is shown in figure 9.5.

Figure 9.5A shows a voltage trace during disinhibited bursting in the absence of isoflurane.

When lower isoflurane concentrations, e.g. 0.5% ISO, are added to the rhythm as in Figure

9.5B, the burst duration decreases while burst frequency increases. As step increases in the

concentration of isoflurane are taken, e.g. 0.9% ISO as in Figure 9.5C, the bursting behavior

transitions to tonic spiking behavior and finally transitions to “silence” when isoflurane takes

its full effect. The transition from bursting to tonic spiking behavior as the concentration

of isoflurane increases is seen in one-third of the experimental preparations. The remaining

preparations show a direct transition from bursting to silence. The low incidence of tonic

spiking behavior may result from step increases of isoflurane concentration that are too large

to resolve the transition through the tonic firing phase. Another possibility is that isoflurane

abolishes EIN activity, but D-glutamate continues to stimulate motoneurons, which as a

result exhibit tonic spiking patterns in some preparations. If this is the case, the tonic

spiking behavior is not an EIN network property.

Utilize mathematical modeling to understand the biophysical mechanisms

underlying isoflurane’s immobilizing action. The full CPG neural network is com-

plicated, but the above experiments suggest that the disinhibited spinal cord preparation

captures the essential (predominant) CPG rhythm and the effects of isoflurane on it. The

following chapters do not address how coordination in the spinal cord is affected by isoflu-

rane, rather the focus is on how isoflurane establishes immobility in a segment of the spinal

cord through its effect on the disinhibited CPG. Figure 9.5 illustrates some of the neural
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activity observed in the disinhibited rhythm as the concentration of isoflurane is increased.

We use mathematical models to understand what possible targets isoflurane is affecting to

get these transitions. The work in this thesis looks for parameter ranges that can easily

give both the transition from bursting to silence and the transition from bursting to tonic

firing to silence. By studying models and looking for these transitions, we can potentially

get insight into what the mechanisms of isoflurane are.

Using a biophysical model, one can more realistically incorporate the hypothesized actions

of anesthetics [GH03]. The aim here is to analyze a physiological relevant lamprey spinal

model using computer simulation and mathematical analysis in hopes of linking anesthetic

modulation of ion channel activity to systems level behavior, specifically immobility. The

focus remains on single cell dynamics.

9.4. Previous work on anesthetics

Many studies have used mathematical models to analyze bursting behavior in central

pattern generators including those underlying locomotion and respiration [SW96] [WEL+92]

[HKGL92] [BBR+05] [BRS99a]. Some modeling work examines changes in bursting patterns

as various parameters are altered, including blocking potassium or sodium conductances to

mimic adding TEA or TTX to the system [BTL+91], or decreasing the potassium activated

calcium conductance to mimic adding 5-HT [WEL+92] [HKGL92]. Other models study

the dynamical mechanisms involved in burst termination and initiation, as well as possible

states (bursting, tonic firing, or silence) that the system may enter depending on parameters

[BBR+05] [BRS99a]. Similar tactics (i.e. blocking or enhancing relevant ionic conductances)

can be utilized to mimic the influences of anesthetics on specific targets. Despite this, there

are very few mathematical models that incorporate the effects of anesthesia. This section

gives a brief survey of the models that we are aware of.

Effects of propofol on EEG using networks of detailed biophysical cortical

cell models. The EEG is commonly used to monitor brain electrical activity during general

anesthesia [Ram98]. Under propofol anesthesia at low doses, a ‘paradoxical’ excitation of

the network seen through the EEG. The study by McCarthy et al. [MBK08] examines this

paradox. They use conductance based models of cortical pyramidal cells and interneurons in
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both large and small networks to investigate the effect of propofol-induced GABAA poten-

tiation. The effects of propofol are modeled by increasing the time constant and amplitude

of the synaptic conductance of GABAA receptors. Their findings suggest that EEG changes

associated with ‘paradoxical’ excitation may result from the interplay between the GABAA

and slow potassium M-currents. In their modeling work, this interplay causes a shift from

interneuron synchrony at theta frequency to beta frequency anti-synchrony, a mechanism

thought to underlie the paradoxical excitation associated with propofol anesthesia.

Effects of propofol and midazolam on GABAA receptor desensitization mod-

eled using kinetic description of GABAA. A model by Baker et al. [BPOS02] examines

synchronization in a network of cortical interneurons and how the effect of propofol and

midazolam on GABAA receptor desensitization alter this activity. To do this, they con-

struct a model of GABAA receptor desensitization using kinetic models of ligand-gated ion

channels. They alter an existing model of hippocampal CA1 interneurons by incorporating

their detailed kinetic description of the GABAA receptor. This allows for modulation of

individual kinetic rates of GABAA synapses, which alter the time constant and amplitude

of inhibitory post-synaptic potentials. Using an isolated single cell, a single cell with an

autapse, and a two-cell heterogeneous network, the model predicts a required increase in

excitatory input for synchronous behavior under propofol. Under midazolam, however, syn-

chronous behavior occurs for lower levels of excitatory drive. Behaviorally, propofol is used

to cause hypnosis and midazolam is used as a sedative-amnestic drug. These results suggest

that GABAA receptor desensitization may contribute to the different behavioral effects of

each drug by altering the ability of the networks to synchronize [BPOS02].

Effect of general anesthesia on EEG modeled using cortical mean-field theo-

ries. Liley & Steyn-Ross and collaborators [BL05] [LC03] [LB05] [SRSRSL99] [SRSRSW01]

[SRSRS04] model general anesthetic effects on the EEG by using a reduction of a cortical

mean-field macrocolumn model [LCW99]. The GABA-ergic anesthetic affect that mimics

application of propofol is incorporated by increasing the time constant of the inhibitory

post-synaptic potential. The model suggests a phase transition in the EEG as unconscious-

ness is approached under general anesthesia, similar to the paradoxical excitation studied

by McCarthy et al. [MBK08]. The model EEG matches experimental evidence for the
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biphasic response where brain activity rises at low drug concentrations then falls at higher

concentrations.

Effects of volatile and intravenous anesthetics on voltage- and ligand-gated

ion channels modeled using biophysical neural models. The study most relevant

to the work in this thesis examines anesthetic effects in several mathematical models

(Gottschalk & Haney) [GH03]. They use four canonical conductance-based models to exam-

ine effects of volatile and intravenous anesthetics. First, the effect of the volatile anesthetic

halothane is modeled by decreasing the calcium conductance [HSEL91] in a single compart-

ment model and a two compartment model. The results show that when calcium is the

main spike initiating factor in a single compartment, decreasing the calcium conductance

will first reduce spike frequency, then terminate the oscillations. In the two compartment

model, the dendritic calcium conductance is a somatic burst shaping factor. Decreasing

the calcium conductance in this model first prolonged the burst duration, then terminated

bursting behavior leaving the soma in tonic spiking mode due its intrinsic currents. This

correlates to the lack of burst suppression and lack of isoelectric EEG behavior associated

with halothane [BLW64]. Also, the prolonged burst duration is known to occur in vitro in

the presence of halothane [Pea96].

Secondly, both intravenous (barbiturates, etomidate, propofol, neurosteriods, benzodiazepines)

and volatile (isoflurane, halothane, enflurane) anesthetic effects are modeled in an inhibitory

neuronal net. The effect of anesthesia is modeled by either increasing the opening rate of

GABAA channels, or decreasing the GABAA synaptic conductance. The results show that

decreasing the GABAA synaptic conductance leads to an decreased amount of synchrony

in a model of the thalamic reticular nucleus network. Curiously, an increase in synchrony is

found when the GABAA synaptic conductance is decreased, or the opening rate of GABAA

is increased in a network of fast-spiking interneurons. The loss of synchrony in the former

model might be associated with sedation, amnesia, or decreased levels of consciousness. The

increase in synchrony in the latter model might indicate that different components of the

CNS contribute in different ways to the behavioral effect of anesthesia [GH03].



9.5. ISOFLURANE TARGETS 108

All of these studies deal with anesthetic effects on inhibition. In this thesis, we are studying

the disinhibited preparation in which inhibition does not play a role, therefore these studies

are not relevant to the current work. The McCarthy and Baker studies are not directly

relevant to what is proposed here. Although there is evidence that GABAA receptors play

an important role in mediating effects of some intravenous anesthetics, this receptor is not

considered a main immobilizing target of volatile anesthetics. The Liley & Steyn-Ross

studies are not relevant because we use a detailed model for the proposed work rather than

a mean-field cortical model. Furthermore, a biphasic response is not observed in lamprey

EINs as the concentration of isoflurane increases.

The Gottschalk & Haney study does pertain to the proposed work in its use of biophysical

models to incorporate anesthetic effects by altering relevant parameters. It also points out

how altering the same parameter in two different models may lead to dissimilar results,

thereby stressing the importance of using a detailed biophysical model of an EIN to study

the mechanisms of isoflurane action. However, Gottshalk & Haney also used canonical

models, implying that important insights can also come from canonical models that contain

enough detail to incorporate the anesthetic effect of interest.

9.5. Isoflurane targets

The following chapters focus on two-pore potassium, persistent sodium, and

NMDA channels. Isoflurane is known to enhance the two-pore potassium ’leak’ chan-

nels TREK and TASK [PHL+99] [FDL+96], and reduce the persistent sodium channel

[SPLIB98]. These channels, although yet to be clearly identified in lamprey excitatory in-

terneurons, have been shown to be present in the spinal cord of mammals such as rats and

mice [TSL+01], and similar channels are common a broad range of organisms, including

yeast, Drosophila, C. elegans, and mammals. It is also hypothesized that volatile anes-

thetics block NMDA receptors [DPB+07], both explicitly and implicitly via activation of

pre- and post-synaptic TREK1 channels [SAD+03] [Hon07]. Using both canonical and de-

tailed biophysical models, the following chapters incorporate and study these mechanisms

of anesthetic action.
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CHAPTER 10

Mathematical Models and the Mechanism of Bursting Using

Bifurcation Diagrams

This chapter introduces the two conductance based neuron models used in the following

chapter to study the effects of anesthesia. Both models have the ability to exhibit burst-

ing behavior. One is a canonical bursting model [BRS99a] and the other is a biophysical

model for a lamprey EIN [BTL+91]. Ionic currents relevant to the proposed mechanism of

isoflurane action in the lamprey spinal cord are added to the models when needed.

10.1. The Brodin et al. model is a biophysical model of the lamprey EIN

The excitatory interneurons in the lamprey CPG are capable of bursting when exposed

to NMDA agonists [WG87]. This EIN behavior has been the basis for a series of models

conducted by Grillner and colleagues [EWL+91] [BTL+91] [KHKA+01]. In Ekeberg et

al. [EWL+91], the basic EIN model containing a soma and three passive dendrites was

developed. This model can display a wide range of spiking frequencies (from 10 Hz to 90Hz)

over a range of currents (from 1 nA to 7 nA). This model does not exhibit bursting in its

normal state. In Brodin et al. [BTL+91], the Ekeberg et al. model is expanded by adding

an NMDA current to the soma to elicit bursting oscillations. This model can experimentally

replicate recorded activity of EINs during constant current injection, Mg2+ concentration

modifications, and K+ conductance alterations. It also replicates the experimental burst

envelope present in the presence of bath-applied NMDA and tetrodotoxin. The Brodin et al.

model is tuned to adequately account for the bursting elicited from EINs by bath-applied

NMDA. In Kozlov et al. [KHKA+01], the EIN model from Brodin et al. is examined in

a network context. One network includes inhibitory interneurons and the other is a single

cell with an autapse.

While these EIN models contains biophysical details, the effects of anesthesia have yet to

be studied. In this thesis we will study the effects of altering isoflurane target conductances
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in a conductance based model of the EIN. The Ekeberg et al. model does not burst and we

will only examine isolated cells, therefore the Brodin et al. model is used. It is extended

by incorporating the ionic conductances on which isoflurane is thought to act, i.e. the two-

pore potassium and persistent sodium conductances. Please see the appendix for a detailed

description of this model.

10.2. The Butera et al. model is a minimal bursting model.

While the Brodin et al. model is a biophysical model of an EIN specific to the lamprey

system, the bursting model by Butera et al. [BRS99a] was initially developed to analyze

bursting interneurons involved in the pre-Bötzinger complex. However, it is widely used as

a canonical model for bursting neurons. It contains only three state variables, one of which

is slow, and therefore lends itself to mathematical analysis (phase plane, and bifurcation

analysis). This will be discussed in greater detail in section 10.5. We modify this canonical

bursting model by including descriptions of the TREK and TASK channels, and then use

it as a starting point for this work. Please see the appendix for a detailed description of

this model.

10.3. Hodgkin-Huxley formalism for neuronal models.

Both models described above follow the Hodgkin-Huxley formalism, so the mathematics

involved in each take a similar form regardless of their specific ionic currents [KS98a] [KS98b]

[Izh07]. Here, we model neurons using single compartment models, which can easily be

extended to multi-compartment models. Kirchoff’s conservation of current law states that

the sum of currents flowing into a neuron must equal the sum of currents flowing out of a

neuron. Thus, each model begins with a current balance equation (Equ (10.1)) where C dV
dt

is the capacitive current, Iion is the sum of the membrane currents, and Iapp is an external

applied current. The membrane acts as a capacitor and ion channels act as currents,

therefore the conservation of current equation is of the form

(10.1) C
dV

dt
= Iapp − Iion,

where C is the membrane capacitance (constant), and V is the membrane potential of the

neuron being modeled. Each current in Iion is modeled according to Ohm’s law. Namely,
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for ionic species y, the current Iy is described by

(10.2) Iy = ḡy m
l hk (V − Ey),

where ḡy is the maximum conductance for the current, (V − Ey) is the driving force and

Ey is the reversal potential, or Nernst potential, of the ion carrying the current. The term

ml hk describes the proportion of open channels in the cell, m models the probability of a

channel being in the open state, h models the same for an inactivation state, and l or k may

be thought of as the number of activation or inactivation gates in a channel, respectively.

Equation (10.2) assumes that gating variables are independent of each other. The gating

variables x = m, h, are described by first order kinetics.

(10.3)
dx

dt
= αx(V )(1− x)− βx(V )x.

αx is the rate constant for the x gates going from the closed to open state and βx is the rate

constant for the x gates going from the open to closed state. Typically, the rate constants

are functions of voltage and are usually determined by empirical fits from voltage-clamp

experimental data [HH52] [Wil02]. Equation (10.3) may be rewritten as

dx

dt
=

1
τx(V )

(x∞(V )− x)(10.4)

x∞(V ) =
αx(V )

αx(V ) + βx(V )
(10.5)

τx(V ) =
1

αx(V ) + βx(V )
(10.6)

where x∞(V ) is the steady-state gating variable function and τx(V ) is the time constant.

10.4. Bursting mechanisms

Most bursting scenarios can be characterized by a separation of fast and slow time

scales. Bursting usually results from the interplay between the fast time scales responsible

for spiking activity and the slow time scales that modulate the activity [Izh07]. There are

many possible mechanisms underlying bursting dynamics in neurons. The following chapter

explores the proposed effect of anesthesia on two bursting mechanisms.
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Figure 10.1. (A) A sample burst is shown for a model whose bursting is defined by one
slow variable. (Modified Butera et al model) (B) A circle diagram describing the exact mechanism

for the burst. (C) A biophysical model for a lamprey EIN is used to demonstrate bursting activity.
(Modified Brodin et al model) (D) A circle diagram describing the exact mechanism for the burst.

Figure 10.1A shows a sample burst from the canonical bursting model by Butera et al.

[BRS99a] along a cycle diagram describing how bursting occurs (figure 10.1B). In this ex-

ample, the slow time scale is defined by the inactivation of the persistent sodium current.

During the burst, the inactivation slowly builds up, decreasing the persistent sodium cur-

rent. Eventually, the lack of depolarizing current causes the cell to abruptly cease firing.

During the interburst interval, or quiescent phase, the persistent sodium current slowly dein-

activates causing the cell to depolarize. Eventually the cell depolarizes to a point where it

begins to burst again. This will be explained in greater detail in section 10.5.

Figure 10.1C uses the biophysical model for a lamprey EIN by Brodin et al. to demonstrate

bursting [BTL+91]. A circle diagram explaining the bursting mechanism is shown in figure

10.1D. Here, bursting is induced with bath-applied D-glutamate or NMDA. During the

burst, NMDA-mediated calcium slowly enters the cell causing the intracellular concentration

of calcium to increase (figure 10.1C bottom). The calcium-activated potassium current
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slowly increases as a result. Eventually this outward current is strong enough to abruptly

terminate the repetitive oscillations (figure 10.1C top). During the interburst interval, the

intracellular calcium is pumped out of the cell. This reduces the strength of the calcium-

activated potassium current causing the cell to slowly depolarize until a threshold is reached

and it begins to burst again. This will be explained in greater detail in section 11.3.2.

10.5. Understanding bursting through bifurcation analysis

The following analysis explains how to understand the bursting exhibited by the Butera

et al. model [BRS99a] using fast-slow time scale decomposition. This is a standard analysis

for bursting models, and is also called geometric singular perturbation theory [BBR+05]

[Izh07] [CB05]. By decomposing the model into its fast and slow subsystems, the complexity

is reduced and analysis through bifurcation diagrams is possible. The analysis for the Brodin

et al. model [BTL+91] is similar.

10.5.1. Basic form for Butera et al. model.

C
dV

dt
= −INa − IK − INaP − IL(10.7)

INa = ḡNam
3
∞(V )(1− n)(V − ENa)(10.8)

IK = ḡKn
4(V − EK)(10.9)

INaP = ḡNaPm∞,p(V )h(V − ENa)(10.10)

IL = ḡL(V − EL)(10.11)

dh

dt
=

h∞(V )− h
τh(V )

(10.12)

dn

dt
=

n∞(V )− n
τn(V )

(10.13)

Please see the appendix for a detailed description of this model.

10.5.2. Fast-slow decomposition. The Butera et al. model is a minimal bursting

model, so the bursting behavior can be studied by breaking down the model into fast and

slow subsystems. It contains only three state variables: membrane potential V , activation

of delayed-rectifier potassium n, and inactivation of persistent sodium h. The time scales

for h, V , and n dictate that the evolution of h is much slower than the evolution of V and
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Figure 10.2. (A) Schematic of a bifurcation diagram of the fast subsystem of a square wave
burster as a slow parameter, h, varies. Solid(dotted) lines correspond to stable(unstable) steady-

states. ’S’: steady-state curve of fast subsystem, projected onto the V -h plane. ’C’: limit cycle

steady-state curves. ’HB’: Hopf bifurcation. ’HC’: Homoclinic bifurcation. ’h∞’: superimposed
h-nullcline. (B) Closer look at burst trajectory from (A). (C) Voltage trace corresponding to black
curve in (A) is shown over time along with change changes in INaP inactivation parameter, h.

n. That is, τh is much greater than τn and τV (τh = 10, 000 msec., τn = 10 ms, τV = 1ms).

Therefore, h may be treated as a parameter on the fast time scale, i.e. h can be held

constant on the short time scale, and the fast subsystem consisting of V and n may be

analyzed using bifurcation analysis with h as a bifurcation parameter [BBR+05]. Then it is

possible to examine how the solutions of the full system move along the bifurcation diagram

on the slow time scale. A thorough analysis of this type has already been conducted on the

Butera model by Butera et al. [BRS99a] and Best et al. [BBR+05]. Below, we describe this

analysis. A similar analysis is performed on the modified models in the following chapter

to study the effects of anesthesia.

Figure 10.2A shows a bifurcation diagram of the Butera et al. fast subsystem where h is the

bifurcation parameter. The pink ‘S’ shaped curve (labeled S) represents the steady-state

values for the fast V -n subsystem, projected onto the V -h plane. Solid lines correspond

to stable steady-states and dotted lines to unstable steady-states. The upper and lower
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branches of ‘S’ consists of focuses or nodes and the middle branch consists of saddle points.

Each bend or ‘knee’ of ‘S’ corresponds to a saddle node bifurcation. The pink curves

(labeled ‘C’) emanate from the subcritical Hopf bifurcation point on S (labeled ‘HB’), and

they represent limit cycle solutions, where solid lines correspond to stable limit cycles and

dotted to unstable. The upper and lower solution branches of ‘C’ represent the maximum

and minimum voltage oscillation in the limit cycles. The stable limit cycle terminates at

a homoclinic bifurcation (labeled ‘HC’), i.e. the limit cycle collides with a saddle point

on the middle branch of ‘S’ [Izh07]. For a small range of h (see figure 10.2B), there is

bistability between the stable limit cycle solutions and the stable steady-state solutions.

This bistability plays a key role in the bursting displayed here.

To understand how the slow dynamics interact with the fast subsystem, the h-nullcline

(h = h∞(V )) is superimposed onto the bifurcation diagram, i.e. the blue line in figure

10.2A. Physiological solutions can only exist between h values of 0 ≤ h ≤ 1, but a wider

range is shown to give the full picture. When V is below h∞, ḣ > 0 and therefore h is

slowly increasing. When V is above h∞, ḣ < 0 and therefore h is slowly decreasing. While

h slowly changes, V changes fast enough to bring the dynamics of the full system back to

the quasi steady-state. Therefore the full solution adheres to the stable branches of the

bifurcation diagram. Figure 10.2B shows an expanded window of figure 10.2A with the

trajectory of the bursting dynamics overlaid in black. Figure 10.2C shows the voltage trace

corresponding to the trajectory for bursting in the full model over time with points 1-4

corresponding to the same points in (B). The slow variable h, i.e. the persistent sodium

current inactivation variable, is also shown to illustrate the time-scale differences between

the fast spiking dynamics within the burst and the slowly changing h dynamics.

In figure 10.2B, if the fast subsystem begins on the lower stable branch of ‘S’ (point 1),

h increases and the trajectory moves to the right as indicated by black arrows. Once the

trajectory passes the saddle-node bifurcation (point 2), the system no longer has a stable

quasi steady-state to adhere to. Therefore, the trajectory jumps to the stable limit cycle

(point 3) where the fast subsystem oscillates. During these oscillations, V is above h∞, so

h decreases and the trajectory moves to the left. The slow variable h continues to decrease
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until the limit cycle disappears via the homoclinic bifurcation (‘HC’). This results in the

trajectory falling back down to the lower stable branch of ‘S’ (point 1). This pattern of

bouts of oscillations and quiescence repeats and is known as bursting.

The fact that the transition from silence to oscillations occurs at a different h value than

the transition from oscillations to silence is known as hysteresis and requires the bistability

between the limit cycle and stable steady state in the fast subsystem over a range of h

values. The type of bursting described above is called square wave bursting. It is identified

by bursts that begin when the resting state vanishes through a saddle node bifurcation and

end when the limit cycle vanishes through a homoclinic bifurcation [Izh07] [KS98b]. There

are many other types of bursting dynamics associated with different bifurcation diagrams of

the fast subsystem [Izh07]. A different type of bursting, called top-hat bursting, is identified

by bursts that begin when the resting state vanishes through a saddle-node bifurcation and

end when the limit cycle vanishes through a saddle-node bifurcation of limit cycles. The

Brodin et al. model displays this type of bursting and is analyzed in the next chapter.
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CHAPTER 11

Results

The goal of this chapter is to study the effects of the volatile anesthetic isoflurane using

the canonical bursting model of Butera et al. [BRS99a] and a reduced model of the lamprey

spinal EIN by Brodin et al. [BTL+91]. Recall that as the concentration of isoflurane is

increased, the experimental preparation transitions from bursting to tonic firing to silence

(figure 9.5). In each model, parameters thought to be affected by isoflurane are altered

looking for parameter ranges that give this transition.

11.1. Model for TREK and TASK

Isoflurane is known to enhance the two-pore potassium currents TREK and TASK

[PHL+99] [FDL+96]. However, equations describing their dynamics are not included in the

aforementioned models. Therefore, models of the TREK and TASK currents are built here

and included in both Butera et al. and Brodin et al. to study the effects of isoflurane on

bursting behavior. The equations derived below are based on experimental data from Fink

et al. [FDL+96] and Patel et al. [PHL+99].

TREK and TASK are two-pore potassium currents, which act as outwardly rectifying back-

ground leakage currents, i.e. they pass outward current more readily than inward cur-

rent. Although they are voltage-dependent, they are effectively time-independent [DLF+97]

[WWBB06]. They are also open near −65mV allowing them to lower the resting membrane

potential of the cell [DLF+97] [TLSB00]. To generate a model of these currents, experi-

mental data from figure 4B in Fink et al. (using Xenopus oocytes) [FDL+96] and figure 2B

in Patel et al. (using transfected COS cells) [PHL+99] are extracted. The data is then fit

with exponential curves to capture the nonlinear voltage dependence of each conductance

(see figure 11.1). Because each current has the same reversal potential (E2P ), the TREK
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(A) (B)

Figure 11.1. Extrapolated data points from Fink et al. (A) and Patel et al. (B) shown in
blue. The exponential fit to the data is shown in pink. The fit has the same reversal potential as

the data.

and TASK conductances are combined into one current equation I2P .

I2P = (gTREK(V ) + gTASK(V ))(V − E2P )(11.1)

gTREK(V ) =
βTREK (.3949 e(.0169V ) − .0500)

(V + 122.2846)
(11.2)

gTASK(V ) =
βTASK (.7509 e(.0133V ) − .0500)

(V + 203.7030)
(11.3)

Equations (11.1) - (11.3) define the two-pore potassium current. V is the membrane po-

tential of the cell. gTREK(V ) and gTASK(V ) are the voltage-dependent conductances of

TREK and TASK, respectively. The coefficients βTREK and βTASK are used to modulate

the strength of each conductance. The function S2P (V ) (2P for two-pore) is introduced to

describe the total voltage-dependent conductance for the two-pore potassium current. The

coefficient ḡ2P is the maximal two-pore potassium conductance.

11.1.1. Normalizing background leakage currents. If the two-pore potassium

current, I2P , were simply added to an existing cell model, it would substantially hyper-

polarize the cell and and increase the input conductance. This would alter the cell’s re-

sponsiveness to input. Therefore, we must normalize the total background leakage current

to ensure that the resting potential and input conductance remain the same regardless of
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the magnitude of I2P . To this end, the conductance and reversal potential of the modi-

fied background leakage currents must match the original leakage conductance and reversal

potential at rest.

Let I∗L represent the linear leakage current in the modified model. Let E∗L and g∗L represent

the reversal potential and conductance for I∗L. If Iback represents the total background

leakage current in the modified model, then

I2P + I∗L = Iback(11.4)

ḡ2PS2P (V )(V − E2P ) + g∗L(V − E∗L) = gback(V − Eback)(11.5)

(ḡ2PS2P (V ) + g∗L)
(
V −

ḡ2PS2P (V )E2P + g∗LE
∗
L

ḡ2PS2P (V ) + g∗L

)
= gback(V − Eback)(11.6)

where (11.5) expands the current equations from (11.4), and (11.6) reorganizes the left hand

side. To maintain the same leakage conductance and reversal potential at rest (V = Vrest),

gback and Eback are matched with the original leakage conductance and reversal potential.

This gives restrictions on g∗L and E∗L for a chosen value of ḡ2P .

ḡ2PS2P (Vrest) + g∗L = gL(11.7)

ḡ2PS2P (V )E2P + g∗LE
∗
L = gLEL(11.8)

The parameters g∗L and E∗L ensure that the baseline level of excitability is not altered in

the new model because the effect of the new leakage currents are normalized to the original

model at rest.

The proportion of two-pore potassium current in the EINs is not currently known. There-

fore, we introduce the parameter ρ, which is the proportion of resting leakage conductance

due to the two-pore potassium conductance. This will allow us to explore the effect that

altering this proportion has on the models. When ρ = .6, for example, 60% of the total

leakage current is due to I2P and the remaining 40% is due to I∗L. ρ is defined as

ρ =
ḡ2PS2P (Vrest)

ḡ2PS2P (Vrest) + g∗L
(11.9)
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(A) (B)

Figure 11.2. The peak of the normalized EPSP resulting from an alpha function synaptic
conductance is recorded for various ρ values as the strength of the synaptic conductance increases

in (A) the modified Butera et al. model and (B) a model equipped with only I∗L and I2P .

With ρ from (11.9), g∗L and E∗L become

g∗L = gL(1− ρ)(11.10)

E∗L =
EL − ρE2P

1− ρ
(11.11)

When ρ = 0, the new leakage current reduces to the original leakage current with g∗L = gL

and E∗L = EL. Keeping ρ ∈ (0, .6) ensures E∗L stays within a reasonable physiological range

(E∗L ∈ (-65mV,-27mV)).

To demonstrate the effect of this normalization, a subthreshold alpha function synaptic

conductance (see appendix) is injected into the model at rest and the change in the peak

of the EPSP is monitored as ρ varies (see figure 11.2). In figure 11.2A, the normalization

is tested using the modified Butera et al. model (described in section 11.2). The change in

the size of the EPSP as a function of synaptic conductance is almost independent of ρ for

synaptic conductances less than 3nS, i.e. EPSPs less than 5mV. The deviation in EPSPs

at higher synaptic conductances results from the interaction between the rectification of

the two-pore potassium current and other non-linearities in the cell. In figure 11.2B, the

normalization is tested using a model equipped with only the new leakage currents. As the

magnitude of the synaptic conductance increases, the size of the EPSP changes only slightly

with ρ.
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Figure 11.3. Three steady state behaviors of the modified Butera et al. model. Silence,
bursting, and tonic firing are achieved for various applied current values (Iapp).

11.2. The Modified Butera et al. Model

In this section, a canonical bursting model by Butera et al. is modified and studied using

simulations, parameter exploration, and bifurcation analysis. We study how the bursting

activity, which is primarily shaped by the inactivation of persistent sodium current h (figure

10.1A,B), is modulated by ḡNaP and ḡ2P . The Butera et al. model, introduced in chapter

10, is capable of three steady state behaviors as seen in figure 11.3: bursting, tonic firing,

and silence. The TREK and TASK currents, collectively referred to as I2P , are added. The

new background leakage currents, I∗L and I2P , are normalized as in section 11.1.1. Please

see the appendix for a detailed description of the modified Butera et al. model.

11.2.1. Enhancing I2P while blocking INaP reduces excitability. Isoflurane is

known to enhance the two-pore potassium current [PHL+99] [FDL+96] and block the per-

sistent sodium current [SPLIB98] (section 9.3 and 9.5). Therefore we will model the effect

of isoflurane on bursting by enhancing the maximum conductance of I2P and blocking the

maximum conductance of INaP .

To test that enhancing I2P and blocking INaP puts the cells in a less excitable state in

accordance with the experimental effects of isoflurane, we alter the two maximal conduc-

tances and measure the excitability of the cells (figure 11.4). Excitability is measured by
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(A) (B)

Figure 11.4. A) Burst threshold, defined as the minimum amount of synaptic conductance
required to elicit an impulse, is demonstrated. In the left column, the synaptic conductance is not

large enough to elicit a burst where in the right column it is. B) Burst threshold is measured as the

two-pore potassium conductance is enhanced and the persistent sodium conductance is blocked
in the modified Butera et al. model. I2P is enhanced by altering the maximal conductance by

1.0 ∗ ḡ2P through 2.0 ∗ ḡ2P . INaP is blocked by altering the maximal conductance by 1.0 ∗ ḡNaP

through 0.0 ∗ ḡNaP

burst threshold, i.e. the minimum synaptic input required to elicit an impulse or burst (il-

lustrated in figure 11.4A). This process is repeated for various values of ρ, where ρ describes

the proportion of the total leakage current due to the two-pore potassium current. Figure

11.4B, shows that for a fixed ρ, enhancing I2P while blocking INaP decreases excitability,

resulting in an increased burst threshold. For all strengths of I2P and INaP (i.e. all concen-

trations of isoflurane tested), burst threshold increases as ρ increases due to the outward

rectification of the two-pore potassium currents. The outward rectification hyperpolarizes

the cell, which reduces excitability. Thus, increasing the concentration of isoflurane, mod-

eled by enhancing I2P and blocking INaP , acts to increase burst threshold in the model

and reduces excitability, as expected. In addition, burst threshold will increase if either the

persistent sodium conductance is solely blocked or the two-pore potassium conductance is

solely enhanced (results not shown).

11.2.2. Possible bifurcation route for bursting to tonic to silent transition. In

this and the following sections, we analyze the effects of isoflurane on spontaneous bursting

activity. We do this by using the techniques from section 10.5, which explain how to

understand bursting in this model using a fast-slow time scale decomposition. Furthermore,

a thorough bifurcation analysis was conducted previously for the Butera et al. model

[BBR+05]. Here, a similar analysis is conducted to determine if the modified Butera et

al. model is capable of transitioning from bursting to tonic firing to silence through a
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Figure 11.5. Schematic bifurcation diagrams showing the transition from bursting to tonic
to silence. Starting with the model in busting mode (1), a loss of bursting through a SNIC

bifurcation (2) will lead to tonic firing. If a globally attracting steady state is created (3) the

system moves to silence. Solid(dotted) lines correspond to stable(unstable) steady states. ’S’
shaped pink and black curves are steady state curves of fast subsystem, projected onto the V -h

plane. Inverted ’C’ shaped pink, green, and black curves are limit cycle steady states emanating
from a Hopf bifurcation. ’h∞’: superimposed h-nullcline.

continuous decrease in ḡNaP and increase in ḡ2P . Some experimental preparations show

recordings transitioning from bursting to tonic firing to silence as the concentration of

isoflurane is increased (see figure 9.5). Other preparations show a transition directly from

bursting to silence as the concentration of isoflurane is increased [Jinks et al., unpublished ].

It is already known that the Butera et al. model is capable from transitioning from bursting

to silence by decreasing ḡNaP (see [BRS99a]). Here we address the question if increasing

ḡ2P will allow the model to transition from bursting to tonic firing to silence.

This section looks for the possible sequence of changes to the bifurcation diagram of the fast

subsystem that will give the transition from bursting to tonic to silence. This sequence of

changes is known as the bifurcation route because qualitative differences between diagrams

occur through bifurcations. Figure 11.5 shows an example of one such set of bifurcation di-

agrams (only the lower limit branches corresponding to the limit cycle solutions are shown).

The bifurcation diagrams in figure 11.5 are schematic. The bifurcation analysis is explained

in a manner similar to that in section 10.5. Figure 11.5, shows a series of three bifurcation

diagrams of the fast subsystem, each describing the state of full system when overlayed with

the h-nullcline.

(1) Suppose, when there is no isoflurane, the system is in bursting mode. The cor-

responding bifurcation diagram of the fast subsystem (pink) and the h-nullcline
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might look like figure 11.5 (labeled 1). Notice that bursting occurs because of

the bistability in the fast subsystem between the stable steady state and the limit

cycle, with an intersection of h∞ and the middle, unstable, branch of ‘S’.

(2) Now suppose isoflurane is added and has an effect that shifts the bifurcation struc-

ture of the fast subsystem in the following fashion. If the homoclinic bifurcation

moves down to intersect the saddle node bifurcation, bistability is lost through

a SNIC bifurcation. The corresponding bifurcation diagram might look like the

green steady state curve in figure 11.5 (labeled 2). Along the way, the system tran-

sitions from bursting to tonic firing as the trajectory becomes trapped on the stable

limit cycle branch. This happens because during the oscillation V is spending time

both above the h-nullcline and below the h-nullcline. The trajectory gets pinned

where there is a balance between the increase and decrease in h value. Thus, the

trajectory remains on the stable limit cycle branch and the full system is tonically

firing.

(3) Now, if the isoflurane concentration is increased further and has an effect that

shifts the lower and middle branches of the pink steady state curve to the right

by a sufficient amount (black curves, 3), the model enters a silent mode. This

happens because a globally attracting steady state is created when the h∞ curve

(blue) intersects the stable branch of the steady state curve for the fast subsystem

(black). Note that this corresponds to a saddle node bifurcation in the full system.

The transitions outlined in steps 1,2, and 3 describe one possible bifurcation route for a

square wave bursting model (defined in section 10.5) to transition from bursting to tonic

firing to silence. This was the only bifurcation route that we found to give the transition

from bursting to tonic firing to silence. There might be other bifurcation routes, but this

is the most obvious and clear cut for square wave bursters like the Butera et al. model.

11.2.3. Altering ḡ2P and ḡNaP does not show the transition from bursting to

tonic to silent. Recall from chapter 9 that isoflurane is thought to block neural activity

underlying organized movement in the isolated spinal cord by targeting the two-pore potas-

sium and persistent sodium currents in spinal neurons. In this section, parameters relevant
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Figure 11.6. (A) Effect on modified Butera et al. model of changing parameters to model
adding isoflurane. Beginning with the system in bursting mode, I2P is enhanced by increasing g2P

and INaP is diminished by decreasing gNaP . As a result the upper knee shifts left and the lower
knee shifts right. The system transitions from bursting to silence with no possibility of tonic firing

in between. (B) Two dimensional bifurcation diagram showing how the state of the model changes

as the parameters ḡ2P and ḡNaP are altered. Black corresponds to silence, grey to bursting and
white to tonic firing.

to isoflurane action are altered in the modified Butera et al. model, and the resulting dy-

namics are studied using fast-slow decomposition. Blocking INaP is modeled by decreasing

the maximum conductance ḡ2P . Enhancing I2P is modeled by increasing ḡ2P . Consider

the bifurcation diagrams of the fast subsystem in figure 11.6A. The pink bifurcation dia-

gram corresponds to the full system in bursting mode with no isoflurane (similar to what

is described in sections 10.5 and 11.2.2). If isoflurane is added and ḡ2P is increased while

ḡNaP is decreased, the system moves from bursting to silence without the possibility of tonic

firing. This results from the saddle node bifurcation on the lower branch of ‘S’ crossing the

h-nullcline without the minimum of the limit cycles dipping below the h-nullcline. As that

happens, a globally attracting steady state is created for the system, which causes silence.

To further explore if the transition from bursting to tonic firing to silence is possible by

altering I2P and INaP , two-parameter bifurcation diagrams are analyzed. Figure 11.6B

shows a two-parameter bifurcation diagram for ḡ2P and ḡNaP , for which ρ = .2 and Iapp =

33.6nA and all other parameters are as in the appendix. The diagram is constructed using

full numerical simulations of the modified Butera et al. model. This diagram does not

capture the possibility of a bistable firing mode because only one initial condition is used per

square. Bursting is represented by grey squares, tonic firing by white squares, and silence by

black squares. Bursts are distinguished from tonic spiking by identifying particularly large

interspike intervals relative to other interspike intervals. The full classification algorithm is
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outlined in Butera et al. [BRS99b]. We note that this classification system used has trouble

distinguishing between borderline bursting and tonic firing because it is difficult to identify

the ‘particularly large’ interspike intervals during the smooth transition between the two

behaviors. Thus, borderline behavior leads to the scattered grey squares (bursting) in a

region dominated by white (tonic firing).

Figure 11.6B shows an example of a two-parameter bifurcation diagram for decreasing ḡNaP

and increasing ḡ2P . These parameter changes take system from bursting to silence or from

tonic firing to silence. It is not possible to transition from bursting to tonic firing to silence.

In fact, we generated these bifurcation diagrams over a large range of values for ρ and Iapp,

and this is the only diagram where the transition even came close (see arrow). These results

suggest that it is unlikely that the transition from bursting to tonic firing to silence occurs

in this model by altering ḡ2P and ḡNaP . Therefore, the bursting displayed by EINs and the

transition to silence seen with the application of isoflurane in experiments are most likely

due to an alternate burst mechanism and/or an alternate isoflurane target mechanism.

11.3. The Reduced and Modified Brodin et al. Model

In this section, the biophysical model by Brodin et al. [BTL+91] for the lamprey EIN

is reduced to a minimal model and modified to add the two-pore potassium and persistent

sodium currents. Parameter exploration and bifurcation analysis are used to study this

model, similar to section 11.2. Bursts in the Brodin et al. model are generated by a

different biophysical mechanism from the Butera et al. model, i.e. they are shaped by the

calcium-activated potassium current as described in figure 10.1C,D.

11.3.1. The Brodin et al. model is reduced then modified by adding TREK,

TASK, and persistent sodium currents. To further study the actions of anesthetics,

a biophysical model of a lamprey excitatory interneuron is developed using the model from

Brodin et al. as a base [BTL+91] [EWL+91] [WEL+92] [KHKA+01]. The original model

is designed specifically for simulation of the EIN in the locomotion CPG of the lamprey.

It contains four compartments, a somatic compartment and three passive dendritic com-

partments. The soma contains fast voltage-dependent sodium and potassium currents, an

ohmic leak current, a calcium-dependent potassium current, and an NMDA current. The
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NMDA current models the effect of applying D-glutamate to the soma and is required to

elicit bursting behavior.

In this section the model is systematically reduced to preserve the qualitative behavior of

the model neuron following a similar method to that in Butera & Clark [BC96]. First,

the passive dendrites are eliminated, which only reduces the load on the soma slightly. To

further reduce the model, gating variables that activate or inactivate on time scales much

smaller than the membrane time constant are assumed to activate or inactivate instanta-

neously. Thus, the activation and inactivation variables for the fast sodium current, m

and h, are set to their steady state values. As a final step in the reduction, we take h to

be 1 − n, where n is the activation of the potassium current. This is a standard spiking

reduction in Hodgkin-Huxley type models [BC96]. The state variable p, which models the

voltage-sensitive Mg2+ block of the NMDA channels, is also set to its steady state value.

These changes do not significantly alter the dynamics of the model for our purposes, as

it maintains the qualitative bursting behavior and same burst mechanism of the original

model. Our reduced Brodin et al. model is a three variable model with variables V , n

and [CaNMDA], where [CaNMDA] is the intracellular concentration of calcium that enters

through the NMDA channels. V and n are much faster than [CaNMDA].

The reduced model is then modified by adding the previously described TREK and TASK

currents, which are normalized in the same manner discussed in section 11.1.1. An instan-

taneously activating persistent sodium current with no inactivation variable is also added

(taken from model 2 in Butera et al. [BRS99a]). These currents are added because they

are targets of isoflurane, along with the NMDA current. See the appendix for a detailed

description of the reduced and modified Brodin et al. model.

11.3.2. Fast-slow analysis of bursting. The reduced and modified Brodin et al.

model described above contains three state variables: two fast (V , n) and one slow ([CaNMDA]).

As in section 10.5, a fast-slow decomposition is performed to examine the mechanism un-

derlying bursting, however it is slightly different because the slow variable is not the inacti-

vation of the persistent sodium current, h. Figure 11.7A shows a bifurcation diagram of the
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Figure 11.7. (A) Bifurcation diagram of the fast subsystem in the reduced and modified

Brodin et al. model is shown as the slow parameter [CaNMDA] varies. Solid lines correspond to

stable steady states. Dotted lines correspond to unstable steady states. ’S’: steady state curve
of fast subsystem projected onto V − [CaNMDA] plane. ’C’: limit cycle steady state curves.

’HB’: Hopf Bifurcation. ’HC’: Homoclinic bifurcation. ’[CaNMDA]∞’: superimposed [CaNMDA]-
nullcline. (B) The voltage trace corresponding to black trace in (A) is shown over time.

modified Brodin et al. fast subsystem where [CaNMDA] is the bifurcation parameter. The

pink ’reverse-S’ shaped curve (labeled ’S’) represents the steady-state values for the V -n

fast subsystem projected onto the V − [CaNMDA] plane. The pink curves emanating from

the Hopf bifurcation point (labeled ’HB’) on ‘S’ represent limit cycle solutions. Solid lines

correspond to stable steady states and limit cycles. Dotted lines correspond to unstable

steady states and limit cycles. The stable limit cycle terminates at a saddle node bifurca-

tion of limit cycles (point 4), i.e. stable and unstable limit cycle solutions collide and then

disappear. This particular bifurcation behaves similarly to the homoclinic bifurcation in the

Butera et al. model because the period of spiking is increasing towards the end of the burst.

For a range of [CaNMDA] there is bistability between the stable limit cycle solutions and

the stable steady-state solutions. This bistability plays a key role in the bursting displayed

here.

To understand how the slow dynamics interact with the fast subsystem, the [CaNMDA]-

nullcline ([CaNMDA]∞(V )) is superimposed onto the bifurcation diagram (blue curve in

figure 11.7A). The trajectory of the bursting dynamics is overlaid in black. Figure 11.7B

shows the voltage trace corresponding to this trajectory over time with points 1-4 corre-

sponding to the same points in (A). When V is to the right of [CaNMDA]∞, d[CaNMDA]
dt < 0

and [CaNMDA] is slowly decreasing. When V is left of [CaNMDA]∞, d[CaNMDA]
dt > 0 and
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Figure 11.8. (A) Hypothesis #1. Beginning with the system in bursting mode (Pink),

increase ḡ2P and decrease ḡNaP in accordance with isoflurane. The upper and lower knees shift

left (Green). The system transitions from bursting to silence without the possibility of tonic
firing. (B) Two dimensional bifurcation diagram showing how the state of the model changes as

the parameters ḡ2P and gNaP are altered in accordance with isoflurane. Black corresponds to

silence, grey to bursting and white to tonic firing.

[CaNMDA] is slowly increasing. If the fast subsystem begins on the lower stable branch

of ’S’ (point 1), [CaNMDA] decreases and the trajectory moves to the left as indicated by

black arrows. Once the trajectory reaches the saddle node bifurcation (point 2), the system

no longer has a stable quasi steady-state to adhere to. Therefore, the trajectory jumps up

to the stable limit cycle (point 3) where the fast subsystem oscillates. During these oscilla-

tions, V is to the left of [CaNMDA]∞ so [CaNMDA] increases and the trajectory moves to

the right. The slow variable [CaNMDA] continues to increase until the limit cycle disappears

via the saddle node bifurcation of limit cycles (point 4). This results in the trajectory falling

back down to the lower stable branch of ‘S’ (point 1). This pattern repeats, creating the

bursting seen in figure 11.7B. This is classified as top-hat bursting, as mentioned in section

10.5 [Izh07].

11.3.3. Altering ḡ2P and ḡNaP does not show the transition from bursting to

tonic to silent. Recall that many of the experiments show a transition from bursting to

tonic firing to silence as the concentration of isoflurane is increased (figure 9.5), while others

show a transition directly from bursting to silence. Here, the reduced and modified Brodin

et al. model is studied to see if these transitions are both possible by modeling the effects

of isoflurane. We model the action of isoflurane by decreasing the maximum conductance

of INaP and increasing the maximum conductance of I2P .
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Consider the set bifurcation diagrams of the fast subsystem in figure 11.8A. The pink

bifurcation diagram corresponds to the system in burst mode with no isoflurane (similar

to what was described in section 11.3.2). When ḡ2P is increased and ḡNaP is decreased,

the system moves from bursting to silence without the possibility of tonic firing (green

bifurcation diagram). This results from the saddle node bifurcation on the lower left knee

of ’S’ crossing the [CaNMDA]-nullcline without the minimum of the limit cycles dipping

below the h-nullcline. As that happens, a globally attracting steady state is created for the

system, which causes silence.

To further explore if the transition from bursting to tonic firing to silence is possible by

altering ḡ2P and ḡNaP , two-parameter bifurcation diagrams are generated as in section

11.2.3. Figure 11.8B shows a typical two-parameter bifurcation diagram for ḡ2P and ḡNaP ,

for which ρ = .4 and ḡNMDA = .29µS and all other parameters are as in the appendix.

Bursting is represented by grey squares, tonic firing by white squares, and silence by black

squares. As ḡ2P increases and ḡNaP decreases in accordance with increasing the concen-

tration of isoflurane, the system transitions from bursting through a scattered region of

tonic firing to bursting and then to silence. The only possible transition to silence is from

bursting mode. The scattered bursting seen in the mostly tonic firing section (upper-middle

portion of diagram) occurs because of the classification system used (see section 11.2.3). It

is not possible to transition from bursting to tonic firing to silence. In fact, we generated

these bifurcation diagrams over a large range of values for ρ and ḡNMDA and do not see the

transition from bursting to tonic to silence. These results suggest that it is unlikely that

the transition from bursting to tonic firing to silence occurs in this model by altering ḡ2P

and ḡNaP .

11.3.4. Altering ḡ2P and ḡNMDA does show the transition from bursting to

tonic to silent. As mentioned in section 9.5, isoflurane is known to block the NMDA

currents, as well as effecting the two-pore potassium and persistent sodium currents. Thus,

isoflurane may block the neural activity underlying organized movement in the isolated

spinal cord by blocking INMDA, blocking INaP and enhancing I2P , or any combination of

these currents. In this section, we model isoflurane by decreasing the maximum conductance

ḡNMDA, and increasing ḡ2P .
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Figure 11.9. (A) Hypothesis #2. Beginning with the system in bursting mode (Pink),
increase ḡ2P and decrease ḡNMDA in accordance with isoflurane. The upper and lower knees shift

left while bistability is lost through a SNIC bifurcation (Green). The system transitions from

bursting to tonic firing. Further increase ḡ2P and decrease ḡNMDA to create a globally attracting
steady state (Black) and the system is silent. (B) Two dimensional bifurcation diagram showing

how the state of the model changes as the parameters ḡ2P and ḡNMDA are altered in accordance
with isoflurane. Black corresponds to silence, grey to bursting and white to tonic firing.

Consider the set of bifurcation diagrams of the fast subsystem in figure 11.9A. The pink bi-

furcation diagram corresponds to the full system in bursting mode with no isoflurane. When

ḡ2P is increased and ḡNMDA is decreased, the system moves from bursting to tonic firing as

bistability is lost through a SNIC bifurcation (green) before the saddle node bifurcation on

the lower left knee of ‘S’ crosses the [CaNMDA]-nullcline. This is a sufficient condition for

tonic firing. If ḡ2P is increased further and ḡNMDA is decreased further, the system moves

from tonic firing to silence (black) as the saddle node bifurcation on the lower left knee of

‘S’ crosses the [CaNMDA]-nullcline and a globally attracting steady state is created.

To further explore how the transition from bursting to tonic firing to silence occurs by

altering I2P and INMDA, two-parameter bifurcation diagrams are analyzed. Figure 11.9B

shows a typical two-dimensional bifurcation diagram for ḡ2P and ḡNMDA, for which ρ = .4

and ḡNaP = .01µS and all other parameters are as in the appendix. As before, bursting

is represented by grey squares, tonic firing by white squares, and silence by black squares.

As ḡ2P increases and ḡNMDA decreases in accordance with increasing the concentration

of isoflurane, the system transitions from bursting to tonic firing to silence. We generated

these bifurcation diagrams over a large range of values for ρ ḡNaP and see that the transition

from bursting to tonic firing to silence very robust. In fact, you can see that decreasing

ḡNMDA alone will give this transition.
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The analysis of the reduced and modified Brodin et al. model for EINs suggest that it is

unlikely that isoflurane blocks neural activity underlying organized movement in the isolated

spinal cord by targeting only ḡ2P and ḡNaP . Altering these two parameters allowed for the

transition from bursting to silence, but not for the transition from bursting to tonic firing

to silence with increased concentration of isoflurane. However, altering ḡ2P and ḡNMDA

showed both transitions in a very robust way. Thus, this could be the possible mechanism

by which isoflurane acts in the lamprey EINs. In fact, the transition from bursting to tonic

firing to silence does not require enhancing ḡ2P and can be achieved by blocking ḡNMDA

alone. Alternatively, if only ḡ2P is enhanced, the transition from bursting to tonic firing

will not occur and the system will transition from bursting to silence.

Of the parameters tested, blocking ḡNMDA is necessary and sufficient to take the model

from bursting to tonic firing to silence, as well as from bursting to silence. Blocking ḡNaP

and enhancing ḡ2P aid in causing the transition through tonic firing by shifting the steady

state curve of the fast subsystem to the left, however, they are not necessary. In order to

see the transition from bursting to tonic firing to silence, altering ḡ2P and ḡNaP must not

cause the transition to silence before altering ḡNMDA has moved the system to tonic firing.

Blocking ḡNMDA decreases the amount of calcium entering the cell. The decreased con-

centration of intracellular calcium, modeled by [CaNMDA], reduces the calcium-activated

potassium current IKCa
. This current is dominant in shaping the bursting dynamics of this

model. As IKCa
is reduced, the model transitions from bursting to tonic firing. However, it

is unclear if ḡNMDA is necessary to cause the transition to tonic firing, or if decreasing ḡKCa

would have a similar effect. More work needs to be done to figure out the exact mechanisms.
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CHAPTER 12

Conclusion

Experimental data clearly indicates differences among anesthetics with regard to the

sites of anesthetic action. Understanding the mechanisms leading to these differences will

provide insight into specific anesthetic actions and provide a conceptual framework upon

which to develop new anesthetics [AJC05]. Because of its relative simplicity, the lamprey

isolated spinal cord can serve as a useful tool to investigate the neurophysiological and

pharmacological processes that underlie anesthetic immobilizing action from both an ex-

perimental approach and a modeling approach [Jin05]. Working in collaboration with Dr.

Steven Jinks, we have constructed and analyzed mathematical models for the lamprey EIN

that have begun to uncover the mechanisms underlying the action of isoflurane.

12.1. Summary

The previous chapter used a canonical bursting model and a reduced biophysical model

of a lamprey EIN to study the mechanisms of action of the volatile anesthetic isoflurane.

Isoflurane is known to target the two-pore potassium current (I2P ) [PHL+99] [FDL+96], per-

sistent sodium current (INaP ) [SPLIB98], and NMDA current (INMDA) [SAD+03] [DPB+07].

Therefore, we modeled the effects of isoflurane by enhancing the maximal conductance of

the two-pore potassium current and decreasing the maximal conductance of the persis-

tent sodium and NMDA currents. Preliminary experimental results indicate that in some

preparations, EINs transition from bursting to tonic firing to silence as the concentration

of isoflurane is increased. In other preparations, the EINs transition directly from bursting

to silence as the concentration of isoflurane is increased. We found that in the modified

Butera et al. [BRS99a] and Brodin et al. [BTL+91] models, the transition from bursting

to tonic to silence was not possible when the two-pore potassium and persistent sodium

conductances were altered in accordance with the action of isoflurane. However, we found

that in the modified Brodin et al. model, the transition from bursting to tonic to silence
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was seen when the two-pore potassium conductance was enhanced and the NMDA conduc-

tance was blocked. In fact, blocking INMDA alone is both necessary and sufficient to cause

the transition from bursting to tonic to silence in this model as well as the transition from

bursting to silence. Blocking INMDA reduces the concentration of intracellular calcium,

which reduces the calcium-activated potassium current, IKCa
. More work needs to be done

to determine which current (INMDA or IKCa
) is responsible for the transition from bursting

to tonic firing. These results suggest that isoflurane produces immobility through action

on the NMDA current, or possibly the calcium-activated potassium current, in conjunction

with the persistent sodium and/or two-pore potassium currents.

12.2. Future Experimental Work

Both models analyzed in the previous chapter describe the intrinsic properties of a single

neuron. However, all experimental work regarding the effect of isoflurane in the lamprey has

been conducted in a network setting where the motor neuron activity is monitored through

ventral root recordings [JAD+05]. Therefore, the results in chapter 11 are not directly com-

parable to experimental data from figure 9.5 and in Jinks et al. [JAD+05]. A step towards

reconciling this problem from an experimental standpoint is to use intracellular recordings

to gather specific cellular EIN properties. Previous studies have performed intracellular

recordings from EINs in the isolated lamprey spinal cord preparation (see [GW85] [BG87]

[WG87] [HBG89] [WBG+89]). However, anesthetics have not been applied during these

intracellular recordings. Intracellular recordings during anesthetic application could deter-

mine if single EINs transition from bursting to tonic spiking to silence, or directly from

bursting to silence, as the concentration of isoflurane is increased. With these experiments,

more accurate mathematical modeling and analysis may be performed.

12.2.1. Apply isoflurane during intracellular EIN recordings. The biophysical

model proposed in section 11.3 indicates a specific mechanism of anesthetic action in the

lamprey EINs. Namely, that isoflurane causes the transition from bursting to tonic to

silence by blocking INMDA, which indirectly activates IKCa
. One possible experiment is to

apply D-glutamate to elicit oscillations while recording from an EIN intracellularly, then

apply isoflurane and study the resulting transition to silence. If the EIN transitions from
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bursting to tonic to silence, the modified Brodin et al. model predicts that applying NMDA

antagonists will produce the same result, indicating that isoflurane’s main effects are on

NMDA receptors.

Through ventral root recordings, Jinks has shown that NMDA antagonists do not mimic

the action of isoflurane [Jinks, unpublished]. As the concentration of isoflurane increases,

burst duration is reduced and burst frequency is increased, before causing tonic firing and

then silence. When Jinks applies NMDA antagonists, both burst duration and burst fre-

quency are reduced before causing silence with no transition through tonic firing. Moreover,

intracellular recordings in the presence of NMDA antagonists have been done. Wallèn et al.

[WG87] used intracellular EIN recordings to study the effect of applying NMDA blockers in

the presence of TTX. TTX eliminates the spiking behavior, so the remaining burst envelope

may be studied. They found that blocking NMDA reduced the frequency of the remaining

membrane oscillations until the cell stopped oscillating. However, it is unclear if the cell

transitioned from bursting to tonic firing in this experiment because the spiking currents

were blocked. A similar experiment should be repeated without TTX to monitor changes

in spiking, as well.

Alternatively, if an NMDA receptor agonist is added to the system in small percentage steps

and intracellular EIN recordings show the cells transitioning from silence to tonic firing to

bursting, then the Brodin et al. model suggests that isoflurane will reproduce the result.

Similarly, if the NMDA agonist is washed out of the preparation in small percentage steps

and the EINs transition from bursting to tonic firing to silence, the Brodin et al. model

suggests that isoflurane will reproduce the result. There are currently no known studies of

this type.

12.2.2. Reduce intracellular Ca2+ concentration during intracellular EIN

recordings. A second possible experiment is to apply D-glutamate to elicit oscillations

while performing intracellular recordings, then remove Ca2+ by perfusion with a Ca2+ free

solution, or simply block all calcium currents with an antagonist. The Ca2+ free solution

can be achieved by replacing Ca2+ with Ba2+ (as in Grillner et al. [GW85], Hill et al.

[HBG89], and Wallèn et al. [WG87]), or by replacing Ca2+ with Mn2+ (as in Wallèn et
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al. [WBG+89]). The latter study addressed the afterhyperpolarization during spiking, and

did not study burst dynamics. The former three studies analyzed changes in bursting while

spiking currents were blocked with TTX. If a similar experiment is repeated without TTX

and the EIN transitions from bursting to tonic to silence, the modified Brodin et al. model

predicts that applying isoflurane will reproduce the same result, indicating that isoflurane’s

main effects are on the calcium currents. While calcium is not considered a main target of

isoflurane in this work, several studies have shown that isoflurane is able to depress calcium

currents [Stu94] [HL96] [JWL+09], and therefore might be a main target in lamprey EINs.

A similar experiment is to apply D-glutamate to elicit oscillations while performing intracel-

lular recordings and then block the calcium-activated potassium current with an antagonist.

If EIN transitions from bursting to tonic to silence, the modified Brodin et al. model sug-

gests that applying isoflurane will reproduce the same result, indicating that isoflurane’s

main effects are on the IKCa
current.

12.3. Future Modeling Work

12.3.1. Further analysis of single cell model. Even in the absence of experimental

recordings, further modeling work can and should continue. Using the reduced and mod-

ified Brodin et al. model (section 11.3), a parameter study can be continued looking for

qualitative agreement with Jinks experiments performed while investigating the mechanism

of anesthetic action. The model can be analyzed for qualitative changes in burst duration

and burst frequency as parameters relevant to isoflurane action are altered. Preliminary

analysis has been done on this subject, but results so far remain inconclusive.

Additional experimental work indicates that when NMDA antagonists are applied to the

disinhibited rhythm, both burst duration and burst frequency decrease [Jinks, unpublished ].

The bifurcation scenario of the modified Brodin et al. model (section 11.3) predicts a

decrease in burst duration but an increase in burst frequency as NMDA antagonists are

applied. This latter characteristic disagrees with what Jinks sees, but more analysis needs

to be done in order to make decisive conclusions.
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12.3.2. Analyze network of excitatory interneurons in one and many seg-

ments. The work presented here modeled and analyzed single cell bursting dynamics.

However, the disinhibited rhythm in the lamprey spinal cord consists of a population of

EINs in each segment [BG87], i.e. CPG bursts might be inherently generated by network

dynamics rather than single cell dynamics. A network of EINs in can be built using the sin-

gle cell model as a base. First, the excitatory synapses may be added with AMPA/kainate

currents as in Kozlov et al. [KHKA+01]. Then, a model of a population of EINs may be

constructed and studied. In each scenario, the effect of isoflurane may be studied by altering

relevant parameters such as the NMDA conductance, persistent sodium conductance and

two-pore potassium conductance.

12.3.3. Expand topology of network. Noting that EINs project only two-to-three

segments in both the rostral and caudal directions [BK99] [CG03] and that normal phase

delays can be obtained in the lamprey cord from as few as six segments [MG92], this

connection topology can be used to create a model of several segments in the disinhibited

spinal cord. Then, the effect of isoflurane on coordination may be studied on the network

level. Anesthetic effects may be broken into two components: synaptic vs. intrinsic effects.

Anesthetic effects on neuronal coordination may also be studied.

It should be noted that the disinhibited rhythm generated entirely from excitatory interneu-

rons is not behaviorally similar to the original fictive swimming rhythm. In the complete

rhythm, the spinal CPG oscillators undergo an alternating left-right active behavior down

the length of the spinal cord [BG85] [BG86]. The disinhibited rhythm, on the other hand,

experiences lower frequency synchronous bursts throughout the spinal cord [Jinks, unpub-

lished ]. For this reason, one may model both excitatory (EIN) and commissural inhibitory

(CC) interneurons that make up the lamprey CPG. The lateral inhibitory (LIN) interneu-

rons may be ignored because they are not crucial for burst generation or termination,

whereas the EIN and CC interneurons are [CG03]. EIN interneurons project 2-3 segments

in the rostral and caudal directions [BK99] [CG03]. CC interneurons project 2-3 segments

rostrally and about 20 segments cross-caudally [CG03]. Using this topology, a chain of oscil-

lators can be created to model the spinal cord. It is then possible to separate out the rostral,

middle, and caudal thirds in order to mimic Jinks’ experiments [Jin05] computationally by
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incorporating the actions of isoflurane in the middle segment to study the response in the

rostral and caudal segments.
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APPENDIX B

B.1. Modified Butera et al. model

The minimal Butera et al. [BRS99a] model is modified by adding the two-pore potas-

sium currents, TREK and TASK to study isoflurane modulation of I2P and INaP conduc-

tances.

C
dV

dt
= Iapp − INa − IK − INaP − (1− ρ)I∗L − ρI2P − Isyn(B.1)

dh

dt
=

h∞(V )− h
τh(V )

(B.2)

dn

dt
=

n∞(V )− n
τn(V )

(B.3)

d2s

dt2
= −2α

ds

dt
− α2 s(B.4)

INa = ḡNam
3
∞(V )(1− n)(V − ENa)(B.5)

IK = ḡKn
4(V − EK)(B.6)

INaP = ḡNaPm∞,p(V )h(V − ENa)(B.7)

I∗L = ḡL(V − E∗L)(B.8)

I2P = ḡ2PS2P (V )(V − E2P )(B.9)

Isyn = ḡsyns(V − Esyn)(B.10)

h∞(V ) =
(
1 + e[(V−θh)/σh]

)−1
(B.11)

τh = τ̄h/ cosh [(V − θh)/(2σh)](B.12)

n∞(V ) =
(
1 + e[(V−θn)/σn]

)−1
(B.13)

τn = τ̄n/ cosh [(V − θn)/(2σn)](B.14)

m∞(V ) =
(
1 + e[(V−θm)/σm]

)−1
(B.15)

m∞,p(V ) =
(
1 + e[(V−θmp )/σmp ]

)−1
(B.16)



B.1. MODIFIED BUTERA ET AL. MODEL 140

S2P (V ) =

[
(.3949 e(.0169V ) − .0500)

(V + 122.2846)
+

(.7509 e(.0133V ) − .0500)
(V + 203.7030)

]
(B.17)

Model Parameters:

ENa = 50 mV ḡNa = 28 nS θm = -34 mV θh = -48 mV

EK = -85 mV ḡK = 11.2 nS σm = -5 mV σh = 6 mV

ḡNaP = 2.8 nS θn = -29 mV τ̄h = 10,000 ms

EL = -65 mV ḡL = 2.8 nS σn = -4 mV θmp = -40 mV

E2P = -90 mV ḡ2P = 1 nS τ̄n = 10 ms σmp = -6 mV

Esyn = 0 mV ḡsyn = 1 nS∗

C = 21 pF ρ ∈ (0, .6)

∗ ḡsyn = 1 nS only when measuring burst threshold. ḡsyn = 0 nS otherwise.

Initial Conditions:

V (0) = -65 mV, h(0) = .02, n(0) = .7, s(0) = 0, sp(0) = α2 ∗∗

∗∗ sp(0) = α2 only when measuring burst threshold. sp(0) = 0 otherwise.

Definition of Model Parameters and Variables:

Iapp = applied current (pA)

INa = sodium current (pA)

IK = potassium current (pA)

INaP = persistent sodium current (pA)

I∗L = normalized leak current (pA)

I2P = two-pore potassium current (pA)

Isyn = synaptic current used to measure burst threshold (pA)

ḡNa, ḡK , ḡNaP , ḡL, ḡ2P , ḡsyn = maximal conductance for Na+, K+, persistent sodium,

leak, two-pore potassium, and synaptic currents (nS)

ENa, EK , EL, E2P , Esyn = equilibrium potentials for Na+, persistent sodium, K+, leak,

two-pore potassium, and synaptic currents (mV)

V = membrane potential (mV)

C = membrane capacitance (pF)



B.1. MODIFIED BUTERA ET AL. MODEL 141

t = time (ms)

m∞(V ),m∞,p(V ) = steady-state activation functions of sodium and persistent sodium cur-

rents

n = activation variable of K+ current

n∞ = steady-state activation function of K+ current

τn = rate constant for activation variable of K+ current

h = inactivation variable of persistent sodium current

h∞ = steady-state inactivation function of persistent sodium current

τh = rate constant for inactivation variable of persistent sodium current

S2P (V ) = steady-state activation function for the two-pore potassium current

s = activation of synaptic current

ρ = fraction of normalized leak current attributed to the two-pore potassium current

E∗L, g∗L = equilibrium potential and maximal conductance for the normalized leak current,

as defined in section 11.1.1
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B.2. Reduced and modified Brodin et al. model

The Brodin et al. model [BTL+91] is reduced and modified as described in section

11.3.1 to study isoflurane modulation of I2P , INaP and INMDA conductances.

C
dV

dt
= Iapp − INa − IK − INaP − (1− ρ)I∗L − ρI2P − IKCa

− INMDA(B.18)

dn

dt
= αn(1− n)− βn(B.19)

d[CaNMDA]
dt

= p∞ρNMDA(ENMDA − V )− δNMDA[CaNMDA](B.20)

INa = ḡNam
3
∞(V )(1− n)(V − ENa)(B.21)

IK = ḡKn
4(V − EK)(B.22)

INaP = ḡNaPm∞,p(V )(V − ENa)(B.23)

I∗L = ḡL(V − E∗L)(B.24)

I2P = ḡ2PS2P (V )(V − E2P )(B.25)

IKCa
= ḡKCa

[CaNMDA](V − EK)(B.26)

INMDA = ḡNMDAp∞(V − ENMDA)(B.27)

αn =
A(V −B)

1− e(B−V )/C
(B.28)

βn =
A(B − V )

1− e(V−B)/C
(B.29)

p∞ =
αp

(αp + βp)
(B.30)

αp = AeV/C(B.31)

βp = A[Mg]e−V/C(B.32)

m∞ =
αm

(αm + βm)
(B.33)

αm =
A(V −B)

1− e(B−V )/C
(B.34)

βm =
A(B − V )

1− e(V−B)/C
(B.35)

m∞,p(V ) =
1

(1 + eV−θm/σm)
(B.36)
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S2P (V ) =

[
(.3949 e(.0169V ) − .0500)

(V + 122.2846)
+

(.7509 e(.0133V ) − .0500)
(V + 203.7030)

]
(B.37)

Model Parameters:

ENa = 50 mV ḡNa = 1 µS θm = -40 mV

ḡNaP = 1 µS σm = -6 mV

EK = -80 mV ḡK = .5 µS ρNMDA = .0005∗nmda ms−1mV−1)

ḡKCa
= .04 µS δNMDA = .002 ms−1

EL = -70 mV ḡL = .05 µS nmda = .8

E2P = -90 mV ḡ2P = 1 µS

ENMDA = 0 mV ḡNMDA = .45∗nmda µS

C = .05 nF ρ ∈ (0, .6)

m n p

A .2 (mV−1ms−1) .02 (mV−1ms−1) .7 (ms−1)

α B -45(mV) -45(mV)

C 1(mV) .8(mV) 10(mV)

A .06 (mV−1ms−1) .005 (mV−1ms−1) .0056 (mM−1ms−1)

β B -54 (mV) -35 (mV)

C 20 (mV) .4 (mV) 10 (mV)

[Mg] 1.8 mM

Initial Conditions:

V (0) = -70 mV, n(0) = 0, [CaNMDA](0) = 6

Definition of Model Parameters and Variables:

Iapp = applied current (nA)

INa = sodium current (nA)

IK = potassium current (nA)

INaP = persistent sodium current (nA)

I∗L = normalized leak current (nA)

I2P = two-pore potassium current (nA)
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IKCa
= calcium-dependent potassium current (nA)

INMDA = Bath-activated NMDA current (nA)

ḡNa, ḡNaP , ḡK , ḡKCa
, ḡL, ḡ2P , ḡNMDA = maximal conductance for Na+, persistent sodium,

K+, Ca2+-dependent K+, leak, two-pore potassium, and NMDA currents (µS)

ENa, EK , EL, E2P , ENMDA = equilibrium potentials for Na+ and persistent sodium, K+,

leak, two-pore potassium, and NMDA currents (mV)

V = membrane potential (mV)

C = membrane capacitance (nF)

t = time (ms)

p∞ = steady-state fraction of open NMDA channels

αp, βp = rate constants describing the unblocking and blocking of the NMDA channel,

respectively

m∞(V ),m∞,p(V ) = steady-state activation functions of sodium and persistent sodium cur-

rents

n = activation variable of K+ current

αn, αm = rate by which the potassium and sodium channels switch from a closed to an

open state

βn, βm = rate by which the potassium and sodium channels switch from an open to a closed

state

[CaNMDA] = concentration of calcium that has entered the cell through the NMDA channel

ρNMDA = rate of calcium ion influx

δNMDA = rate of calcium ion decay

S2P (V ) = steady-state activation function for the two-pore potassium current

ρ = fraction of normalized leak current attributed to the two-pore potassium current

E∗L, g∗L = equilibrium potential and maximal conductance for the normalized leak current,

as defined in section 11.1.1
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