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Abstract Many neuronal circuits driving coordinated locomotion are composed of
chains of half-center oscillators (HCOs) of various lengths. The HCO is a common
motif in central pattern generating circuits (CPGs); anHCO consists of two neurons, or
two neuronal populations, connected by reciprocal inhibition. Tomaintain appropriate
motor coordination for effective locomotion over a broad range of frequencies, chains
of CPGs must produce approximately constant phase-differences in a robust manner.
In this article, we study phase-locking in chains of nearest-neighbor coupled HCOs
and examine how the circuit architecture can promote phase-constancy, i.e., inter-HCO
phase-differences that are frequency-invariant.Weuse twomodelswith different levels
of abstraction: (1) a conductance-based model in which each neuron is modeled by
the Morris–Lecar equations (the ML-HCO model); and (2) a coupled phase model in
which the state of eachHCO is captured by its phase (the phase-HCOmodel).We show
that one of four phase-waves with inter-HCO phase-differences at approximately 0,
25, 50 or 75% arises robustly as a result of the inter-HCO connection topology, and its
robust existence is not affected by the number of HCOs in the chain, the difference in
strength between the ascending and descending nearest-neighbor connections, or the
number of nearest-neighbor connections. Our results show that the internal anti-phase
structure of the HCO and an appropriate inter-HCO connection topology together can
provide a mechanism for robust (i.e., frequency-independent) limb coordination in
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segmented animals, such as the 50 % interlimb phase-differences in the tripod gate
of stick insects and cockroaches, and the 25 % interlimb phase-differences in crayfish
and other long-tailed crustaceans during forward swimming.

Keywords Phase constancy · Phase-wave · Central pattern generator · Half-center
oscillator · Metachronal coordination

Mathematics Subject Classification 34C15 · 92C20

1 Introduction

A fundamental challenge in neuroscience is to understand how nervous systems pro-
duce coordinated rhythmic motor behaviors, such as walking, swimming, breathing,
and chewing. Often these coordinated rhythms must be robust in the sense that they
need to be maintained over a significant variation in frequency. For example, when
we walk, the left leg and the right leg move in anti-phase (i.e., the limbs are phase-
locked with a phase-difference of 50 % of the period), regardless of the walking
frequency. This frequency-invariant phase-locking is known as phase constancy and
is commonly seen in animal locomotion (Hill et al. 2003). Other examples of phase
constancy include: (1) the symmetric tripod walking gait in cockroaches and stick
insects, in which neighboring limbs are always in anti-phase (Daun-Gruhn and Toth
2011; Proctor et al. 2010); (2) forward swimming of long-tailed crustaceans such as
lobsters, shrimp, or crayfish, in which four or five pairs of limbs move rhythmically in
a back-to-front metachronal wave with 25 % phase-differences between neighboring
limbs (Mulloney and Smarandache-Wellmann 2012), and (3) the undulatory locomo-
tion in lamprey and leech swimming, in which the approximate 100 and 32 body
segments produce a wave-like flexural movement with an approximate 1 and 3 %
phase-lag between neighboring segments such that the undulations of a single body
length are maintained (Sigvardt and Miller 1974; Kristan et al. 1974).

Almost all rhythmic movements in animals are driven, at least in part, by networks
of interconnected central pattern generators (CPGs). CPGs are specialized neuronal
circuits in the central nervous system that produce endogenously rhythmic activi-
ties without requiring afferent feedback or rhythmic input (Hooper 2001). The kernel
of many CPGs, especially those associated with locomotor rhythms, are half-center
oscillators (HCOs) (Mulloney and Smarandache 2010; Ijspeert 2008; Grillner 2006;
Hooper 2001). An HCO consists of two neurons, or two neuronal populations, con-
nected by reciprocal inhibition. The mutual inhibition, along with some form of slow
adaptation, produces anti-phase oscillations between the two internal units in which
each unit alternates between an active state and a suppressed state (Skinner et al.
1994; Wang and Rinzel 1992). Many neuronal circuits driving body or limb move-
ments in segmented animals are composed of a chain of HCOs of different lengths
(Mulloney and Smarandache 2010; Ijspeert 2008; Stein 2007; Grillner 2006; Marder
and Calabrese 1996; Cohen andKiemel 1993). A chain with four or five pairs of HCOs
produces the metachronal swimmeret coordination in long-tailed crustaceans (Mul-
loney and Smarandache-Wellmann 2012), a chain of 3 HCOs helps produce different
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gaits in the legged locomotion of insects (Daun-Gruhn and Toth 2011; Proctor et al.
2010), and a chain of approximately 100 HCOs drives the undulatory body movement
of lamprey (Cohen et al. 1992). All of these systems display phase-waves in chains
of HCOs that are robust to variations in frequency. (Here, we define phase-waves to
be phase-locked states with approximately constant phase-differences between neigh-
boring segments). Therefore, an understanding of the neural underpinning of robust
locomotion relies on an understanding of phase-waves in chains of HCOs of different
lengths.

This article presents a general mathematical treatment of phase-waves in chains
of nearest-neighbor coupled HCOs with an arbitrary length. The motivation for this
work stems primarily from the study of the forward-swimming in crustaceans (Zhang
et al. 2014; Mulloney and Smarandache-Wellmann 2012). As mentioned above, cray-
fish, krill, and other long-tailed crustaceans swim forward by rhythmically paddling
pairs of abdominal limbs, known as swimmerets, in a back-to-front phase-wave with
25% inter-segmental phase-differences despite large variations in the stroke frequency.
Smarandache et al. (2009) showed that, in crayfish, this back-to-front phase-wave is
centrally generated by a chain of four HCOs with a particular asymmetric inter-HCO
connection topology. Recently, we demonstrated that the half-center structure of the
HCO and the experimentally-identified asymmetric inter-HCO connection topology
Zhang et al. (2014) combine to provide a robust mechanism for generating this 25 %
phase-constant rhythm.This previous result is for the crayfish swimmeret neural circuit
that is composed of a chain of four HCOs. As mentioned above, locomotor behav-
iors of many other animals are driven by chains of HCOs of different lengths. In
this article, we extend the analysis in Zhang et al. (2014) to chains of HCOs with
an arbitrary length. We also relax several crucial assumptions made in Zhang et al.
(2014) about the inter-HCO connections. Specifically, we study the existence and
stability of four robust phase-waves (in-phase, 25 % phase-locking, anti-phase and
75 % phase-locking), or small deviations from these exact phase-waves, in chains
of n HCOs with nearest-neighbor inter-HCO connections for any integer n ≥ 2.
We note that a large body of previous work has addressed the existence and sta-
bility of phase-locked states in chains of oscillators (e.g., Várkonyi et al. (2008),
Skinner and Mulloney (1998), Ren and Ermentrout (1998), Kopell and Ermentrout
(1986)). Here, we focus on how the internal structure of the HCOs combines with
the inter-HCO connectivity to influence the conditions for the robust existence and
stability of phase-waves and thus the conditions for these states to display phase con-
stancy.

The outline for the remainder of this paper is as follows. In Sect. 2, we con-
struct a conductance-based model of a chain of HCOs (the ML-HCO model) and
examine the effects of the network topology of the nearest-neighbor inter-HCO con-
nections on phase-locking. In the ML-HCO model, each internal neuron in an HCO
is modeled by the Morris-Lecar equations so that we can examine the robustness of
phase-locking against variations in the intrinsic frequency of each HCO. We observe
that one of four phase-waves [in-phase (0 %), 25 %, anti-phase (50 %), or 75 %]
arises in chains of HCOs with various lengths, largely independent of the frequency
of oscillation, as long as the internal units in each HCO remain close to their nor-
mal anti-phase state. In Sect. 3, we develop a coupled phase model (the phase-HCO
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model) for a chain of HCOs in which the state of each HCO is given by a single
variable, its phase. This phase reduction allows us to derive closed-form expressions
of the existence and the stability conditions of the four different robust phase-waves
and to demonstrate how the robustness of the phase-waves is a consequence of the
half-center structure of the HCO and of the inter-HCO connection topology. In Sect.
4, we consider the effects of variations in the number and strength of the ascend-
ing and descending inter-HCO connections. Finally, in Sect. 5, we analyze robust
phase-locking in rings of HCOs with different numbers of HCOs and contrast it
to that in the chains. Our results imply that the mutual inhibition within the HCO
together with an appropriate inter-segmental connection topology in chains of HCOs
promote phase constancy and are thus functionally significant for animal locomo-
tion.

2 Robust phase-waves in chains of HCOs: results
of a conductance-based model

In this section, we consider a conductance-based cellular model for chains of nearest-
neighbor coupled HCOs of various lengths. We proceed as follows: (1) We first
construct a model for each local HCO, and then (2) we describe the fundamentally
different inter-HCO connection topologies and couple the HCOs to obtain a full model
of the neural circuit. Using this model, we perform a series of numerical experiments
to show that different inter-HCO connection topologies lead to different robust phase-
waves.

2.1 A conductance-based model of chains of HCOs

2.1.1 Dynamics of the isolated HCOs

Recall that HCOs are composed of two neurons (or two neuronal populations) cou-
pled by strong mutual inhibition. Various models have been proposed to describe
the dynamics of HCOs (e.g., Clewley (2011), Taylor et al. (2002), Skinner et al.
(1994), Wang and Rinzel (1992)). Here, we use the HCO model described by Skin-
ner et al. (1994): The intrinsic dynamics of each neuron in the HCO is modeled
by the Morris–Lecar equations, which include an instantaneous voltage-dependent
inward Ca2+ current, an outward K+ current, and a linear leakage current. The
state of each neuron in the HCO model is described by two dynamic variables: the
membrane potential Vi , and the gating variable Ni for the K+ current, in which i
is the index of the internal neuron (i = 1, 2). The synaptic conductance of the
reciprocal inhibition is modeled by an instantaneous function of the presynaptic
membrane potential. Note that the model does not include ionic currents that under-
lie fast spikes. Therefore, the voltage of the model during the active state should
be interpreted as the actual membrane potential of a non-spiking cell, or it can be
interpreted as the voltage envelope during a burst of action potentials in a spiking
neuron.
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The HCO model equations are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
dVi
dt

= −gCam∞(Vi )
(
Vi − ECa

)
− gKNi

(
Vi − EK

)
− gL

(
Vi − EL

)

+ Ibias − glocalsyn s j→i (Vj )
(
Vi − E local

syn

)
,

dNi

dt
= φN

τN (Vi )

(
N∞(Vi ) − Ni

)
, (i, j = 1, 2; i �= j)

(1)

in which gCa is the maximum conductance of the Ca2+ current, gK is the maximum
conductance of the K+ current, gL is the conductance of the leakage current, and the
product glocalsyn s j→i is the postsynaptic conductance in neuron i due to activity in neuron

j ; ηlocalsyn and ksyn are the synaptic threshold and gain, respectively; ECa, EK, EL, and

E local
syn are the reversal potentials of the Ca2+, K+, leakage, and synaptic currents,

respectively; Ibias is the bias current, and C is the membrane capacitance. The voltage
dependent gating functions are

m∞(Vi ) = 1

2

(

1 + tanh

(
Vi
15

))

, (2)

N∞(Vi ) = 1

2

(

1 + tanh

(
Vi
15

))

. (3)

We assume that s j→i is a sigmoidal function of the presynaptic voltage defined by

s j→i
(
Vj

) = 1

2

(

1 + tanh

(
Vj − ηlocalsyn

klocalsyn

))

. (4)

The rate at which the K+ conductance activates and deactivates is φN/τN (Vi ), in
which φN = 0.005 and

τN (Vi ) = cosh−1
(
Vi
30

)

. (5)

Periodic anti-phase oscillations between the two internal units are obtained
with gCa = 0.015 mS/cm2, gK = 0.02 mS/cm2, glocalsyn = 0.01mS/cm2, ηlocalsyn =
20 mV, ksyn = 2, Ibias = 0.8 mA/cm2, ECa = 100 mV, EK = −80 mV, EL =
−30mV, E local

syn = −80mV, and C = 1μF/cm2. Modulation of the frequency of
the oscillations is achieved by adjusting the conductance of the leakage current gL
of both internal neurons. Figure 1 illustrates that as we increase gL from 0.003 to
0.011 mS/cm2, the frequency of an isolated HCO increases from about 1.4–2.4 Hz.
Beyond these values of gL , oscillations are lost via a Hopf bifurcation.
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Fig. 1 The frequency of
oscillation in an isolated HCO as
a function of the conductance of
the leakage current gL . Other
parameters are defined in the
main text
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To rewrite the HCO model equations (Eq. 1) in a compact manner, we define

f (Vi , Vj , Ni ) = 1

C

(
− gCam∞(Vi )

(
Vi − ECa

)
− gKNi

(
Vi − EK

)

− gL
(
Vi − EL

)
+ Ibias − glocalsyn s j→i (Vj )

(
Vi − E local

syn

))
,

g(Vi , Ni ) = φN

τN (Vi )

(
N∞(Vi ) − Ni

)
,

(6)

and

F(X) =

⎛

⎜
⎜
⎝

f (V1, V2, N1)

f (V2, V1, N2)

g(V1, N1)

g(V2, N2)

⎞

⎟
⎟
⎠ , (7)

where X = (V1, V2, N1, N2). Thus the HCOmodel equations (Eq.1) can be rewritten
as

dX
dt

= F(X). (8)

2.1.2 Inter-HCO connections: dynamics and topology

Having defined the model of each local HCO unit, we now describe the synaptic
connections between the HCOs. We assume that each HCO is coupled with its nearest
neighbor(s) only. We initially assume that all ascending and descending connections
have the same dynamics and strength, and that there are at most one ascending and
one descending connection incident on each HCO. These assumptions, however, will
be removed in Sect. 4 to allow variations in the strength and the number of inter-
HCO connections. The case of a single ascending and a single descending input to
HCOs applies directly to the neural circuit underlying the crayfish swimmeret system
(Mulloney and Smarandache-Wellmann 2012), in which the four swimmerets on each
side of the body are driven by a chain of HCOs. However, the removal of these
constraints on the connection topology in Sect. 4 allows us to generalize our results
to neural circuits in which HCOs receive multiple ascending and descending inputs,
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e.g., the locomotor circuits of the stick insect (Toth et al. 2015; Daun-Gruhn and Toth
2011), lamprey (Grillner 2006; Ijspeert and Kodjabachian 1999; Cohen et al. 1982)
and salamander (Chevalliera et al. 2008; Ijspeert 2008; Ijspeert et al. 2007).

Let V (k)
i be the membrane potential of neuron i in the k-th HCO, in which i = 1, 2

and k = 1, 2, . . . , n. Similar to the synaptic coupling between the two internal neurons
in each HCO, the inter-HCO synaptic connection from neuron j in the l-th HCO to
neuron i in the k-th HCO is described using an instantaneous synaptic current defined
by

I intersyn

(
V (k)
i , V (l)

j

)
= gintersyn Sinter∞

(
V (l)
j

) (
V (k)
i − E inter

syn

)
, (9)

where

Sinter∞ (V (l)
j ) =

(

1 + e−(V (l)
j −ηintersyn )/kintersyn

)−1

, (10)

in which the maximum conductance of the inter-HCO synaptic connections is gintersyn =
0.001mS/cm2, the reversal potential of the inter-HCO synaptic connections is E inter

syn =
80 mV, and the parameters associated with the activation and deactivation of the
synaptic connections are kintersyn = 2, ηintersyn = −20 mV.

Thus, the complete conductance-based model of a chain of n HCOs with nearest-
neighbor coupling is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(1)

dt
= F(X(1)) − 1

C
I intersyn

(
V (1)
j , V (2)

i

)
e j ,

dX(k)

dt
= F(X(k)) − 1

C

(
I intersyn

(
V (k)
j , V (k+1)

i

)
e j + I intersyn

(
V (k)
j , V (k−1)

i

)
e j

)
,

for k = 2, 3, . . . , n − 1,

dX(n)

dt
= F(X(n)) − 1

C
I intersyn

(
V (n)
j , V (n−1)

i

)
e j ,

(11)

in which e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), and X(k) =
(
V (k)
1 , V (k)

2 , N (k)
1 , N (k)

2

)
. In

Eq.11, the indices i and j are not constant but rather placeholders that take the value
of 1 or 2. j is the index that corresponds to the internal neuron in the presynaptic HCO,
and i is the index that corresponds to the internal neuron in the postsynaptic HCO.
However, the j in e j always matches the j in the preceding function I intersyn .

If there is only one ascending and one descending connection between neighboring
HCOs, then there are 16 possible topologies if we do not immediately distinguish the
difference between inhibitory and excitatory connections. Using the symmetry that the
two internal neurons in each HCO are identical and are always in anti-phase, the 16
possible topologies are reduced to four fundamentally different inter-HCO connection
topologies: (s1), (s2), (a1), and (a2). See Table1 and Fig. 3.
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1. In inter-HCO connection topology (s1), the ascending connection from HCO-
(k + 1) to HCO-k is from Neuron 1 to Neuron 1, and the descending connection
from HCO-k to HCO-(k + 1) is also from Neuron 1 to Neuron 1.

2. In inter-HCO connection topology (s2), the ascending connection from HCO-
(k + 1) to HCO-k is from Neuron 2 to Neuron 1, and the descending connection
from HCO-k to HCO-(k + 1) is also from Neuron 2 to Neuron 1.

3. In inter-HCO connection topology (a1), the ascending connection from HCO-
(k + 1) to HCO-k is from Neuron 2 to Neuron 2, but the descending connection
from HCO-k to HCO-(k + 1) is from Neuron 2 to Neuron 1.

4. In inter-HCO connection topology (a2), the ascending connection from HCO-
(k + 1) to HCO-k is from Neuron 1 to Neuron 2, but the descending connection
from HCO-k to HCO-(k + 1) is from Neuron 1 to Neuron 1.

Inter-HCO connection topologies (s1) and (s2) are symmetric in the sense that both
the ascending and descending connections go from the same internal neuron to another
same internal neuron, whereas the inter-HCO connection topologies (a1) and (a2) are
asymmetric because one of the two connections goes from Neuron 1 to Neuron 1 (or
from Neuron 2 to Neuron 2) but the other connection goes from Neuron 1 to Neuron
2 (or from Neuron 2 to Neuron 1).

2.2 The four robust phase-waves in chains of HCOs with different lengths

Here, we examine the phase-locking dynamics of the conductance-based model of
the HCO chain (Eq. 11) under different excitatory inter-HCO connection topologies,
different lengths, and different frequencies of oscillations.

Figure 2 provides an example of the phase-locking dynamics in a chain of four
HCOs with excitatory inter-HCO connections under the (a1) network topology, where
Δθ1 = 0.29,Δθ2 = 0.27,Δθ3 = 0.24. That is, the phase-differences between the
three neighboring pairs of HCOs are approximately 25 % of the period, forming a
“25 % phase-wave” (i.e., Δθk = Δθ∗ ≈ 0.25 for all k). Moreover, we see that Δθ1 >

Δθ2 > Δθ3. (These small systematic deviations in phase-lag along the HCO chain
are explained in Sect. 3.2.3.) Experimental observations in the crayfish swimmeret
system is consistent with this model prediction (Smarandache et al. 2009).

In general, we find that phase-waves with four different inter-HCO phase-
differences emerge under different inter-HCO connection topologies. Topology (s1)
produces an approximate in-phase activity (i.e., 0 % phase-wave), topology (s2) pro-
duces an approximate anti-phase (50 %) phase-wave, topology (a1) produces an
approximate 25 % phase-wave, and topology (a2) produces an approximate 75%
phase-wave. These phase-waves are robust against changes in the frequency of oscilla-
tion, i.e., they are phase-constant rhythms. Furthermore, they are largely independent
of the length of the chain.

The panels in the top row of Fig. 4 show the phase-difference between a pair
of coupled HCOs (i.e., a “chain” of two HCOs) as a function of the frequency of
oscillation under the four fundamentally different inter-HCO connection topologies.
Stable in-phase and anti-phase phase-locking exist under the symmetric topologies
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Fig. 2 Membrane potentials of the internal Neuron 1’s in a chain of four HCOs under the asymmetric
inter-HCO connection topology (a1). The inter-HCO connection topology is defined in Table1. Membrane

potentials V (1)
k of the four internal Neuron 1’s in the corresponding four HCOs are plotted in separate

curves indicated in the legend. Phase-differences between each neighboring HCOs, Δθk = θk+1 − θk , are
indicated in the figure. The phase-difference θk between HCO-(k + 1) and HCO-k is given by the time lag
between the membrane potential peaks of the two adjacent HCOs normalized by the period of oscillation
T of the HCOs (color figure online)

(s1) and (s2), respectively; whereas stable phase-locking with 25 and 75 % phase-
differences exist under the asymmetric topologies (a1) and (a2), respectively. These
phase-differences remain approximately constant over a two-fold change in frequency,
which is the entire frequency range of theHCOs.Note that, in almost all cases of chains
with three or more HCOs, there is a systematic variation in phase-differences along
the chain, Δθk > Δθk+1. In Sect. 3.2.3, we show that these systematic deviations in
phase-lag along the chain result from “end effects”, in the sense that the HCOs on the
two ends of the chain receive a different number of inter-HCO connections than the
HCOs in the middle of the chain.

Despite an increase in the number of HCOs in the chains, the four robust phase-
waves persist. The panels in the middle and bottom rows of Fig. 4 show the phase-
differences between neighboringHCOpairs in a chain of fourHCOs and in a chain of 9
HCOs, respectively. While these longer chains of HCOs do not display perfect phase-
waves, they exhibit approximate phase-waves. That is, there are only small variations in
the inter-HCO phase-differences along the chain, and these phase-differences exhibit
very little frequency dependence. Under topology (s1), inter-HCO phase-differences
are around 0 (approximately in-phase), and under topology (s2), the phase-differences
are around 50 % (approximately anti-phase). Chains with topology (a1) and topology
(a2) display approximate 25 % phase-wave and 75 % phase-wave, respectively. Note
that the chain of four HCOs with inter-HCO connection topology (a1) corresponds to
the topology in the natural neuronal circuit underlying the crayfish swimmeret system,
and this numerical experiment produces the desired 25 % back-to-front phase-wave
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Fig. 3 The four fundamentally different inter-HCO connection topologies. The network topologies are
defined in Table1. Each HCO consists of two internal neurons, labeled as Neuron 1 (blue) and Neuron
2 (pink). These two internal neurons are mutually coupled via strong inhibitory synapses, illustrated by
line segments with a solid circle on the target end. The inter-HCO synaptic connections are plotted as line
segmentswith an arrow on the target end; they can be either effectively excitatory or inhibitory (color figure
online)

observed in the coordinated movement of the swimmerets during crayfish’s forward
swimming (Mulloney and Smarandache-Wellmann 2012).

3 Robust phase-waves in chains of HCOs: an analysis of a coupled
phase model

The above numerical experiments of the conductance-based model of chains of HCOs
have shown that four particular phase-waves can exist in chains of HCOs with various
lengths over a wide variety of conditions including the variation of frequency. In
this section, we describe the mechanisms through which the inter-HCO connection
topology promotes the robust existence of these phase-waves. To do so, we employ
a coupled phase model that captures the essential properties of the internal HCO
structure and the inter-HCO connectivity. Note that the conductance-based model can
be systematically reduced to the coupled phase model in the limit of weak inter-HCO
connectivity (Schwemmer and Lewis 2012).
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Fig. 4 The phase-difference(s) between neighboring pair(s) of HCOs in chains of 2, 4, and 9 HCOs,
under the four fundamentally different inter-HCO connection topologies, as a function of the frequency of
oscillation, respectively. The four columns correspond to the four inter-HCO connection topologies (s1),
(s2), (a1), and (a2), respectively. Inter-HCO connection topologies are defined in Table1 and illustrated
in Fig. 3. Top row (2-HCO chain) The solid black curve shows the phase-difference as a function of the
frequency of oscillation. Middle row (4-HCO chain) The dashed black curve shows the phase-difference
between HCO-1 and HCO-2, the solid black curve shows the phase-difference between HCO-2 and HCO-
3, and the dashed-dotted curve shows the phase-difference between HCO-3 and HCO-4, as functions of
the frequency of oscillation. Bottom row (9-HCO chain) The solid blue curve shows the phase-difference
betweenHCO-1 andHCO-2, the dashed blue curve shows the phase-difference betweenHCO-2 andHCO-3,
the dashed-dotted blue curve shows the phase-difference between HCO-3 and HCO-4, the solid black curve
shows the phase-difference betweenHCO-4 andHCO-5, the dashed black curve shows the phase-difference
between HCO-5 and HCO-6, the solid red curve shows the phase-difference between HCO-6 and HCO-7,
the dashed red curve shows the phase-difference between HCO-7 and HCO-8, and the dashed-dotted red
curve shows the phase-difference between HCO-8 and HCO-9, as functions of the frequency of oscillation.
(color figure online)

3.1 Coupled phase models of chains of HCOs

The coupled phase model is a commonly used mathematical framework for study-
ing the dynamics of interconnected oscillators (Cohen et al. 1992; Williams et al.
1990; Kopell and Ermentrout 1988; Kuramoto 1984). In a phase model, the state of
each oscillator is described completely by its phase θk , in which k is the index of
the oscillator. If the k-th oscillator is isolated, then its phase θk evolves according to
dθk/dt = ω, in which ω is the frequency of the isolated oscillator (i.e., the intrin-
sic period of oscillation is T = 1/ω). If the k-th oscillator receives input from other
oscillators, then the rate of change of its phase will speed up or slow down. Themagni-
tude of the acceleration or deceleration of the phase of a perturbed oscillator depends
on the timing and structure of the input from the presynaptic oscillators and on the
state-dependent response of this postsynaptic oscillator. In a chain of oscillators with
nearest-neighbor coupling, these effects are quantified by the ascending and descend-
ing interaction functions, Hasc and Hdsc, which are functions of the phase-difference
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between the two inter-connected oscillators. Specifically, the phase of oscillator-k (θk)
evolves according to the system of differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dθ1

dt
= ω + Hasc(θ2 − θ1),

dθk

dt
= ω + Hasc(θk+1 − θk) + Hdsc(θk−1 − θk), k = 2, . . . , n − 1,

dθk

dt
= ω + Hdsc(θn−1 − θn).

(12)

As a convention, the inter-oscillator connection from the (k + 1)-th oscillator to the
k-th oscillator is referred to as an ascending inter-HCO connection, and the inter-
oscillator connection from the (k − 1)-th oscillator to the k-th oscillator is referred to
as a descending inter-HCO connection.

Two remarks are of importance here: (1) Because interaction functions are func-
tions of the phase-difference, they are 1-periodic functions. (2) Each oscillatory unit
is an HCO. That is, each oscillator is a “network oscillator”, consisting of two neu-
rons, or two neuronal populations, phase-locked in anti-phase. Thus, θk denotes the
phase of the entire k-th HCO. This is a general feature of our model. Because each
inter-oscillator connection originates from a particular neuron in the presynaptic
HCO and terminates at a particular neuron in the postsynaptic HCO, the network
topology of the inter-oscillator connections affects significantly the interaction func-
tions.

Initially, for simplicity of discussion, we assume that the ascending and descend-
ing connections share the same strength and have the same synaptic properties, and
that there is only one ascending and only one descending connection between each
pair of neighboring HCOs. In Sect. 4, we will remove the above two constraints.
Under these assumptions, the effect of the inter-HCO connection topology on the
interaction function is captured by phase-shifts of a single interaction function H as
follows

Hasc(Δθ) = H(Δθ + φA), (13)

Hdsc(Δθ) = H(Δθ + φD), (14)

inwhichΔθ is the phase-difference between two neighboring oscillators. The constant
phase shifts, φA and φD, are determined by the inter-HCO connection topology. Recall
that HCOs are composed of two mutually inhibitory internal neurons that oscillate in
anti-phase, φA and φD take value of 0 or 0.5, depending on the neuron from which the
inter-HCO connection originates and the neuron ontowhich the inter-HCO connection
synapses. The values of φA and φD for the four fundamentally different inter-HCO
connection topologies are listed in Table1.

In terms of the phase-differences between neighboring oscillatorsΔθk = θk+1−θk ,
the coupled phase model for a chain of HCOs is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΔθ1

dt
= H(−Δθ1 + φD) + H(Δθ2 + φA) − H(Δθ1 + φA),

dΔθk

dt
=H(−Δθk+ φD)+H(Δθk+1+ φA) − H(−Δθk−1+ φD)−H(Δθk+ φA)

for k = 2, 3, . . . , n − 2, n ≥ 3,

dΔθn−1

dt
= H(−Δθn−1 + φD) − H(−Δθn−2 + φD) − H(Δθn−1 + φA).

(15)

Phase-locked states correspond to the solutions in which the inter-HCO phase-
differences Δθk = θk+1 − θk are constant:

dΔθk

dt
= 0, for k = 1, 2, . . . , n − 1. (16)

The existence of phase-locked states in chains of HCOs depends on the shape of
the interaction function, which is determined by both the intrinsic properties of HCOs
and the dynamical properties of the inter-oscillator coupling (Schwemmer and Lewis
2012).

3.2 The existence and stability conditions of four robust phase-waves

Perfect phase-waves are special phase-locked states in which the phase-differences
Δθk are equal and constant for for all k, i.e., (Δθ1,Δθ2, . . . , Δθn−1)=(Δθ∗,Δθ∗, . . . ,
Δθ∗) for some 0 ≤ Δθ∗ < 1. Our coupled phase model of chains of nearest-neighbor
coupled HCOs (Eq.15) captures both the internal mutually-inhibitory structure of the
HCOs and the variety of inter-HCO connection topologies. Therefore, this model pro-
vides an appropriate framework to examine how these features influence the existence
and stability of phase-waves.

3.2.1 Two coupled HCOs

Wefirst consider a “chain” of twoHCOs. In this case, our phasemodel (Eq.15) reduces
to a single differential equation that describes the evolution of the phase-difference
between the two HCOs, Δθ = θ2 − θ1,

dΔθ

dt
= H(−Δθ + φD) − H(Δθ + φA) =: G(Δθ). (17)

The condition for the existence of phase-locked states Δθ = Δθ∗ is

H(−Δθ∗ + φD) − H(Δθ∗ + φA) = G(Δθ∗) = 0. (18)
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It can readily be seen that, under the two symmetric inter-HCO connection topolo-
gies (s1) and (s2) for which φD = 0, φA = 0 and φD = 0.5, φA = 0.5, respectively,

Δθ∗ = 0 and 0.5 (19)

are two phase-constant states (i.e., phase-locked states independent of the details of
H ).

Similarly,

Δθ∗ = 0.25 and 0.75 (20)

are two phase-constant states under the two asymmetric inter-HCOconnection topolo-
gies (a1) and (a2) for which φD = 0.5, φA = 0 and φD = 0, φA = 0.5, respectively.

The stability of these phase-constant states depends on the sign of

G ′(Δθ∗) = −H ′(−Δθ∗ + φD) − H ′(Δθ∗ + φA). (21)

The phase-locked state Δθ∗ is stable if G ′(Δθ∗) < 0 and unstable if G ′(Δθ∗) > 0.
For example, a stable phase-constant state at Δθ∗ = 0 (in-phase) under topology
(s1) requires that H ′(0) > 0, and this same phase-constant state under topology (s2)
requires instead that H ′(0.5) > 0.

Therefore, in a chain of two HCOs, symmetric inter-HCO connection topologies
(s1) and (s2) always lead to the existence of the in-phase locking and the anti-phase
locking, and asymmetric inter-HCOconnection topologies (a1) and (a2) always lead to
the existence of the 25%phase-locking and the 75%phase-locking. These four phase-
locked states are robust in the sense that their existence is independent of the frequency
of the oscillation and does not rely on tuning any specific biophysical parameters. The
phase constancy of these four perfect phase-waves is a consequence of the particular
organization of the inter-HCO connection topology.

3.2.2 A chain of n HCOs

The results for a pair of coupled HCOs can be extended to a chain of n HCOs with
n ≥ 3. Unlike the case for two HCOs, however, there are conditions on the interaction
function H that need to be satisfied for invariant phase-waves to exist.

To see this, substituting Δθk = Δθ∗( k = 1, 2, . . . , n − 1) into the steady state
phase model equations (Eqs. 15, 16), we find that a perfect phase-wave with phase-
differences Δθ∗ exists if and only if

H(−Δθ∗ + φD) = H(Δθ∗ + φA) = 0. (22)

The above equation consists of two separate constraints on H . With an appropriate
inter-HCO connection topology, however, the above two constraints reduce to a single
condition on H by ensuring H(−Δθ∗ + φD) = H(Δθ∗ + φA):
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1. Under topology (s1) for which φD = 0 and φA = 0, a phase-wave with Δθ∗ = 0
exists if and only if H(0) = 0, and a phase-wave with Δθ∗ = 0.5 exists if and
only if H(0.5) = 0.

2. Under topology (s2) for which φD = 0.5 and φA = 0.5, a phase-wave with
Δθ∗ = 0 exists if and only if H(0.5) = 0, and a phase-wave with Δθ∗ = 0.5
exists if and only if H(0) = 0.

3. Under topology (a1) for which φD = 0.5 and φA = 0, a phase-wave with Δθ∗ =
0.25 exists if and only if H(0.25) = 0, and a phase-wave with Δθ∗ = 0.75 exists
if and only if H(0.75) = 0.

4. Under topology (a2) for which φD = 0 and φA = 0.5, a phase-wave with Δθ∗ =
0.25 exists if and only if H(0.75) = 0, and a phase-wave with Δθ∗ = 0.75 exists
if and only if H(0.25) = 0.

Therefore, in chains of n HCOs with n ≥ 3, a single condition on the interaction
function H , determined by the inter-HCO connection topology, is necessary and suf-
ficient to produce a phase-wave with Δθ∗ = 0, 25, 50, or 75 % in a robust manner
independent of the frequency of oscillation. Without an appropriate inter-HCO con-
nection topology such as those described in Table 1, multiple conditions on H would
be required to ensure the existence of a phase-constant phase-wave.

3.2.3 Approximate phase-waves

In actual neuronal HCO networks, it would be too restrictive to enforce the exact
condition on H (Eq. 22). Suppose H(Δθ∗ + φA) is not strictly equal to zero but close
to zero, then one would expect the phase-locking to deviate by some small quantity
dependent on the magnitude of H(Δθ∗ +φA). Motivated by this observation, we relax
the condition on H by allowing the phase-differences in the phase-wave to deviate
slightly from the perfect case (Δθ∗,Δθ∗, . . . , Δθ∗) to be (Δθ∗

1 ,Δθ∗
2 , . . . , Δθ∗

n−1),
where

Δθ∗
k = Δθ∗ + dkε + O(ε2), k = 1, 2, . . . , n − 1, (n ≥ 3) (23)

in which ε is a small constant defined by

ε = H(Δθ∗ + φA)

H ′(Δθ∗ + φA)
, (24)

and dk are coefficients in the order of O(1) to be determined by the length of the
HCO chain. That is, to first order in ε, we have assumed that there is a small linear
gradient in the phase-differences down the chain of HCOs. In the following, we refer
to this perturbed phase-wave with phase-differences (Δθ∗

1 ,Δθ∗
2 , . . . , Δθ∗

n−1) as the
approximate Δθ∗ phase-wave. Note that the approximate phase-wave reduces to the
perfect phase-wave case if ε = 0.
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Table 2 The existence conditions for the four approximate Δθ∗ phase-waves in chains of n HCOs (n ≥ 3)
under the four fundamentally different inter-HCO connection topologies

Δθ∗ Topology
(s1)

Topology
(s2)

Topology
(a1)

Topology
(a2)

In-phase (0 %) (n−2)H(0)
nH ′(0) is

small

(n−2)H(0.5)
nH ′(0.5)
is small

Not robust Not robust

25 % Not robust Not robust (n−2)H(0.25)
nH ′(0.25)
is small

(n−2)H(0.75)
nH ′(0.75)
is small

Anti-phase (50 %) (n−2)H(0.5)
nH ′(0.5)
is small

(n−2)H(0)
nH ′(0) is

small

Not robust Not robust

75 % Not robust Not robust (n−2)H(0.75)
nH ′(0.75)
is small

(n−2)H(0.25)
nH ′(0.25)
is small

Note that in the case n = 2, the existence is unconditional under appropriate inter-HCO connection topology
(see text and Zhang et al. (2014) for the n = 2 case)

To determine dk , we plug the approximate phase-wave (Eq.23) into the steady state
phase model equations (Eqs. 15, 16). To first order in ε, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − d1)H(−Δθ∗ + φD) + (1 + d2)H(Δθ∗ + φA) − (1 + d1)H(Δθ∗ + φA) = 0,

(1 − dk)H(−Δθ∗ + φD) + (1 + dk+1)H(Δθ∗ + φA)−
(1 − dk−1)H(−Δθ∗ + φD) − (1 + dk)H(Δθ∗ + φA) = 0,

for k = 2, 3, . . . , n − 2, (n ≥ 3)

(1 − dn−1)H(−Δθ∗ + φD) − (1 − dn−2)H(−Δθ∗ + φD) − (1 + dn−1)H(Δθ∗ + φA) = 0.
(25)

Recall that with an appropriate inter-HCO connection topology described in Table1,
we have

H(Δθ∗ + φA) = H(−Δθ∗ + φD). (26)

Solving Eq.25 for dk , we obtain

dk = n − 2k

n
, for k = 1, 2, . . . , n − 1. (27)

Hence, the phase-differences in the approximate Δθ∗ phase-wave defined in Eq.23
can be rewritten as

Δθ∗
k = Δθ∗ + n − 2k

n
ε + O(ε2), k = 1, 2, . . . , n − 1. (28)

The complete results for different inter-HCO connection topologies are listed in
Table2. For example, if n = 4, under topology (a1), the approximate 25% phase-wave
is (Δθ∗

1 ,Δθ∗
2 ,Δθ∗

3 ) = (0.25+ε/2, 0.25, 0.25−ε/2) where ε = H(0.25)/H ′(0.25).
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3.2.4 Stability

The stability of an approximate or perfect phase-wave depends on the eigenvalues of
the Jacobian matrix of the right-hand-side of Eq. 15

J (ε) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−s(1)
D − s(1)

A s(2)
A

s(1)
D −s(2)

D − s(2)
A s(3)

A
. . .

. . .
. . .

s(n−3)
D −s(n−2)

D − s(n−2)
A s(n−1)

A

s(n−2)
D −s(n−1)

D − s(n−1)
A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(29)

in which s(k)
D = H ′(−Δθ∗ + φD − n−2k

n ε + O(ε2)) and s(k)
A = H ′(Δθ∗ + φA +

n−2k
n ε + O(ε2)) for k = 1, 2, . . . , n − 1. The phase-wave is stable if all eigenvalues

of J (ε) have negative real parts and is unstable if at least one of the eigenvalues of
J (ε) has positive real part. Note that, because |ε| 
 1, the signs of the real part of the
eigenvalues of J (ε) are inherited from the eigenvalues of J (0), which is the Jacobian
matrix corresponding to the system with the perfect phase-wave (ε = 0).

With an appropriate network topology for the Δθ∗ phase-wave (Δθ∗ = 0, 0.25, 0.5
or 0.75), the Jacobian matrix reduces to

J (0) = H ′(Δθ∗ + φA)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (30)

Therefore, the stability of the phase-wave is determined by the sign of H ′(Δθ∗ +
φA). For example, under connection topology (s1), in-phase locking (Δθ∗ = 0) is
stable if H ′(0) > 0, and under connection topology (s2), in-phase locking is stable
if H ′(0.5) > 0. Under connection topology (a1), the Δθ∗ = 0.25 phase-wave is
stable if H ′(0.25) > 0, and under connection topology (a2), the Δθ∗ = 0.25 phase-
wave is stable if H ′(0.75) > 0. The complete stability results for different inter-HCO
connection topologies are listed in Table3.

3.2.5 Summary

The existence and stability conditions of the four robust Δθ∗ phase-waves under
the four fundamentally different inter-HCO connection topologies are summarized in
Tables 2 and 3, respectively. In the case n = 2, the existence of these four robust
phase waves is independent of the details of H and is solely a result of the inter-
HCO connection topology. In cases of chains of n HCOs with n ≥ 3, the condition
H(Δθ∗ + φA) = 0 needs to be satisfied. This is because the HCOs on the ends of
the chain receive a different number of synaptic inputs than the HCOs in the middle
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Table 3 Stability conditions for the four approximate Δθ∗ phase-waves in chains of n HCOs (n ≥ 3)
under the four fundamentally different inter-HCO connection topologies

Δθ∗ Topology (s1) Topology (s2) Topology (a1) Topology (a2)

In-phase (0 %) H ′(0) > 0 H ′(0.5) > 0 Not robust Not robust

25 % Not robust Not robust H ′(0.25) > 0 H ′(0.75) > 0

Anti-phase (50 %) H ′(0.5) > 0 H ′(0) > 0 Not robust Not robust

75 % Not robust Not robust H ′(0.75) > 0 H ′(0.25) > 0

Note that the same stability conditions applies to the case n = 2, in which the chain of two HCOs produces
the perfect Δθ∗ phase-wave (see text and Zhang et al. (2014) for the n = 2 case)

of the chain. This end effect breaks the symmetry that existed in the case of n = 2.
Nevertheless, because of the special organization of the four inter-HCO connection
topologies, a chain of HCOs with n ≥ 3 only needs to meet one condition in order
to produce one of the four robust phase-waves with approximate phase-differences
at 0%, 25%, 50%, or 75%. Without an appropriate inter-HCO connection topology,
more than one conditions on H would be required.

4 Variations in inter-HCO connections

In this section, we extend the results of the previous section to chains of nearest-
neighbor coupled HCOs to allow variations in the strength and the number of inter-
HCO connections. Specifically, we show that an approximate 0, 25, 50, or 75 %
phase-waves persists (1) regardless of the difference in strength between the ascending
and descending connections, and (2) in the presence of multiple nearest-neighbor
inter-HCO connections as long as the fundamental inter-HCO connection topology is
preserved.

4.1 Inter-HCO connections with unequal strengths between the ascending
and descending directions

To consider a difference in strengths between the ascending and descending inter-HCO
connections, we redefine the interaction functions of the ascending and descending
connections by

Hasc(Δθk) = αH(Δθk + φA), (31)

Hdsc(−Δθk) = βH(−Δθk + φD), (32)

in which α and β are numbers with the same sign that determine the strengths of the
ascending and the descending connections, respectively, and φA and φD are as defined
previously. We take the ratio of the ascending to descending connection strengths

a = α

β
(33)

as our measure of the level of heterogeneity.
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With a �= 1, we expect the phase-differences in the perfect Δ∗ phase-wave to
deviate from (Δθ∗,Δθ∗, . . . , Δθ∗). We denote the phase-differences in the resulting
approximate phase-wave by

(Δθ1,Δθ2, . . . , Δθn−1)

= (Δθ∗ + e1ε + O(ε2), Δθ∗ + e2ε + O(ε2), . . . , Δθ∗ + en−1ε + O(ε2)),

(34)

in which ek are coefficients in the order of O(1) to be determined, and ε is a small
constant that measures the imperfection of the zero of the interaction function H as
previously defined in Eq.24. Substituting this approximate phase-wave for the phase-
differences in the steady state phase model equations (Eqs. 15, 16), we obtain, to first
order in ε,

⎧
⎪⎨

⎪⎩

(a + 1)e1 − ae2 − 1 = 0,

ek−1 − (a + 1)ek + aek+1 = 0 for k = 2, 3, . . . , n − 2 (n ≥ 3),

en−2 − (a + 1)en−1 − a = 0.

(35)

Solving the above equation for the coefficients ek , we obtain

ek = an − 2an−k + 1

1 − an
, for k = 1, 2, . . . , n − 1. (36)

ekε quantifies the first order effect of the ratio of the ascending to descending con-
nection strengths, a, on the inter-HCO phase-differences. Equation 36 shows that, as
a → 1 (i.e., equal ascending and descending connection strengths), ek reduces to
dk (Eq. 27) as described in the previous subsection. More importantly, it shows that
ek = O(1) for all a ≥ 0. Therefore, deviations away from the perfect phase-wave are
small for any ascending to descending strength ratio.

Figure 5 plots ek for a chain of 10 HCOs with various values of a. When a = 1,
there is a small linear decrease in ek from k = 1 to k = 9 (i.e., assuming ε > 0,
there is a small decrease in phase-difference down the chain). When a > 1, ek is
concave up, and approaches −1 as k increases. When a < 1, ek is concave down, and
approaches 1 as k decreases. When a is small (i.e., descending connections dominate)
or when a is large (i.e., ascending connections dominate), ek ≈ 1 or ek ≈ −1 for all k
except at one end of the chain. The above results are obtained under the phase-HCO
model. Similar results are also obtained under the conductance-basedML-HCOmodel.
(See the Appendix for figures showing the the phase-differences between neighboring
pair of HCOs in a chain of 10 HCOs under the four different inter-HCO connection
topologies.) This implies that, if only ascending or only descending connections are
present, near perfect phase-waves exist with only small boundary effects.

The functional significance of the above results is that regardless of the ratio of the
ascending to descending connection strengths, the deviation of the phase-differences
is always in the order of O(ε), and therefore an asymmetry in the ascending and
descending inter-HCO connection strength does not affect the existence of the four
robust approximate phase-waves.
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Fig. 5 The effect of the difference in the synaptic strength between the ascending and descending inter-
HCO connections on the phase-differences in a chain of 10 HCOs with nearest-neighbor coupling. The
coefficient of the deviation of the phase-differences ek (Eq.36) is plotted as a function of k, k = 1, 2, . . . , 9
for four different values of a = α/β, where α and β are the strength of the ascending and descending
connections, respectively (color figure online)

4.2 Multiple inter-HCO connections between neighboring HCOs

There are 8 possible inter-HCO connections between each pair of neighboring HCOs:
4 different ascending connections and 4 different descending connections. Define
Hasc(Δθ) = H(Δθ) to be the interaction function for the ascending connection from
Neuron 1 toNeuron 1, and Hdsc(−Δθ) to be the interaction function for the descending
connection fromNeuron 1 to Neuron 1. Then, accounting for the anti-phase activity in
the HCOs and again assuming homogeneous synaptic dynamics and response prop-
erties of neurons, the coupled phase model for chains of nearest-neighbor coupled n
HCOs with all eight possible inter-HCO connections is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ1

dt
= ω + (α2→2 + α1→1)H(Δθ1) + (α2→1 + α1→2)H(Δθ1 + 0.5),

dθi

dt
= ω + (α2→2 + α1→1)H(Δθi ) + (α2→1 + α1→2)H(Δθi + 0.5)

+ (β2→2 + β1→1)H(−Δθi−1) + (β2→1 + β1→2)H(−Δθi−1 + 0.5),

for i = 2, 3, . . . , n − 1,

dθn

dt
= ω + (β2→2 + β1→1)H(−Δθn−1) + (β2→1 + α1→2)H(−Δθn−1 + 0.5),

(37)

in which ω is the intrinsic frequency of the HCOs, Δθi = θi+1 − θi is the phase-
difference between each pair of neighboring HCOs, αi→j is the strength of the
ascending connection from Neuron i to Neuron j , and βi→j is the strength of the
descending connection from Neuron i to Neuron j (i, j = 1, 2).
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It follows that a perfect phase-wave (Δθ∗,Δθ∗, . . . , Δθ∗) exists if and only if

{
(α2→2 + α1→1)H(Δθ∗) + (α2→1 + α1→2)H(Δθ∗ + 0.5) = 0,

(β2→2 + β1→1)H(−Δθ∗) + (β2→1 + β1→2)H(−Δθ∗ + 0.5) = 0.
(38)

For phase-waves to exist with a single condition on the interaction function H (as
in Sect. 3), restrictions on the inter-HCO connections are required. For example, if
H(0) = 0 and there are no other restrictions on H , then the in-phase lockingΔθ∗ = 0
exists if and only if β2→1 + β1→2 = 0 and α2→1 + α1→2 = 0. Assuming that all
synaptic connections are excitatory (or inhibitory), i.e., α’s and β’s are non-negative
(or non-positive), this condition corresponds to the case in which there are no cross
connections. In other words, the ascending and descending connections must be paral-
lel, such as fromNeuron 1 toNeuron 1, or fromNeuron 2 toNeuron 2. This implies that
the generalized version of inter-HCO connection topology (s1) described in Table1
removes the condition that H(0.5) = 0 for the existence of the in-phase state, which
is stable if

(β2→2 + β1→1 + α2→2 + α1→1)H
′(0) > 0. (39)

As another example, if H(0.25) = 0 and there are no other restrictions on H , then
the phase-wave with Δθ∗ = 0.25 exists if and only if β2→2 + β1→1 = 0 and α2→1 +
α1→2 = 0. Under the assumption that all synaptic connections are excitatory (or
inhibitory), this condition corresponds to the case in which the descending connection
must be cross connections, such as from Neuron 1 to Neuron 2, or from Neuron 2 to
Neuron 1, whereas the ascending connections must be parallel, such as fromNeuron 1
to Neuron 1, or from Neuron 2 to Neuron 2. This implies that the generalized version
of the inter-HCO coupling topology (a1) described in Table1 removes the condition
that H(0.75) = 0. The phase-wave with 25 % inter-HCO phase-difference is stable if

(β2→1 + β1→2 + α2→2 + α1→1)H
′(0.25) > 0. (40)

The incorporation of appropriate inter-HCO connections does not change the fun-
damental mechanism producing the robust phase-waves. Connectivity schemes that
utilize a symmetric ascending/descending inter-HCO connection topology are able
to produce robust in-phase or anti-phase phase-wave in the sense that only one con-
straint on the response properties of the HCO (that is, the condition that H(Δθ∗) = 0
or H(Δθ∗ + 0.5) = 0) is required. On the other hand, connectivity schemes that
utilize an asymmetric ascending/descending inter-HCO connection topology are able
to produce robust 25 or 75 % phase-wave with only one constraint on the response
properties of the HCO. As long as the additional inter-HCO connections maintain the
same inter-HCO connection topology, then one of the four phase-waves with phase-
differences at 0, 25, 50, or 75 % still arises robustly via the same mechanism we have
discussed in the previous section.
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5 Robust phase-waves in rings of HCOs

As shown in Sect. 3, for a perfect phase-wave to exist in a chain of three ormoreHCOs,
the interaction function H of the HCOs is required to have a zero at a particular phase-
difference, or for an approximate phase-wave to exist, H/H ′ is required to be small
near that particular phase-difference, i.e., |ε| 
 1. This requirement arises because
the HCOs at the ends of the chain receive only ascending input or descending input
whereas all other HCOs receive both ascending input and descending input. That
is, symmetry is broken at the ends of the chain when the number of HCOs is three
or more. This “end effect” is the cause of the slight deviation in phase-lags along
the chain of three or more HCOs. This symmetry can be restored if a ring of HCOs
is formed by connecting HCOs at the ends of the chain with the same inter-HCO
connection topology as the neighboring pairs of HCOs in the middle of the chain. In
this section, we determine conditions for the existence and stability of phase-waves in
rings of HCOs and contrast them to the conditions for phase-waves in chains of HCOs.
We analyze the rings of HCOs to emphasize the fundamental difference between the
existence of robust phase-waves in chains of HCOs and in rings of HCOs.

The phase-differences of neighboring HCOs in a ring of nearest-neighbor, bi-
directionally coupled HCOs are given by

dθk

dt
= ω + Hasc(θk+1 − θk) + Hdsc(θk−1 − θk), (41)

for k = 1, 2, . . . , n with conditions for periodicity θ0 = θn and θn+1 = θ1. In terms
of phase-differences Δθk = θk+1 − θk , we have

dΔθk

dt
= Hdsc(−Δθk) + Hasc(Δθk+1) − Hdsc(−Δθk−1) − Hasc(Δθk), (42)

for k = 1, 2, . . . , n − 1 with conditions for periodicity Δθ0 = θ1 − θn and Δθn =
θ1 − θn . Note that these conditions for periodicity imply that

Δθn = θ1 − θn =
n−1∑

k=1

(θk − θk+1) = −
n−1∑

k=1

Δθk, (43)

or

n∑

k=1

Δθk mod 1 = 0. (44)

For a perfect (rotating) phase-wave Δθk = Δθ∗(k = 1, 2, . . . , n − 1) to exist, it
must satisfy both the steady state equations of Eq.42 and the periodicity condition
Eq.44. Using the same convention that was used in the analysis of the n-HCO chain,
that is, Hasc(Δθ) = H(Δθ +φA) and Hdsc(Δθ) = H(Δθ +φD), in which φD and φA
are determined by the inter-HCO connection topology (see Table1), the right-hand-
sides of the steady state equations of Eq.42 are always zero! Thus, perfect phase-waves
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exist if and only if the periodicity condition Eq.44 is satisfied, i.e., whenever

Δθ∗ = j

n
, for j = 0, 1, 2 . . . , n − 1. (45)

The stability of the Δθ∗ = j/n phase-wave in a ring of HCOs depends on the
eigenvalues of the Jacobian matrix of the right-hand-side of Eq.42

Jring =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2sD − sA sA − sD −sD −sD −sD
sD −sD − sA sA

. . .
. . .

. . .

sD −sD − sA sA
−sA −sA −sA sD − sA −sD − 2sA

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (46)

in which sD = H ′(− j/n + φD), sA = H ′( j/n + φA). One can show that if

H ′(− j/n + φD) + H ′( j/n + φA) > 0, (47)

then all eigenvalues of Jring have negative real parts. Therefore, the j/n phase-wave
( j = 0, 1, 2, . . . , n − 1) is stable if H ′(− j/n + φD) + H ′( j/n + φA) > 0.

It is important to emphasize the fundamental difference between the existence of
robust phase-waves in chains of HCOs and in rings of HCOs. For a chain of n-HCOs,
there exists only two robust phase-waves with inter-HCO phase-differences of either 0
and 50%, or 25 and 75%, and these phase-waves depend on both the internal structure
of the HCOs and network topology of the inter-HCO coupling. On the other hand,
for a ring of n-HCOs, there exists n phase-waves with inter-HCO phase-differences
that depend on n, and the existence of these phase-waves is independent of both the
internal structure of the HCO and the connection topology between HCOs (as long
as the inter-HCO connectivity is the same between each neighboring pair of HCOs in
either coupling direction). Note that this latter result is similar to a more general result
for rings in (Ermentrout 1985).

6 Discussion

In this article, we have shown how the internal anti-phase structure of the HCO and
the inter-HCO connection topology combine to promote robust (i.e., phase-constant)
phase-waves in chains of HCOs with nearest-neighbor coupling. Specifically, under
the framework of the coupled phase model with the full HCOs as the oscillating units,
we have derived conditions for the robust existence and stability of phase-waves with
inter-HCO phase-differences Δθ∗ = 0, 25, 50, or 75 % under four fundamentally
different inter-HCO connection topologies. For a pair of HCOs, a robust Δθ∗ phase-
locking exists independently of the interaction function H and therefore independently
of the frequency of oscillation (and all the biophysical details) of the HCO. In general,
the existence of a robust phase-wave in a chain of three or more HCOs would require
multiple conditions on H , but appropriate inter-HCOconnection topologies reduce this

123



Robust phase-waves in chains of half-center oscillators 1651

requirement to a single condition in the formof either H(Δθ∗) ≈ 0 or H(Δθ∗+0.5) ≈
0. The value of Δθ∗ is determined by the inter-HCO connection topology.

The conditions for robust phase-waves described here can help identify the mech-
anisms that give rise to phase-constancy in some locomotor systems but not in
others. The neural circuit underlying limb coordination in the crayfish swimmeret
system has been shown to consists of a chain of four HCOs with the (a1) inter-
HCO connection topology (Zhang et al. 2014; Smarandache-Wellmann et al. 2014).
Because our results link the (a1) connection topology to the robust existence of the
25 % phase-wave, they explain how the circuit architecture helps to maintain the
frequency-independent approximate 25 % phase-differences between swimmerets of
crayfish and other long-tailed crustaceans during forward swimming. Similarly, loco-
motor neural circuits in stick insects and cockroaches are well-modeled by chains
of HCOs with symmetric inter-HCO coupling (Daun-Gruhn and Toth 2011; Proctor
et al. 2010), and thus our results also can help explain the robustness of the tripod
gait of insects, which is characterized by the phase-constant rhythm with approxi-
mate 50% inter-limb phase-differences. On the other hand, the mechanisms described
here do not apply to gait transitions, which likely involve significant changes in the
interaction function H or bistability between different phase-waves. Furthermore,
although the neural circuits underlying the body motion during undulatory swimming
of lamprey and leech consist of chains of HCOs (Sigvardt and Miller 1974; Kristan
et al. 1974), our results do not explain the corresponding 1 and 3 % phase-waves
in these systems. These cases and other cases that have phase-lags different from 0,
25, 50, or 75 % likely employ more subtle mechanisms, involving well-tuned com-
pensatory mechanisms that maintain the zeros of the interaction function H at the
appropriate value, the effects of long-range coupling, and/or more complex network
structures.

The work presented here fits between previous work on phase-locking in chains
of generic phase oscillators and work that employs symmetry arguments to account
for robust phase-locking. Much of the extensive work on phase-locking in chains of
coupled generic phase oscillators focuses on identifying conditions on the interaction
function H for the existence of phase-waves [e.g., Cohen and Kiemel (1993), Kopell
and Ermentrout (1986)]. In fact, Skinner et al. (1997) specifically derived conditions
on H for the existence of a 25 % phase wave for a chain of four oscillators in the
context of the crayfish swimmeret system. We have extended this work by gener-
alizing it and linking directly the constraints on H to the architecture of the neural
circuit.

Symmetry arguments have been used to show that robust phase-locking in net-
works of oscillators can arise solely from the type and topology of coupling between
units rather than from any well-tuned intrinsic mechanism of the local oscillators
or synaptic dynamics [e.g., Golubitsky et al. (1999), Collins and Stewart (1993)] .
These symmetry arguments cannot be applied directly to chains of HCOs (or even
to most of the pairs of HCOs considered in this article) because chains of HCOs do
not have the appropriate level of symmetry. However, symmetry arguments can still
be used to reduce the number of constraints for the robust existence of phase-waves
given the appropriate assumptions. By exploiting the strong coupling between the
two internal neurons of each HCO and the relatively weak inter-HCO coupling, a
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chain of HCOs can be reduced to a chain of phase oscillators in which each HCO
is an oscillatory unit with a single phase but with two possible output and input
pathways that are shifted by half of a period. Even with the chain of phase oscil-
lators (beyond pairs), symmetry arguments cannot be applied directly because the
oscillators at the ends of the chain receive a different number of inputs than those
oscillators in the middle of the chain. Nevertheless, the symmetry between indi-
vidual pairs of HCOs along the chain decreases the requirements to produce robust
phase-locking to a single constraint, which comes in the form of a condition of the
H -function.

Changes in the frequency of oscillators usually lead to changes in the shape of
the interaction function H and shifts the zeros of the H function; this in turn will
alter the phase-differences in a chain of oscillators. However, as mentioned above,
for a chain of HCO to exhibit phase-constancy, the zeros of H must remain approx-
imately fixed. In the case of the crayfish swimmeret system, experimentally-derived
H functions for the local CPGs have zeroes close to 25 % for arbitrary frequencies
(Zhang et al. 2014; Smarandache-Wellmann et al. 2014). This taken together with
the facts that the crayfish swimmeret CPGs are HCOs and that the inter-HCO con-
nections are asymmetric provides a mechanism for generating the phase-constant
phase-waves with 25 % inter-segmental phase-differences in the swimmeret sys-
tem. Furthermore, in (Zhang et al. 2014), we have recently shown that the phase
response properties of idealized HCOs (based on the Wang-Rinzel (Wang and Rinzel
1992) or the Morris–Lecar (Skinner et al. 1994) HCO model) are able to produce H
functions in which the zeroes are close to 25 and 75 % largely independent of the
frequency of oscillation. Future work is needed to further elucidate how the interac-
tion functions are shaped by the underlying dynamics of CPGs and the inter-CPG
synaptic dynamics (Zhang and Lewis 2013) and satisfy requirement for robust phase-
waves.

Acknowledgements CZ and TJL were partially supported by NSF under grant number CRCNS 0905063.
CZ is a Courant Instructor.

Appendix: Numerical results of the ML-HCO model: inter-HCO con-
nections with unequal strengths between the ascending and descending
directions

In Sect. 4.1, we used the phase-HCO model to show that an approximate 0, 25, 50,
or 75 % phase-waves persists regardless of the difference in strength between the
ascending and descending connections. Here, we verify the above result using the
conductance-based ML-HCO model. We consider a chain of 10 HCOs under the four
fundamentally different inter-HCO connection topologies. Figures 6, 7, 8, 9 show that
regardless of the ratio of the ascending to descending connection strengths, the devi-
ation of the phase-differences is always in the order of O(ε) (see Eq.24 for definition
of ε). Both the phase-HCO model and the ML-HCO model give the same result that
an asymmetry in the ascending and descending inter-HCO connection strength does
not affect the existence of the four robust approximate phase-waves.
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Fig. 6 The effect of the difference in the synaptic strength between the ascending and descending inter-
HCO connections on the phase-differences in a chain of 10 HCOs with inter-HCO connection topology
(a1). The phase-differences Δφk (Eq.36) is plotted as a function of k, k = 1, 2, . . . , 9 for four different
values of a = α/β, where α and β are the strength of the ascending and descending connections, respec-
tively. Numerical simulation of this ML-HCO model was performed using the same parameters reported in
Sect. 2 (color figure online)
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Fig. 7 The effect of the difference in the synaptic strength between the ascending and descending inter-
HCO connections on the phase-differences in a chain of 10 HCOs with inter-HCO connection topology
(a2). See the caption and legend of Fig. 6 for descriptions (color figure online)
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Fig. 8 The effect of the difference in the synaptic strength between the ascending and descending inter-
HCO connections on the phase-differences in a chain of 10 HCOs with inter-HCO connection topology
(s1). See the caption and legend of Fig. 6 for descriptions (color figure online)
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Fig. 9 The effect of the difference in the synaptic strength between the ascending and descending inter-
HCO connections on the phase-differences in a chain of 10 HCOs with inter-HCO connection topology
(s2). See the caption and legend of Fig. 6 for descriptions (color figure online)
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