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The Biphasic Mystery: Why a Biphasic Shock is More E4ective
than a Monophasic Shock for De5brillation
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We demonstrate that a biphasic shock is more e!ective than a monophasic shock at eliminat-
ing reentrant electrical activity in an ionic model of cardiac ventricular electrical activity. This
e!ectiveness results from early hyperpolarization that enhances the recovery of sodium
inactivation, thereby enabling earlier activation of recovering cells. The e!ect can be seen easily
in a model of a single cell and also in a cable model with a ring of excitable cells. Finally, we
demonstrate the phenomenon in a two-dimensional model of cardiac tissue.
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1. Introduction

Although de"brillation by the application of
large current shocks is accomplished daily in
clinics and hospitals around the world, there is no
adequate theoretical explanation for how de"b-
rillation works. It is generally accepted that for
successful de"brillation (about) 90% of cardiac
tissue must experience an extracellular electric
"eld of 5 V cm~1 for 10 ms (Zhou et al., 1993a).
However, it is not understood how tissue proper-
ties give rise to this de"brillation threshold
quantity or how it might be decreased. Further-
more, the mechanism by which this extracellular
electric "eld a!ects the transmembrane potential
of individual cells is not completely resolved.
Thus, there are several fundamental questions
that must be answered to arrive at a comprehens-
ive theoretical understanding of de"brillation.
First, how can a spatially localized stimulus have
a global e!ect on the transmembrane potential,
and thereby a!ect the activation pattern far from
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the stimulating electrodes? Second, what are the
dynamics of the medium subsequent to the ap-
plication of a large shock that lead to the elimina-
tion of reentrant activation patterns? And "nally,
what is the most e$cient way (stimulus protocol)
to escort cardiac tissue through this trajectory?

In recent years, a theory of de"brillation has
begun to emerge (Biktashev & Holden, 1998;
Biktashev et al., 1997; Holden, 1997; Keener,
1996, 1998; Keener & Pan"lov, 1996; Krinsky
& Pumir, 1998; Pumir & Krinsky, 1996, 1997).
Although it is yet to be satisfactorily con"rmed
by experimental studies, this theory is promising,
because it appears to answer some of the above
fundamental questions.

This emerging theory is based on the &&local
resistive inhomogeneity hypothesis''. According
to this theory, resistive inhomogeneities on the
microscopic space scale of cells create small
transmembrane currents in every cell. These cur-
rents hyperpolarize the cell membrane at one end
of the cell and depolarize the cell membrane at
the other end, giving rise to a microscopic &&saw-
tooth'' variation in transmembrane potential,
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which is superimposed on the variation on the
macroscopic space scale of the tissue. If the am-
plitude of the cellular variation in transmem-
brane potential remains small, there is little net
e!ect. However, when the applied "eld is large,
the amplitude of these sawtooth variations can
become adequate to invoke nonlinear e!ects of
ionic currents and activate cells. That is, the e!ect
of depolarization on one side of the cell can
overcome the e!ect of hyperpolarization on the
other side of the cell and lead to a net activation
of the entire cell. The criteria for cell activation
include the refractory state of the cell and stimu-
lus properties such as amplitude, duration and
waveform. The local resistive inhomogeneity hy-
pothesis therefore gives a plausible explanation
for direct "eld activation and a plausible answer
to our "rst question.

De"brillation is more di$cult to accomplish
than direct "eld activation. During "brillation,
cells are presumed to be in highly dispersed states
of activity as a result of reentrant waves. To
de"brillate, a shock must be e!ective regardless
of the details of this physical distribution of
states. One can imagine several ways to accom-
plish de"brillation in a general excitable medium
(Pumir & Krinsky, 1997), but the scenario that
appears to be at work in cardiac tissue relies on
the following recovery property. Following a
wave of excitation, there exists a minimal recov-
ery time below which the tissue is in a recovery
state such that it cannot support propagated
wavefronts. Instead, any distortion in transmem-
brane potential caused by a stimulus acts like
a waveback and it collapses in on itself. The idea
for a successful de"brillatory stimulus is to excite
all recovered and partially refractory media, thus
e!ectively pushing all wavefronts into regions of
tissue that are in recovery states that do not
support propagation. This converts all action
potential wavefronts into wavebacks, so that the
waves regress rather than advance, and eventual-
ly collapse. This scenario is readily seen in nu-
merical studies of two-dimensional tissue (Keener
& Pan"lov, 1996; Pumir et al., 1998). Thus, the
theory is at a stage where the second fundamental
question is being addressed quantitatively.

Here, we take the above explanations as
the primary working hypotheses of this paper.
Speci"cally, we assume that local resistive in-
homogeneities create hyperpolarizing and
depolarizing transmembrane currents in all car-
diac cells and that the goal of these is to excite as
much tissue as possible, thereby converting
action potential wavefronts into wavebacks of
recovery incapable of spreading, leading to a
collapse of reentrant wave activity. With this in
hand, we can begin to address our third funda-
mental question: what stimulus protocols are
most e$cient at accomplishing the above goal of
de"brillation, and what are the ionic mechanisms
making them most successful?

It is known from experimental studies that
a biphasic shock is more e$cient than a mono-
phasic shock for de"brillation (Zhou et al., 1993a,
b). To date, there has been no satisfactory theor-
etical explanation of this phenomenon. One re-
cent study (Fishler et al., 1996b) found evidence
for this phenomenon in a numerical simulation of
a one-dimensional chain of cells with large gap
junctional resistance as the source of local resis-
tive inhomogeneity. However, an adequate ex-
planation of the phenomena in terms of ionic
mechanisms is not provided there, nor is it appar-
ent how to examine the response of stimuli in two
or three dimensional tissue domains, capable of
self-sustained "brillatory wave patterns.

The leading hypothesis for this improvement,
"rst suggested in Jones et al. (1987), is that the
"rst phase of the bipolar waveform acts as a con-
ditioning pre-pulse that enhances or reestablishes
sodium current excitability, thereby reducing the
activation threshold for the second phase of the
waveform, and leads to improved responsiveness.
However, this early investigation studied the
e!ect of direct current injection into single cells,
and is therefore not directly applicable to de"bril-
lation (because it does not address the question of
how cells can receive the appropriate stimulus
from electrodes that are many space constants
away). More recently, several studies have found
similar behavior in single cells stimulated via an
extracellular "eld (Fishler et al., 1996a; Jones
et al., 1994; Leon & Roberge, 1993; Tung &
Borderies, 1992), giving further credence to this
hypothesis. It remains to demonstrate that this is
indeed the primary mechanism at work in annihi-
lating reentrant activity, which is associated with
"brillation, in one-, two- and three-dimensional
tissue.
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The purpose of this paper is to demonstrate
that biphasic shocks are usually more e$cient
than monophasic shocks at de"brillation, and to
describe the ionic mechanism for this di!erence.
In what follows, we describe a mathematical
model for de"brillation, explore the e!ect of
monophasic and biphasic stimuli on single cells,
and then demonstrate the e!ect of these stimuli
on one- and two-dimensional collections of cells.
Indeed we demonstrate that, as suggested by
single-cell studies, the "rst phase of the bipolar
waveform acts as a conditioning prepulse that
reestablishes sodium current excitability, thereby
reducing the activation threshold for the second
phase of the waveform. This is turn leads to an
improved activation of partially refractory tissue
and enables the wavefront to be pushed further
into the refractory tail of the preceding action
potential, leading to its eventual collapse.

2. A Model to Study De5brillation

In this section, we summarize a model for the
cell-averaged electrical activity in cardiac tissue
that is used in the remainder of this paper. A de-
tailed derivation of this model was given in
Keener and Pan"lov (1996) (see also Keener
& Sneyd, 1998). It can be assumed that cardiac
tissue is divided between intracellular space and
extracellular space; however it is impractical to
keep track of the details of these separate spaces.
Fortunately, the smallness of the cells relative to
the macroscopic electrical length constant can be
exploited in order to obtain averaged equations.
These equations come in the form of the classical
bidomain model (Plonsey, 1988) in which it is
assumed that cardiac tissue is a two-phase me-
dium at the macroscopic level with comingled
intracellular and extracellular domains. At each
point of the cardiac domain, there are mean
potentials /
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Equation (2) implies that current can leave the
intracellular space only as a transmembrane cur-
rent, and that the transmembrane current has
two components, namely the capacitive current
and the ionic current I

ion
. Equation (3) states that
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is conserved, since there

are no intracardiac current sources. In eqn (2), C
m

is the membrane capacitance, and s is the surface
to volume ratio of the cell. In the case of one
spatial dimension or when the intracellular and
extracellular conductivities have an equal aniso-
tropy ratio, eqns (2) and (3) can be reduced to
a single equation
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is the e!ective con-

ductivity (tensor) for the medium.
Generally, the ionic currents are represented as

I
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where w represents other variables such as gating
variables, and follow dynamics of the form

w
t
"g (<, w), (6)

a system of ordinary di!erential equations.
When a large "eld is applied to the medium, it

is not su$cient to know only the mean "eld,
because the e!ect of resistive inhomogeneities
becomes important and the microstructure of
the medium must be taken into account. It is
shown in Keener and Pan"lov (1996) that the
microstructural intracellular and extracellular
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potentials can be represented by
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The variable x is the three-dimensional spatial
Cartesian coordinate for the cardiac domain, and
z"x/e is a &&fast'' three-dimensional spatial vari-
able, on the scale of cells. The number e is the
ratio of cell length to longitudinal space constant
e"l/K, and is generally small, on the order of
0.1}0.2. The vector-valued functions =

i
(z) and

=
e
(z), which re#ect the details of cellular struc-

ture, are periodic in z and have zero mean value.
The possibility of variable orientation of the cells
is re#ected in the x dependence of the rotation
matrix ¹ (x), whose rows are the normalized or-
thogonal axes of the cell. Further, the transmem-
brane potential, t"t

e
!t

i
, becomes
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with the intracellular conductance idealized as
a constant base level plus delta function jumps
(representing gap junctions) and the extracellular
conductance approximated by a constant,
=
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], where b is

a constant involving a combination of the con-
ductivities of the gap junction and the intracellu-
lar and extracellular #uid. Notice that =

i
, and

thus H, accounts for the sawtooth variation in
potentials mentioned earlier.

These modi"cations of the electrical potential
average to zero over the length of the cell every-
where in eqns (2) and (3) except in the ionic
current term (the only nonlinear term). Therefore,
the ionic current used in eqn (2) must be taken
to be
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i.e. the average of f with respect to the variable
z over the surface of a single cell, LX, with total
surface area S. This modi"cation of the trans-
membrane current is signi"cant only when there
is a large externally applied current, because
large external stimuli lead to large (of the order
e~1) +/

i
and +/

e
making the modi"cation terms

the same order as the mean potentials. With no
such input, the contribution of rapidly varying
terms is inconsequential and can be ignored, in
which case eqn (10) reduces to the usual ionic
current in eqn (5).

The dynamics of the gating variables w is also
modi"ed by the local spatial inhomogeneity to

w
t
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It is because of the z dependence of the right-
hand side of this equation that w may also
develop z dependence during the application of
a large "eld.

The z dependence of w is problematic, because
it is impossible (or certainly impractical) to follow
in detail in a simulation of a large piece of tissue.
Therefore, we replace the functions =
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tions using two interpolation points z
~

and z
`

with z
~

in the left-half of the cell and z
`

in the
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a function of x alone. While it is possible to
determine A as part of the solution of the bido-
main equations in response to boundary condi-
tions with an applied current, for this paper, we
simply take A"cI

0
(t), where I

0
(t) is the ex-

ternally applied current, and c (independent of x)
is some constant relating the applied current to
the amplitude of the de#ection of the transmem-
brane potential. The parameter c depends in im-
portant ways on the nature of the tissue (Keener,
1998), but its actual numerical value is of little
consequence to this study (provided it is not
zero).

On the two di!erent regions of cell membrane,
there are two di!erent values of the gating vari-
ables, governed by

w$

t
"g (<$A, w$), (12)
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where w` are the gating variables on that region
of the cell where t"<#A, and w~ are the
gating variables on that region of the cell where
t"<!A. With this simpli"cation, the average
ionic current (10) simpli"es to

I
ion

"1
2

( f (<#A, w`)#f (<!A, w~)). (13)

The version of the bidomain model that is
studied in this paper consists of eqn (4) with ionic
current speci"ed by eqn (13) and gating variables
governed by eqn (12). This model was originally
derived by Biktashev et al. (1997).

The most important feature of this model (and
principle di!erence from the models of de"brilla-
tion discussed in Keener (1996, 1998; Keener
& Pan"lov (1996), Krinsky & Pumir (1998 and
Pumir & Krinsky 1996, 1997) is that it keeps
track of the possible di!erences of the gating
variables in di!erent regions of a cell during the
time that a stimulus is applied. It is precisely this
feature that leads to di!erences in the e!ects of
monophasic and biphasic stimuli, and the feature
that is the subject of the discussion that follows.
We emphasize that it is not necessary to numer-
ically resolve this model at the spatial resolution
of cells. Rather, this model represents a variation
on the idea of the bidomain model, that at
every point of physical space there are two
potentials. Here, we are assuming that at every
point of physical space there are two sets of
gating variables, corresponding to the two sides
(or compartments) of each cell, that must be
tracked.

3. The Response of a Single Cell

Before discussing how de"brillation takes
place and why a biphasic shock is more e!ective
for de"brillation, it is necessary to understand the
response of a single cell to stimuli.

Because current di!usion is rapid on the length
scale of the cell, the di!usion term on the right-
hand side in eqn (2) can be ignored for a single
cell, hence the transmembrane potential for an
isolated myocyte is governed by

C
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In this and all remaining sections, we use the
Beeler}Reuter model (Beeler & Reuter, 1977) to
represent the ionic current of a cardiac myocyte,
I
ion

. The Beeler}Reuter model describes I
ion

as the
sum of four separate ionic currents: a sodium
current, a time-independent and a time-activated
potassium current and a calcium current. These
currents are controlled by six gating variables, m,
h, j, d, f and x

1
, and the intracellular calcium

concentration ([Ca2`]
i
), which are governed by

ordinary di!erential equations. The equations for
the gating variables are of the form
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This equation implies that as the transmembrane
potential,<, changes at a rate associated with the
time constant, C

m
R

m
(where R

m
is the instan-

taneous membrane resistivity), w tracks < by
moving toward its instantaneous steady-state
value w

=
(<) with an instantaneous time constant

q
w

(<).
For this discussion, the most important cur-

rent is the sodium current, which is represented
by

I
N!
"(4m3 hj#0.003) (<!50). (16)

The product m3hj can be thought of as the
fraction of the time-dependent sodium current
that is recruited. The variable m is a fast activa-
tion variable. It increases with depolarization of
the membrane and its associated time constant is
small enough to keep m quite close to its steady-
state value m

=
(<). The variables h and j are

inactivation variables, because their steady-state
values decrease when the membrane is de-
polarized. The variable h represents &&fast'' so-
dium current inactivation (although h is slower
than m) and j represents &&slow'' inactivation (al-
though it is generally faster than other gating
variables, i.e. d, f, x

1
). Figure 1 depicts the time

constants and steady-state value of m, h and j as
a function of <. It should be noted that there is
disagreement in the literature about the necessity
of the slow inactivation variable j. For example,
the Ebihara-Johnson model (Ebihara & Johnson,
1980) does not include j, while the Luo}Rudy
model (Luo & Rudy, 1994a, b) does. Some recent



FIG. 1. The time constants (top) and the steady-state values (bottom) of m, h, and j as functions of transmembrane potential.
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data suggests that the slow inactivation has
a typical time constant on the order of seconds
(Richmond et al., 1998), which is far too slow to
have an e!ect on de"brillatory processes lasting
only 10 ms.

To understand the response of a single cell to
an extracellular stimulus, it is valuable to "rst
review the simpler scenario of the response of
a cell to an applied intracellular current. It is well
known that if the applied inward current is of
small amplitude and duration, the membrane
acts as a capacitor and depolarizes, but the mem-
brane potential quickly returns to rest after the
stimulus ends. On the other hand, if the stimulus
has su$cient amplitude and duration, then the
initial capacitive depolarization brings < to
a threshold potential and triggers the autocata-
lytic activation of the sodium current. This fur-
ther depolarizes the membrane potential and
generates the rapid upstroke of an action poten-
tial. It is important that the depolarizing stimulus
be both su$ciently large and rapid. This is be-
cause, besides activating the sodium current (in-
creasing m), depolarization also has the e!ect of
increasing the sodium current inactivation
(decreasing h and j). If the stimulus is large and
rapid, the membrane depolarizes rapidly to thre-
shold and activates the sodium current rapidly,
before h and j can substantially change. However,
if the stimulus is longer but of smaller amplitude,
then the membrane potential changes more slow-
ly and the inactivation variables can decrease
substantially therefore shutting o! the sodium
current (m3 hj+0) before an action potential up-
stroke can be evoked.

One of the ways that the activation threshold is
controlled is through the level of sodium current
inactivation at the beginning of the depolarizing
stimulus. In particular, a hyperpolarizing pre-
pulse has the e!ect of reducing inactivation (note
that there is a non-zero resting level of inactiva-
tion) thereby temporarily lowering the threshold
for action potential generation (Jones et al.,
1987). This is the key to understanding the in-
creased e$cacy of a biphasic extracellular stimu-
lus over a monophasic one.

A cell that is stimulated via an extracellular
"eld experiences depolarization at one side of the



FIG. 2. Transmembrane potential for a single Beeler}
Reuter cell subject to monophasic and biphasic "eld stimuli.
Each stimulus amplitude (A) is 17.0 mV, duration is 10 ms
and is applied 360 ms after the initial action potential. The
solid curve represents response of the cell to a monophasic
stimulus and the dashed-dotted curve shows the response of
the cell to a biphasic stimulus. Notice that for a stimulus of
the same amplitude, duration and timing, the biphasic
stimulus is successful at activating the cell, whereas the
monophasic stimulus fails to activate the cell. Mono-
phasic (**); biphasic (} ) } ) }).
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cell and hyperpolarization at the other (Fishler
et al., 1996b; Knisely et al., 1993; Leon &
Roberge, 1993; Pumir et al., 1998; Tung & Borde-
ries, 1992). If the depolarization at the one side of
the cell is su$cient in amplitude and duration to
activate the sodium current, the entire cell will be
depolarized after the stimulus is removed. (Note
that the current generated at this side of the cell
must overcome the hyperpolarizing current at
the other side of the cell due to the stimulus.
However, also note that ionic currents recruited
on the hyperpolarized side are inward/depolariz-
ing). The hyperpolarized side of the cell is also
a!ected in an important way, because the level of
inactivation can be signi"cantly reduced. This
renders the hyperpolarized side of the cell more
excitable. Thus, if the depolarization alone is of
insu$cient strength and duration to excite the
cell, it may be that the cell can be excited by
reversing polarity in the middle of the stimulus,
thereby activating the cell through ionic current
generated at the side that was previously hyper-
polarized.

It is precisely this &&facilitation'' mechanism
that explains why a biphasic stimulus is some-
times e!ective when a monophasic stimulus is
not. A monophasic stimulus is successful if it is
able to activate enough of the sodium current on
the depolarized side to depolarize the entire cell.
A biphasic stimulus is successful because the ac-
tivation threshold is lowered at the side of the cell
that is "rst hyperpolarized, and thus the sodium
current is more easily activated when the polarity
of the stimulus is reversed and that particular side
is depolarized.

We can see how this works in numerical simu-
lations of the Beeler}Reuter dynamics (although
all ionic models with sodium activation and inac-
tivation should have similar responses). In these
simulations, I

ion
is determined using the two-

point-averaged ionic current (13), and the gating
variables are speci"ed by eqn (12). Speci"cally,
this means that there are two copies of each of the
gating variables, one copy for the side of the cell
that is initially depolarized by the stimulus and
one copy for the side of the cell that is initially
hyperpolarized by the stimulus. [A two-point dis-
cretization is the simplest possible discretization
that shows these e!ects. Other authors have used
higher-resolution discretizations*from 3 points
in Tung & Borderies (1992) and 11 points in
Fishler et al. (1996b) to 48 in Leon & Roberge
(1993)*but the results are qualitatively un-
changed].

Figure 2 shows the change in transmembrane
potential as the result of monophasic and
biphasic extracellular stimuli. The "rst action
potential in the sequence is the result of a super-
threshold intracellular stimulus delivered to
a resting cell at time t"10 ms. The subsequent
extracellular stimulus, taking A"17.0 mV for
a duration of 10 ms, was applied at time
t"370 ms (coupling interval 360 ms). The
monophasic stimulus was unsuccessful in evok-
ing an action potential (response shown as a solid
curve), whereas the biphasic stimulus was suc-
cessful (response shown as a dash-dot line). The
polarity of the biphasic stimulus was switched at
5 ms.

The details of the gating variables during the
application of the stimulus can be seen in Fig. 3.
The top sub"gure in Fig. 3 shows the transmem-
brane potential from Fig. 2 on a shorter time
window in which the e!ect of the stimulus can be
seen more easily. In the bottom three sub"gures



FIG. 3. Legend opposite.
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in Fig. 3, the corresponding gating variables m, h,
and j are shown. In each of these "gures there are
four curves, two representing the response to
a monophasic stimulus and two for a biphasic
stimulus. The curves labeled &&#'' correspond to
dynamics in that part of the cell that is initially
depolarized (with <#A) and similarly, curves
labeled &&!'' correspond to dynamics in that part
of the cell that is initially hyperpolarized (with
<!A). For the monophasic stimulus, the &&#''
side remains relatively depolarized and the &&!''
side remains relatively hyperpolarized through-
out the stimulus, but for the biphasic stimulus,
the &&#'' side becomes relatively hyperpolarized
and the &&!'' side becomes relatively depolarized
after the polarity of the stimulus is reversed. Prior
to the stimulus, monophasic and biphasic, as well
as &&#'' and &&!'', curves are identical. During the
"rst half of the stimulus interval, &&#'' and &&!''
curves diverge, however, the monophasic and bi-
phasic curves remain identical. Once the polarity
#ips during the biphasic stimulus, the mono-
phasic and biphasic curves diverge.

The m curves show the di!erence in transmem-
brane potential response but do not show the
reason for the di!erence. As expected, m is depress-
ed in the hyperpolarized part of the cell and elev-
ated in the depolarized part of the cell. For the
monophasic stimulus, the depolarization is insu$-
cient to activate the cell, but for the biphasic
stimulus, the cell is activated almost immediately
following reversal of the stimulus polarity.

The h and j curves are much more revealing of
the mechanism underlying this di!erence. As
expected, both h and j are reduced (hence
inactivated) by depolarization and increased
(hence inactivation is reduced) by hyperpolariz-
ation. With the monophasic stimulus, the de-
polarization cannot activate the cell, because the
$&&&&&&&&&&&&&&&&&&&&&&&&&&&

FIG. 3. The response of a single Beeler}Reuter cell subject to
bottom represent the transmembrane potential <, the activat
variable j. The stimuli are as described in Fig. 1. Of the four c
stimulus and two to the biphasic stimulus; Of the two curves fo
one each for the &&!'' side of the cell. The mechanism for the incr
dynamics of the sodium current inactivation variables h and j. B
and increased (hence inactivation is reduced) by hyperpolarizati
activate the cell, because the depolarization cannot increase
The biphasic stimulus, in contrast, exploits the e!ect of hype
of the cell that was initially hyperpolarized and thereby re
bi! (} ) } ) }); bi# () ) ) ) )).
depolarization cannot increase m rapidly enough
to overcome the decrease in h and j. The biphasic
stimulus, in contrast, exploits the e!ect of hyper-
polarization by activating the sodium current on
the side of the cell that was initially hyperpolariz-
ation and thereby rendered more excitable.

The behavior of all remaining variables shows
no signi"cant di!erence between the depolarized
and hyperpolarized sides (not shown here). The
reason for this is that either the variables are too
slow to signi"cantly respond directly to the 10 ms
stimulus of the particular amplitude given here
(x

1
, f ), the steady-state value does not change

signi"cantly in the interval of transmembrane
potential that is important here (d ), or the vari-
able directly or indirectly has no major e!ect on
activation threshold ([Ca2`]

i
).

This di!erence between monophasic and bi-
phasic stimuli is qualitatively similar but varies
quantitatively for di!erent parameter values. For
example, the dependence of the activation thre-
shold (in units of A) is shown in Fig. 4 plotted as
a function of coupling interval. Notice that
biphasic stimulation has a lower activation
threshold than monophasic stimulation for all
coupling intervals, but the di!erence increases
drastically for the small coupling intervals (below
about 325 ms). This is critical in the mechanism
for de"brillation. The previous "gures used a
coupling interval of 360 ms, which is close to the
minimal threshold for both stimulus protocols
according to this plot.

The di!erence between monophasic and bi-
phasic stimuli depends on the length of the stimu-
lus. If the stimulus is of extremely short duration,
there is insu$cient time for the inactivation vari-
ables h and j to respond signi"cantly to the hy-
perpolarizing pulse, and so there is no advantage
for a biphasic stimulus. However, as the pulse
&&&&&&&&&&&&&&&&&&&&&&&&&&

monophasic and biphasic "eld stimuli. The curves from top to
ion variable m, the inactivation variable h, the inactivation
urves in each sub"gure, two correspond to the monophasic
r each type of stimulus, one is for the &&#'' side of the cell and
eased e!ectiveness of the biphasic stimulus reveals itself in the
oth h and j are reduced (hence inactivated) by depolarization
on. With the monophasic stimulus, the depolarization cannot
m rapidly enough to overcome the decrease in h and j.

rpolarization by activating the sodium current on the side
ndered more excitable. Mono! (**); mono# (} } } );



FIG. 4. Activation threshold A (in units of mV) plotted as
a function of coupling interval for monophasic and biphasic
stimuli of duration 10 ms. Notice that biphasic stimulation
has a lower activation threshold than monophasic stimula-
tion for all coupling intervals, but the di!erence increases
drastically for the small coupling intervals (below about
325 ms). Monophasic (**); biphasic (} ) } ) }).

FIG. 5. Activation threshold A and mV plotted as a
function of stimulus duration for monophasic and biphasic
stimuli with "xed coupling interval 360 ms. The di!erence
between monophasic and biphasic stimuli depends on the
length of the stimulus. Only for stimuli of extremely short
duration does a monophasic stimulus have a lower thre-
shold than a biphasic stimulus. This is because there is
insu$cient time for the inactivation variables h and j to
respond signi"cantly to the hyperpolarizing pulse. Mono-
phasic (**); biphasic (} ) } ) }).
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duration is lengthened, the advantage of the bi-
phasic stimulus increases. This increasing ad-
vantage can be seen in Fig. 5 where the activation
threshold is plotted as a function of stimulus
duration with "xed coupling interval 360 ms. For
these parameter values, the two protocols have
the same threshold at about 1 ms duration.

4. Elimination of Reentrant Patterns

To see if this phenomenon of single-cell behav-
ior explains the mechanism of de"brillation, it is
necessary to explore the response of spatially
coupled cells. For this study, we simulated the
Beeler}Reuter model equations on a ring of
length 15.8 cm [i.e. eqn (4) with periodic bound-
ary conditions]. The parameters were as follows:
C

m
"1 lF, s"5000 cm~1, and p6 "0.005 )~1

cm~1 (average e!ective conductivity) (Cour-
temanche & Winfree, 1991). A mixed impli-
cit}explicit half-step integration method (Hines,
1984) was used with a time-step of 0.02 ms and
a space-step of 0.0063 cm and initial conditions
were chosen in order to evoke a periodic wave
rotating around the ring. The propagation velo-
city of this rotating pulse was 0.0479 cm ms~1
and the action potential duration was 215 ms. At
some arbitrary time after the periodic motion
was well established, an extracellular stimulus of
duration 10 ms was applied to the ring, and sub-
sequent motion of the action potential observed.

The simulations show that A must be greater
than 19.0 mV to eliminate the rotating wave with
a monophasic stimulus, whereas to eliminate the
wave with a biphasic stimulus, A need only be
greater than 16.5 mV. Figures 6 and 7 show the
behavior of the transmembrane potential im-
mediately before, during and after the application
of the shock of amplitude A"17.5 mV with
duration 10 ms. The monophasic shock, depicted
in Fig. 6 is unsuccessful at eliminating the reentry,
while the biphasic shock, depicted in Fig. 7 suc-
cessfully eliminates the wave. In both cases, the
shock has the e!ect of exciting the partially re-
covered medium directly ahead of the action po-
tential, and hence the wavefront is e!ectively
pushed ahead into less recovered medium that is
closer to the tail of the &&preceding'' action poten-
tial. However, the di!erence between the two
protocols is that the excited region is pushed
further forward by the biphasic shock than by the
monophasic shock. In fact, the monophasic
shock pushes the wavefront into a region where it
is slowed but not halted. The biphasic shock, on



FIG. 6. The transmembrane potential < (mV) in a one-
dimensional ring (¸"15.8 cm) of Beeler}Reuter tissue dur-
ing and following the application of a monophasic stimulus
of duration 10 ms and amplitude A"17.5. Prestimulus
dynamics correspond to a circulating pulse. Each curve is
the solution at a "xed time and as time progresses the curves
are lifted slightly. The output time step is 0.5 ms. The mono-
phasic shock has the e!ect of exciting the partially recovered
medium directly ahead of the action potential, and hence the
wavefront is e!ectively pushed ahead into less recovered
media that is closer to the tail of the &&preceding'' action
potential. However, the monophasic shock pushes the
wavefront into a region where it is slowed but not halted and
the reentry persists.

FIG. 7. The transmembrane potential < (mV) in a one-
dimensional ring (¸"15.8 cm) of Beeler}Reuter tissue dur-
ing and following the application of a biphasic stimulus. As
in the simulation shown in the previous "gure, the stimulus
had a duration of 10 ms and an amplitude A"17.5, and the
prestimulus dynamics correspond to a circulating pulse.
Each curve is the solution at a "xed time and as time
progresses the curves are lifted slightly. The output time step
is 0.5 ms. Again the shock has the e!ect of exciting the
partially recovered medium directly ahead of the action
potential, and hence the wavefront is e!ectively pushed
ahead into less recovered media that is closer to the tail of
the &&preceding'' action potential. However, the biphasic
shock is able to activate media that is less recovered than the
monophasic shock does. In fact, the wavefront is pushed so
far forward that it is in a region that cannot support propa-
gation. The result is that the wave collapses and the reen-
trant behavior is annihilated.
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the other hand, is able to activate media that is
less recovered and thus pushes the wavefront so
far forward that it is in a region that cannot
support propagation. As a result, the wave col-
lapses and the reentrant behavior is annihilated.

The ionic mechanism underlying this di!er-
ence is the same as seen in single-cell simulations.
Figures 8 and 9 show the potential < and inac-
tivation variables h and j as functions of time
during and following the application of the
stimulus, at two di!erent positions on the ring. In
Fig. 8, for position x"7.875 cm, the medium is
activated by the shock, but much more quickly
with the biphasic shock than with the mono-
phasic shock. As with single cells, the biphasic
shock eliminates inactivation in the hyper-
polarized portion of the cell with the "rst phase of
the shock, and activates the cell when the polarity
of the shock is reversed. At this position
(x"7.875 cm), the activation following the
monophasic shock is due to propagation because
it occurs after the new position of the wavefront
is established following the termination of the
shock.

At position x"9.450 cm (see Fig. 9), the di!er-
ence in response is more dramatic. Here, the
monophasic shock has virtually no e!ect on the
action potential, while the biphasic shock pro-
duces direct activation. The mechanism for this
di!erence is similar to that described previously
for the response of a single cell. The important
di!erence, however, is that following the biphasic
shock the modi"ed action potential wavefront is
unable to sustain propagation and fails, whereas
following the monophasic shock, action potential
propagation is slowed slightly but not halted.
Also, in this case, the e!ect on j is more signi"cant
than in the case shown for the single cell. During



FIG. 8. The transmembrane potential < (in mV) and inactivation variables h and j at position x"7.785 cm on a periodic
ring described in the previous "gures. The monophasic shock has little e!ect on the action potential, while the biphasic shock
produces direct activation. Notice that the same ionic mechanisms are at work here as in the single cell. The biphasic shock
eliminates inactivation in the hyperpolarized portion of the cell with the "rst phase of the shock, and then activates the cell
when the polarity of the shock is reversed. (a) Mono (**); bi (- . - . -). (b) and (c) Mono! (**); mono# (} } });
bi! (} ) } ) }); bi# () ) ) ) ) )).
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the "rst half of the pulse at x"9.450 cm, j in-
creases from below 0.5 to above 0.7, whereas
there is little change in h.

The e!ectiveness of monophasic and biphasic
shocks for annihilating spiral wave reentry was
also studied in two-dimensional collections of
cells. For this portion of the study, we used
a modi"ed Beeler}Reuter model with the time
constants of calcium current activation and
inactivation (d and f ) halved (Courtemanche
& Winfree, 1991). The change in time constants
allows the formation of a stable spiral wave on
a computationally reasonable domain (10 cm]
10 cm). This stable spiral wave is used as the
initial conditions for simulations where external
shocks are given. Parameters are the same as for
the ring simulations, however for the two-dimen-
sional simulations, the Euler integration method
was used with a time-step of 0.025 ms and
a space-step of 0.025 cm (Courtemanche & Win-
free, 1991; Xu & Guevara, 1998).

Figures 10 and 11 show the membrane poten-
tial during and following the application of a
monophasic stimulus and a biphasic stimulus,
respectively. The stimuli were both of duration
10 ms and amplitude A"17.5. We see that the
results here are similar to those for the ring
dynamics. The monophasic stimulus pushes the
wavefront of the spiral wave forward; however it
only manages to shift the phase of the spiral wave
and is unable to annihilate it. The biphasic stimu-
lus, on the other hand, is able to push the wave-
front of the spiral wave much further into its
waveback and activate more of the core than the



FIG. 9. The transmembrane potential < (in mV) and inactivation variables h and j at position x"9.450 cm on a periodic
ring described in the previous "gures. Here, the di!erence between monophasic and biphasic stimuli can be seen even better
than in the previous "gure. The monophasic shock has almost no e!ect on the action potential, while the biphasic shock
produces direct activation. Notice that the same ionic mechanisms are at work here as in the single cell. The biphasic shock
eliminates inactivation in the hyperpolarized portion of the cell with the "rst phase of the shock, and then activates the cell
when the polarity of the shock is reversed. The major facillatory e!ect of the initial phase of the biphasic stimulus is on j.
(a) Mono (**); bi (- . - . -). (b) and (c) Mono! (**); mono# (} } }); bi! (} ) } ) }); bi# () ) ) ) ) )).

THE BIPHASIC MYSTERY 13
monophasic stimulus. This is seen best by com-
paring the t"10 ms panels of Figs 10 and 11.
The ionic mechanism responsible for the success
here appears to be identical to that described in
the cases of the single cell and ring dynamics (not
shown).

5. Discussion

There is a substantial di!erence in the response
of ionic models between monophasic and bi-
phasic shocks. This di!erence occurs because of
the relatively fast response time of the sodium
inactivation variables. The fundamental mecha-
nism for this di!erence is that the hyperpolariz-
ation phase of the biphasic pulse acts as a
pre-pulse to remove inactivation from the cell,
accelerating its recovery, and thereby lowering
the activation threshold prior to the subsequent
polarity reversal.

This mechanism is robust, meaning that it can
be observed in a variety of ionic models under
varying conditions and parameter values. How-
ever, the quantitative details of this phenomenon
can vary greatly depending on the detailed struc-
ture of the sodium channel and its associated
time constants of inactivation. In fact, we have
observed as great as a three-fold di!erence in
activation threshold for a particular modi"cation
to the Beeler}Reuter model (in which j

=
was

increased) between biphasic and monophasic
stimulus protocols. The latest model for sodium
inactivation is yet to be incorporated into a full
ionic model (Richmond et al., 1998). It should



FIG. 10. The transmembrane potential< in a two-dimensional sheet of modi"ed Beeler}Reuter tissue during and following
the application of a monophasic stimulus of duration 10 ms and amplitude A"17.5. Prestimulus dynamics correspond to
a spiral wave. The monophasic stimulus shifts the phase of the spiral wave, but is unable to annihilate it.
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also be noted that the quantitative details in-
volved in determining both monophasic and bi-
phasic activation thresholds depend greatly on
currents responsible for recovery as well as
excitation currents. A complete quantitative
study of de"brillation thresholds, therefore, must
include a detailed comparison of di!erent ionic
models.

There are several other concerns relating to the
quantitative reliability of these results. Speci"-
cally, there is need for a convergence study to
determine the dependence of these results on the
number of cellular compartments. As noted
above, di!erent sample numbers have been used
to discretize single cells [2 points here, 3 points in
Tung & Borderies (1992), 4 points per cell in
Fishler et al. (1996b), 11 points in Fishler et al.
(1996b) and 48 points in Leon & Roberge (1993)],
although the qualitative results are identical in all
of these studies.



FIG. 11. The transmembrane potential< in a two-dimensional sheet of modi"ed Beeler}Reuter tissue during and following
the application of a biphasic stimulus of duration 10 ms and amplitude A"17.5. Prestimulus dynamics correspond to a spiral
wave (as in the previous "gure). Unlike the monophasic stimulus of the same amplitude and duration, the biphasic stimulus is
able to annihilate the spiral wave.

THE BIPHASIC MYSTERY 15
We also do not currently know how to accu-
rately relate the stimulus threshold at the cellular
level to tissue level thresholds (although rough
estimates give reasonable agreement with experi-
mental results (Keener, 1996, 1998). This is be-
cause the functions =

i
and =

e
, which give

a measure of small scale resistive inhomogenei-
ties, are not known. In fact, to date, attempts to
directly observe the &&sawtooth'' potential have
failed (Gillis et al., 1996; Zhou et al., 1998) leading
some investigators to dispute the validity of this
model. It should be noted, however, that there is
no doubt that resistive inhomogeneities play an
important role in the distribution of transmem-
brane currents during a stimulus (Fishler, 1998;
Fishler & Vepa, 1998; White et al., 1998), nor can
one dispute the existence of small-scale resistive
inhomogeneities, only whether or not the e!ect of



FIG. 12. The transmembrane potential < (mV) of a single cell (top) in respose to the application of two di!erent biphasic
stimuli of equal energy and duration (shown in the bottom two traces). The non-symmetric biphasic stimulus is successful in
activating the cell, whereas the symmetric one is not. This suggests that there are even more e!ective stimulus protocols for
de"brillation than a symmetric biphasic shock. Stimulus 1 (**); stimulus 2 (} ) } ) }).
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these is su$cient to a!ect transmembrane cur-
rent #ow at de"brillation strength current levels.
There are also numerous technical di$culties
with directly observing the sawtooth potential, so
that we do not view the current experimental
mismatch as de"nitive or fatal to this theory.

There are other features of de"brillation that
this theory does not explain. For example, Strick-
berger et al. (1994) reported a di!erence in de"b-
rillation threshold between anodal and cathodal
monophasic shocks during transvenous de"bril-
lation. The model presented here is symmetrical
with respect to the direction of current #ow.
Termination of ventricular tachycardia is
generally considered to require less energy than
termination of ventricular "brillation (AMA
Standards, 1986). There is currently no theoret-
ical explanation of this di!erence.

The obvious question that remains is to deter-
mine the optimal biphasic protocol. It is certain
that the 50}50 temporal split of polarity phases
is not optimal, since there is no symmetry that
would demand this. Figure 12 shows the results
of two biphasic stimuli with identical total energy
(squared area"2560 mV2 ms) and duration
(10 ms) but with di!ering consequences. The bi-
phasic pulse with a 50}50 temporal split between
phases and equal amplitude (A"16) in the two
phases is unsuccessful at evoking a stimulus,
while a biphasic stimulus with unequal ampli-
tudes (A

1
"10, A

2
"26.46) and unequal dura-

tions (t
1
"7.5 ms, t

2
"2.5 ms) is successful.

Thus, there are ways to redistribute the energy
that improve the likelihood of successful de"bril-
lation.

Most de"brillators used clinically use trun-
cated exponential waveforms rather than the
square waveform used here. The optimal wave-
form, whether square or a truncated exponential,
and its biphasic distribution, is not yet known,
although the results presented here provide a way
to search for the optimal waveform.
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