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Abstract. In models of working memory, transient stimuli
are encoded by feature-selective persistent neural activity.
Network models of working memory are also implicitly
bistable. In the absence of a brief stimulus, only spon-
taneous, low-level, and presumably nonpatterned neural
activity is seen. In many working-memory models, local
recurrent excitation combined with long-range inhibition
(Mexican hat coupling) can result in a network-induced,
spatially localized persistent activity or “bump state” that
coexists with a stable uniform state. There is now renewed
interest in the concept that individual neurons might have
some intrinsic ability to sustain persistent activity with-
out recurrent network interactions. A recent visuospatial
working-memory model (Camperi and Wang 1998) incor-
porates both intrinsic bistability of individual neurons
within a firing rate network model and a single popu-
lation of neurons on a ring with lateral inhibitory cou-
pling. We have explored this model in more detail and
have characterized the response properties with changes
in background synaptic input Io and stimulus width. We
find that only a small range of Io yields a working-mem-
ory-like coexistence of bump and uniform solutions that
are both stable. There is a rather larger range where only
the bump solution is stable that might correspond instead
to a feature-selective long-term memory. Such a network
therefore requires careful tuning to exhibit working-mem-
ory-like function. Interestingly, where bumps and uniform
stable states coexist, we find a continuous family of stable
bumps representing stimulus width. Thus, in the range of
parameters corresponding to working memory, the model
is capable of capturing a two-parameter family of stimulus
features including both orientation and width.

1 Introduction

There is much interest in how the brain can maintain the
persistent neural activity that encodes recent stimuli and
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is thought to be the basis of working memory (Fuster
1988; Goldman-Rakic 1995). During behavioral tasks,
this persistent elevated neuronal firing can last for tens of
seconds after the stimulus is no longer present. Such per-
sistent activity appears to maintain a representation of the
stimulus until the response task is completed. Several theo-
retical mechanisms for the maintenance of persistent activ-
ity have been described, including local recurrent synaptic
feedback and intrinsic cellular bistability (Durstewitz et
al. 2000; Wang 2001). Of these, recurrent connectivity at
the local circuit level has received the most attention, from
Hopfield models to biophysically elaborate, cell- and con-
ductance-based networks.

Wilson and Cowan suggested that meaningful insight
into the behavior of neural ensembles might be gained
by a mean field approach describing the space and time
coarse-grained activity of local populations of excit-
atory and inhibitory neurons (Wilson and Cowan 1972).
They showed that such firing rate models, in a spatially
distributed system with local recurrent excitation and
wider-range inhibition, could result in stable, spatially
localized, “bump-like” patterns of activity (Wilson and
Cowan 1973). Reducing from a two to a single-popula-
tion formulation by incorporating a “Mexican hat” con-
nectivity kernel, Amari proved the existence and stabil-
ity of standing “bump-like” patterns of activity in such a
rate model (Amari 1977). In particular, he demonstrated
the crucial dependence of stable patterns on the imposed
background firing activity of the network. Sompolinsky
and coworkers also found bump solutions for a scalar
model with a combined excitation-inhibition kernel (Ben-
Yishai et al. 1995), and they used this property to code for
visual orientation tuning on a ring geometry.

Amari identified a parameter regime of kernel proper-
ties (the amount of excitation and inhibition) and uniform
background activity where a stable bump state coexisted
with a stable uniform state. This kind of network bista-
bility is thought to be necessary in a model for working
memory. That is, a brief transient input can induce a rest-
ing network to evolve into a bumplike pattern. Such a
bump is then susceptible to being returned to the rest state
by a transient memory-erasing perturbation. Bump states
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in models formulated on infinite spatial domains or rings
have translation invariance, and therefore a bump’s loca-
tion is viewed as an encoded stimulus feature.

There is now renewed interest in the concept that indi-
vidual cortical neurons might have some inherent ability to
sustain persistent activity in response to a transient stim-
ulus without network recurrence. The remarkable finding
that individual cortical neurons can sustain graded persis-
tent firing in the entorhinal cortex (Egorov et al. 2002) sug-
gests that neurons elsewhere in the central nervous system
may be capable of similar behavior. Indeed some spinal
cord neurons show properties that have been modeled as
intrinsic bistability (Booth and Rinzel 1995). At the inter-
section of Amari-type network bistability and intrinsic cel-
lular bistability is a working-memory model by Camperi
and Wang (1998). The Camperi–Wang (C–W) formula-
tion comprises an integrodifferential network of condi-
tionally bistable cells on a ring with a Mexican-hat-like
synaptic weight kernel. Here the intrinsic dynamics for
individual cells is bistable rather than the graded multi-
stability seen in the experiments of Egorov et al. (2002).
The central insight from their work is that intrinsic bista-
bility in single neurons provides robustness against noise
and distracters as compared with the Amari- or Ben-
Yishai-type model. Here we reconsider the C–W model
and explore the response properties as a function of the
background input rate, Io, and stimulus width, p.

Our computational results suggest that bistable work-
ing-memory properties of the C–W model are found in
only a relatively restricted range of Io, further restrict-
ing the already limited range of parameters supporting
bistability previously found by Camperi and Wang (1998).
Background network activity is therefore a crucial param-
eter for this model. We found bumps and uniform states
in C–W coincide only in a small range at low Io values.
Over a higher and much larger Io range the C–W model
is not bistable, but instead its bump solution is a global
attractor that encodes a stimulus-specific location. Here
the uniform resting state is not stable, and instead the
model only holds the memory of the most recent spa-
tially patterned transient input. Increasing Io further we
pass through another range of bistability and then into a
regime where only a uniform elevated steady state exists.
We show that the behavior within the regions of bistability
is complicated and includes multistability and Turing-type
low-amplitude bump patterns.

2 Methods

Camperi–Wang is a firing rate model designed to simulate
the encoding of visuospatial cue orientation in a working
memory task. The essential features of the C–W model
are a circular domain, an intrinsic firing rate that is an
S-shaped function of input, and an input function com-
prised of a thresholded convolution of other units’ firing
rates with a connectivity kernel that spans the entire circu-
lar domain. The S-shaped gain function gives the individ-
ual unit conditional bistability. This means that isolated
units do not have two stable states at rest, but some steady
input can bring individual units into the bistable range.

When coupled in the network, input consists of a constant
imposed background Io, a transient input pattern Icue, and
the recurrent input from other neurons in the system. As
Camperi and Wang pointed out, the network (in a certain
parameter regime) can sustain Amari-type bump activity
without conditional bistability; however, the resistance to
noise and distracting input patterns is lost. Maintaining
a bump solution without conditional bistability requires
enhanced background activity and/or tuning of the rela-
tive level of excitation to inhibition.

The equation describing the dynamics of firing activity
r = r(θi, t) of each neuron is

τ0
dr

dt
=−f (r)+g(I) ,

where θi = i 2π
N

, i =1, ...,N, and τ0 sets the time scale.
Throughout this report we show the dimensionless

activity levels: Camperi and Wang multiplied this rate
by 7 Hz in order to obtain reasonable spontaneous
and active firing rates, but this does not affect the
behavior of the model, and we ignore it here. In the
C–W simulations, activity was turned off by an externally
imposed transient global inhibition.

The key expression in the model is the cubic-shaped
function of the firing rate, which, under appropriate
parameters, allows for intrinsic bistability:

f (r)= c+ r −ar2 +br3 .

The input to the neurons consists of the convolution of
the weights and firing rates plus the external input:

I (θi, t)= I ext(θi, t)+
n∑

j=1

1
N

W(θi − θj )r(θj , t) .

The external input consists of a uniform, steady back-
ground synaptic activity (Io) plus a transient, nonuniform
stimulus (Icue):

Iext(θ, t)= Io + Icue(t)

(
1+ cos(θ)

2

)p

.

The shape of the transient stimulus pattern is controlled
by the positive exponent p; a larger p results in a narrower
stimulus pattern. As with the C–W simulations, Icue is typ-
ically presented at a constant level for 0.5 s and is then
zero. We note that the duration of presentation can have
an effect on the final pattern of activity, but we have not
explored this here.

In the model, the net input I, including both external
and recurrent components, is thresholded such that g(I)
cannot contribute to making dr/dt <0:

g(I)= I : I >0 ,

g(I )=0 : I ≤0 .

The synaptic weight kernel is given by

W(θ)=−WI +WE

(
1+ cos(θ)

2

)
,

which is very similar to the stimulus shape relation.
Explorations of the model were conducted using cus-

tom code written in MATLAB (R13) and simulated on
an Apple Macintosh G5 computer. This code is available



Symbol Parameter C–W Range this
condition manuscript

τ0 Integration time constant 0.025 s 0.025 s
p Stimulus shape exp 1 0.01–1000
Io Background activity 0.45 0–6
Icue Stimulus amplitude 1 0.1–2
a Nonlinearity parameter 0.36 0.36

(bistable)
b Nonlinearity parameter 0.038 0.038
c Nonlinearity parameter −0.2 −0.2
WI Inhibitory strength 2 2
WE Excitatory strength 2.6 2.6

upon request from the authors. A forward Euler integra-
tion scheme was used with a time step of 0.001s, and a
smaller time step did not affect the results. Typically, 128
neurons were simulated in the data presented here, though
more or fewer neurons were tested to assess any potential
effects. As far as we were able to see, more neurons resulted
in smoother curves but no change in qualitative results.
Stability of the steady state bumps was assessed numeri-
cally by running simulations for long time periods (∼50 s).

3 Results

3.1 Dynamics of bump generation

The most prominent property of the C–W model is the
generation of a bump in response to a brief stimulus. A typ-
ical simulation with standard C–W parameters is shown
in Fig. 1. The spatiotemporal evolution of the network
activity toward the bump state has some notable features.
Several of these features are associated with the time points
indicated by letters in Fig. 1a, and these correspond to later
panels. Our simulations begin with all cells at zero firing
rate. The initial transient represents the network settling
to an activity level determined by the background input
strength, Io. At time “d” the “standard” stimulus (p = 1,
Icue =1, held for 0.5 s) initiates a bump pattern with exag-
gerated amplitude. At time “e” the stimulus is released
and the network begins to relax to the steady state bump
profile. The transient phase is sampled at time “f,” and the
network has approached steady state by time “g.” Salient
features of the steady state bump include a sharp transi-
tion in activity from neurons in the up state to neurons
in the down state. At the edges of the bump and moving
outward begins a graded shelf of slightly elevated neurons
that transitions into a uniform shelf of neurons held at the
lowest possible level of activity by strong lateral inhibition
and the threshold on the input function g(I).

The spatial profiles of the bump state (solid), the con-
nection weight kernel (dotted), and the brief stimulus
(dashed) are plotted in Fig. 1b. The connection strength
is from the central neuron to adjacent neurons; negative
values indicate net inhibition. This connection pattern is
identical, but shifted, for each neuron in the field. The
exponent p determines the width of the stimulus; large p
is for a narrow stimulus.

To understand the bump profile, we first focus on the
single-unit dynamics. The effect of constant input to an
isolated neuron can be seen graphically (Fig. 1c) by plot-
ting the rate of change of activity (dr/dt) with the pro-
cessed input g treated as a parameter. The zero crossings
correspond to steady state firing rates for a given g. Open
circles in this plot indicate where dr/dt =0 for g=0.5. The
upper and lower activity states are stable because the slope
of the dr/dt curve is negative at these points, while the
intermediate steady states are unstable because the slope
there is positive. For g =0 (no input to a neuron), there is
a nonzero basal firing rate. Increasing g effectively shifts
the dr/dt curve upward such that a neuron passes through
a range of bistability and eventually to a single elevated
firing state.

Within an intact network, the input g is not necessar-
ily uniform. At each time t , each neuron has an r and g
value and the network state is represented by a set of (g, r)
pairs. The set may be viewed in the g–r plane, and hence
the network’s evolution appears as a moving set of points.
The snapshots in Fig. 1d–g of the g–r plane correspond to
the labeled time points in Fig. 1a. The superimposed solid
curve indicates the possible steady state values of a single
cell as a function of g (from Fig. 1c). The curve’s S-shape
reflects the intrinsic cellular conditional bistability, which
does not change with time. At steady state, each neuron
in the set lies somewhere along this S-shaped curve, but a
neuron may or may not lie on the curve during a transient
phase.

During the stimulus, neurons around θ = 0 are forced
to high activity and spread rightward along the upper
branch, while some neurons are in transition between the
upper and lower branch and therefore are not on the
S-shaped curve (Fig. 1e). When the stimulus is released
(Fig. 1f), neurons relax and those without sufficient excit-
atory input drop off the upper branch. Some neurons
remain on the upper branch, thereby establishing a steady
state bump solution. After a stable bump is established
(Fig. 1g), the more active neurons support those with lower
firing rates along the lower branch of the S-curve. These
latter neurons comprise the graded shelf seen on the edge
of the bump in Fig. 1a. The remainder of the neurons are
suppressed to a uniform low firing rate due to the massive
lateral inhibition in the connectivity kernel.

3.2 Bump shapes are not unique

For the standard C–W parameters, the steady bump pro-
file depends on the stimulus shape. A very wide stimu-
lus (p =0.01, shown dashed in Fig. 2a) results in a bump
that is essentially the same shape as the standard stimulus
(p=1, cf. Figs. 2a and 1b). Narrow stimuli (p>1) result in
narrow stable bumps, as shown in Fig. 2b for p=100. The
pump profiles that result from a variety of stimulus widths
are shown in Fig. 2c. The range of widths in this family of
bump patterns decreases from a maximum down to a min-
imum (that is larger than one cell wide). Stimuli that are
too narrow (p=500 shown) fail to produce a stable bump
for a stimulus of amplitude 1. Interesting features that
arise with the narrow bump patterns include a diminished



Fig. 1. C–W model behavior under standard parameters, with Io =
0.45. a Firing rate as a function of space and time, showing bump pat-
tern. The labels D through G along the time axis correspond to time
points for panels d–g: 0.5, 1.0, 1.5, and 3 s. b Overlaid plots showing
(dots) connection weight value as a function of distance from any
given neuron, (dash) stimulus imposed for 0.5 s at t =0.5 s, (solid) the
firing rate as a function of space at t =5 s. Note that the connectivity
is strongly negative (mean −0.7) and, due to the threshold on g(I),
neurons outside of the bump are at r ≈ 0.2164. c Intrinsic dynamics
for a single isolated neuron with fixed input (g). Increasing g shifts
the curve for dr/dt up such that individual neurons pass from hav-
ing a single lower stable steady state through a range of bistability
and eventually to a single elevated stable steady state. Intersection of

these curves with the dashed line indicating dr/dt =0 corresponds to
a steady state activity level. Shown are curves for g=0, 0.25, 0.5, 0.75,
1. d–g Snapshots of network activity in the g–r plane. The solid curve
indicates where input, g, and the firing function f(r) are balanced for
a single neuron. This curve comes from plotting the zero crossings
in panel c as a function of g. The evolution of the network firing
pattern is represented at various time slices, in panels d–g: solid dots
indicate the distribution of all neurons on the r–g plane at various
time points for standard conditions shown in a. d 0.5 s (just prior to
stimulus). e 1.0 s (at end of stimulus). f 1.5 s. g 3.0 s. These time points
are indicated on the time axis of panel a. At steady state, these dots
must lie on the r–g nullcline



maximum amplitude, a smaller range of amplitudes for
the high activity neurons, and an increased “shelf” of neu-
rons in the low activity state (on the lower branch of the
S-curve).

The state of the various neurons for wide and narrow
stimuli can be seen better in the g–r planes of Fig. 2d,e.
The shape of the stable bump response depends strongly
on stimulus width and only weakly on the amplitude (pro-
vided it is above threshold). If the network is stimulated
with a square pulse instead of a bump-shaped cue profile,
so that amplitude and width can be controlled separately,
only the width has a significant effect (not shown). From
the g–r profiles we see that the transition from the lower to
the upper branch does not necessarily occur at the “knee”
of the S-curve. For a narrow bump more neurons spread
out along the lower branch and move closer to the lower
knee, presumably because there is less lateral inhibition.
Many of these neurons on the lower branch in panel e
are in the range of conditional bistability and might be
available for transition to the upper branch to expand the
bump. In contrast, the lower branch neurons in panel d are
not in the range of conditional bistability and presumably
are not available to expand the bump with a transition to
the upper branch.

3.3 Background activity as a parameter

The strength of the uniform and steady background input
Io plays a strong role in determining the stable patterns
observed in the C–W model. This is also the case in the
Amari model (Amari 1977). For Io =0.57, which is above
the C–W standard level of Io = 0.45, we noticed that a
stable pattern of minimal width (a single neuron on the
upper branch state) was possible (Fig. 3a). This single-
neuron bump is not possible at Io =0.45. At this elevated
Io =0.57, while a very narrow bump is stable, the ability to
hold a representation of an intermediate stimulus is lost,
and such stimuli eventually evolve to a wide bump (not
shown). The spatially uniform solution is still stable in
this parameter regime.

At a somewhat higher Io value, the uniform state loses
stability (an analytic estimate of the critical value of Io is
derived in the appendix, Io =0.606). The ability to evoke a
very narrow bump with a standard amplitude stimulus is
also lost, but we did not determine precisely the critical Io

for this loss. With Io = 0.68, the same stimulus that leads
to a single-neuron elevated state for Io =0.57 now evokes a
maximum width bump (Fig. 3a, dashes). Once the uniform
stable state becomes unstable, we find evidence of a stable
low firing rate bump state that exists entirely on the lower
branch of the S-curve. That is, in a narrow Io range beyond
where destabilization of the uniform steady state occurs, a
subthreshold stimulus breaks the symmetry of the uniform
steady state and results in a stable lower branch bump as
shown in Fig. 3b,c. This low-activity bump is reminiscent
of a Turing-type pattern as seen in spontaneous pattern
generation in reaction-diffusion models of morphogenesis
(Murray 1989) and Wilson–Cowan models describing hal-
lucinations and migraines (Ermentrout and Cowan 1979).

The effects of varying Io over a large range are shown in
more detail in Fig. 4. Each panel in Fig. 4 shows proper-
ties of the network’s stable long time response (after tran-
sients) versus Io. The stable solution profile after a slight
narrow (p =1000, amplitude = 0.01) perturbation from a
uniform initial condition is shown in Fig. 4a. Note that
this is not a spatiotemporal solution in response to a stimu-
lus as seen before, but rather the stable solution shape after
a small perturbation as a function of the parameter Io. As
Io increases from zero, we find several regimes: first there
is a range of uniform low-activity solutions. Then we find
a small Io range of lower branch bump solutions (Turing-
like patterns described above). Next we see a large Io range
over which the system evolves to a bump. Finally there is
a spatially uniform high-activity state when inhibition is
overcome by Io. Both the amplitude and the width of the
bump grow with Io.

Some aspects of the network’s mulistability are masked
by using the same cue profile for all of the simulations in
Fig. 4a. Therefore, we carried out additional simulations,
adopting a continuation procedure. We varied Io in small
steps across a range, solving the model for each Io and
using the steady state solution at the previous value of
Io plus a small symmetry breaking perturbation (ampli-
tude = 0.001, p = 1) as the initial condition for the next
step. The results of forward (solid) and reverse (dots) con-
tinuation calculations, shown in Fig. 4b, reveal regions of
bistability. The sigmoid portion of the curve corresponds
to the spatially uniform solution; it can be determined ana-
lytically by evaluating Io as a function of r. The range over
which the uniform network is unstable is approximately
0.6 ≤ Io ≤ 4.9 (see appendix) and is shown dashed. The
two asterisks in Fig. 4b bound the Io range over which r is
on the middle branch of f (r). Because this state is unsta-
ble for an isolated cell, the uniform state here is unstable
for the network. Outside of the asterisks on this uniform
state curve, all cells are on the upper or all cells are on the
lower stable branches of the S-curve. If the cells were not
connected, such upper and lower steady states would be
stable. With the cells connected in the network, the cor-
responding uniform states are stable to uniform perturba-
tions. However, they are not necessarily stable to symmetry
breaking perturbations (see appendix). The effects of net-
work connectivity can destabilize the uniform state for Io

values outside of the range where an isolated cell would be
unstable (between the asterisks). Because of the Mexican
hat connectivity kernel, cells are pushed into more or less
activity, which prevents them from coexisting stably at the
same firing rate.

The network connectivity and intrinsic bistability
impose significant hysteresis in the network response:
when explored using continuation, the network is able to
maintain a bump solution both below the lower destabili-
zation point (around 0.6) and above the upper destabiliza-
tion point (around 4.49) in Io. In the range just above the
lower destabilization point, small-amplitude stable bumps
are seen (they are more obvious in panel c, which is an
expansion of panel b); these are consistent with the Turing
mechanism of destabilization (Ermentrout and Cowan
1979; Murray 1989; Bressloff and Coombes 1998). The Io
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Fig. 2. Multiple bump states exist for the C–W model. Overlaid plots
showing stimulus (dashed) imposed for 0.5 s starting at t = 0.5 s and
the firing rate (solid) as a function of space at t =5 s. The background
input level is Io =0.45. Note that a smaller stimulus exponent results
in a wider stimulus. a Stimulus exponent p=0.01. Stimulus (dashed)
is wider than standard conditions, but stable bump (solid) is the same
as in the baseline case. The baseline stimulus exponent p=1 already
produces the maximum width stable bump, and broader stimuli do

not increase the bump width. b Stimulus exponent p=100. Stimulus
(dash) is narrower than standard conditions, and stable bump (dash)
is narrower than baseline. c Summary plot showing stable bump pat-
tern for a variety of stimulus exponents. Note that, for this input
level (Io = 0.45), there is a minimum sustainable input pattern. d, e
Steady state distributions of neurons on the r–g plane for p = 0.01
and p =100
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Fig. 3. Examples of the effect of tuning background firing rate, Io, on
network activity. a Narrow stimulus (p=10000, amplitude = 1) with
sufficient background activity (Io =0.57) leads to a single neuron sit-
ting stably on the upper branch (solid curve). When the background
activity level is increased to Io =0.68, the single-neuron upper branch
state becomes unstable, and the elevated network activity induced by
the single elevated neuron is enough to evolve a full bump (dashed).

At this background activity, the network is no longer conditionally
bistable. b A subthreshold stimulus (p = 1000, amplitude = 0.1,
dashed) with Io =0.68 as in a results in a stable lower branch bump.
Note different vertical scale than panels a and c. c Neurons in b spread
out below the knee of the lower branch solution. Shown are neurons
(circles) in the g–r plane as in Fig. 1d–g. The solid curve is the g versus
r steady state curve as before

range over which the spatially uniform solution in our typ-
ical 128-cell network is unstable (according to our numer-
ical simulations of the responses to small perturbations)
agrees well with our analytic results obtained by treating
the network as a continuum (see appendix).

The remaining panels in Fig. 4 demonstrate more
clearly the multiple solutions (i.e., more than two) available
from the network in response to large stimuli. These pan-
els show the results of presenting wide and narrow stimuli
(of amplitude 1) to the network for a range of Io. Panel d

shows the width of the bump solution for stimulus widths
p=10000 (solid) and p=0.001 (dotted) over the range of
Io shown before. The width is expressed as the number of
units on the upper branch (out of a total of 128 in these
simulations). Panel e shows the width of bump solutions
for stimulus widths similar to those shown in Fig. 2c over
an interesting range of Io. This panel shows that, particu-
larly in the Io range of 0.3–0.5, many stable bump width
states are possible and these depend on the width of the
stimulus. We note that there are similar multiple patterns



Fig. 4. Summary of the effects of background firing rate Io on net-
work activity. a Shape of stable bump resulting from a slight pertur-
bation of uniform state (p = 1000, amplitude = 0.01) as a function
of Io. b The sigmoidlike curve represents the uniform steady firing
rate of the network as a function of Io and was calculated analytically.
The uniform state is unstable where the curve is dashed. The aster-
isks represent the limits (in r) of the middle branch of the f(r) curve,
between which single units would be unstable if not in the network.
The solid curve shows the maximal firing rate (across neurons) for
each Io shown in a. The solid curve is the maximum r for the forward
continuation calculation (increasing Io), and the dotted curve is the
maximum r for the reverse continuation calculation (decreasing Io);
see text. Note that in this and following panels, the vertical transi-
tions are not actually solutions; however, we have retained the lines

for ease of viewing the range of the various regimes. c Expanded sec-
tion of panel b showing lower branch bump. d Width of the bump
(number of neurons in the high-activity state) as a function of Io

and two stimulus parameter widths, p. The amplitude, Icue, is 1 for
both cases. p = 10000 (solid) corresponds to a very narrow (single-
unit) stimulus, while p =0.001 (dashes) is a very wide stimulus. e An
expanded view of bump width as a function of Io and stimulus width.
Stimulus width here is explored over the range of p for multistabili-
ty, roughly corresponding to the plots in Fig. 2C. Io is shown over a
range that includes Io =0.45, as used in the original C–W simulations
(vertical dashed line). As shown in the other panels, Io greater than
approximately 0.7 results in a bump for any stimulus. Note the range
of Io, corresponding to approximately 0.3–0.6, is where the network
admits numerous solutions that depend on stimulus width

at high Io corresponding to the upper range of bistability
seen in panel b, but these were not explored in detail.

4 Discussion

Because of the recent growing interest in cellular bi-
stability (Camperi and Wang 1998; Egorov et al. 2002;

Loewenstein and Sompolinsky 2003) as related to per-
sistent activity patterns, we have revisited the Camperi–
Wang model in more detail. We found that the back-
ground synaptic activity Io must be carefully tuned in
order to exhibit bistability. This further constrains the
already restricted parameter regime for working-memory-
like behavior found by Camperi and Wang (1998). In an



adjacent and larger parameter region, the model supports
bump states robustly, but the working-memory-like net-
work bistability is lost. The globally attracting bump is
still translation invariant, and thus a memory state for
orientation, but the uniform rest state is no longer sta-
ble. In the working-memory regime we found an abun-
dance of bump states that could encode a two-parameter
continuum encoding stimulus width and location coex-
istent with a stable uniform state. In an adjacent, but
still small, higher-Io range, we found bistability between a
large-amplitude bump state and a small-amplitude bump
state. The small-amplitude bump results from a Turing-
like destabilization of the uniform “rest state.” All of these
states are translation invariant on the ring.

Intrinsic or cellular conditional bistability provides
robustness against noise in bump location to this class
of models for persistent activity (Camperi and Wang
1998). This robustness presumably occurs whether the
model is tuned to the parameter regime where the bump
is a global attractor or the bump coexists with a low-
activity rest state. In either case, the intrinsic bistability
underlies a sharp transition between neurons in the high-
activity and low-activity states (upper and lower branches
of the S-curve). This gap in activity levels serves as a buffer
against the influence of noise or distractors (Camperi and
Wang 1998). We would expect to find that graded multi-
stability of the type explored by Egorov et al. (2002) is not
robust against noise.

We have shown that, in the working-memory regime of
the C–W model, there is more flexibility in representing
stimulus features. One might expect increased encoding
power in the presence of cellular bistability. Indeed, an
ensemble of unconnected bistable neurons can maintain
an arbitrary binary pattern. When such neurons are con-
nected in a network, the connectivity serves to limit the
available response patterns, but intrinsic bistability still
imparts additional encoding capacity. The localized cou-
pling favors those patterns with local similarity and only
a few up/down transitions. We have seen that, in this en-
hanced encoding regime, narrow stimuli result in a stable
narrow bump, and there is a continuous range of bump
widths up to a maximum width determined by the connec-
tivity kernel. In this regime, the C–W model can encode
a two-parameter family of stimuli, with both mean and
spread in orientation (in a visuospatial context).

These bump models offer insightful idealizations and
allow one to explore parameter dependencies. To achieve
the network bistability that would be required in a working
memory task, care must be taken in the tuning of param-
eters for this model as well as in Amari-like models that
do not incorporate intrinsic bistability. One might look to
expand the parameter range for bistability by manipulat-
ing the intrinisic dynamics (the cubic function f (r)) or the
connectivity kernel; however, Camperi and Wang (1998)
found only a small region where changes in these param-
eters supported bistability. (We did explore somewhat the
effect of varying the shape of the connectivity kernel in
combination with varied Io. Because of the interplay be-
tween intrinsic bistability and recurrence, the results are
not easily generalizable and so we have deferred addressing

this pending a more detailed study. However, whenever
the excitatory region of the connectivity kernel was suffi-
ciently larger than the distance between cells and suffi-
ciently smaller than the circumference of the ring, we saw
no evidence suggesting that our conclusions needed revis-
ing.) The incorporation of idealized intrinsic bistability,
leading to the S-shaped input-output function, is biophys-
ically reasonable; for a similar approach in another context
see Gruber et al. (2003). The simple summation of synaptic
input combined with a threshold that prevents inhibition
from contributing a negative influence to dr/dt or from
forcing r below its basal level is less clearly justified.

In considering the C–W model, we have not addressed
the issue of erasing the memory that is represented by
the bump state. In the regime where a stable uniform rest
state and bump coexist, the bump can be eliminated with
transient global inhibition (Camperi and Wang 1998). We
found that the rest state in this regime could be restored
with sufficiently strong global or even shaped excitation.
This is also the case for some other models of working
memory (Laing and Chow 2001; Tegner et al. 2002). Many
single-unit persistent recordings from cortex seem to dem-
onstrate a burst of increased activity at the end of the
delay period (Fuster 1988), which is consistent with such
a mechanism for terminating working-memory patterns.
In the higher-Io regime where the bump state is a global
attractor, a transient stimulus cannot permanently erase
the bump because the rest state is unstable. In simulations,
we have seen that a strong uniform stimulus can transiently
leave the system in a uniform state. Since any fluctuation
will drive the system back to the bump, this state can-
not be maintained. Moreover such a massive and uniform
excitatory transient is most likely not physiological.

These models are elegantly idealized, but we should
keep in mind what they are predicting. It appears that the
network bistability that we see in these models is merely a
transition regime between a globally attracting down state
and a globally attracting bump state. Although we did not
explore this in detail, the C–W model also shows a regime
of network multistability at yet higher Io, where the tran-
sition is made from globally attracting bump behavior to
globally attracting uniform high activity. These properties
lead us to question whether the conceptual framework
of network bistability (bump and rest states as coexis-
tent attractors) shown in the Amari class of models repre-
sents the essence of working memory. What do we expect
of working memory robustness as background network
activity increases? It seems reasonable that working mem-
ory function might require some level of background activ-
ity. But should a working memory system lose the ability
to erase an on-line memory or to exchange one for an-
other as background levels increase? The transition from
bistability to one bump state attractor as background ac-
tivity is increased is a property of Amari class models. Per-
haps the globally attracting bump state regime has some
meaning for working memory if the dynamic effects of
neuromodulators are included as other state variables. If
so, we must explore on what time scale neuromodulators
relating to attentional or reward mechanisms might be
effective in restoring the system (or its parameters) to the



bistable regime or back to a uniform rest state. These con-
siderations and questions apply to the whole class of such
Amari-like models, whether or not intrinsic bistability is
involved.

A prediction for in vitro experiments comes from
the Amari framework of bump generation based on
an upright Mexican-hat-like kernel: If such connectiv-
ity applies to a slice of generic cortex, then one might
expect to see some evidence of working-memory behav-
ior or persistent activity when parameters are tuned to
appropriate regimes. (We note that, when invoking the
Mexican hat framework, one usually envisions rapidly
equilibrating synapses and long-range inhibition. How-
ever, various combinations of connectivity and relative
time scales between interacting populations of excitatory
and inhibitory cells can reduce to a Mexican-hat-type ker-
nel for a single-population model.) Of course one cannot
apply physiologically realistic stimuli to the slice in or-
der to generate meaningful held or stored patterns. On the
other hand, if modulatory agents are bath applied or excit-
ability is otherwise increased (mimicking an increased Io),
the C–W model predicts spontaneous bumplike pattern
formation. Amari-class models predict multiple bumps
if the tissue size is large relative to synaptic footprint
(Amari 1977). Once a bump has been produced, decreas-
ing Io should bring the system back to a bistable regime
and the pattern could be erased by a globally applied
(“inhibitory-like”) transient stimulus. The feasibility of
such experiments will depend on many factors; of utmost
necessity is adequate connectivity in the slice.

To date no evidence for spatially coherent bumplike
activity in vitro has been reported, but only recently have
techniques for capturing ensemble activity been refined
(Grinvald et al. 1982). Interestingly, Turing destabilization
and spontaneous pattern formation were first induced in
distributed model chemical systems 50 years after Turing’s
theory was published (Ouyang and Swinney 1991; Pearson
1993). Moreover, we cannot say beforehand whether such
activity patterns would be spatially organized in a bump.
It is more likely that bumps represent neurons adjacent in
feature space that might not be adjacent in cortex. Thus,
single-cell sensitivity in such ensemble measurements may
be important (Peterlin et al. 2000). Some evidence for snip-
pets of stored memories have been reported in slice/culture
systems (Ikegaya et al. 2004), and spontaneous activity can
also be used to understand cortical connectivity (Arieli
et al. 1995).

Appendix

Stability of the uniform stable state

Here we determine the stability of the uniform steady state
of the C–W model in its continuum limit:

τ
∂r

∂t
=−f (r)+g (I)

g (I )= I, I ≥0 and g (I)=0, I <0

I = Io + 1
2π

2π∫

0

W(θ − θ̃ )r(θ̃ , t)dθ̃ = Io +W ∗ r .

Uniform steady states r(θ, t)=R are obtained by set-
ting dr/dt =0 in the above equations and solving f (R)=
g(Io +W ∗R). The mean connectivity Ŵ is given by Ŵ =

1
2π

2π∫

0
W(θ)dθ , and thus, for uniform R, the convolution

W ∗r =ŴR. For the parameters and connectivity function
used here (see methods), Ŵ =WE/2−WI =−0.7. Because
of the threshold on the input function g(Io + ŴR), there
are two regimes of Io to consider: Io ≤ Icrit and Io > Icrit,
where Icrit + ŴR =0.

For Io ≤Icrit, Io +ŴR≤0 and g(Io +ŴR)=0, i.e., there
is no input contributed by the network. In this regime of
Io, neurons in the network behave as they would in iso-
lation, and the firing rate of the neurons is given by the
real zero of f (r), ro ≈0.216486 for standard C–W param-
eters. The uniform network continues to fire at ro until
we increase the background synaptic activity parameter
Io beyond Icrit =−Ŵ ro ≈0.15154.

For Io >Icrit, Io + ŴR >0 and g(Io + ŴR)= Io + ŴR.
In this regime, Io = f (R) − ŴR gives the relationship
between Io and the firing rate at the uniform stable state
R. The inverse relation gives R as a function of Io, which
is shown as a dashed line in Fig. 4b. Note that at standard
C–W parameters there is a unique R for every Io.

To find the stability of a uniform steady state r(θ, t)=R,
we linearize the C–W system around the uniform stable
state (Ermentrout and Cowan 1979; Murray 1989; Zhang
1996; Bressloff and Coombes 1998):

r(θ, t)=R +η(θ, t) ,

τ
∂

∂t
(R +η)=−f (R +η)+g (Io +W ∗ (R +η)) ,

where η is a small perturbation to the uniform steady state.
Expanding the functions f and g in a Taylor series around
η=0 and using the facts that R is constant for the uniform
steady state and f (R)=g

(
Io+ ŴR

)
, we obtain

τ
∂η

∂t
= −f (R)−f ′(R)η+g

(
Io+ ŴR +W ∗η

)
+· · ·

= −f (R)−f ′(R)η+g
(
Io+ ŴR

)

+g′
(
Io+ ŴR

)
(W ∗η)+· · ·

= −f ′(R)η+g′
(
Io+ ŴR

)
(W ∗η)+· · · .

The stability calculation is different for the two ranges of
Io corresponding to the domain where g(I)=0 and where
g(I) = I . For Io ≤ Icrit, Io + RŴ ≤ 0, g(I ) = 0, g′(I ) = 0,
and the dynamics are determined only by f (R):

τ
∂η

∂t
=−f ′(R)η .

That is, R is stable if f ′(R)>0, which is true for all values
of R to the left of the left knee of f (R) for the parameters
used here.

For g(I)= I , g′(I )=1 and

τ
∂η

∂t
=−f ′(R)η+ (W ∗η) , Io ≥ Icrit .

Expanding η in a Fourier series η(θ, t)=∑
k

ηk(t)e
ikθ , we

find τ
∂ηk

∂t
=−f ′(R)ηk +λkηk, where λk are the eigenvalues
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Fig. 5. Analytical determination of uniform stable state. Overlaid
plots of f ′(R) and y=0.65. The uniform solution is stable when
f ′(R)>Re [λ1]=0.65

of the linear operator W ∗ corresponding to the eigenfunc-
tions eikθ . Thus, the uniform steady state is stable if

Re
[−f ′(R)+λk

τ

]
<0 or Re [λk]<f ′(R),∀k .

The eigenvalues of the linear operator W ∗ are the Fourier

coefficients of W , λk = 1
2π

2π∫

0
W(|z|)eikzdz. Because we have

taken W to be a modulated and shifted cosine function,
only the modes k =−1, 0, 1 have nonzero real parts. With
the default parameters, the corresponding eigenvalues are
Re [λ0]=−0.7, and Re [λ±1]=0.65.

As seen in Fig. 5, f ′(R) intersects Re [λ1]=0.65 at R ≈
(0.531,5.785). Thus only the uniform steady states with
values of R for which f ′(R)>0.65 are stable. These corre-
spond to values of Io in the interval Io ≈ (0.606,4.944).
Note that individual neurons are unstable only for
f ′(R)<0. These values accord well with our simulations.

References

Amari S (1977) Dynamics of pattern formation in lateral-inhi-
bition type neural fields. Biol Cybern 27(2):77–87

Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coher-
ent spatiotemporal patterns of ongoing activity revealed by
real-time optical imaging coupled with single-unit recording
in the cat visual cortex. J Neurophysiol 73(5):2072–2093

Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of
orientation tuning in visual cortex. Proc Natl Acad Sci USA
92(9):3844–3848

Booth V, Rinzel J (1995) A minimal, compartmental model for
a dendritic origin of bistability of motoneuron firing patterns.
J Comput Neurosci 2(4):299–312

Bressloff PC, Coombes S (1998) Spike train dynamics underlying
pattern formation in integrate-and-fire oscillator networks.
Phys Rev Lett 81(11):2384–2387

Camperi M, Wang XJ (1998) A model of visuospatial working
memory in prefrontal cortex: recurrent network and cellular
bistability. J Comput Neurosci 5(4):383–405

Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neuro-
computational models of working memory. Nat Neurosci
3(Suppl):1184–1191

Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA
(2002) Graded persistent activity in entorhinal cortex neu-
rons. Nature 420(6912):173–178

Ermentrout GB, Cowan JD (1979) A mathematical theory of
visual hallucination patterns. Biol Cybern 34(3):137–150

Fuster JM (1988) The prefrontal cortex. Raven Press, New York
Goldman-Rakic PS (1995) Cellular basis of working memory.

Neuron 14:477–485
Grinvald A, Manker A, Segal M (1982) Visualization of the

spread of electrical activity in rat hippocampal slices by volt-
age-sensitive optical probes. J Physiol Lond 333:269–291

Gruber AJ, Solla SA, Surmeier DJ, Houk JC (2003) Modula-
tion of striatal single units by expected reward: a spiny neuron
model displaying dopamine-induced bistability. J Neurophys-
iol 90(2):1095–1114. Epub 2003 Mar 20

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D,
Yuste R (2004) Synfire chains and cortical songs: temporal
modules of cortical activity. Science 304(5670):559–564

Laing CR Chow CC (2001) Stationary bumps in networks of
spiking neurons. Neural Comput 13(7):1473–1494

Loewenstein Y, Sompolinsky H (2003) Temporal integration by
calcium dynamics in a model neuron. Nat Neurosci 6(9):961–
967

Murray JD (1989) Mathematical biology. Springer, Berlin Hei-
delberg New York

Ouyang Q, Swinney HL (1991) Transition from a uniform state
to hexagonal and striped Turing patterns. Nature 352:610–
612

Pearson JE (1993) Complex patterns in a simple system. Science
261(5118):189–192

Peterlin ZA, Kozloski J, Mao BQ, Tsiola A, Yuste R (2000) Opti-
cal probing of neuronal circuits with calcium indicators. Proc
Natl Acad Sci USA 97(7):3619–3624

Tegner J, Compte A, Wang XJ (2002) The dynamical stability of
reverberatory neural circuits. Biol Cybern 87(5–6):471–481

Wang XJ (2001) Synaptic reverberation underlying mnemonic
persistent activity. Trends Neurosci 24(8):455–463

Wilson HR, Cowan JD (1972) Excitatory and inhibitory inter-
actions in localized populations of model neurons. Biophys
J 12(1):1–24

Wilson HR, Cowan JD (1973) A mathematical theory of the
functional dynamics of cortical and thalamic nervous tissue.
Kybernetik 13(2):55–80

Zhang K (1996) Representation of spatial orientation by the
intrinsic dynamics of the head-direction cell ensemble: a the-
ory. J Neurosci 16(6):2112–2126


