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Jolivet, Renaud, Timothy J. Lewis, and Wulfram Gerstner. Gen-
eralized integrate-and-fire models of neuronal activity approximate
spike trains of a detailed model to a high degree of accuracy. J
Neurophysiol 92: 959–976, 2004; 10.1152/jn.00190.2004. We dem-
onstrate that single-variable integrate-and-fire models can quantita-
tively capture the dynamics of a physiologically detailed model for
fast-spiking cortical neurons. Through a systematic set of approxima-
tions, we reduce the conductance-based model to 2 variants of
integrate-and-fire models. In the first variant (nonlinear integrate-and-
fire model), parameters depend on the instantaneous membrane po-
tential, whereas in the second variant, they depend on the time elapsed
since the last spike [Spike Response Model (SRM)]. The direct
reduction links features of the simple models to biophysical features
of the full conductance-based model. To quantitatively test the pre-
dictive power of the SRM and of the nonlinear integrate-and-fire
model, we compare spike trains in the simple models to those in the
full conductance-based model when the models are subjected to
identical randomly fluctuating input. For random current input, the
simple models reproduce 70–80 percent of the spikes in the full
model (with temporal precision of �2 ms) over a wide range of firing
frequencies. For random conductance injection, up to 73 percent of
spikes are coincident. We also present a technique for numerically
optimizing parameters in the SRM and the nonlinear integrate-and-fire
model based on spike trains in the full conductance-based model. This
technique can be used to tune simple models to reproduce spike trains
of real neurons.

I N T R O D U C T I O N

Detailed conductance-based neuron models, sometimes
termed Hodgkin–Huxley-type models (Hodgkin and Huxley
1952), can reproduce electrophysiological measurements to a
high degree of accuracy (for a review, see Bower and Beeman
1995; Koch and Segev 1989). Unfortunately, because of their
intrinsic complexity, these models are usually difficult to
analyze and are computationally expensive in numerical im-
plementations. For this reason, simple phenomenological spik-
ing neuron models such as integrate-and-fire (IF) models (Geis-
ler and Goldberg 1966; Hill 1936; Stein 1965; Tuckwell 1988)
are highly popular and have been used to discuss aspects of
neural coding, memory, or network dynamics (for a review, see
Gerstner and Kistler 2002; Maass and Bishop 1998).

By replacing the rich dynamics of Hodgkin–Huxley-type
models by an essentially one-dimensional fire-and-reset pro-
cess, many details of the electrophysiology of neurons will be

missed. In particular, standard leaky IF models do not correctly
reproduce neuronal dynamics close to the firing threshold. A
systematic reduction of the neuronal dynamics of type I models
[i.e., neurons with a smooth frequency–current curve (Hodgkin
1948)] in the limit of very low firing rates yields a canonical
type I model (Ermentrout 1996; Ermentrout and Kopell 1986;
Hoppensteadt and Izhikevich 1997) that is equivalent to a
quadratic IF model (Hansel and Mato 2001; Latham et al.
2000). Although quadratic IF models give, by construction, a
correct description of neuronal dynamics close to the firing
threshold, it is unclear how well quadratic and other general-
ized IF models such as the exponential IF model (Fourcaud-
Trocmé et al. 2003) or the Spike Response Model (SRM)
(Gerstner and Kistler 2002; Kistler et al. 1997) perform for a
realistic, time-dependent input scenario where the neuron
could spend a significant amount of time far away from the
firing threshold. Keat and colleagues (2001) have shown that a
phenomenological model of neuronal activity can predict every
spike of lateral geniculate nucleus (LGN) neurons with a
millisecond precision. However, these neurons produce very
stereotyped spike trains with short periods of intense activity
followed by long periods of silence (Reinagel and Reid 2002)
so that their approach could be limited to LGN neurons only.
Recently, it was shown that an IF model can predict the mean
rate of pyramidal cells recorded in in vitro experiments (Rauch
et al. 2003) over a broad range of different time-dependent
inputs. Moreover, the experimental distributions of membrane
potentials in the subthreshold regime are well reproduced by
leaky IF models (Destexhe et al. 2001). Quadratic IF neurons
can approximate the frequency–current curve of a detailed
conductance-based model (Hansel and Mato 2003). Finally, it
was shown that generalized IF models can approximate the
dynamics of the classic Hodgkin–Huxley model of the squid
giant axon with high accuracy (Feng 2001; Kistler et al. 1997).
The aim of the present paper is 2-fold.

First, we attempt to illustrate the relation of phenomenolog-
ical spiking neuron models to conductance-based models (Ab-
bott and Kepler 1990; Destexhe 1997; Ermentrout 1996; Er-
mentrout and Kopell 1986; Kistler et al. 1997; Latham et al.
2000). To do so, we will use a step-by-step analytical deriva-
tion of 2 formal spiking neuron models starting from a detailed
conductance-based model of a fast-spiking cortical interneu-
ron. In both cases, we compare the behavior of the reduced
model to that of the detailed conductance-based model for 3
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different input scenarios: a strong isolated current pulse, con-
stant superthreshold input, and random current. Although iso-
lated current pulses and constant drive are standard experimen-
tal paradigms, a random current is thought to be more realistic
in that it reflects an approximation to the random conductance
background caused by input spikes of cortical neurons in vivo
(see, e.g., Calvin and Stevens 1968; Destexhe and Paré 1999).

Second, we apply a numerical technique to map the reduced
models to the detailed conductance-based model of an inter-
neuron. The optimal parameters characterizing the reduced
models are extracted from a sample spike train generated with
the conductance-based neuron model by a procedure which
generalizes previous approaches (Brillinger 1988; Brillinger
and Segundo 1979; Wiener 1958). We compare quantitatively
the predictions of the reduced models with that of the full
conductance-based model in the random input scenario. We
explore the regime of validity of the reduced models by
varying the mean and the standard deviation of the input
current in a biologically realistic range, and we test the robust-
ness of the reduced models to further simplifications. A gen-
eralization of our approach to adapting neurons is indicated.
Finally, we extend our numerical technique to a conductance
injection scenario, which has become increasingly popular in
recent years (Destexhe and Paré 1999; Destexhe et al. 2001;
Harsch and Robinson 2000; Reyes 2003).

M E T H O D S

Integrate-and-fire models

In formal spiking neuron models, action potentials are generated by
a threshold process. The neuron fires whenever the variable u reaches
a threshold � from below

if u�t� � � and
d

dt
u�t� � 0f t̂ � t (1)

where t̂ is called the firing time of the neuron. We focus in this article
on models that are fully described by a single variable u. Well-known
idealized spiking neuron models can differ from one another in the
specific way that the dynamics of the variable u are defined. In the
standard leaky integrate-and-fire model (LIF model), the evolution of
u is given by a linear differential equation

�m

du

dt
� ��u � ueq� � RI ext (2)

If we identify u with the membrane potential of the neuron, and I ext

with the external driving current, we may interpret �m as the mem-
brane time constant, R as the input resistance, and ueq as the equilib-
rium potential of the leakage conductance. Integration of Eq. 2 yields
the membrane potential as a function of time. Firing is defined by the
threshold condition (Eq. 1). After firing, the membrane potential is
reset to a value ureset. The LIF neuron may also incorporate an
absolute refractory period, in which case we proceed as follows. If u
reaches the threshold at time t � t̂, we interrupt the dynamics (Eq. 2)
during an absolute refractory time �refr and restart the integration
at time t̂ � �refr with the new initial condition ureset. We emphasize
that firing is a formal event defined by the threshold condition (Eq. 1).
The time course of the action potential is disregarded in standard IF
models and only the firing time t̂ is recorded. In a general nonlinear
integrate-and-fire model (NLIF model), Eq. 2 is replaced by (Abbott
and van Vreeswijk 1993)

�m

du

dt
� F�u� � G�u�I ext (3)

As before, the dynamics is stopped if u reaches the threshold � and
reinitialized at u � ureset. A specific instance of a NLIF model is the
quadratic model (Feng 2001; Hansel and Mato 2001; Latham et al.
2000)

�m

du

dt
� a0�u � ueq��u � uc� � RI ext (4)

with parameters a0 � 0 and ueq � uc � �. For I ext � 0 and initial
conditions u � uc, the voltage decays to the resting potential ueq. For
u � uc, the voltage increases up to � where an action potential is
triggered; uc can therefore be interpreted as the critical voltage for
spike initiation by a short current pulse. The quadratic IF model is
closely related to the 	-neuron, a canonical type I neuron model
(Ermentrout 1996; Hoppensteadt and Izhikevich 1997).

Spike response model

In contrast to the NLIF model, the LIF model defined in Eq. 2 can
be analytically integrated for arbitrary time-dependent input I ext(t).
Let us denote the last firing time by t̂. For t � t̂ � �refr, the membrane
potential is

u�t� � ureset exp��
t � t̂ � �refr

�m
�H�t � t̂ � �refr�

��
0




H�t � t̂ � �refr � s� exp��
s

�m
�I ext�t � s�ds (5)

where H(x) is the Heaviside step function defined by H(x) � 1 for x �
0 and zero otherwise; ureset is the initial condition of the integration at
time t̂ � �refr. If we replace the exponentials multiplied by a step
function by “response kernels” 	 and 
, we may rewrite Eq. 5 in the
form

u�t� � 	�t � t̂� ��
0





�t � t̂, s�I ext�t � s�ds (6)

Equation 6 is a generalization of Eq. 5 and has been termed the Spike
Response Model (SRM; Gerstner 1995; Kistler et al. 1997). The
kernel 	 models, in the general case, the spike itself and the afterhy-
perpolarization that follows the spike. In the specific case of Eq. 5, 	
describes the hard reset of u(t) to ureset at time t � t̂ � �refr. The kernel

 describes the response of the membrane potential to an input current
pulse. In case of the LIF neuron, both kernels are characterized by an
exponential decay with time constant �m (compare Eq. 6 and 5).

Although both the NLIF model (Eq. 3) and the SRM (Eq. 6) contain
the LIF model (Eq. 2) as a special case, the direction of the general-
izations is somewhat different. In the NLIF model, parameters are
made voltage dependent, whereas in the SRM they depend on t � t̂
(i.e., the time since the last spike). To illustrate the relation, compare
the NLIF models in Eq. 3 and 4 to an IF model with a time-dependent
time constant (i.e., a SRM; Stevens and Zador 1998; Wehmeier et al.
1989)

du

dt
� �

u

��t � t̂�
�

1

C
I ext�t� (7)

with C � �m /R. Starting the integration at u(t̂ � �refr) � ureset, we find
for t � t̂ � �refr

u��t� � ureset exp���
t��refr

t dt�

��t� � t̂��
�

1

C�
0




H�t � t̂ � �refr � s� exp���
t�s

t dt�

��t� � t̂��I ext�t � s�ds (8)
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which is a special case of Eq. 6. A time-dependent time constant takes
care of the fact that during and shortly after a spike, many ion
channels are open so that the resistance of the membrane and hence its
time constant is reduced.

As a further generalization, we replace in the SRM the fixed
threshold by a dynamic one (Fuortes and Mantegazzini 1962; Geisler
and Goldberg 1966; Holden 1976; Stein 1967; Weiss 1966)

� 3 ��t � t̂� (9)

During an absolute refractory period �refr, we may, for example, set �
to a large and positive value to avoid firing and let it relax back to its
equilibrium value for t � t̂ � �refr.

If input is provided by the activation of a conductance-based
synapse (e.g., attributed to presynaptic spike arrival), rather than
current injection, a different formulation of the state of the neuron is
provided. The convolution with the response kernel 
 is replaced by
a sum and a response kernel � that takes into account the filtering
ascribed to the synapses

u�t� � 	�t � t̂� � �
j
�

f
wj��t � t̂, t � t j

� f �� (10)

where the sum runs over all firing times f of all presynaptic neurons
j with wj the strength of synapse j. For the sake of simplicity, we will
assume throughout this article that all synapses have the same strength
wj � 1. The kernel � can be interpreted as the postsynaptic potential
generated by each spike and it also depends on the time elapsed since
the last emitted spike (see above). This latter equation can be trans-
formed back into a convolution product. Let us define the sequence of
presynaptic spikes by S(t) � �j �f �(t � tj

(f)). Equation 10 can thus be
restated

u�t� � 	�t � t̂� ��
0

1


��t � t̂, s�S�t � s�ds (11)

This latter formulation will be used for the numerical fitting of the
SRM to the full conductance-based model in case of random spike
arrival.

Full conductance-based model

As our reference model, we take the conductance-based model of a
fast-spiking cortical interneuron proposed by Erisir and coworkers
(1999). We have chosen this specific model so that, because fast-
spiking neurons show little adaptation, we avoid most of the compli-
cations caused by slow ionic processes that would not be well
captured by the class of idealized spiking neuron models reviewed
above. In fact, because the model of a fast-spiking neuron is compar-
atively simple, we can hope to illustrate the steps necessary for a
reduction to spiking models in a transparent fashion.

The fast-spiking model neuron (Erisir et al. 1999) follows the
Hodgkin–Huxley formalism and consists of a single homogeneous
compartment with a nonspecific leak current and 3 active ionic
membrane currents

C
du

dt
� �
INa � IK1

� IK2
� Il� � I ext (12)

The sodium current INa is described by the equation

INa � gNa m3h�u � ENa� (13)

with two gating variables m and h. A slow potassium current is
modeled by

IK1
� gK1

n1
4�u � EK� (14)

with gating variable n1. Because of its slow time constant, the variable

n1 builds up over several spikes and contributes to a subtle form of
adaptation. There is a further, much faster potassium current

IK2
� gK2

n2
2�u � EK� (15)

with a conductivity gK2
that is much larger than gK1

. It is a strong
outward current associated with the Kv3.1–Kv3.2 channel that shapes
the downstroke of the action potential and contributes to a rapid reset
of the membrane potential after a spike (Erisir et al. 1999). Finally,
there is the linear leak current

Il � gl�u � El� (16)

which defines a passive membrane time constant �m � C/gI. Each
gating variable follows the equation

dx

dt
� �

1

�x�u�

x � x
�u�� (17)

where x stands for m,h,n1, or n2. We note that both potassium channels
are essentially closed at rest. The parameters of all currents (see Table
1) were chosen by Erisir et al. (1999) so as to reproduce the behavior
of fast-spiking neocortical interneurons. We adopt their set of param-
eters, except for the leak current where we have chosen gl � 0.25
mS/cm2 (instead of their value of 1.25 mS/cm2) so as to set the passive
membrane time constant to about 4 ms. This larger value of the
passive membrane time constant seems to be realistic for a broad class
of interneurons (Wang et al. 2002). With this set of parameters, the
Erisir model exhibits the typical behavior of a type I neuron model,
that is, a continuous frequency–current curve that allows firing at very
low frequencies and delayed action potentials for pulse input that is
just superthreshold.

The model was simulated on a Sun Workstation using the forward
Euler integration method with a time step of 0.01 ms. Because the
time step is much shorter than all intrinsic time constants of the model
(see Table 1), such a simple first-order method is sufficient.

Current injection

In the current injection scenario, the neuron is driven with an
uncorrelated Gaussian-distributed random current. We vary both the
mean � and the standard deviation 
 of the Gaussian current. This
kind of highly variable time-dependent input is thought to be more
realistic than other current injection stimulation protocols (Calvin and
Stevens 1968; Destexhe and Paré 1999).

Conductance injection (stochastic presynaptic spike arrival)

An even more realistic input scenario is to consider stochastic spike
arrival at excitatory and inhibitory synapses. Such a scenario is
equivalent to driving the neuron with a highly variable random
conductance multiplied by a driving force that depends on the instan-
taneous membrane voltage of the cell. More precisely, the total
synaptic input current Isyn is given by (Robinson and Kawai 1993)

Isyn � gexc�u � Eexc� � ginh�u � Einh� (18)

where gexc (ginh) is the total excitatory (inhibitory) conductance and
Eexc (Einh) is the corresponding reversal potential. The synaptic
conductances gexc and ginh consist of the summed input from Nexc

excitatory synapses and Ninh inhibitory synapses, respectively

gexc � �
j�1

Nexc

Pj (19)

ginh � �
j�1

Ninh

Pj (20)

The dynamics of the jth excitatory synapse is described by a variable
Pj

exc with (Dayan and Abbott 2001)
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�excṖj
exc � �Pj

exc � Aexc �
k

��t � tj,k
exc� (21)

The value of Pj
exc increases by an amount Aexc for each presynaptic

spike arriving at the synapse at time tj,k, and Pj
exc decays with a time

constant �exc. The result is a low-pass–filtered version of the presyn-
aptic spike train {tj,k}. The dynamics of inhibitory synapses are
defined similarly.

Presynaptic spike trains are described by random homogeneous
Poisson processes. At each time step, N� independent random variables
are generated and distributed among the N � N� synapses to generate
slightly correlated spike trains (Destexhe and Paré 1999). Numerical
values are summarized in Table 2.

Coincidence factor �

The coincidence factor � between two spike trains (Kistler et al.
1997) is defined by

� �
Ncoinc � �Ncoinc�

1⁄2�N1 � N2�

1

N
(22)

where N1 is the number of spikes in the reference spike train S1, N2 is
the number of spikes in the spike train S2 that is compared to the
reference spike train, Ncoinc is the number of coincidences with
precision � between the 2 spike trains, and �Ncoinc� � 2��N1 is the
expected number of coincidences generated by a homogeneous Pois-
son process with the same rate � as the spike train S2. In this article,
the reference spike train S1 is always generated by the full conduc-
tance-based model of a fast-spiking interneuron, whereas S2 is a spike
train generated by one of the reduced models (IF models). The factor

N � 1 � 2�� normalizes � to a maximum value of one, which is
reached if and only if the spike train of the reduced model reproduces
exactly that of the full model. A homogeneous Poisson process with
the same number of spikes as the reduced model model would yield
� � 0. We compute the coincidence factor � by comparing the 2
complete spike trains: the spike train S1 generated by the full conduc-
tance-based model and the train S2 predicted by the reduced model.1
Therefore, in this article, � gives a measure of the ability of the
reduced model to predict the spike train of the full model.

Analytical reduction to an IF model

To find a NLIF model that approximates the dynamics of the full
fast-spiking neuron model, we proceed in 2 steps. In a first step, we
keep all variables, but introduce a threshold for spike initiation. We
call this the multicurrent IF (MCIF) model. In a second step, we
separate gating variables into fast and slow ones (Abbott and Kepler
1990; Kepler et al. 1992; Rinzel 1985). The fast variables are turned
into instantaneous ones, whereas the slow variables are replaced by
constants. The result is the desired NLIF model, which depends on
only a single variable.

STEP 1. For the first step, we make use of the observation that the
shape of an action potential of the fast-spiking neuron model is always
roughly the same, independently of the way the spike is initiated.
Instead of calculating the shape of an action potential again and again,
we can therefore simply stop the costly numerical integration of the
nonlinear differential equations as soon as a spike is triggered and
restart the integration after the downstroke of the spike about 1.5–2 ms
later. We call such a scheme a multicurrent IF model. The interval
between the spike trigger time t̂ and the restart of the integration
corresponds to an absolute refractory period �refr.

The MCIF model is defined by a voltage threshold �, a refractory
time �refr, and the reset values from which the integration is restarted.
We fix the threshold at � � �40 mV; the exact value is not critical,
and we could take values of �20 to �45 mV without significantly
changing the results. With � � �40 mV, a refractory time of �refr �
1.7 ms is suitable and an appropriate reset value for the voltage
variable is ureset � �85 mV.

1 This is different from the approach of Kistler et al. (1997), where � was
used to predict the next spike in a spike train, under the assumption that past
action potentials were correctly reconstructed.

TABLE 1. Fast-spiking neuron model

Channel Variable � � gx Ex

Na m
� 3020 � 40u

1 � exp��
u � 75.5

13.5
�

1.2262

exp� u

42.248
� 112.5 74.0

h
0.0035

exp� u

24.186
�

0.8712 � 0.017u

1 � exp��
51.25 � u

5.2
�

K1 n1

0.014�44 � u�

1 � exp��
44 � u

2.3
�

0.0043

exp�44 � u

34
� 0.225 �90.0

K2 n2

u � 95

1 � exp��
u � 95

11.8
�

0.025

exp� u

22.22
� 225.0 �90.0

The equilibrium value x
 � �/(� � �) is reached with a time constant �x � 1/(� � �), where x stands for each of the gating variables m, h, n1, and n2 (see
Eq. 17). Voltage, time, and conductance are expressed in mV, ms, and mS/cm2, respectively. Further model parameters: C � 1.0 �F/cm2; gl � 0.25 mS/cm2;
El � �70 mV.

TABLE 2. Parameters of excitatory and inhibitory synapses

Synapse E, mV �, ms A, mS/cm2 Discharge Frequency, Hz

Excitatory 0 2.45 0.073 �0.0–1.0
Inhibitory �80 6.11 0.04 0.5–5.5

Parameter A was adjusted so as to yield an amplitude of postsynaptic
potential of the order of 1 mV. In all simulations, the total number of synapses
is 10,000, of which 80% are excitatory. We treat N� � 3,000 of the synapses as
independent, which corresponds to an input correlation coefficient at about
0.0004. (Adapted from Destexhe and Paré 1999.)
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The first important approximation involves the reset of the gating
variables m, h, n1, and n2, because their time courses are not as
stereotyped as that of the membrane potential. To illustrate this point,
let us focus on the variable h. At 1.7 ms after spike initiation, the
variable h is at a value of 0.16 during periodic firing at about 40 Hz;
however, it is at a value of 0.26 when only a single action potential is
triggered (not shown). Thus, the optimal value of hreset depends on the
choice of input scenario. If the biological neuron under consideration
has a mean firing rate of 40 Hz, then we should choose a reset value
appropriate for the particular regime of periodic firing. If, on the other
hand, the biological neuron is near rest most of the time and emits
only an occasional spike, we should choose different reset values.
In the following, we adjust the reset values based on a scenario
with constant drive current Iext � 5 �A/cm2 that leads to a mean
firing rate of about 40 Hz. The reset values are mreset � 0.0; hreset �
0.16; n1,reset � 0.874; n2,reset � 0.2; and ureset � �85 mV. This set of
parameters leads to a near-perfect fit of the time course of the
membrane potential during periodic firing at 40 Hz and approximates
the gain function of the full fast-spiking neuron model to a high
degree of accuracy (Fig. 1, A and B).

For stimulation with isolated 2-ms current pulses, the MCIF model
reproduces both the threshold behavior and the firing times of the full
fast-spiking neuron model. The hyperpolarizing spike-afterpotential,
however, shows significant differences (see Fig. 1C). If we took reset
values adapted to pulse input from rest, approximation would be more
precise. We will, however, stick to the previous set of reset parameters
and keep it fixed throughout the rest of this section.

We now turn to random input. The amplitude 
I of the fluctuations
determines the mean firing rate of the neuron model. We see from Fig.
1D that the mean rate of the MCIF model follows closely that of the
full model. For a more detailed comparison of the MCIF with the full
model, we stimulate both models with exactly the same random
current (i.e., identical initiation of the random number generators). In
Fig. 1E, we see that the voltage time course of the 2 models is
indistinguishable most of the time. Occasionally, the MCIF model
misses a spike or adds an extra spike. For this specific input scenario
(where the input fluctuations have strength 25 �A/cm2), about 95% of
the spike times or the full model are reproduced correctly (with a
resolution of � � �2 ms) by the MCIF model. We see from Fig. 1F
that the coincidence rate � varies as a function of the fluctuation
amplitude, but stays above 0.75 in the whole range that we considered.
As expected, the value of � is highest when the neuron fires at an
average rate between 35 and 55 Hz (i.e., in the regime for which
parameters have been optimized).

STEP 2. The above MCIF neuron is not yet the desired NLIF
model because it still depends on all 5 variables, u, m, h, n1, and
n2. To reduce it further to a single-variable model that depends
only on the membrane potential u, we need to consider a gating
variable x either as fast compared to u, in which case we replace x
by x
(u), or as slow compared to u, in which case we take x as
constant (see also Abbott and Kepler 1990; Kepler et al. 1992;
Rinzel 1985). In our case, m(t) is the only fast variable (in the
subthreshold range [�100, �40] mV, we find 0.08 � �m � 0.25
ms, 4.28 � �h � 14.45 ms, 44.66 � �n1

� 144.10 ms and 0.44 �
�n2

� 4.19 ms). We eliminate m by replacing m(t) by its equilib-
rium value m0[u(t)] (see Fig. 2A). The treatment of the other gating
variables deserves some extra discussion.

We start with the variable n2. A thorough inspection of the time
course of n2(t) shows that n2 is close to its resting value most of the
time, except for a short interval during and immediately after the
downstroke of an action potential (see Fig. 2B). If we take a refractory
time of �refr � 4 ms, most of the excursion trajectory of n2 falls within
the refractory period. Between spikes we can therefore replace n2 by
its equilibrium value at rest n2 � n2,eq � n0(ueq).

The gating variables h and n1 vary only slowly so that, for a given
input scenario, the variables may be replaced by their average value

hav and n1,av. The average, however, does depend on the input
scenario. To illustrate this point, we consider 3 different situations.
First, for a neuron at rest that receives only occasionally an isolated
current pulse, the average values are close to the resting values. In
other words, we may use the parameters at rest (i.e., hav � 0.87 and
n1,av � 0.00057). If the neuron is stimulated by a constant bias current
that shifts the membrane potential just below threshold, we should
take hav � 0.54 and n1,av � 0.019. Finally, in a periodic firing regime
(constant stimulation with I � 5 �A/cm2) reasonable averages are

FIG. 1. Multicurrent integrate-and-fire (MCIF) model compared to the full
conductance-based model. A: periodic firing. Neuron is driven by a constant
input of Iext � 5 �A/cm2, which leads to regular firing at about 40 Hz.
Trajectory of the membrane potential of the MCIF model (dashed line) is
compared to that of the full model. (solid line). Action potentials in the MCIF
model are replaced by triangular pulses starting at the threshold value of �45
mV, peaking at �65 mV, and ending at the reset value of �85 mV. Spike
duration is 1.7 ms. B: gain function (frequency � as a function of input current
Iext) of the MCIF model (dashed line with circles) is compared to that of the
full model (solid line). C: pulse input. A current pulse of 2-ms duration is
delivered at t � 10 ms. MCIF model (dashed line) reproduces perfectly the
firing times of the full model (solid line) to both strong (I ext � 20 �A/cm2, left)
and weak (Iext � 8.8 �A/cm2, delayed action potential, right) superthreshold
current pulses. Parameters of the reset have been adapted to a case where the
neuron fires at about 40 Hz. Spike afterpotential is reproduced to a fair degree
of accuracy, but not perfectly. D: for random input, the mean firing rate of the
full model (solid line) is compared to that of the MCIF model for different
amplitudes 
 of the random current (dashed line with circles). E: spike train of
the full model (solid line) is compared to that of the MCIF model (dashed line),
whereas both neuron models receive exactly the same realization of a random
current. For this input scenario, about 95% of the spike times are correct within
�2 ms. F: coincidence rate � as a function of the amplitude of the random
current. In the regime 25 � 
I � 35 �A/cm2, � is about 0.95.
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hav � 0.45 and n1,av � 0.8 (see Fig. 2, C and D). The last pair of
values will be used in the following as our standard set of parameters
unless stated otherwise.

With m � m0(u) and constant values for h, n1, and n2, the dynamics
of the full fast-spiking neuron model defined in Eqs. 12–17 reduces to

C
du

dt
� gNa
m0�u��3hav�u � ENa� � gK1

n1,av
2 �u � EK�

� gK2
n2,eq

4 �u � EK� � gl�u � Eli� � I ext�t� (23)

After division by C, we arrive at a single nonlinear equation

du

dt
� F�u� �

1

C
I ext�t� (24)

The function F depends on the choice of constants hav and n1,av, which
can, as indicated above, be optimized differently for each of the 3
input scenarios discussed. In particular, the zero crossings F(u) � 0
that define the resting potential ueq and the critical voltage uc for spike
initiation are shifted in a model adapted to periodic firing compared to
a model adapted to rest. By definition, the passive membrane time
constant of the model is inversely proportional to the slope of F at
rest: � � �1/(dF/du) where the derivative is to be evaluated at u �
ueq. In principle the function F could be further approximated by a
linear function with slope �1/� and then combined with a threshold at,
say, � � �45 mV. This would yield a standard linear LIF model.
Alternatively, F could be approximated by a quadratic function that
would lead us to the quadratic IF neuron. The canonical type I model
would correspond to a quadratic IF neuron where parameters are
optimized in the limit of a very low firing frequency (Ermentrout
1996; Ermentrout and Kopell 1986; Hansel and Mato 2001; Latham et
al. 2000).

In the following, we do not make any further approximations.
Instead we work directly with the nonlinear function F(u). The
refractory period �refr � 4 has already been introduced above. To
finish the definition of the model, we have to specify the threshold �
and the reset value. We take � � �45 mV (the exact value is not
critical). After firing, integration is restarted at ureset � �85 mV.

Analytical reduction to a spike response model

For a fitting of the full fast-spiking neuron model defined in Eqs.
12–17 to the SRM defined in Eqs. 6 and 9, we need to determine the

kernels 	(t � t̂) and 
(t � t̂, s), and furthermore the (time-dependent)
threshold �(t � t̂) must be adjusted. As a first step, we stimulate the
full model by a short suprathreshold current pulse to determine the
time course of the action potential and afterhyperpolarization. Let us
define t̂ as the time when the membrane potential crosses an (arbi-
trarily set) threshold � (e.g., � � �50 mV). The kernel 	(t � t̂) is
defined by the time course of the membrane potential for t � t̂ (i.e.
during and after the action potential) in the absence of external input.
If we were interested in a purely phenomenological model, we could
simply record the numerical time course u(t) and define 	(t � t̂) �
u(t̂) for t � t̂ (see Numerical optimization method). Instead of such a
purely numerical method, it is instructive to take a semianalytical
approach and study the 4 gating variables m, h, n1, and n2 immediately
after action potential generation. About 2 ms after initiation of a spike,
all 4 variables have passed their maximum or minimal values and are
on their way back to equilibrium (cf. Fig. 3, A and B). We set �refr �
2 ms. For t � t̂ � �refr, similar to the approach of Destexhe (1997), we
fit the approach to equilibrium by an exponential

x�t� � 
x reset � x eq� exp��
t � t̂ � �refr

�x
�� xeq (25)

where x � m, h, n1, n2 stands for each of the 4 gating variables. The
parameter �x is a fixed time constant and xreset is the initial condition
at t � t̂ � �refr, and xeq � x
 (ueq). In other words, the voltage-
dependent differential Eq. 17 for x is replaced by the linear voltage-
independent equation

dx

dt
� �

x � xeq

�x

for t � t̂ � �refr (26)

Numerical values for xeq, �x, and xreset are summarized in Table 3. We

FIG. 2. Reduction from MCIF model to nonlinear IF (NLIF)
model. All 4 variables, m, n2, h, and n1, are plotted in the
periodic-firing regime when the neuron is stimulated by a
constant current of 5 �A/cm2, which is switched on at t � 0. A:
variable m (solid line) is compared to m0(u) (dashed line). Two
trajectories coincide nearly perfectly. B: outside the refractory
period, the variable n2 (solid line) is approximated by a constant
value n2,eq. Vertical dotted lines delimit the 4-ms refractory
period during and after spikes, during which the dynamics is not
modeled. C: variable h (solid line) is compared to hav � 0.45
(dashed line). D: variable n1 (solid line) is compared to n1,av �
0.8 (dashed line).

TABLE 3. Parameter values for the semianalytically derived SRM

Channel Variable xeq xreset �x, ms

Na m 0.0194 0.0 8.0
h 0.8684 0.26 8.0

K1 n1 0.00057 0.58 100.0
K2 n2 0.00025 0.21 0.75

The four gating variables m, h, n1, and n2 approach their equilibrium value
xeq with time constant �x starting at the reset value xreset.
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note that, for the gating variable m, the time constant is not related to
the gating dynamics but reflects the time course of the membrane
potential u toward the resting potential.

With the time course of the gating variables defined in Eq. 25, we
know the conductance of each ion channel as a function of time. For
example, the potassium current IK2

is

IK2
� gK2

n2
2�u � EK� � g2�t � t̂��u � EK� (27)

where g2(t � t̂) is an exponential function with time constant �n2
/2.

We insert the time-dependent conductance into Eq. 12 and find for t �
t̂ � �refr

C
du

dt
� ��

j

gj�t � t̂�
u � Ej� � I ext�t� (28)

where the sum runs over the 4 ion channels INa, IK1
, IK2

, and I1. With
the definitions �(t � t̂) � C/�j gj(t � t̂) and I ion(t � t̂) � �jgj(t � t̂)
Ej, we arrive at

du

dt
� �

u

��t � t̂�
�

1

C
I ion�t � t̂� �

1

C
I ext�t� (29)

which is a linear differential equation with time-dependent time
constant (cf. Eq. 7). The effective time constant is shown in Fig. 3C
as a function of t � t̂.

According to Eqs. 27 and 28, the ion currents have, at time t̂ � �refr,
a value of Iion(�refr) � �j gj(�refr)Ej. For t � t̂ � �refr, the effective
time constant �(�refr) of the membrane voltage is extremely short (Fig.
3C) so that we may assume that it is at its steady state value given
Iion(�refr). For t � t̂ � �refr, we therefore integrate Eq. 29 with the
initial condition

u�t̂ � �refr� � I ion��refr����refr�/C (30)

This yields the SRM in the form of Eq. 6 for t � t̂ � �refr with the
kernels given by


�t � t̂, s� �
1

C
H�t � t̂ � �refr � s� exp���

t�s

t dt�

��t� � t̂�� (31)

	�t � t̂� �
1

C�
0

t�t̂��refr

exp���
t�s

t dt�

��t � t̂��I ion�t � t̂ � s�ds (32)

The kernels 
 and 	 that we have constructed so far are limited to
t � t̂ � �refr. During the absolute refractory period t̂ � t � t̂ � �refr

the neuron is not responsive to external input. We therefore set 
 to
zero. The action potential itself that occurs in the interval t̂ � t � t̂ �
�refr is, for the sake of simplicity, approximated by a triangular voltage
pulse. Finally, we introduce a dynamic threshold

��t � t̂� � � �refr for t̂ � t � t̂ � �refr

�0 � �1 exp��
t � t̂ � �refr

��
� for t � t̂ � �refr

(33)

with constants �0, �1, �refr, and ��. During the absolute refractory
period �refr, the threshold is set to a value �refr � 100 mV that is
sufficiently high to prevent the neuron from firing. After refractori-
ness, the threshold starts at �0 � �1 and relaxes with a time constant
of �� to an asymptotic value of �0. The initial value �0 � �1 was
arbitrarily set at 0 mV. �0 � �50 mV and �� � 6 ms were then
chosen so that for 2 different inputs (i.e., I0 � 5 �A/cm2 and I0 � 30
�A/cm2) the mean firing rate of the SRM was approximately correct.

Numerical optimization method

In the SRM framework, 3 quantities are needed to define the model.
These are the kernel 	, describing the shape of a spike; the kernel 
,
describing the input integration process and finally the threshold � for
spike initiation. The previous section described a semianalytical
method to reduce the full conductance-based model to a SRM,
obtaining approximations of the kernels. In this section, we describe
a numerical method that finds kernels that optimize the fit of the SRM
to a spike train. The method proceeds in 3 steps. First, we use the fact
that spikes have always roughly the same shape to extract 	 from the
course of the membrane voltage. Second, we use a linear approxima-
tion for the integration of the input to extract 
 as the best linear filter
between the driving current and the fluctuations of the membrane
potential in the subthreshold regime. Third, we fit the parameters of
the threshold � to find the best reproduction of the specific spike train
that we use. The resulting fit is finally evaluated on a set of new spike
trains that have not been used during optimization. We now discuss
the 3 steps in more detail.

Throughout this subsection, we suppose that we have at disposal a
simultaneous recording of the discretized membrane voltage ut

data and
the discretized driving current It

ext of a cell. We assume that both ut
data

and It
ext are recorded at the same sampling frequency.

1) To extract the discretized version of the kernel 	 from the data,
we align all the spikes. The spike triggered average of the membrane
potential (i.e., the “mean shape” of an action potential) yields, after
smoothing, the kernel 	 (see Fig. 4, B and C). Detection and align-

FIG. 3. Dynamics during and after an isolated action potential that has been elicited at time t � 0. A: time course of the variables
m (solid line) and h (dotted line) in the full model are, after an absolute refractory period of 2 ms, approximated by exponentials
with time constants �m � 8.0 ms (long-dashed line; note that this is a different time constant than the membrane time constant) and
�h � 8.0 ms (dash-dotted line). B: similarly, the dynamics of n1 (solid line) and n2 (dotted line) are approximated by exponentials
with time constants �n2

� 0.75 ms (dash-dotted line) and �n1
� 100 ms (long-dashed line). In A and B, stars denote the starting point

of the exponential approximation after the 2-ms refractory period. C: Spike Response Model with kernels 31 and 32 can be
interpreted as an IF model with a time constant � that depends on the time �t since the last spike. Integration restarts after an
absolute refractory period of 2 ms with a time constant of 0.1 ms. The time constant (solid line) relaxes first rapidly and then more
slowly toward its equilibrium value of � � 4 ms (dashed line).
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ment are realized relative to an arbitrary threshold condition on the
first time derivative of the membrane voltage (see Fig. 4A).

2) After the extraction of 	, we move to the extraction of 
. We
start by discretizing the SRM equations. The equivalent of Eq. 6 in
discrete time is

ut
SRM � 	t�t � �

s�0





t�̂t ,s I t�s
ext (34)

We suppose that the driving current is time dependent and has the
form

I t
ext � �I � 
I�t (35)

where �1 and 
1 are constants and �1 are independent random
variables drawn from a normal distribution with mean 0 and unit

variance. For the sake of simplicity, we set �I � 0 for the rest of this
discussion. However, the method can easily be generalized. Equation
34 can therefore be rewritten

ut
SRM � 	t�̂t � 
I �

s�0





t�̂t ,s�t�s (36)

It is useful to keep in mind that the version of the SRM described in
this article is a memoryless model (i.e., nothing is remembered of
what happened before the last spike). By shifting the 	-term to the
left-hand side, we subtract the effects of the action potentials and
arrive at an expression for the subthreshold regime, which we denote
as Vt�t̂,t

SRM

V t�t̂,t

SRM
� u t

SRM � 	t�t̂ � 
I �
s�0





t�t̂,s�t�s (37)

Similarly, for the data ut
data, we subtract the time course of the

average action potential that yields a subthreshold behavior Vt�t̂,t
data

V t�t̂ ,t
data � ut

data � 	t�t̂ (38)

The right-hand side of Eq. 37 can be interpreted as a numerical
convolution between 
I�t and a family of filters parameterized by t �
t̂. The problem of finding the best linear filter (
t�t̂,s) of some device
given the output vector (Vt�t̂,s

data ) and the input vector (
I�t) is known in
the literature as the Wiener–Hopf optimal filtering problem. However,
the classic formulation of this problem is not well suited for the
present question because of the explicit dependency of the filter on t �
t̂. In the APPENDIX, we show that the Wiener–Hopf approach can
nevertheless be adapted to the present situation. The formulation we
propose circumvents a couple of technical issues of the classic
formulation. In particular, there is no need to choose a specific time
window in which to perform the extraction of the filter. Instead, all
segments are aligned for a given t � t̂. We find that 
t�t̂,s is a solution
of the following linear system


I �
s�0

smax


�t,sX
�, ��j�s,�t � X
V data, ��j,�t (39)

where smax is the maximum time lag for which 
�t,s is nonzero, �t �
t � t̂, and X[�, �] is defined by

X
f, g�j,�t �
1

T
�
i�1

T

ft̂i��tgt̂i��t�j (40)

where T is the number of spikes in the spike train and f and g denote
arbitrary vectors. X[�, �] can be interpreted as a generalization of the
empirical cross-correlation between f and g. It is therefore possible to
find an expression for the family of filters 
�t,s for each �t and s by
solving Eq. 39. To smooth the results, we fit them with a suitable
function. In the present article, we use a single exponential decay in
the variable s (see Fig. 4D). It is then possible to plot the time constant
� of this function versus the delay �t and fit the dependency on �t by
the function �(�t) � �1(1 � tanh (�2(�t � �3)]) with free parameters
�1, �2, and �3. The SRM can then be turned back into a differential
equation with a time-dependent time constant (Eq. 7; see also DISCUS-
SION), which is very efficient for simulations.

3) Finally, we choose a specific threshold condition and optimize it
in terms of spike train reproduction. We take a dynamic threshold
defined by Eq. 33, where �refr is always kept at 2 ms and �refr at a
value of 100 mV to prevent firing. �0, �1, and �� are free parameters.
To find the best fit for these 3 parameters, we simulate the full spike
train with the SRM and compute 1 � �. For a definition of �, see Eq.
22. Then, we use the downhill simplex method (Nelder and Mead
1965) algorithm to find a set of parameters that minimize 1 � �.

FIG. 4. Numerical reduction of the full conductance-based model to a Spike
Response Model (SRM). A: sample of the spike train used for the reduction
(top line) and the corresponding time derivative (bottom line). Dashed line
indicates the threshold used to detect and align spikes (80 mV/ms). Horizontal
bar is 50 ms. Vertical bars are 100 mV (top) and 300 mV/ms (bottom). B: about
300 spikes aligned with the criterion discussed in A. C: kernel 	 resulting from
averaging the membrane voltage time course of the action potentials shown in
B. D: kernel 
(�t, s) as a function of time s extracted by the method described
in the text for different time delays �t � t � t̂: �t � 0 ms (squares), �t � 6 ms
(crosses), and �t � 10 ms (circles). Solid lines are exponential fits with 
(�t,
s) � 
0 exp[�s/�(�t)]. E: time constant �(�t) of the kernel 
. Diamonds are
points resulting of fit of kernels as in D. Time constant �(�t) of the kernel 
 can
be approximated by the function �(�t) � (�
/2){1 � tanh [�(�t � �)]} with �
 �
3.72 ms, � � 0.17, and � � 6.64 ms (dashed line). F: segment of the spike train
of the full model used for reduction (solid line) is compared to that of the reduced
SRM (long-dashed line). Subthreshold behavior of the membrane voltage is well
reproduced. Timing of the first spike is off by 1.6 ms and that of the second spike
by 0.6 ms. Both spikes are therefore counted as coincident.
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For this article, we have used for the parameter optimization a
single spike train of 10 s length generated with Gaussian-distributed
random current (cf. Fig. 4F). Parameters of the current are �I � 0
�A/cm2 and 
1 � 25 �A/cm2. The value of the driving current is
changed every 0.2 ms. Both the membrane voltage and the driving
current are sampled at 5-kHz sampling frequency. For this set of
parameters, the mean rate is 34.6 Hz.

In case of conductance injection protocol (stochastic spike arrival),
steps 1 and 3 of the method are left unchanged, whereas step 2 is
slightly modified. The state of the neuron in discrete time is given by
(see Eq. 10)

ut
SRM � 	t�t̂ � �

j
�

f
�t�t̂ , t�t j

� f �
exc

� �
i
�

f
�t�t̂ , t�t̂ j

� f �
inh (41)

with an �-kernel for each type of synapses (excitatory and inhibitory
synapses). Using the same stratagems as before (see Eqs. 11 and 37
and Fig. 9), we find

V t�t̂ , t
SRM � ut

SRM � 	t�t̂ � �
s�0




�t�t̂,s
exc S t�s

exc � �
s�0




�t�t̂ ,s
inh S t�s

inh (42)

where St
exc and St

inh are the histograms of spike arrivals at excitatory
and inhibitory synapses, respectively. More precisely, a value St

exc �
n means that in a time step of duration 0.2 ms, a total of n excitatory
synapses received spike inputs. At this stage, a formalism very similar
to the one applied before can be used to find the best linear filters �exc

and �inh both at the same time (see APPENDIX). The filters �exc and �inh

are fitted by double exponentials (see Fig. 9). The kernel 	 was
maintained from current injection simulations. The rest of parameter
optimization was done on a single spike train of 1 s length generated
with discharge frequencies �exc � 0.3 Hz and �inh � 2.5 Hz. Both the
membrane voltage and the driving current are sampled at 5 kHz
sampling frequency. In this specific spike train, the mean rate is 29.0
Hz. Finally, Sexc (Sinh) is the poststimulus time histogram PSTH
computed over all excitatory (inhibitory) synapses with a given time
binning (here, each bin equals 0.2 ms). See also Eq. 11.

R E S U L T S

We have compared a detailed conductance-based model of a
fast-spiking neuron (Erisir et al. 1999), in the following called
“full model” with several versions of generalized IF models
(also referred to as “reduced models”). The details of the full
model and the reduced models can be found in the METHODS

section. The results of our work are organized as follows.
We first present results with a nonlinear integrate-and-fire

(NLIF) model that has been optimized by the analytical and
numerical methods explained in the METHODS section. A
slightly different analytical approach leads to the Spike Re-
sponse Model (SRM) that we discuss in the second subsection.
For both the NLIF and the SRM, the quality of the reduced
model is assessed for 3 different input paradigms: constant
current of variable strength, pulse input of 2-ms duration and
variable amplitude; and random input current of adaptable
variance. Extensions of the model to the case of random
conductance input or adaptation are discussed separately.

Comparison of the NLIF model and the full model

We have analytically approximated (see METHODS) the 5
equations of the full model of a fast-spiking neuron (Erisir et
al. 1999) by a NLIF with a single variable u, given by the
differential equation

du

dt
� F�u� �

1

C
I ext�t� (43)

The NLIF neuron fires when u hits a threshold of � � �45
mV. Integration then restarts after a refractory period of 4 ms
at ureset � �85 mV. The function F(u) is shown in Fig. 5F and
parameterized by 3 constants, hav, n1,av, and n2,eq. When the
analytical reduction is based on the assumption that the neuron
is close to the resting state, F(u) is given by the solid line; if we
assume that the neuron is close to but below threshold, F(u) is
given by the short-dashed line; if we assume that the neuron
fires repetitively at about 40 Hz, then the analytical reduction
yields the function F(u) indicated by the long-dashed line.
Thus although it is always possible to approximate the dynam-
ics of the full model by a one-dimensional NLIF, the exact
form of the function F depends on the regime for which the
NLIF is optimized. To emphasize this fact, we now compare
the behavior of the NLIF to that of the full fast-spiking neuron
model for 3 different input scenarios.

Let us focus on constant input first. With the function F that
has been derived for repetitive firing at 40 Hz, the membrane
trajectory during periodic firing at that frequency is well
approximated (cf. Fig. 5A). The firing frequency as a function
of input current (gain function) is reasonably well approxi-
mated at frequencies above 40 Hz, but not at lower frequencies.
In particular, the threshold for periodic firing is not reproduced
correctly (cf. Fig. 5B). If we take the function F(u) that is
appropriate at threshold, the behavior at very low firing rates is
well approximated, but the gain function increases rapidly to
unplausible values.

In our scenario with pulse input, the neuron is at rest just
before a current pulse of 2-ms duration arrives. Thus the best
choice of the function F(u) is the one that has been derived for
the resting state. Indeed, with the function F(u) that is adapted
to a neuron at rest, the NLIF model generates spikes whenever
the amplitude of the 2-ms pulse is above 8.5 �A/cm2, which is
close to the pulse initation threshold of 8.8 �A/cm2 of the full
model. Moreover, for pulse input that is just superthreshold,
the NLIF model responds with delayed action potential initia-
tion, just as the full model (data not shown). If we take,
however, the NLIF model with the function F that we found
optimal for periodic firing at 40 Hz, the NLIF generates an
action potential only for strong input pulses with amplitude Iext

� 15 �A/cm2, whereas the full model triggers spikes for Iext �
8.8 �A/cm2. Moreover, a difference in the resting potential is
evident in a comparison of the 2 models (cf. Fig. 5C). The
resting potential of the NLIF model is given by the leftmost
zero crossing of the function F(u) plotted in Fig. 5F. It is
reduced by a value of about 5 mV compared to that of the full
model.

In summary, the 2 previous artificial stimulation paradigms
(i.e., constant input and pulse input) have shown that the choice
of the funtion F is critical for a good approximation of the
dynamics of the full model by the NLIF model. We now turn
to stimulation by random input current, which we consider the
most realistic paradigm, given that neurons in vivo are thought
to receive highly fluctuating synaptic current (Calvin and
Stevens 1968; Destexhe and Paré 1999). To choose a function
F that yields a good performance of the NLIF model for
random input, we take advantage of the fact that F is charac-
terized by 3 constants hav, n1,av, and n2,eq (see METHODS). We
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take these constants and the threshold as the 4 free parameters
that we optimize by a standard numerical procedure (simplex
algorithm; Nelder and Mead 1965) using a fluctuating input
current of zero mean and variance 
I � 25 �A/cm2 during 10
s of stimulation. Ideally, the 2 neuron models (i.e., full and
reduced model) should produce exactly the same spike train if
stimulated by the same time-dependent input current (that is,
the same realization of a random current). The quality of the
reduced model can be assessed by a comparison on the level of
individual spikes or on the coarser level of firing rates. We
choose to optimize the 4 parameters by comparing the spike
train of the full model and that of the reduced model on a
spike-by-spike basis. In particular, we maximize the coinci-
dence rate � that measures the similarity of the 2 spike trains
with a temporal resolution of 2 ms (see METHODS). The param-
eters found by the numerical optimization are given in DATA

SUPPLEMENTS, Table 1.2 A sample spike train is shown in Fig.
5D. Most of the spikes coincide, whereas some spikes are
missed and other spikes are added. Action potentials of the
NLIF model are indicated by triangular pulses that span a
refractory period of �refr � 2 ms; the performance does not
change significantly if we take �refr in the range of 1 to 4 ms.

We now turn to a systematic exploration of the performances
of the numerically optimized NLIF for fluctuating input with
different mean �I and variance 
I. In Fig. 5E we plot the mean
firing rate as a function of the fluctuation amplitude for both the
full model and the NLIF model. The NLIF model gives a fair
reproduction of the mean rates of the full model except for
large variance [
I � 50 (�A/cm2)] of the input current. For a
more detailed comparison we plot the coincidence rate � as a
function of both the mean and the variance of the stimulating
current (Fig. 5G). The reproduction of spike trains on a
spike-by-spike basis is good (coincidence rate � � 0.7) over a
broad range of stimulation parameters. Thus, even though the
function F(u) has been optimized using data for fixed �I � 0
and 
I � 25 �A/cm2, the same NLIF model can also approx-
imate spike trains of the full model when the stimulus has
nonzero mean or higher variance. Only for very small fluctu-
ation amplitudes 
I � 20 �A/cm2 the approximation of the full
model by a NLIF model breaks down. Raw data of Fig. 5G are
reported in DATA SUPPLEMENTS, Table 2, which also reports, in
addition, results of a quadratic IF neuron where the 5 param-
eters (i.e., �, �m, a0, uc, and R) have been optimized numeri-
cally (see Eq. 4). As expected, the results are very close to
those of the NLIF model, but the performance is more sensitive

2 The Supplementary Material for this article (a figure and 4 tables) is
available online at http://jn.physiology.org/cgi/content/full/00190.2004/DC1.

FIG. 5. NLIF model compared to the full conductance-based model. A:
periodic firing. Neuron is driven by a constant input of Iext � 5 �A/cm2, which
leads to regular firing at about 40 Hz. Trajectory of the membrane potential of
the NLIF model (dashed line) is compared to that of the full model (solid line).
Action potentials in the NLIF model are replaced by triangular pulses starting
at the threshold value of �45 mV, peaking at �65 mV, and ending at the reset
value of �85 mV. Spike duration is 4 ms. B: periodic firing. Gain function
(frequency vs. current) of the full fast-spiking neuron model (solid line) is
compared to that of the NLIF model with parameters adjusted to either the
constant subthreshold current regime (long-dashed line with circles) or to a
periodic firing regime (long-dashed line with squares). C: pulse input. Re-
sponse of the full model (solid line) is compared to that of the NLIF model
(dashed line) for input Iext � 20 �A/cm2 of 2-ms duration applied at t � 10 ms.
Action potential is replaced by a triangular pulse spanning the refractory period
of �refr � 4 ms. Note the difference in the resting potential between NLIF and
the full model, attributed to the fact that we used the set of parameters optimal
for firing at 40 Hz. D: spike train of the NLIF model (dashed line) is compared
to that of the full fast-spiking neuron model (solid line; 
I � 45 �A/cm2, �I �
0 �A/cm2). The two traces are most of the time indistinguishable. E: mean
firing rate � of the NLIF (solid line with squares) is compared to that of the full
model (dashed line with circles). F: function F(u) of the NLIF neuron of Eq.
24 with parameters adapted to the resting state (solid line) is compared to that
adapted to a state with subthreshold constant current application (short-dashed
line) or periodic firing at 40 Hz (long-dashed line). Zero crossings F(u) � 0
define the resting potential ueq and the critical voltage uc for spike initiation by
current pulses. Note that the function F adapted to periodic firing has a
different resting potential than that of the other 2 functions. G: contour plot of
the coincidence factor � for the NLIF model when compared to the full
fast-spiking neuron model as a function of both mean current drive �I and
amplitude of the random fluctuations 
I. Each of the data points (squares and
triangles) is the mean computed over 5 spike trains of 10 s each. Surface is
interpolated with cubic splines (MATLAB, MathWorks, Natick, MA) and the
circle highlights the stimulation paradigm used for parameter optimization.
Points indicated by squares are reported in DATA SUPPLEMENTS, Table 3.
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to the exact choice of input variance than that of the NLIF
model.

Comparison of the SRM and the full model

As indicated in the METHODS section, the 5 equations of the
full conductance-based model of a fast-spiking neuron model
(Erisir et al. 1999) may also be approximated by a single
differential equation

u

t
� �

u

��t � t̂ �
�

1

C
I ion�t � t̂� �

1

C
I ext�t� (44)

where the ion currents I ion are exponential functions of the
time t � t̂ that has elapsed since the last spike at t̂ (see Eqs. 28
and 29). We emphasize, that, in contrast to a standard leaky IF
model the “time constant” � is a function of t � t̂. Integration
of Eq. 44 yields the equation of the SRM

u�t� � 	�t � t̂� ��
0





�t � t, s�I ext�t � s�s (45)

The kernels 	 and 
, are given by exponential functions (see
METHODS for details). If u(t) reaches a dynamic threshold �(t �
t̂) from below, then the neuron fires and t̂ is set to a new value
t̂ � t, thus effectively resetting u(t), the time constant, and the
ion currents. The parameters �0, �1, and �� of the dynamic
threshold (see METHODS, Eq. 33) are free parameters that we
now adjust so as to optimize the performance for a given
stimulation paradigm.

For pulse input of 2-ms duration, the model neuron emits at
most a single spike so that only the asymptotic threshold �0
matters. For a sufficiently strong suprathreshold current pulse,
spike initiation and hyperpolarizing spike afterpotential of the
full model are reproduced by the SRM to a high degree of
accuracy (cf. Fig. 6C). With � � �50 mV the SRM produces
action potentials whenever the amplitude of the current pulse is
above 12.4 �A/cm2. Delayed spikes caused by current pulses
of 2 ms with amplitude Iext between 8.8 and 12.4 �A/cm2 are
not reproduced. If we adjusted the threshold �0 to a lower
value, the SRM would generate action potentials in this critical
regime; the timing of the action potentials, however, would not
be correct because the SRM—just as any other model with a
strict voltage threshold—cannot account for delayed action
potentials. Subthreshold excitation with amplitudes Iext � 7
�A/cm2 is reproduced to a fair degree of accuracy by the SRM.

We now turn to constant current input. For constant stimuli,
a SRM with fixed threshold �0 � �50 mV fails to approximate
the gain function of the full model to a satisfactory degree (cf.
Fig. 6B). We therefore use a dynamic threshold (Eq. 33; see
METHODS) which approaches a value of �0 � �50 mV with a
time constant �� � 6 ms and starting at a value of �0 � �1 �
0 mV at time t̂ � �refr. With the dynamic threshold, we get a
fair approximation of the gain function of the full fast-spiking
neuron model. The approximation for currents that are just
suprathreshold is bad, but for Iext � 5 �A/cm2 the rates are not
too different from those of the full model. In Fig. 6A, the time
course of the membrane potential of the SRM is compared to
that of the full model. Even though the approach to threshold
is not reproduced correctly, the period is about correct.

Similar to the case of the NLIF model, the choice of model
parameters of the SRM is essential and depends on the regime

FIG. 6. Predictions of the SRM compared to that of the full conductance-
based model. A: spike train of the full model (solid line) is compared with that
of the SRM (dashed line) for constant input Iext � 10 �A/cm2. Even though the
interspike interval is correctly reproduced, the trajectory of the membrane
potential is significantly different. B: gain function (frequency vs. current) of
the full model (solid line) and the SRM with constant (dotted line with
triangles) and dynamic threshold (long-dashed line with triangles). C: pulse
input. Response of the SRM (dashed lines) to short current pulses (2 ms
duration) is compared to that of the full model (solid lines). Action potentials
caused by strong pulses (left: I � 20 �A/cm2; middle: I � 12.5 �A/cm2) are
reproduced nicely by the SRM, whereas the delayed pulse that the full model
exhibits for weaker input (right: I � 8.8 �A/cm2) is missed. D: spike train of
the SRM model (dashed line) is compared to that of the full fast-spiking neuron
model (solid line; 
I � 45 �A/cm2, �I � 0 �A/cm2). The two traces are most
of the time indistinguishable. E: mean firing rate � of the SRM (solid line with
squares) as a function of the amplitude 
I of current fluctuations compared to
that of the full model (dashed line with circles). F: normalized histogram of the
error in prediction of the subthreshold membrane voltage bin after bin for one
specific spike train (light gray area) with a fitted Gaussian distribution (solid
line; �2 � 2.5 � 10�5; mean � 1.0 mV; SD � 2.2 mV).
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the neuron model is optimized for. In the following we will
focus on time-dependent fluctuating current input and numer-
ically optimize the SRM so as to reproduce a 10 s spike train
of the full model, whereas both the full and reduced model are
stimulated with random current of zero mean and variance 
I

� 25 �A/cm2. For the numerical optimization of the SRM
defined in Eq. 45 we need to determine the spike shape 	, the
input-response filter 
, as well as the parameters �0, �1, and ��

of the dynamic threshold (see METHODS). The kernel 	 is the
average spike shape and (see Fig. 4, B and C). From Fig. 4D,
we see that the kernel 
 can be approximated by an exponential

(�t, s) � exp[�s/�(�t)] with a time constant �(�t) shown in
Fig. 4E. The threshold parameters are optimized so that most
spikes occur with the correct timing (Fig. 4F). The optimal set
of threshold parameters is �0 � �53 mV, �1 � 12.7 mV, and
�� � 54 ms (see also DATA SUPPLEMENTS, Table 3). We keep
these parameters fixed in the following. For the specific spike
train used for parameter optimization, we find a coincidence
factor � � 0.83.

We now turn to a systematic exploration of the performances
of the numerically optimized SRM. A typical spike train is
shown in Fig. 6D. To quantify the performance for different
inputs, we first keep the variance of the input fixed and change
the mean input �I. Figure 6E shows that the mean firing rates
as a function of �I of the full model is comparable to that of the
SRM. Moreover, the SRM reproduces the spike timing of the
full model to a high degree of accuracy over a broad range of
different 
I and �I, as quantified by the coincidence rate � (cf.
Fig. 6G). In DATA SUPPLEMENTS, Fig. 1, it is furthermore shown
that both the interval distribution and the coefficient of varia-
tion of the full model are correctly predicted by the simple
model indicating that missed or added spikes do not modify
significantly the spike pattern. Finally, in the subthreshold
regime, the membrane potential of the reduced model approx-
imates that of the full model within �2 mV (cf. Fig. 6F). To
summarize, the SRM predicts the subthreshold fluctuations, the
correct number of spikes, most of them (�70%) with the
correct timing and with a firing pattern very similar to the one
produced by the full conductance-based neuron model.

The amplitude of the fluctuations of the stimulus (here, 
I)
is a crucial factor for the quality of the predictions within the
SRM framework. This can be easily understood. First, if the
variance of the input signal is large, the amplitude of fluctua-
tions of the membrane voltage is large, which facilitates the
emission of spikes at a correct timing with the threshold
condition (Eq. 33) (Brette and Guignon 2003; Bryant and
Segundo 1976; Mainen and Sejnowski 1995; Tanabe and
Pakdaman 2001). Second, when the constant part of the driving
current dominates the fluctuations (�I � 
I), whenever a spike
is missed or added by the SRM, errors propagate further in
time and the coincidence factor � decreases dramatically.

Comparison with simple threshold models

In the previous subsections, we have seen that both the NLIF
and the SRM show a good performance for random input
current, if the fluctuation amplitude is large enough. We may
therefore wonder whether this is a universal property that
would hold for any one-dimensional threshold model. We
therefore studied 3 models that are even simpler than the SRM

or NLIF model. As a first simplification, we turn the dynamic
threshold (Eq. 33) of the SRM into a constant one (except for
the absolute refractory period)

��t � t̂� � � �refr if t � t̂ � �refr

�0 otherwise
(46)

We used the same spike train as before for optimization of the
threshold. The optimal value for the parameter �0 is
�45.550 � 0.001 mV (mean � SD). Figure 7A shows the
quality of predictions with a constant threshold. The results are
significantly worse than those for the full SRM with dynamic
threshold or those of the NLIF model (compare with Fig. 5G
and 6G).

The SRM with constant threshold is very close to the
standard LIF neuron. We simply use 
(t � t̂,s) � exp(�s/�) for
t � t̂ � �refr with � � 4 ms and �refr � 2 ms, and 
[(t � t̂, s)]
� 0 otherwise. This is equivalent to Eq. 2 of the LIF model.
After firing, the membrane potential is reset to a value of �85
mV. The optimal parameter �0 for the LIF neuron is �47.33 �
0.08. Figure 7B shows the quality of predictions for the LIF
neuron and, as expected, the results are close to the results of
the SRM with constant threshold.

Let us now simplify even further. We use neither reset nor
spike afterpotential 	 (i.e., we neglect the interaction between
action potentials). Moreover, the kernel 
 is replaced by
limt�t̂3
 
t�t̂,s. The membrane voltage is then

FIG. 7. A: coincidence factor � for an SRM with constant threshold. B:
coincidence factor � for the numerically optimized LIF. For details, see Fig.
5G.
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u�t�min.mod.1 ��
0






�s�I ext�t � s�s (47)

We refer to this as minimal model 1. Specifically, 

,s � 
0
exp(�s/�) with � � 4 ms (i.e., a simple low-pass filter). As
before, spikes are triggered whenever the variable u reaches a
constant threshold � from below. However, in contrast to the
LIF model, there is no reset after firing. Although the minimal
model 1 still performs well in the neighborhood of the opti-
mization point, � decreases quickly as the stimulation param-
eters change (see DATA SUPPLEMENTS, Table 2). It even goes
below 0 for high frequencies and thus performs worse than a
homogeneous Poisson neuron model (see definition of � in Eq.
22). This is attributed to the fact that for larger stimulation, the
firing frequencies of minimal model 1 are too high and spikes
occur systematically too early.

We now consider a minimal model 2, which is even simpler:
instead of a low-pass filter we take 
 as instantaneous (i.e., it
takes a fixed positive value 1 during one time step and is zero
thereafter). This is an approximation to a neuron in the high-
conductance state where the voltage follows the current quasi
instantaneously. In this case, the variable u is given by

u�t�min.mod.2 � I ext�t� (48)

Firing is defined by the usual threshold condition. For both
minimal models the only free parameter is the threshold �0,
which has been optimized on a spike train generated by random
input current with zero mean and variance 
I � 25 �A/cm2.
Minimal model 2 performs poorly (see DATA SUPPLEMENTS,
Table 2). In particular, even at the point for which the param-
eter �0 has been optimized, � attains a value of only 0.16 �
0.01 (mean � SD). The results with the minimal models
indicate that the SRM and the NLIF model add features beyond
simple threshold models and these features (i.e., spike–spike
interaction for the SRM and nonlinear voltage dependency and
voltage reset for the NLIF) are necessary if we want a model
that works over a broad range of different inputs.

Extending the framework to slow processes

Real neurons often exhibit a rich repertoire of ion channels,
in particular, slow ion channels that contribute to frequency
adaptation, a widespread phenomenon in biological neurons.
To take into account such slow processes, we need to leave the
framework of single-variable models and introduce an adapta-
tion variable A. We use a simple relaxation dynamics

dA

dt
� �

A � A0

�adapt

�
A1

�adapt
�

f

��t � t f� (49)

Each time the neuron emits a spike, the variable A is increased
by an amount A1/�adapt. In the absence of spikes A relaxes with
time constant �adapt to an equilibrium value A0. The sum on the
right-hand side of Eq. 49 runs over all output spikes of the
neuron. For periodic firing with frequency v, the variable A
fluctuates around a mean value of A0 � A1v. Equations such as
Eq. 49 yield standard phenomological models of adaptation
(Benda and Herz 2003; Rauch et al. 2003).

To include adaptation into the SRM framework, we make
the time constant �
 of the exponential response kernel 
 (Fig.
4E) depend on A. In the case of the Erisir model of fast-spiking

interneurons, the variable n1 of slow K� channels accumulates
over consecutive spikes, so that the total conductance is in-
creased and the effective membrane time constant �
 is short-
ened. We computed the response kernel 
(�t, s) (see METHODS)
for different stimulation parameters and plotted the parameter
1/�
 as a function of the output frequency (Fig. 8A). A linear
fit 1/�
(v) � A0 � A1v gives us the parameters A0 and A1 and
the identification of the adaptation variable A in Eq. 49 as A �
1/�
. The free parameter �adapt is set to a value of 450 ms.
Figure 8, B–D shows the comparison between nonadapting
SRM (Fig. 8C) and adapting SRM (Fig. 8D) for current
injection with Gaussian white noise. After some time, param-
eters of the input are switched, leading to an increase in output
frequency (Fig. 8B). The nonadapting SRM maintains �
 as
tuned for the first part of the stimulation paradigm and thus
performs poorly when stimulation parameters are changed
(Fig. 8C, from left to right). The performance of the adapting
SRM, however, are much better once adaptation has taken
place (Fig. 8D). In terms of the coincidence factor �, the
nonadapting SRM yields � � 0.63 when the threshold is
optimized for intermediate stimulation (as in the rest of the
article; Fig. 8C), whereas the adapting SRM yields � � 0.76
(Fig. 8D). The same methodology can also be applied to
strongly adapting neuron models, as illustrated in Figure 8,

FIG. 8. Extending the framework to adaptation. A: 1/�
 is plotted vs. the
output frequency of the full Erisir model (squares) for different parameters (�I,

I) of random current stimulation. Dependency is fitted by a linear relation
(solid line). The two circles correspond to the stimulus used in B. B: Erisir
model is stimulated with random input current whose parameters are instan-
taneously switched after 5 s. Driving current (top) around the transition time
and response of the full Erisir model (bottom, total duration of segment is 700
ms). C: spike train of the full model (solid line) is compared to that predicted
by the SRM (dashed line) optimized for initial stimulation paradigm. From left
to right: 20 ms samples corresponding to the gray boxes plotted in B (bottom),
respectively, before, shortly after, and more than 300 ms after the transition. D:
same as in C, except that �
 adapts to the output frequency with an arbitrarily
set time constant �adapt � 450 ms. In C and D, the value of �
 (ms) is written
for each sample. E–H: same as A–D when SRM is compared to the full Wang
model (Wang 1998).
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E–H for the case of a 2-compartment neuron model with Ca2�

channels and Ca2�-gated K� channels responsible for slow
adaptation (Wang 1998). Injection of random current in the
soma allows us to identify the time constant �
; a test with
changing input confirms that the extended SRM can follow the
adaptation of the full model.

Conductance injection scenario (stochastic spike arrival)

A more realistic input scenario than random current injection
would be a model of stochastic conductance changes (Destexhe
and Paré 1999). We preferred in the previous sections to work
with the more common random current input because this
allows us to characterize the input in a transparent fashion.
Furthermore, for any random input scenario with stationary
white noise characteristics, a random conductance scenario can
be replaced, to a high degree of accuracy, by a random current
scenario (Richardson 2004). Nevertheless, the numerical
method exploited in previous sections can be extended to the
case of random conductance injection. Instead of optimizing a
kernel 
(t � t̂, s) that describes the linear response of the
membrane potential to an input current, we now optimize two
kernels �exc(t � t̂, t � t j

( f )) and �inh (t � t̂, t � t j
( f )) that

describe the response of the membrane potential to spike
arrival at an excitatory or inhibitory synapse. Here tj

(f) denotes
the time of arrival of spike number f at synapse number j. In
other words �exc as a function of t � t j

( f ) describes the
excitatory postsynaptic potential (EPSP), whereas �inh as a

function of t � t j
( f ) describes the inhibitory postsynaptic

potential (IPSP). In the following, we model stochastic spike
arrival by Poisson point processes (see METHODS section).
Samples of presynaptic spike trains and a histogram of spike
arrival times are plotted in Fig. 9, A and B. For parameter
optimization (see METHODS) we used 10 s of voltage data from
the full model of a fast-spiking neuron (Erisir et al. 1999) while
stimulated by spike arrival at 8,000 excitatory model synapses
(rate vexc � 0.3 Hz each) and 2,000 inhibitory model synapses
(rate �inh � 2.5 Hz each). Best fits for the dynamic threshold
parameters are indicated in DATA SUPPLEMENTS, Table 4.

As a result of the optimization procedure we get the shape of
the kernels �exc and �inh shown in Fig. 9, D and E. Both EPSP
and IPSP can be well approximated by double exponentials.
For this specific spike train, the coincidence factor is � � 0.82.

We then keep the kernels �exc and �inh fixed and turn to a
systematic exploration of the performances. Figure 10 shows
the quality of predictions for different values of the discharge
frequency of inhibitory synapses when holding the discharge
frequency of excitatory synapses constant. The mean firing
rates do not match as well as for current injection (Fig. 10A)
except at the point at which parameters have been optimized.
For this set of input parameters, the coincidence rate is good
(� � 0.7; see Fig. 10B). The subthreshold behavior of the
membrane voltage is also nicely predicted (Fig. 10, C and D).
However, conductance injection is known to produce a sup-
pression of subthreshold membrane voltage fluctuations
(Monier et al. 2003) and a reduction of the membrane time

FIG. 9. Conductance injection. A: raster plot of the excitatory neurons (left scale) and histogram of spike arrival times Sexc(t)
with 0.2 ms time resolution (right scale). B: same as in A for inhibitory neurons. Black box corresponds to the temporal segment
plotted in C. C: membrane potential as a function of time. Response of the full conductance-based model (solid line) to the spike
input shown in A and B is compared to the prediction of the SRM (dashed line). All the spikes are predicted correctly within �2
ms by the SRM and the predicted membrane voltage is most of the time almost indistinguishable from that of of the full
conductance-based model. For this specific scenario, the coincidence factor evaluated over 1 s of data is � � 0.72. D: �exc-kernels
for stochastic spike arrival scenario extracted with the numerical method detailed in the APPENDIX. �exc-kernels are plotted for
various t � t̂ delays (t � t̂ � 4 ms, solid line; t � t̂ � 6 ms, dashed line; and t � t̂ � 60 ms, dotted line) plotted on top of the
	-kernel (solid line). Arrows indicate the timing of activation of a single excitatory synapse. Inset shows the same 3 kernels aligned
relatively to the onset of activation. Immediately after action potential emission, the kernel �exc is larger in amplitude than that at
rest because of increased driving force of the synaptic current during the hyperpolarizing spike afterpotential. Kernel �exc is also
shorter because of a shorter effective membrane time constant just after emission of a spike (see Fig. 4C). These effects vanish
roughly 5–10 ms after the spike initiation. E: same as in D except that inhibitory �-kernels are plotted. Note that amplitude of the
kernels plotted on top of 	 is 5 times larger than normal for legibility reasons. Horizontal thick solid line indicates the reversal
potential of inhibitory synapses (Einh � �80 mV). Close to the spike, membrane voltage is usually below Einh and activation of
an inhibitory synapse induces a depolarization of the neuron. This effect reverses around t � t̂ � 5 ms and leads to biphasic kernels.
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constant (Destexhe and Paré 1999; Destexhe et al. 2001). We
already mentioned that large membrane voltage fluctuations
are a key point for correct prediction of the timing of the
spikes. The fact that the effective membrane time constant
depends on the stimulation paradigm implies that the EPSPs
and IPSPs that we compute are optimal only in a limited range
of input characteristics. This is an important difference to the
current injection scenario where changes of the kernel 
 with
the input characteristics are less important. It is clear then that,
in the case of conductance injection, our approach is valid only
over a limited range of input characteristics with mean con-
ductances close to those used to compute the �-kernels, which

explains the rapid decrease of � for low and high values of �inh.
In particular, for reduced input rates (e.g., �inh � 1 Hz), the
input conductance of the full model is reduced and hence, the
membrane time constant is increased. Because the �-kernels of
the SRM do not change their time constant, the mean mem-
brane potential of the SRM and thus the predicted mean firing
rate are too low (see Fig. 10A).

D I S C U S S I O N

In this paper, we mainly focused on deterministic single-
variable IF models (i.e., a spike is elicited if a single variable
u crosses a threshold � from below. If the evolution of u
depends on the instantaneous voltage, we arrive at the NLIF
model; if it depends on the time since the last spike, we arrive
at the SRM. Models with 2 (Arcas et al. 2003; FitzHugh 1961;
Nagumo et al. 1962) dimensions or more offer a wide spectrum
of behavior but are often more difficult to optimize numeri-
cally. We proposed a straightforward extension of the SRM to
the case of adapting neurons allowing a step-by-step procedure
for numerical fitting. An extension toward neurons with hy-
perpolarization-activated ion currents is conceivable but has
not been explored. Another direction of research goes from
deterministic to stochastic models of spike triggering (Arcas et
al. 2003; Brillinger 1988; Brillinger and Segundo 1979; Gerst-
ner 2001; Tuckwell 1988). This is important in regimes where
the neuron shows a low degree of spike train reproducibility
under repeated stimulation with the same signal (Bryant and
Segundo 1976; Mainen and Sejnowski 1995).

Reduction of neuronal complexity to a single-variable model
implies that these neuron models are valid only in a limited
regime. For example, the quadratic IF model as a canonical
type I neuron model is optimal at very low firing frequencies;
there is no a priori reason why it should perform well far from
threshold, but it does so for some instances of models (Hansel
and Mato 2003). Similarly, the SRM is based on a linearization
about a reference state and there is no a priori reason why it
should work well far from that reference point. Nevertheless,
we found in this paper that the combination of linear summa-
tion with a dynamic threshold works for random-current injec-
tion over a broad range of parameters. Because the SRM is
based on the combination of linear summation with a sharp
threshold, any input stimulus that probes specifically properties
close to threshold will highlight the limits of the approach. In
particular, we have seen that stimulation with a constant
current just above threshold yields a frequency–current curve
that is not captured by the SRM neuron, but well represented
by a quadratic or nonlinear IF model. Moreover, stimulation by
short current pulses with amplitudes close to the threshold
amplitude will cause delayed responses of the Erisir model and
other type I neuron model that cannot be captured by the sharp
threshold process of the SRM, but which are perfectly ac-
counted for by nonlinear IF models.

Given that all simplified models have a restricted regime of
applicability, the big question is whether a model performs
well in the biologically relevant regime. In our opinion, ran-
dom input is the most realistic scenario and we focus our
discussion therefore on this scenario. For random input, we
measure the quality of simplified models by a coincidence
factor � defined in Eq. 22. An alternative approach could be to
derive a quality measure from information theory as proposed

FIG. 10. Conductance injection. A: mean firing rate �post of the SRM (solid
line with squares) compared to that of the full model (dashed line with circles).
Excitatory discharge frequency is kept constant at �exc � 0.3 Hz, whereas we
vary the inhibitory discharge frequency between 0.5 and 5.5 Hz. Each plotted
symbol gives the mean computed over 5 spike trains of 1 s each with 1 SD
(error bars). Arrow highlights the stimulation paradigm used for extraction of
�-kernels and optimization of the threshold. B: coincidence factor �. All the
rest as in A. C: spike train of the SRM model (dashed line) is compared to that
of the full fast-spiking neuron model (solid line; �exc � 0.3 Hz and �inh � 2.5
Hz). D: normalized histogram of the error in prediction of the subthreshold
membrane voltage bin after bin for the same spike train as in C (light gray
area). Fitted Gaussian distribution with �2 � 0.001; mean � �1.3 mV, and
SD � 3.7 mV (solid line).
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recently (Arcas et al. 2003). Although information theory
provides a systematic theoretical framework, we think that our
coincidence measure offers several practical advantages: in
particular, it is easy to evaluate and allows a straightforward
interpretation.

On our random input scenario, the MCIF model clearly
yields the best performance. Although it is straightforward to
implement and rapid to simulate, it is difficult to analyze
mathematically. Strictly speaking, it does not fall in the class of
single-variable IF models. It is interesting to realize, however,
that even the MCIF model, which is based on a seemingly
innocent approximation, has a coincidence rate � significantly
below one. The performance of the MCIF model could be
improved by replacing the fixed reset values mreset, hreset,
n1,reset, n2,reset, and ureset by values that depend on the gating
variables m, h, n1, and n2 at time t̂ (i.e., at the moment of spike
firing). We decided not to implement such a scheme because
the main focus of this study has been on single-variable IF
models.

The one-dimensional NLIF model that we used in this paper
is very similar to the exponential IF model proposed recently
(Fourcaud-Trocmé et al. 2003). A direct comparison of the
NLIF model with the SRM shows that both yield a similar
performance. The time-dependent threshold that has been in-
cluded in our definition of the SRM is an important component
to achieve generalization over a broad range of different inputs.
In fact, turning the dynamic threshold into a constant one
reduces the stimulation regime where good predictions (� �
0.7) are achieved. Further simplifications such as neglecting
the reset have a dramatic effect when trying to generalize the
predictions of the SRM over a broad range of different inputs.

Single-variable IF models such as the NLIF or SRM models
are easy and efficient in simulations. For numerical implemen-
tation, the SRM is simply reformulated as the equivalent IF
model with time-dependent time constant. The 2 models, SRM
and NLIF, run at equal speed and with about the same perfor-
mance. In summary, generalized IF models correctly predict up
to 80% spike times of a much more complicated detailed
neuron model driven by in vivo–like time-dependent input.
Our numerical methods for optimizing the parameters of gen-
eralized IF models can be directly applied to experimental data
of real neurons. The only requirement is that a few seconds of
intracellular recordings of membrane voltage during stimula-
tion with a known time-dependent input current are available.

A P P E N D I X

Optimal filtering problem

In this appendix, we adapt the classic Wiener–Hopf optimal filter-
ing procedure (Wiener 1958) to our problem. We start with the usual
cross-correlation method to find the first-order Wiener kernel (Lee and
Schetzen 1965). At that point, a simple modification of the error
function definition provides us with an equation that is simple to use
for the SRM formalism. Note that the classic Wiener–Hopf method
was already used in a similar context by Brillinger and Segundo
(Brillinger 1988; Brillinger and Segundo 1979).

GENERAL CASE. The classic formulation of the Wiener–Hopf opti-
mal filtering problem is the following. Let us suppose that we record
the output signal Vt

data from some device driven with an input signal
It. We want to find the best linear filter F under the assumption that F
is a finite impulse response filter so that

V t
model � �

k�M�

M�

Fk It�k (A1)

is as close as possible from V t
data. M� and M� are the largest negative

and positive lags for which F is different from 0. We define the error
for each bin by

et � V t
model � V t

data (A2)

and the total error on some sample of data of length L by

E �
1

L
�
t�1

L

�et�
2 (A3)

Then, the optimal linear filter F for the considered sample of data is
the solution of the following system of equations

�E

�Fk

� 0 k � �M�, . . . , �M� (A4)

Some algebra yields the Wiener–Hopf equation

�
n��M�

M�

Fn Corr 
I, I�k�n � Corr 
V data, I �k k � �M�, . . . , �M� (A5)

where Corr 
f; g�i � �k�0
L�1�i fi�kgk is the empirical cross-correlation

between two vectors f and g at lag i. It is then very easy to find the
optimal filter F by solving this linear system. For an application to our
case, we need to take into account the fact that the optimal filter F is
time-dependent in the SRM formalism (the so-called kernel 
). More
precisely, it depends on the time elapsed since the last emitted spike.
We therefore replace Fk with Ft�t̂,k where t̂ is the last spike emitted
when considering time t. Equation A1 becomes

V t
model � �

k�M�

M�

Ft�t̂,k It�k (A6)

Again, we define the error for each bin by

et � V t
model � V t

data (A7)

However, instead of defining the mean square error over a sample of
data as in Eq. A3, we now sum over the set of firing times ti, i �
1, . . . , T

Es �
1

T
�
i�1

T

�V t̂i�s
model � V t̂i�s

data�2 (A8)

where s is simply t � t̂. Then, the optimal time dependent linear filter
F for the whole spike train is the solution of the following system of
equations

�Es

�Fs,k

� 0 k � �M�, . . . , �M� (A9)

After some algebra, we find a set of equations that are the equivalent
of the Wiener–Hopf equation (Eq. A5)

�
n��M�

M�

Fs,nX
I, I �k�n � X
V data, I �k k � �M�, . . . , �M� (A10)

The quantity X[�, �] is defined (for two vectors f and g) by

X
f, g�j,s �
1

T
�
i�1

T�s

ft̂i�sgt̂i�s�j (A11)

Note that this latter quantity has 2 indices and is a generalization of
the empirical cross-correlation between 2 vectors. If the input I is a
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stationary random process, X[I, I]k � Corr [I, I]k and strictly equiva-
lent if L � T.

TWO INPUTS WITH DIFFERENT RESPONSE FILTERS. We suppose now
that the device that we record from is driven by 2 different inputs and
respond to each of these inputs with a different filter

V t
model � �

k�M�

M�

F k
1It�k

1 � �
k�M�

M�

F k
2I t�k

2 (A12)

For the sake of simplicity, we assume that M� and M� are the same
for both filters F1 and F2 and that both filters are causal (M� � 0).
Again, we want to find F1 and F2 so that Vt

model is as close as possible
from Vt

data. Let us define F and It as

F � �F0
1, . . . , FM�

1 , F 0
2, . . . , F M�

2 � (A13)

It � �It
1, . . . , It�M�

1 , I t
2, . . . , I t�M�

2 � (A14)

Equation A12 can now be rewritten as a vector product

V t
model � F � It (A15)

We define the error for each bin by

et � V t
model � V t

data (A16)

and the total error on some sample of data of length L by

E �
1

L
�
t�1

L

�et�
2 (A17)

The optimal linear filters F1 and F2 for the considered sample of
data are then the solution of the following system of equations

�E

�Fk

� 0 k � 1, . . . , 2M� (A18)

Some algebra yields an equation that is equivalent to the classic
Wiener–Hopf equation (Eq. A5)

�
t�1

L

It,kIt � F � �
t�1

L

V t
dataIt,k k � 1, . . . , 2M� (A19)

In its matrix form, this equation gives

�T�Corr 
I1, I1�� T�Corr 
I1, I 2��
T�Corr 
I 2, I1�� T�Corr 
I 2, I 2����F1

F2�� �Corr 
I1, V data�)
Corr 
I 2, V data�)� (A20)

where T(f) is the hermitian Toeplitz matrix of the vector f. Note that
in this case, the linear system includes terms of the cross-correlations
between inputs I1 and I2.

For an application to our case, we need again to take into account
the fact that the optimal filters F1 and F2 are time-dependent in the
SRM formalism (the so-called kernels �). More precisely, they depend
on the time elapsed since the last emitted spike. We follow the same
way as above and replace both Fk

1 and Fk
2 by respectively Ft�t̂,k

1 and
Ft�t̂,k

2 , where t̂ is the time of the last emitted spike when considering
time t. Equation A12 is replaced by

V t
model � �

k�M�

M�

Ft�t̂,k
1 I t�k

1 � �
k�M�

M�

F t�t̂ ,k
2 I t�k

2 (A21)

Using the same stratagem as before (with M� � 0), we define

Ft�t̂ � �Ft�t̂,0
1 , . . . , Ft�t̂,M�

1 , Ft�t̂,0
2 , . . . , Ft�t̂,M�

2 (A22)

It � �It
1, . . . , It�M�

1 , I t
2, . . . , I t�M�

2 � (A23)

Thus Vt
model can be restated as a scalar product of the 2 vectors Ft�t̂

and It

V t
model � Ft�t̂ � It (A24)

The error for each bin is defined in Eq. A16. Just as in the case of a
single input, we sum over the set of firing times t̂i, i � 1, . . . , T for
the total error function

Es �
1

T
�
i�1

T

�V t̂i�s
model � V t̂i�s

data�2 (A25)

where s is short for t � t̂. The optimal filters Fs
1 and Fs

2 are then the
solution of the following system of equations

�Es

�Fs,k

� 0 k � 1, . . . , 2M� (A26)

Some algebra yields a set of equations that are the equivalent of the
Wiener–Hopf equation for this specific scenario

�
i�1

T

It̂i�s,kIt̂i�s � Fs � �
i�1

T

V t̂i�s
dataIt̂i�s,k k � 1, . . . , 2M� (A27)

In its matrix form, this equation gives

�T�X
I1, I1�� T�X
I1, I 2��
T�X
I 2, I1�� T�X
I2, I2����Fs

1

F s
2�� �X
I1, V data�)

X
I 2, V data�)� (A28)

See Eq. A11 for a definition of X[�, �].
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