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Abstract

Recent evidence suggests that electrical coupling could play a role in generating oscillatory
behavior in networks of neurons, however, exact mechanisms have not been identi"ed. Using
a cellular automata model, we recently showed that a self-organizing process can generate
regular population oscillations in a network with random spontaneous activity and random
gap junction-like coupling. The network activity underlying the oscillations is topologically
similar to target-pattern activity. Here, we show the process at work in a biophysical model. We
demonstrate that population oscillations can also arise from reentrant behavior, but these
oscillations look qualitatively di!erent than those generated by the target-pattern-like
activity. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bursts of high-frequency (&200 Hz) population oscillations have recently been
observed in hippocampal slice preparations [1]. The frequency of these oscillations
suggest that they could be associated with `ripplea activity recorded in rats during
consummatory behavior and awake immobility [4]. Surprisingly, the oscillations in
the slice persist when chemical transmission is blocked and they appear to be
dependent on gap junctional connections between pyramidal cells. Traub et al. [3]
constructed a detailed model of the slice preparation that consisted of pyramidal cells
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coupled by axo-axonal gap junctions. Cells in this network model were randomly and
sparsely connected. It was found that the model could replicate the experimentally
observed behavior if each cell displayed a low level of spontaneous activity (&1 Hz)
and if the gap junctional connections was strong enough so that spikes could be
transmitted through the gap junction with a short latency. Traub et al. [3] also
proposed a cellular automata (CA) model, which has the same network connectivity
as the detailed model but has simple rules governing activation, and showed that this
simple model can reproduce high-frequency population oscillations. Curiously, des-
pite the fact that both the spontaneous activity and the network connectivity are
random, the oscillations are quite regular.

The work of Traub et al. [3] implies that the regular population oscillations arise
spontaneously from a self-organizing process. Recently, we identi"ed and character-
ized the underlying mechanism for this process in the CA model [2]. Here, we brie#y
describe the mechanism and show that it applies to a biophysical model that consists
of only the axonal compartments of the detailed model of Traub et al. [3]. We also
show that qualitatively di!erent population oscillations can be generated by reentrant
behavior.

2. Description of models

The networks in Traub et al. [3] consist of 3072 pyramidal cells. Each cell is
described using a multicompartment Hodgkin}Huxley type model in which cells have
64 somato-dendritic compartments and 5 axonal compartments ([3] and references
therein). Axo-axonal gap junctions in Traub et al. are placed between randomly
selected pairs of cells (between penultimate axonal compartments). The gap junctions
are symmetric and nonrectifying and have a conductance of 3.66 nS, which is high
enough for rapid transmission of action potentials from one axon to the other in the
absence of refractoriness. The network is driven by random spontaneous activity
arising in the distal compartment of each axon: independent Poisson processes with
rate � determine when current pulses (0.2 nA for 0.3125 ms) are applied. The networks
considered here are identical to those in Traub et al. [3] except the `cellsa in our
network consist only of the axonal compartments (i.e. 5 compartments per &cell').

Connectivity in our axonal network model is established as in Lewis and Rinzel [2]
and in Traub et al. [3]. Cells are set on a uniform 32�96 grid with lattice spacing at
20 �m. Electrical connections between cells are assigned randomly with the restriction
that a cell can only be connected to cells that are no greater than a distance r

�
cells

away from it, i.e. there is a uniform connectivity footprint. As in Traub et al. [3], we set
the average number of connections that a cell makes to be 1.62 and the connectivity
radius, r

�
, to be 200 �m.

The CA model has the same connectivity as above, but time and state are discrete
and simple rules govern dynamics. Cells can exist in one of 3 states: activated, resting
or refractory. A resting cell becomes activated at time k if at least one of the cells
connected to it is activated at time k!1. Cells that are activated at time k are
absolutely refractory for r time steps and then they return to the rest state. Cells in the
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Fig. 1. Population oscillations in the axonal network with the rate of spontaneous activity
�"0.001/ms/cell. Network activity is plotted as a function of time. Network activity is taken to be the
average instantaneous membrane potential (mV) of all cells (all compartments) with potentials greater than
the resting potential. Oscillations stop when spontaneous activity is turned o! at 180 ms (arrow).

resting state also can make a transition to the activated state when they undergo
random spontaneous activation. Thus, the CA model is consistent with the biophysi-
cal network models, which have strong and sparse gap junctional coupling.

3. Results

3.1. Population oscillations in the axonal network model

Fig. 1 shows population oscillations in the axonal network model with
�"0.001/ms/cell. Despite spontaneous activity being random, the oscillations are
quite regular. The mean frequency of the oscillations is about 150 Hz. Note that this
frequency is two orders of magnitude larger than the rate of spontaneous activity per
cell, �, and is an order of magnitude smaller than the total spontaneous activity rate in
the network, 3072�. It is also about half of the maximal "ring frequency of the axons.
The mechanism that generates the oscillations is not immediately apparent. However,
we will show that it is the same as the mechanism underlying the regular population
oscillations in the CA model.

3.2. Mechanism for population oscillations in the CA model (see [2] for details)

Because connections in the CA model are in"nitely strong, spontaneous activation
in a single cell leads to an expanding wave of activation and subsequent recovery. The
wave spreads through the network leaving resting cells in its wake and dies out when
it reaches boundaries of the network or dead-ends in the network. The spread of the
wave can be quite complicated due to the geometrical complexity of network connect-
ivity. Nevertheless, no matter how complicated the network appears, the symmetry
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(i.e. bidirectionality) of the strong connections leads to an important topological
property: the wave propagates as a closed connected surface in network connection
space. This means that there is a true inside and outside of the wave and therefore no
paths in the network lead from cells outside the wave to cells interior to the wave (i.e.
in the wake of the wave) without passing through the wave.

During repetitive spontaneous activation, multiple waves can be present in the
network simultaneously and these waves can interact. However, the above topological
property or `symmetrya of the waves is always maintained. If a wave arises interior to
another wave, then this new wave expands as a closed connected surface, remaining
interior to the original wave for all time. If a wave arises outside of an expanding wave,
then the waves expand as closed connected surfaces and eventually collide. Refractori-
ness behind the wavefronts causes local annihilation of the colliding portions of the
waves. The waves then coalesce and form a single larger expanding wave that spreads
as a closed connected surface, i.e. the topology of the new wave is the same as that of
the individual waves prior to collision.

The above observations imply that the network activity giving rise to the popula-
tion oscillations in the CA model must be composed entirely of expanding waves.
Although very di!erent from a geometrical perspective, the wave activity in the
randomCA network shares basic topological features with target pattern activity seen
in partial di!erential equation models and integro-di!erential equation models of
excitable media. For this reason, we refer to the network behavior as `topological
target pattern activitya. By linking the network oscillations to the underlying
topological target pattern structure, we were able to describe how dynamical proper-
ties of the network can mold random activity into regular rhythmic population
oscillations. We were also able to derive semi-analytical expressions for mean fre-
quency and coe$cient of variation for the oscillations. These expressions indicated
how changes in the rate of spontaneous activity and structure of the random network
a!ect the frequency and the regularity of the oscillations.

3.3. Topological target patterns and reentry in the axonal network model

In the CA model, there are no mechanisms to `break the symmetrya of the
expanding waves, therefore topological target pattern activity must underlie the
population oscillations regardless of rate of input, network size and size and shape of
the connectivity footprint. On the other hand, biophysical models of the physiological
system and the physiological system itself have dynamical properties that could
potentially break the symmetry of the waves. When the symmetry of an expanding
wave is broken, the wave is not a closed connected surface and therefore activity has
the potential of e!ectively `curlinga back towards the wake of the initial wave of
activation. This could lead to reactivation of cells that have been previously activated
by the wave and to the formation of self-sustained activity that circulates around
a loop in the network. The circulating activity, known as reentry, can drive
the entire network and give rise to population oscillations. The period of the
oscillations will be set by the time that it takes for activity to propagate around the
reentrant loop. Thus, it is necessary to determine whether the oscillations in
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Fig. 2. Population oscillations in the axonal network due to reentry. The network is identical to that used
in Fig. 1. The rate of spontaneous activity � is 0.001/ms/cell before being turned o! at 140 ms (arrow). From
20 ms to 80 ms, a cell in the center of the network is stimulated with a frequency of 250 Hz (bar).

the axonal network model are associated with reentrant activity or topological target
pattern activity.

Various lines of evidence indicate that topological target patterns, and not
reentrant activity, underlie population oscillations in the axonal network shown in
Fig. 1. Firstly, the population oscillations of the axonal network model look
qualitatively similar to those observed in the CA model [2]. Secondly, oscillations
due to reentrant activity are self-sustained, whereas the oscillations here stop
immediately following the termination of spontaneous activity. Finally, we have
veri"ed the closed connected topology of a few representative waves in the network
activity.

The topological target pattern behavior appears to be quite robust; it persists for as
long as we have carried out simulations (some up to 3 s) and for many (tens of)
realizations. However, reentry can be induced in the network without changes in
system parameters. When cells have low excitability as a result of refractoriness, the
propagation of activity can fail locally in regions of high connectivity due to the
dilution of current spreading from an active cell to several resting cells. Thus, an
expanding wave could propagate in certain directions but not others and the sym-
metry of the wave would be broken. This can lead to reentry. Indeed, this phenom-
enon can be unmasked in our axonal network by rapid stimulation at a "xed point in
the network (250 Hz for 60 ms). Fig. 2 shows the resulting population oscillations. The
oscillations due to reentrant behavior are very regular. Both the period and peak-to-
peak amplitude of the oscillations are almost half that of the oscillations due to target
pattern activity. This is consistent with the population oscillations observed in the CA
model when reentry is `arti"ciallya induced, e.g. choosing appropriate initial condi-
tions. As expected, these oscillations continue following termination of random
spontaneous activity. We have also veri"ed that a few representative waves in the
reentrant network activity do not form closed connected surfaces.
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4. Discussion

Our axonal network model, which is a reduction of the detailed network model of
Traub et al. [3], appears to include the essential elements needed to reproduce much
of the oscillatory behavior observed in the detailed model and the hippocampal slice
preparation of Draguhn et al. [1]. Simulations with the axonal networkmodel suggest
that multiple expanding waves underlie the population oscillations. Indeed, the
topological target pattern activity in the axonal model appears to be quite robust. The
fact that reentry can be induced by local high frequency stimulation implies that it can
be induced by the random spontaneous activity but this is highly improbable. Also,
preliminary simulations without the high-frequency stimulation suggest that gap
junctions need to be substantially weakened or there must be substantial heterogen-
eity in cellular properties for the topological target pattern activity to be destroyed
and reentry to arise.

It must be noted however that intrinsic bursting dynamics in soma-dendrite
portions of the pyramidal cells are not included in our axonal network model. These
bursting dynamics are likely to underlie some aspects of the oscillations in the detailed
model and the corresponding experimental preparation. It is possible that topological
target pattern activity in the `axonal plexusa underlies the high frequency activity during
the interburst dynamics that leads to the bursts (i.e. there are no somatic action potentials
during this activity only somatic spikelets due to axonal activity) but not during the
bursting phase. More work is needed before de"nitive conclusions can be made.
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