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Abstract—Neuronal networks can produce stable oscillations and synchrony that are under tight control yet flex-
ible enough to rapidly switch between dynamical states. The pacemaker nucleus in the weakly electric fish com-
prises a network of electrically coupled neurons that fire synchronously at high frequency. This activity sets the
timing for an oscillating electric organ discharge with the lowest cycle-to-cycle variability of all known biological
oscillators. Despite this high temporal precision, pacemaker activity is behaviorally modulated on millisecond
time-scales for the generation of electrocommunication signals. The network mechanisms that allow for this com-
bination of stability and flexibility are not well understood. In this study, we use an in vitro pacemaker preparation
from Apteronotus leptorhynchus to characterize the neural responses elicited by the synaptic inputs underlying
electrocommunication. These responses involve a variable increase in firing frequency and a prominent desyn-
chronization of neurons that recovers within 5 oscillation cycles. Using a previously developed computational
model of the pacemaker network, we show that the frequency changes and rapid resynchronization observed
experimentally are most easily explained when model neurons are interconnected more densely and with higher
coupling strengths than suggested by published data. We suggest that the pacemaker network achieves both sta-
bility and flexibility by balancing coupling strength with interconnectivity and that variation in these network fea-
tures may provide a substrate for species-specific evolution of electrocommunication signals. � 2019 IBRO.

Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Oscillations and synchrony are ubiquitous features of

brain networks (Buzsáki and Draguhn, 2004; Steriade,

2006; Buzsáki and Wang, 2012), but too little or too much

of either can be pathological (Timofeev and Steriade,

2004; Gonzalez-Burgos et al., 2015; Spellman and

Gordon, 2015; Colgin, 2016). Moreover, switching

between states that involve oscillatory and/or synchro-

nized firing may be critical for information processing

and memory formation (Fries, 2009; Wang, 2010;

Hanslmayr et al., 2016; Parish et al., 2018). Therefore,

neuronal networks must be robust, keeping oscillations

and synchrony under tight control, while being sufficiently

flexible to rapidly switch between distinct dynamical states

(Haider and McCormick, 2009; Palmigiano et al., 2017).

One network that exhibits this combination of

robustness and flexibility is found in the pacemaker

nucleus of the weakly electric fish, Apteronotus
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leptorhynchus. The pacemaker nucleus comprises a

network of synchronized neurons that sets the timing for

the high-frequency (600–1200 Hz) electric organ

discharge (EOD) (Bennett et al., 1967; Elekes and

Szabo, 1985; Salazar et al., 2013) that electric fish use

to navigate, capture prey, and communicate (Moller,

2005; Krahe and Fortune, 2013; Lewis, 2014). The EOD

is one of the most precise of all biological oscillators, with

sub-microsecond variation in cycle period: the coefficient

of variation (CV= SD/mean) can be as low as 2 � 10�4

(Moortgat et al., 1998, 2000a). Despite this extreme tem-

poral precision, electric fish can rapidly modulate the EOD

on millisecond timescales to produce communication sig-

nals called chirps. Chirps come in a variety of types and

vary across species, but the fastest occur over tens of mil-

liseconds and are characterized by varying decreases in

EOD amplitude and increases in instantaneous EOD fre-

quency of up to 500 Hz (Fig. 1B,C) (e.g. Zakon et al.,

2002; Zupanc et al., 2006; Hupé and Lewis, 2008;

Smith et al., 2016).

Moortgat et al. (2000a,b) hypothesized that the highly

precise timing of the EOD is a result of dense and strong
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Fig. 1. The pacemaker nucleus (Pn) and the electric organ discharge

(EOD). (A) Lower: outline of fish showing schematic relationship

between the medullary Pn network (gray outline) and the electric

organ (gray line). Upper: schematic network diagram showing

electrically coupled pacemaker (P) and relay (R) neurons; the Pn

receives synaptic inputs from the prepacemaker nucleus (PPn), while

relay axons project down the spinal cord to set the timing of the EOD.

(B) Recording of the quasi-sinusoidal EOD showing the amplitude

modulation (orange) during an electrocommunication signal called a

chirp; vertical scale bar is 10 mV and time scale is shown in panel C.

(C) Instantaneous frequency (1/period) for each cycle of the EOD

waveform in panel B shows a change from 1000 Hz to 1030 Hz during

the chirp; vertical scale, 30 Hz, and time scale, 10 ms.
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coupling among neurons in the pacemaker network that

effectively ‘‘average-out” the noise of individual neurons.

Their data however did not support this idea, as each neu-

ron was found to be only weakly coupled via gap junctions

to fewer than 5% (between 1% and 7%) of other neurons

(Moortgat et al., 2000a). These authors concluded that

network precision is more likely due to very precise firing

in individual neurons. However, sparse and weak cou-

pling should render the network prone to instability, with

long recovery times following a perturbation; such dynam-

ics are inconsistent with the production of brief electro-

communication signals. How the pacemaker maintains a

balance between stability and flexibility is unclear.

In A. leptorhynchus, the pacemaker nucleus (Pn) is

made up of approximately 150 neurons of two main

types: the pacemaker (P) cells, which are intrinsic to the

Pn; and the relay (R) cells, whose axons project down

the spinal cord to innervate electromotor neurons of the

electric organ (Fig. 1A) (Ellis and Szabo, 1980; Elekes

and Szabo, 1985; Moortgat et al., 2000a; Smith and

Zakon, 2000; Zupanc, 2017). A third class of small

interneurons, the parvo cells, has also been identified,

but their function is not known (Smith et al., 2000). Pace-

maker and relay cells fire synchronously, in one-to-one
phase-locking with the EOD cycle (Elekes and Szabo,

1985; Dye and Heiligenberg, 1987). A chirp is elicited by

AMPA-type glutamatergic inputs from a subdivision of

the prepacemaker nucleus (PPn-C) to relay cells (Dye

et al., 1989; Juranek and Metzner, 1998; Zakon et al.,

2002). Electrical stimulation of these afferents, both

in vivo (Juranek and Metzner, 1998) and in vitro (Dye,

1988) elicits a chirp-like response in Pn neurons that

involves transient increases in action potential frequency

and decreases in action potential amplitude. These stimuli

can also change the timing relationship between neurons

(Dye, 1988), resulting in desynchronization of the pace-

maker. However, the detailed variation in frequency and

synchronization has not been quantified across cells

and networks. In addition, while it is known that the Pn

comprises a densely packed, apparently random, network

of neurons, with large myelinated axons forming gap junc-

tions via club endings on dendrites, proximal segments

and axons (Elekes and Szabo, 1985; Moortgat et al.,

2000a), it has not yet been possible to evaluate the overall

network structure.

The goals of the present study are to quantify the

responses of Pn neurons to chirp-like synaptic

stimulation and then use these responses to evaluate

how network connectivity influences Pn function. Using

an in vitro pacemaker preparation, we show that PPn-C

stimulation results in small but variable increases in

action potential frequency of Pn neurons. In addition, we

find that the relative timing of spikes between pairs of

neurons varies extensively over several post-stimulus

cycles, confirming that neurons in the Pn desynchronize

during a chirp. We were able to reproduce this behavior

in a network model of the Pn (Moortgat et al., 2000b).

However, to match the observed frequency changes

and post-stimulus recovery dynamics while also allowing

for robust oscillations and synchrony, the model neurons

are required to be much more densely interconnected

than is supported by previous experimental data.
EXPERIMENTAL PROCEDURES

Animals

Adult brown ghost knifefish (Apteronotus leptorhynchus)
were obtained from commercial fish suppliers then

housed in flow-through tanks containing several

individuals; the experiments described involved ten fish.

Environmental conditions were held constant with a

12/12-hour light/dark cycle with temperature at �27–

28 �C, and conductivity at �150–250 lS. All housing

and experimental protocols were in accordance with

guidelines approved by the Animal Care Committee of

the University of Ottawa (BL-229 and BL-1773).
Tissue preparation

Tissue preparation protocols were similar to those used

previously (Dye, 1988; Moortgat et al., 2000a; Smith

and Zakon, 2000; Lewis et al., 2007). Fish were anes-

thetized with Tricane Methanosulfate (0.2%, TMS, Syndel

Canada, Nanaimo, BC) and then transferred to a holder,

where their gills were continuously perfused with
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oxygenatedwater containing the anesthetic. The brainwas

then quickly removed and transferred to an ice-cold bath of

artificial cerebrospinal fluid (ACSF): NaCl (124 mM),

NaHCO3 (24 mM), D-glucose (10 mM), KH2PO4

(1.25 mM), KCl (2 mM), MgSO4 (2 mM) and CaCl2
(2 mM). While holding the anterior part of the brain with

forceps, the meninges and blood vessels overlying the

pacemaker nucleus and surrounding tissues were care-

fully removed with fine forceps. The pacemaker nucleus,

visible as an ovoid protrusion on the ventral brainstem,

was then cut away with fine scissors (approximately

1 mm rostral, 0.5 mm caudal, and 1 mm dorsal). The tis-

sue was immediately transferred to a brain slice chamber

that was continuously perfused with oxygenated ACSF.

As in previous studies (Dye, 1988; Moortgat et al.,

2000a), all experiments were performed at room-

temperature (�21 �C), below the normal physiological

temperatures of �27–28 �C. Although Moortgat et al.

(2000a,b) and others have reported a Q10 for EOD fre-

quency near 1.5, they reported no change in timing preci-

sion with temperature. This suggests that the effects of

temperature on pacemaker dynamics is mixed and will

be an interesting avenue for future work.
stim

Fig. 2. Example recordings of membrane potential from pairs of

neurons in the pacemaker nucleus (Pn). (A) Paired intracellular

recordings from a pacemaker (P) and relay (R) neuron during

electrical stimulation of the PPn inputs (indicated by stim arrow) in an

in vitro Pn preparation. Convention for quantifying responses to

stimulation are shown above: control cycle period and three post-

stimulus cycle periods are denoted T0, T1, T2, T3 respectively. Time

scale bar is 5 ms and vertical scale bar is 20 mV (applies to both

panels A and B). (B) Intracellular recordings from a single P neuron

for two different trials (indicated by black and gray lines) with electrical

stimulation of the PPn inputs (indicated by stim arrow) at the same

phase (indicated by the arrow) but producing different responses

(compare first post-stimulus cycle: 2.4 ms and 2.0 ms). For display

purposes, the stimulus artifact was filtered locally, but in these

recordings a downward deflection that differed between trials

remained, giving the impression of different stimulus timing when in

fact the timing was the same.
Electrophysiological studies

Stimulation protocols were similar to those used by Dye

(1988). Bipolar stimuli were delivered through silver wire

electrodes, placed rostral of the Pn on each side of the

brainstem. Stimuli were constant current pulses (100 ls,
50 lA or 500 lA) delivered using a Multichannel systems

STG1004 stimulator (Multi Channel Systems, Reutlingen,

Germany). Intracellular recordings were performed with

borosilicate glass microelectrodes (60–90 MX resistance;

P-2000 electrode puller, Sutter Instrument Company,

Novato, CA, USA) using an Axoclamp 2B amplifier

(Molecular Devices, Sunnyvale, CA, USA). Data acquisi-

tion was performed using a National Instruments PCI-

6052E data acquisition board (National Instruments, Aus-

tin, TX, USA), at a sampling frequency of 10 kHz using

custom Matlab scripts (Mathworks, Natick, MA, USA).

Single-pulse stimuli were triggered 0.2 s into a 1-second

recording sweep, with at least 5 s between successive

stimuli to prevent long-term frequency changes

(Oestreich and Zakon, 2002). Glutamate receptor antago-

nists AP-5 (50 mM) and CNQX (20 mM) were obtained

from Tocris (Minneapolis, MN, USA), and bath applied

in the same manner as control ACSF.
Data analysis

The recordings of the Pn cell membrane potential were

analyzed using custom Matlab scripts (MathWorks,

Natick, MA). To determine the onset times for each

oscillatory cycle (i.e. phase zero), zero-crossings were

first calculated for the mean-subtracted membrane

voltage waveforms; a linear interpolation between the

points immediately below and above zero was used to

determine the time of cycle onset. For the phase

resetting analysis, post-stimulus cycle periods (T1, T2,

T3) were normalized by the control pre-stimulus period,

T0 (Fig. 2). The phase difference (/) between a
simultaneously recorded neuron pair was defined as the

time difference between spikes normalized by the cycle

period (/= Dt/T0; Fig. 4). The effect of a stimulus on

these phase relationships was quantified by the change

in phase difference i.e. the pre-stimulus phase

difference subtracted from the post-stimulus phase

difference (D/; Fig. 4C). We discarded a total of 8 trials

(across all cells) because either the stimulus artifact

made identification of cycle times ambiguous or cells in

a pair were not phase-locked over the pre-stimulus

cycles. Unless otherwise indicated, statistical

comparisons were made using ANOVA on Ranks in R

(www.r-project.org). Some of the experimental data

have been presented previously in thesis form

(Warrington, 2008).

Network model

We used a modified computational model of the

pacemaker network proposed by Moortgat et al.

(2000b). The model included 120 pacemaker and 30 relay

http://www.r-project.org
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neurons, both comprising a somatic and axonal compart-

ment. The somatic compartments are modeled as

spheres of diameter ds; the axonal compartments are

modeled as cylinders of length la and diameter da. Mem-

brane potential dynamics are described using a Hodg-

kin–Huxley formalism with membrane currents (INa, IK,

and IL), synaptic current (Isyn), bias current (Ibias), coupling

current due to gap junctions between neurons (Ic), and the

current arising from the adjacent compartment of the two-

compartment neuron (Iaxial); parameter values differed for

each neuron type and compartment (Table 1):

C
dV

dt
¼ Ibias þ Ic þ Iaxial � INa � IK � IL � Isyn

The ionic currents are given by:

INa ¼ gNam
3hðV� ENaÞ

IK ¼ gKn
4ðV� EKÞ

IL ¼ gLðV� ELÞ
The dynamics of each gating variable (m, h, n) are

given by:
dj
dt
¼ ajð1� jÞ � bjðjÞ, where j = m, h, or n

and

am ¼ �ðVþ 40Þ exp �Vþ 40

10

� �
� 1

� ��1

bm ¼ 40exp �Vþ 65

18

� �

ah ¼ 0:7exp �Vþ 65

20

� �

bh ¼ 10 exp �Vþ 35

10

� �
þ 1

� ��1

an ¼ �0:1ðVþ 55Þ exp �Vþ 55

10

� �
� 1

� ��1

bn ¼ 1:25exp �Vþ 65

80

� �
Table 1. Model parameters for pacemaker and relay neurons

Pacemaker

Soma Axon

ds (cm) 0.0030 –

da (cm) – 0.0008

la (cm) – 0.0045

ga (mS) 0.0045 0.0045

Cy (mF) 1.0As 1.0Ac

gL (mS) 0.3As 1.0Ac

gNa (mS) 500As 500Ac

gK (mS) 20As 20Ac

Ibias (mA) 0.0015 0

ENa (mV) 50 50

EK (mV) �77.5 �77.5

EL (mV) �70 �70

Esyn (mV) 0 0

y Where As is surface area of the somatic compartment, and Ac is the surface area of th
The somatic and axonal compartments of each

neuron are coupled by an axial current Iaxial = ga
(Vadj � V), where ga is the axial conductance and Vadj is

the membrane potential of the adjacent compartment.

Model neurons are coupled electrically through gap

junctions with a conductance gc, such that the coupling

current to cell 1 from cell 2 is Ic = gc(V2 � V1) where V2

and V1 are the membrane potentials of the appropriate

compartment of each cell. Unless otherwise noted, the

gap junction conductance (gc) for all connections was

set to 0.00001 mS (i.e. 10 nS), which is at the top of the

range used in the original model by Moortgat et al.

(2000b). Connections between pacemaker neurons, from

pacemaker-to-relay and from relay-to-pacemaker are

axo-somatic (axon compartment to soma compartment)

and fully rectifying (Ic = 0 if V2 < V1); connections

between relay neurons are soma-to-soma and non-

rectifying. Random networks were generated based on

previous experimental data (Dye and Heiligenberg,

1987; Dye, 1988; Elekes and Szabo, 1985; Moortgat

et al., 2000a) that estimates the likelihood of one neuron

type connecting to another (pacemaker-to-pacemaker,

P:P = 7%; pacemaker-to-relay, P:R = 10%; relay-to-

pacemaker, R:P = 6%; relay-to-relay, R:R = 23%). Note

that this is slightly different from Moortgat et al. (2000b)

where the parameters were chosen to optimize timing

precision specifically (P:P = 7%, P:R = 35%, R:

P = 0%, R:R = 0%).

Synaptic stimulation is modeled as an alpha-function

conductance (Gsyn) with equilibrium potential equal to

zero (Esyn = 0), delivered to a fraction of the relay

neuron population (see Results):

Isyn ¼ GsynðV� EsynÞ
Gsyn t; toð Þ ¼ gsyn

t� to
s

� �
exp � t� to � s

s

� �
; t � to

where gsyn determines the strength of the synaptic

connection (e.g. gsyn = 0.00009 mS, or 90 nS) and s is

the time-to-peak (s= 1.83 ms; Dye, 1988). Numerical

simulations were implemented in Matlab R2016a (Math-

Works, Natick, MA) using the Euler method with a time
Relay

Soma Axon

0.0065 –

– 0.0007

– 0.0040

0.00075 0.00075

1.0As 1.0Ac

1.0As 1.0Ac

500As 500Ac

50As 50Ac

0 0

50 50

�77.5 �77.5

�70 �70

0 0

e axonal compartment. Units as shown in first column unless otherwise noted.
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Fig. 3. Phase resetting curves for neurons in the pacemaker nucleus

(Pn). (A) Resetting curve shows post-stimulus cycle durations (T1,

T2, T3) normalized by the control duration T0 as a function of

stimulus phase h for both P (open blue) and R (open red) neurons (29

P cells and 11 R cells in 8 in vitro Pn preparations). (B) T1 responses

in panel A shown at higher magnification. In addition, example

responses from two individual neurons are shown with filled symbols

(P in blue, R in red). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this

article.)
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step of 0.5 ls. Model parameters are based on Moortgat

et al. (2000b) and are shown in Table 1. For this parameter

set, isolated pacemaker neurons fire action potentials at

678 Hz, but isolated relay neurons do not fire sponta-

neously. In our initial analysis, we generated 10 random

networks using the connectivity parameters above with

the condition that the network recovered to the original

synchronous state after stimulation. Phase resetting

curves and change in phase (D/) were calculated for

model neurons, as in the experimental analyses. We also

explored network responses over a range of connectivity

parameters (gc from 5 nS to 15 nS, and P:P from 2% to

40%). In these studies, we generated either 10 (Fig. 8)

or 100 (Fig. 9) unique networks (see Results) for each

parameter set (pair of gc, and P:P values).

RESULTS

In the following, we first describe the responses of

neurons in the pacemaker nucleus (Pn) to the synaptic

inputs that underlie electrocommunication signaling. In

doing so, we experimentally test the hypothesis that the

communication signal called a chirp involves the

transient desynchronization of Pn neurons. We then use

a computational model of the Pn to explore the network

features that can account for the experimentally

observed responses.

Pacemaker (Pn) network in vitro

Using an in vitro Pn preparation (Dye, 1988), we explored

the effects of electrically stimulating synaptic inputs from

the PPnC on the timing and phase relationships of Pn

neurons. Fig. 2A shows an example of a simultaneous

recording from a pacemaker (P) and relay (R) neuron.

In general, it is possible to identify cell type by membrane

potential waveform (Bennett et al., 1967). The action

potentials of R neurons do not exhibit a gradually depolar-

izing rising phase (pacemaker potential), so appear less

symmetrical than those of P neurons (Fig. 2A). In this

example, the stimulus (500 mA amplitude) produced slight

changes in spike timing (<3% of the control cycle period,

T0), as well as a decrease in amplitude of the R neuron

action potential. In a second example (Fig. 2B), two stim-

ulus trials with the same stimulus timing resulted in differ-

ent responses in the same P neuron (spike timing and

amplitude vary). In the following analyses, we character-

ize this variability using two temporal features of the

responses: (1) changes in the oscillation cycle period

(interspike interval) of individual neurons as a function of

stimulus timing (phase resetting curve), and (2) changes

in the relative timing among pairs of neurons, i.e. change

in phase difference (D/).

Phase resetting curves. We first quantified the

changes in Pn cell cycle duration as a function of the

stimulus phase. These phase resetting curves included

the first three post-stimulus cycles (T1, T2, T3; Fig. 2A)

in a total of 40 neurons (29 P neurons, 11 R neurons in

8 fish). A weak 50-mA stimulus had no significant effect

on normalized cycle durations (median and [interquartile

range] over all cells: T1 = 1.00 [0.998, 1.005];
T1 = 2.00 [1.994, 2.005]; T1 = 3.00 [2.993, 3.007]). In

contrast, a stronger 500-mA stimulus produced variable

changes in cycle duration with a trend toward shortening

at all stimulus phases (Fig. 3A; median and [interquartile

range] for P neurons: T1 = 0.99 [0.975, 1.006];

T2 = 1.95 [1.887, 1.998]; T3 = 3.00 [2.979, 3.005]; and

for R neurons: T1 = 1.00 [0.984, 1.016]; T2 = 1.92

[1.877, 1.960]; T3 = 2.98 [2.953, 3.001]). These effects

were weakly (but not significantly) dependent on

stimulus phase (p= 0.07) and cell type (p= 0.08, two-

way ANOVA on ranks). Closer inspection of T1

(Fig. 3B) shows that these trends are reflected in the

individual cells as well and that some individual neurons

had very different responses to similar stimulus phases

(filled symbols in Fig. 3B are for an individual cell of

each type). In summary, the 500-mA stimulus produced

relatively small decreases in cycle duration that were

variable across the population of cells as well as a

single cell. In the context of a chirp, changes in cycle

duration of a similar magnitude would result in a 40- to
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60-Hz increase for a fish with an EOD frequency of

800 Hz (similar to a type II or small chirp, Fig. 1; Zakon

et al., 2002; Smith et al., 2016). In the next section, we

quantify changes in the firing relationship between cells

(change in phase difference, D/) to assess the impact

of response variability on the synchrony of neurons in

the pacemaker during a chirp stimulus.
Change in phase difference between neuron

pairs. Similar to previous studies (Dye, 1988; Moortgat

et al., 2000a), we found that during on-going pacemaker

activity pairs of neurons were phase-locked but not fully

synchronized (i.e. phase differences were constant and

distributed around zero). Fig. 4B shows a histogram of

phase difference (defined in Fig. 4A) for the 20 pairs of

neurons in our data set. The distribution is consistent with

previously reported data (Dye, 1988; Moortgat et al.,

2000a); the largest phase differences (0.13 and 0.19 in

Fig. 4B) occur between pacemaker and relay (PR) cell

pairs and the smallest between P cell pairs. The variable

change in cycle duration described in the previous section

suggests that these phase relationships change in
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Fig. 4. Stimulus-induced changes in neuron phase relationships. (A)

Illustration showing action potentials from two neurons along with the

definition for the phase difference, / (i.e. the time Dt between spikes

relative to the control period T0). (B) Stacked histogram of phase

differences (absolute value) between the neuron pairs in our sample,

color-coded by pair type: PP, pacemaker–pacemaker; PR, pace-

maker–relay; RR, relay–relay. (C) Change in phase difference (D/)
between pairs of neurons for the same stimuli shown in Fig. 3, plotted

against post-stimulus cycle number (20 pairs in 8 preparations).

Colored symbols show all data for each pair type; boxplots are for

data combined across pair type: middle line is median, box hinges

denote the 1st and 3rd quartiles, and whiskers are 1.5 times the

interquartile range from the hinge point.
response to a chirp stimulus. We therefore measured

the change in phase difference (D/) produced by the

stimulus (i.e. if the stimulus does not change the relative

timing of action potentials between the cell pairs, then

D/ is zero). Because cycle duration does not significantly

depend on stimulus phase, we combined data across

stimulus phases for this analysis. As expected, the weak

50-lA stimulus produced little change in / over 10 post-

stimulus cycles (absolute value of D/= 0.0027 [0.0012,

0.0058], median and [interquartile range] over N = 16 cell

pairs). The 500-lA stimulus however (Fig. 4C) caused a

significant change in phase difference (ANOVA on ranks,

p � 10�14; N = 20 cell pairs) over the first four post-

stimulus cycles in a manner that depended on neuron pair

type (p � 10�5); these differences are due largely to an

increase in variance over the first four post-stimulus

cycles. Overall, this increased variability in phase differ-

ence confirms that a chirp stimulus not only increases fre-

quency but also desynchronizes neurons in the

pacemaker nucleus.

The in vitro Pn preparation contains the projections

from two different brain areas, the diencephalic

prepacemaker nucleus (PPn) and the mesencephalic

sublemniscal prepacemaker nucleus (SPPn), both of

which could be activated by our electrical stimulus.

Chirps are elicited via glutamatergic inputs from the PPn

subdivision PPn-C (PPn-Chirping) through activation of

AMPA receptors on R cells (Dye et al., 1989; Juranek

and Metzner, 1998). On the other hand, glutamatergic

inputs from the SPPn and the PPn subdivision PPn-G

(PPn-Gradual rise) produce slow EOD modulations

occurring over minutes via NMDA receptors on both P

and R neurons (Heiligenberg et al., 1996; Juranek and

Metzner, 1997, 1998; Oestreich and Zakon, 2002). To

ensure that our stimuli were specific to chirping, we selec-

tively blocked the NMDA-type inputs from PPnG and

SPPn, and the AMPA-type inputs from PPnC in 5 cell

pairs in 2 fish. The NMDA receptor antagonist AP-5

(50 lM) did not alter the D/ response; similar to control

conditions, stimulation resulted in a significant change in

phase over five post-stimulus cycles (p< 0.001). How-

ever, blocking AMPA-type inputs from the PPnC with

CNQX (20 lM) eliminated the stimulus-induced change

in phase over all post-stimulus cycles (p= 0.45). This,

along with the fact that the brief single-pulse stimuli used

here do not elicit NMDA-induced long-term changes in the

pacemaker frequency (Oestreich and Zakon, 2002), sug-

gests that the effects we observe are dominated by the

chirp-specific AMPA-type synaptic inputs from PPnC.

Pacemaker (Pn) network models

Moortgat et al. (2000b) developed a network model to

investigate the experimentally observed precision and

synchrony of the Pn. Here, we use this model to explore

pacemaker network dynamics in the context of our

experiments using synaptic stimulation. In particular, we

focus on two parameters that can have a significant

impact on network synchronization: (1) the likelihood of

connections between neurons (network connectivity),

and (2) the strength of these connections (gap junctional

conductance, gc). As described in the Experimental
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Procedures, we generated random model networks of

120 P and 30 R neurons connected via gap junctions

using connectivity probabilities based on previous work

(Moortgat et al., 2000b): pacemaker-to-pacemaker P:

P = 7%, pacemaker-to-relay P:R = 10%, relay-to-

pacemaker, R:P = 6%, and relay-to-relay R:R = 23%.

Note that this connectivity was slightly more dense than

estimated from experimental observations (Moortgat

et al., 2000a; Elekes and Szabo, 1985), but this was nec-

essary to achieve a sufficiently low CV (Moortgat et al.,

2000b). The gap junctional conductance (gc) was set to

10 nS, at the top of the range used by Moortgat et al.

(2000b). We used an alpha-function synaptic conduc-

tance to generate the EPSP produced by the brief stimu-

lus used in our experiments (see Experimental

procedures).

Fig. 5 shows representative network responses

elicited when a stimulus (gsyn = 90 nS) was delivered

simultaneously to 15 relay (R) cells (half of the R cell

population). In all panels, the first four cycles (Fig. 5,

pre-stimulus) show the stable near-synchronous firing

state; membrane potential traces are overlays of all

neurons (120P and 30 R neurons) so the thickness of
A B

DC

1 krowteN

R

P

stimulus 1

2 krowteN

1 sulumits

Fig. 5. Responses of model Pn networks to synaptic input. Example traces

neurons. (A) and (B) show responses of Network 1 to two different stimulus

Networks 2 and 3 to stimulus 1. In all panels, membrane potentials for all R

(upper), so the thickness of the traces is related to the level of synchrony;

delivered simultaneously to 15 relay cells (stimulated cells in dark red). Time
the traces are related to the level of synchrony. We

found similar responses for different stimulus phases in

the same network (compare Fig. 5A and B). The firing

rate of R neurons receiving direct input (dark red) was

transiently increased (period decreased), whereas the

other R neurons (light red) became slightly less

synchronized with relatively little change in frequency.

There was also a variable decrease in action potential

amplitude in the stimulated R neurons, with an

occasional skipped or additional spike. The pacemaker

(P) neurons responded in a much more consistent

manner, with a decreased level of synchrony and only a

small change in frequency or action potential amplitude

(similar to the unstimulated R neurons). While the

stimulus had a greater effect on R neurons during the

first cycle, the effect spread to P neurons over

subsequent cycles. These observations were similar

across different networks with the same connectivity

parameters (compare responses to the same stimulus in

three different networks, Fig. 5 A, C and D).

To illustrate the response properties of the model

networks in more detail, we show a phase resetting

analysis for one example network using a slightly
1 krowteN

3 krowteN
40

 m
V

2 ms

stimulus 2

1 sulumits

from three different networks of model pacemaker (P) and relay (R)

phases (stimuli 1 and 2), while (C) and (D) show the responses of

and P neurons are overlaid and shown in red and blue respectively

the stimulus trace is shown in dark gray (lower): gsyn = 90 nS was

and voltage scales are 2 ms and 40 mV, shown in panel D.
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weaker stimulus (gsyn = 90 nS applied to 10 R neurons).

While in general, noise sources in the experiments

contribute to more variable responses, the phase

resetting curves from model networks are similar to

those observed in the experiments. The stimulus

caused a small decrease in cycle duration that was

variable across individual neurons (Fig. 6A,B). There is

some dependence on stimulus phase in the first cycle

(T1), especially for R neurons. When the stimulus was

applied in the first part of the cycle (stimulus phase of 0

to 0.5), there is a bimodal response in R neurons, with

the lower band (phase advance) representing the

neurons receiving direct inputs (see Fig. 5, dark red).

This propagates through the network, producing

increased timing variability for both P and R neurons in
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indicates the median of T2 for the experimental data in Fig. 3 for the correspo

for T1 for the data was 1.0 and 0.99 for R and P neurons respectively and is
subsequent cycles (T2 and T3) that alters the initial

dependence on stimulus phase. In the experimental

curves, the phase dependence of T1 was seen in later

stimulus phases (>0.5); this difference could be due to

synaptic or propagation delays that were not included in

the model. Small changes in stimulus strength (defined

by the value of gsyn and the number of R neurons

receiving inputs) resulted in qualitatively similar

responses, with stronger stimuli producing larger effects

on cycle period (Fig. 6C,D show mean responses over

all cells of a given type). For the intermediate stimulus

used in Fig. 6A,B, the decreases in cycle period were

similar to those seen in experiments, with the exception

of T1 in R neurons which was about 10% larger

(Fig. 6C,D; compare colored lines for ‘‘90 nS on 10 R
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cells” to dashed-line showing

median responses for T2 in the

experiments).

We also measured the change

in phase difference (D/) between

cells in the model network

(Fig. 7A; combined data from all

stimulus phases as in Fig. 4C)

produced by the stimulus used for

Fig. 6A,B. As in the experiments,

the model neuron pairs were

transiently desynchronized after

the stimulus. The variability in

phase difference between model

neurons generally increased over

the first few post-stimulus cycles,

with a peak D/ for all pair types

occurring in the third post-stimulus

cycle (Fig. 7A). In general,

recovery was slower than in

experiments, with stimulus effects

lasting longer than 5 cycles

(Fig. 7B). These effects depended

on the stimulus: larger values of

gsyn acting on more R neurons

produced larger and longer lasting

effects (Fig. 7B). In some cases,

the strongest stimuli perturbed the

network such that it did not

recover to its original

synchronized state (see Fig. 7B,

light gray in lower panel). Note

that while the stimulus used for

the responses shown in Fig. 7A

(gsyn = 90 nS on 10 relay

neurons) produces resetting

responses that are similar in

magnitude to those observed

experimentally, the effects on

phase difference are much

stronger (Fig. 7B upper panel;

compare open symbols with light

gray closed symbols). In order to

match the recovery of phase

differences to those in

experiments, a much weaker
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model stimulus was required (gsyn = 50 nS onto 15 relay

cells; Fig. 7B, middle panel). Indeed, the results shown in

Figs. 6 and 7 suggest that one stimulus magnitude cannot

easily account for both the phase resetting and changes

in phase differences observed in the experiments. To

address this inconsistency, rather than optimizing model

parameters to precisely fit the data, we instead explore

the influence of different network features using a broad

survey of randomly generated networks with varying

properties.

Influence of network connectivity on post-stimulus
response. Previous modeling of the pacemaker (Pn)

network focused on reproducing the high level of firing

precision (i.e. low CV of oscillation period) (Moortgat

et al., 2000b). The results presented in the previous sec-
tions suggest that, in addition to oscillator precision, net-

work stability (i.e. ability to recover from a chirp-like

synaptic perturbation) should also be considered when

evaluating pacemaker network models. Thus far, we have

shown that the Pn network model captures at least some

features of Pn dynamics. However, for a given stimulus

strength, there is a mismatch in the resetting responses

and recovery times between experiment and model.

Therefore, we further explored network response proper-

ties as determined by two parameters that control the

strength and density of network connections respectively:

gap junctional conductance (gc) and pacemaker connec-

tivity (P:P).

We generated 10 unique random networks for a given

pair of values of P:P connectivity and gap junctional

conductance. We characterized the responses of model

P and R neurons to a relatively large synaptic stimulus

(gsyn = 90 nS onto 15 R neurons, as in Fig. 6A,B and

Fig. 7A) that results in longer recovery times, and thus

an increased ability to detect differences between

networks. Our analyses focused on three metrics: (1)

‘‘chirp FM”, the frequency increase as indicated by the

minimum cycle duration (averaged over all cells) in the

first 5 post-stimulus cycles; (2) ‘‘chirp AM”, the peak

level of desynchronization as indicated by the maximum

variation in phase difference between cell pairs (peaks

of curves in Fig. 7B); and (3) ‘‘chirp duration”, the post-

stimulus recovery time, as indicated by the number of

cycles required for neurons to re-synchronize following a

stimulus. We consider these three metrics as analogs to

those commonly used to describe chirp responses i.e.

chirp frequency modulation (FM), chirp amplitude

modulation (AM), and chirp duration, respectively (e.g.

Smith et al., 2016).

In general, P neuron response metrics decreased with

increasing network connectivity, i.e. increases in P:P and

gc (Fig. 8). The largest effects are seen in chirp duration

(Fig. 8E, blue), with recovery times becoming more than

three times faster as networks become more densely

coupled (P:P increases from 4% to 30%; gc = 5 nS).

The effect of gc on recovery is largest for P:P less than

10%, with networks recovering about twice as fast when

gc = 15 nS compared to gc = 5 nS. For more dense

networks, increasing gc had relatively little effect.

Interestingly, the overall effects on R neurons was much

less. Again, chirp duration was most sensitive,

decreasing slightly with increases in gc (mean over all

networks of 6.2 and 4.6 cycles for gc = 5 and 15 nS

respectively; Fig. 8E,F, red) but changing relatively little

with changes in P:P connectivity. These results suggest

that R neurons are buffered somewhat from chirp-

induced changes in P neuron dynamics, at least when

coupling strength (gc) is low. Note however that

because the stimulus acts directly on R neurons, the

overall effect of the stimulus on R neurons is generally

much larger than on P neurons: chirp FM (maximum

shortening, Fig. 8A,B), chirp AM (peak phase variation,

Fig. 8C,D), and chirp duration (recovery time, Fig. 8E,F)

are in general greater for R than P neurons.

Changes in gc and P:P can have a strong effect on the

coefficient of variation of the cycle period (CV) of the
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model networks (Moortgat et al.,

2000b). We found that, as long as

P:P was greater than 4%, the CV

of P cell activity was at the limit

of our numerical precision

(�3 � 10–4) and thus very close to

the smallest experimentally

observed levels. The CV of R cell

activity was similarly low for

large values of gc (15 nS),

but for gc = 5 nS, increased to

5.1 � 10–3 ± 4.2 � 10–3 (mean

± SD over the 10 networks).

Compared to that of P cells, the

variability in CV for R cells from

network-to-network was marked,

ranging from values �10�4 to more

than 10�2, two orders of magnitude

above that seen in experiments

(Moortgat et al., 1998). Note that

this variability is due to the dynam-

ics of the system (i.e. attractors that

are not simple limit cycle oscilla-

tions) as there are no stochastic

noise terms in the model.

Many of the random networks

we considered here exhibited

asynchronous states and signs of

multistability and thus sometimes

failed to recover to the original

synchronized state after a

stimulus perturbation (see Fig. 7B,

lower panel). These responses

were not included in the results

shown in Fig. 8, but such

behavior is nonetheless worth

considering. The EOD fires

continuously, without pause, for

the life of the fish so the

pacemaker network must be

robust to perturbation. How likely

is it that the model networks we

have described are as robust as

the real pacemaker? To answer

this question, we generated

additional sets of 100 random

networks for each set of network

parameters (gc and P:P) and

asked what percentage of these

networks recovered within 10

post-stimulus cycles (recovery

indicated by median |D/|<0.01).

Fig. 9 shows that for gc = 5 nS, a

very small fraction of networks are

stable when P:P = 4% (the

experimental estimate for

pacemaker connectivity; Moortgat

et al., 2000a). This fraction

increases with increased gap
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junctional conductance (gc = 10 nS and 15 nS) and

increased values of P:P, but to achieve a large fraction

of stable networks, network connectivity (gc and P:P)

must be stronger and much more dense than previously

predicted for the pacemaker network. Interestingly,

Moortgat et al. (2000b) used P:R connection probabilities

much higher than experimental data suggests to achieve

the robustness required for their analysis of pacemaker

oscillation CV.

Overall, these model networks can show stimulus–

response dynamics that are similar to those described in

the experiments. Although sufficiently fast post-stimulus

resynchronization can be achieved in some weak and

sparse networks, this depends on the details of the

connectivity; fewer than 5% of networks generated with

gc = 5 nS and P:P = 4% resynchronized at all. Taking

into account responses to chirp-like stimuli, post-

stimulus recovery dynamics, and oscillator CV suggests

that P:P connectivity should be at least 10–15% with gc
close to 15 nS. These values are about double what has

been predicted from experimental measurements

(Moortgat et al., 2000a,b). In addition, our results suggest

that chirp parameters will be more readily controlled by

the synaptic inputs to relay neurons in sparse, weakly

coupled networks. However, in more highly connected

networks, pacemaker cell dynamics along with changes

in strength and density of pacemaker connectivity will

have a greater effect on the temporal dynamics of

chirping.

DISCUSSION

Our study describes a quantitative analysis of the network

dynamics of a high-frequency, highly precise neuronal

oscillator in the weakly electric fish. We show that a

common electrocommunication signal is associated with

a transient desynchronization of this pacemaker network

and then use this behavior to better understand the

functional role of network connectivity. Our results

confirm that high oscillator precision (low CV) can be

achieved with sufficient electrical coupling (gc > 5 nS) in

a sparse network (P:P connectivity of 4%), but to

ensure physiological levels of stability and robustness,

network connectivity is required to be stronger (larger

gc) and more dense (larger P:P) than predicted from

previous experimental observations.

Chirping and pacemaker desynchronization

Chirping behavior and its role in electrocommunication

across different species of wave-type weakly electric

fish has been addressed in many studies (e.g. Zakon

et al., 2002; Zupanc et al., 2006; Hupé and Lewis, 2008;

Marsat and Maler, 2010; Smith et al., 2016). However,

the network mechanisms underlying chirp generation in

the pacemaker nucleus has received relatively little atten-

tion. Early studies described the synaptic inputs responsi-

ble for chirp generation, along with detailed intracellular

recordings from pacemaker and relay neurons (Dye and

Heiligenberg, 1987; Kawasaki and Heiligenberg, 1988;

Juranek and Metzner, 1997, 1998). Using the in vitro
preparation we have adopted, Dye (1988) provided
evidence that a chirp involves a change in phase relation-

ship between neurons (i.e. desynchronization), as well as

a transient increase in frequency. We confirmed these

results with a quantitative analysis and also showed that

responses to chirp-like stimuli are sufficiently variable to

mask dependence on stimulus timing. Taken together,

these results support the idea that the diversity of chirp

types within a species (Zupanc et al., 2006; Turner

et al., 2007; Smith et al., 2016) is not achieved by varying

the relative timing of synaptic inputs (Walz et al., 2013),

but is more likely the result of differences in the strength

and recruitment of synaptic inputs. In addition, chirp diver-

sity across species may also involve differences in pace-

maker network connectivity (Heiligenberg et al., 1996;

Juranek and Metzner, 1997). The pacemaker nucleus in

Apteronotus albifrons, a closely related species to that

considered here (Apteronotus leptorhynchus), has more

than twice the number of relay neurons and about 25%

more pacemaker neurons. Interestingly, the Pn in A lep-
torhynchus appears to be more densely interconnected

through gap junctions and receives a higher density of

descending chemical synaptic inputs than in A albifrons
(Elekes and Szabo, 1985). The much longer chirps with

a slightly larger FM component in A albifrons (Smith

et al., 2016) is not consistent with weaker descending

inputs, and in light of our results suggests that pacemaker

connectivity plays an important role in determining chirp

properties (e.g. less dense P:P connectivity leads to

longer recovery times, Fig. 8E). A more detailed compar-

ative analyses, both at the anatomical and electrophysio-

logical levels, and involving additional species will be

required to test these hypotheses.

The desynchronization of Pn neurons during a chirp is

not unexpected. The heterogeneity of coupling in a

relatively sparse random network will generally lead to

differential effects of synaptic stimulation (Vervaeke

et al., 2010). Neurons receiving direct inputs will be

affected first, and the effects will then spread through

the network to indirectly affect other neurons. The differ-

ences in spike timing lead to a dispersion in phase differ-

ence followed by a gradual return to pre-stimulus levels of

synchrony over several oscillation cycles. This is clearly

seen in the Pn network models (Fig. 5), where the stimu-

lated relay neurons (dark red) are initially phase-

advanced (fire earlier), while a gradual change in pace-

maker neuron timing (i.e. phase) occurs over subsequent

cycles. In the types of model networks we have consid-

ered, the synchronized state did not always recover after

synaptic stimulation, and instead revealed other asyn-

chronous states that are not observed experimentally.

The intrinsic properties of individual neurons can signifi-

cantly influence phase resetting properties and the stabil-

ity of network synchronization (e.g. Pfeuty et al., 2003;

Mancilla et al., 2007; Stiefel et al., 2008; Dodla and

Wilson, 2013), so it is possible that our model neurons

do not adequately represent the dynamics of real Pn neu-

rons. Future work will focus on experimentally evaluating

the influence of specific ion conductances (Smith and

Zakon, 2000) and heterogeneities of synaptic inputs on

network stability, with an aim toward improving Pn

models.
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Network connectivity and pacemaker
resynchronization

Our results using the synaptically driven chirp response to

evaluate the coupling strength (gc) and connectivity (P:P)

of model Pn networks suggests that the connections in

the Pn are stronger and more dense than previously

suggested. It is not surprising that previous

experimental measurements may have underestimated

Pn connectivity. First of all, it is inherently difficult to

accurately determine gap-junctional coupling strength

between neurons in an intact electrically coupled

network. This is due in part to uncertainties that arise

from unknown electrotonic decay over complex spatial

geometries, as well as the unknown resistive loads

provided by other coupled neurons. In addition, dye-

coupling techniques, such as those used in previous

studies of the pacemaker (e.g. Moortgat et al., 2000a),

can be prone to false-negatives (incomplete diffusion of

the dye through branching processes and gap junctions)

that would lead to underestimates of connectivity. That

said, although our results on resynchronization times sug-

gest a strong and densely coupled Pn network, this would

impair the network flexibility required for chirping: higher

levels of network connectivity would likely require stronger

synaptic inputs to a greater number of neurons for chirp

production, leading to much higher energy demands

(Salazar et al., 2013). However, it is certainly possible

for some networks with weak and sparse connections to

be stable, but our survey of randomly constructed net-

works suggests they are unlikely to occur by chance

(Fig. 9). Nonetheless, we must acknowledge an alterna-

tive hypothesis for which sparse but stable networks are

reliably produced through a specific developmental mech-

anism (learning rule).

There may however be other ways to achieve higher

network connectivity while maintaining sufficient

flexibility for chirp generation. One possibility is that
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connectivity is more heterogeneous in the pacemaker

than in our simple model networks. For example,

stronger, more dense, coupling between relay neurons

alone may provide stability and faster recovery, along

with low CV, whereas weaker, more sparse, coupling

among pacemaker neurons could facilitate transient

desynchronization required for a chirp while also

minimizing the destabilizing reverberations that can

occur in strongly coupled sparse networks.

Another consideration is that the pacemaker nucleus

is a tightly packed network of relatively large cells firing

in near synchrony. The resulting field potentials are

significant (Curti et al., 2006; Quintana et al., 2011a,

2011b, 2014) and could lead to increased electrical inter-

actions, thus effectively increasing network connectivity

through field effects or ephaptic coupling (Faber and

Korn, 1989; Anastassiou et al., 2011). Further, a large

number of other cells likely work to modulate and control

the extracellular space (Zupanc, 2017). In this way, the

pacemaker network may be optimized such that sparse,

relatively weak gap junctional coupling allows the flexibil-

ity for rapid, transient chirp generation, with ephaptic cou-

pling providing the stability and robustness (high temporal

precision and fast recovery from synaptic perturbation)

that are not inherent properties of sparse random net-

works with gap junctional connections alone. Field effects

and ephaptic coupling are well-known, but their signifi-

cance in neuronal processing is not yet clear

(Anastassiou and Koch, 2015). With an easily character-

ized functional output, the pacemaker network is an

attractive model in which to address this question directly.

Identifying the mechanisms that allow neuronal

networks to be robust and temporally precise, yet

flexible enough to rapidly switch between dynamical

states is a necessary step toward understanding a

variety of brain functions in health and disease. The

pacemaker network in weakly electric fish is a neuronal

oscillator with a well-defined function, and temporal

precision that is under behavioral control for

communication signal generation (Moortgat et al., 1998).

This, along with the diversity in oscillator frequencies

and signaling properties across species (Turner et al.,

2007; Smith et al., 2016), suggests that there may be sim-

ilar diversity in the Pn connectivity. Our results from A.

leptorhynchus show that synaptic stimuli underlying chirp

production cause a transient desynchronization–resyn

chronization among neurons in the pacemaker network.

The resulting dynamics suggest that network interconnec-

tivity may be optimized to maintain a balance of stability

and flexibility.
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