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Abstract

We examine how the location of weak electrical coupling affects phase-locking in a
pair of model fast-spiking interneurons. Each model neuron consists of a somatic
compartment and a passive dendritic compartment. At relatively low frequencies,
the phase-locking structure for somatic and dendritic coupling is qualitatively the
same: below a critical frequency, stable synchronous and anti-phase activity co-exist,
and only synchrony is stable above this critical frequency. At higher frequencies, the
synchronous state remains stable for somatic coupling, but for dendritic coupling,
the synchronous state becomes unstable and anti-phase oscillations become stable.
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1 Introduction

Recently, direct electrical coupling has been found to be widespread in net-
works of cortical inhibitory interneurons (6; 8). The effects of electrical cou-
pling between cortical interneurons has been the focus of much experimental
and theoretical work, however the functional role that electrical coupling plays
in cortical networks remains unclear. Evidence suggests that electrical coupling
can help coordinate synchronous oscillatory behavior in inhibitory networks,
which has been hypothesized to be important for sensory and cognitive pro-
cesses.

Previous studies have systematically examined synchronization patterns be-
tween single-compartment neurons coupled by electrical coupling alone (3; 9;
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10). Whether or not these studies are applicable to dynamics in cortical in-
terneuronal networks depends on, among other things, whether or not a single-
compartment description is a sufficient model of cortical interneurons. When
neurons are not sufficiently electrotonically compact, a single-compartment
model is not adequate in most circumstances. In this case, the response prop-
erties of neurons can be highly dependent on the site of the applied or synaptic
input (2; 4; 11). Similarly, the location of electrical coupling can have substan-
tial effects on phase-locking (1).

In this article, we begin to address the issue of effects of dendrites on network
dynamics. We add a passive dendritic compartment to a single-compartment
model for fast-spiking (FS) interneurons and systematically examine the ef-
fects of the location of weak electrical coupling on phase-locking in networks
of neurons.

2 The Two-Compartment FS Model: Single Cell and Coupled Cells

Single cell model: We take a single model fast-spiking (FS) neuron to consist
of an active somatic compartment and a passive dendritic compartment. The
governing equations are

C
dVs

dt
= −Iionic(Vs,m, h, n1, n3) + Iapplied + gsd(Vd − Vs)

C
dVd

dt
= −glk(Vd − Elk) + γgsd(Vs − Vd)

(1)

where Vs and Vd are the transmembrane potentials of the somatic and den-
dritic compartments, gsd is the electrotonic coupling strength between the
compartments, Iapplied is the bias current applied to the soma, glk and Elk are
the conductance and reversal potential of the dendritic leakage current, and
γ is the ratio of the membrane surface area of the somatic compartment to
that of the dendritic compartment. Iionic, glk, Elk and governing equations for
the gating variables m,h, n1, n3 are given by a conductance-based model for
cortical FS interneurons proposed by Erisir and coworkers (5). All parameters
are the same as those in the original Erisir et al model except for the leak
conductance for which we use glk = 0.25mS/cm2 (instead of 1.25mS/cm2).
For this work, we take γ = 1. The electrotonic coupling strength gsd between
the compartments is taken to be half of the leakage conductance, which yields
a steady state attenuation factor ∆Vd/∆Vs of 1/3 for small Iapplied.

Given sufficiently large input current Iapplied, the two-compartment cell can
exhibit intrinsic oscillatory behavior. We define V ∗

s (t) and V ∗
d (t) to be the

membrane potentials of the soma and dendrites during the periodic activity.
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Examples of these are seen in the top panels of figure 1. Note that V ∗
s (t) and

V ∗
d (t) depend on all of the single-cell parameters including Iapplied.

Electrically Coupled Cells: Now let us consider a pair of cells. We add the
subscript i to denote the variables for the ith cell. Electrical coupling between
cells is modeled as an ohmic resistance. If coupling is between somata of cells i
and j, then the right-hand side of the differential equation for Vs,i will have the
additional term gc(Vs,j −Vs,i), where gc is the electrical coupling conductance.
If coupling is between dendrites of cells i and j, then the right-hand side of
the differential equation for Vd,i will have the additional term gc(Vd,j − Vd,i).

Weak coupling and phase models: When coupling is sufficiently weak, the
complete state of the cells can be approximated by the phase t+φi of the cell
in the periodic oscillations, i.e. Vs(t) = V ∗

s (t + φi), Vd(t) = V ∗
d (t + φi), etc.

The theory of weakly coupled oscillators (7; 9) can be used to derive equations
that describe the slow rate of change in the relative phases φi of the cells

dφi

dt
= gc Hx(φi − φj) =

1

T

T∫

0

Zx(t̃) gc(V
∗
x (t̃− (φi − φj))− V ∗

x (t̃))dt̃

where T is period of the intrinsic single-cell oscillation. When electrical cou-
pling is between the somata, x = s; when electrical coupling is between den-
drites, x = d. Zx(t) is called the infinitesimal phase response curve (iPRC).
Zs(t) (Zd(t)) is proportional to the phase-shift resulting from a small current
perturbation rapidly delivered to the somatic (dendritic) compartment at a
time t ∈ [0, T ) in the oscillation.

Note that, because Hx depends only on the difference in relative phase, a single
differential equation for the phase difference between two cells, φ = φi − φj,
can be obtained

dφ

dt
= gc (Hx(−φ)−Hx(φ)) = gc Gx(φ).

Phase-locked states with phase difference φss are determined simply by Gx(φss) =
0. The phase-locked states are stable (unstable) if G′

x(φss) < 0 (G′
x(φss) > 0).

3 Phase-Locking in Electrically Coupled Oscillating Cells

For conductance-based models like the one we consider here, the periodic orbit
V ∗

x (t) and iPRC Zx(t) must be found numerically for a given set of parameters
describing the dynamics of the single cell. V ∗

x (t) is found by straight-forward
numerical simulations; Zx(t) can be found by linearizing the system around
the periodic orbit and solving the adjoint equations.
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The somatic and dendritic membrane potentials, iPRCs and the G-functions
for Iapplied = 8µA/cm2 and Iapplied = 12µA/cm2 are shown in figure 1. Iapplied =
8µA/cm2 induces oscillations at 55Hz, and Iapplied = 12µA/cm2 produces
95Hz oscillations.

The filtering effects of the dendrites are apparent in both the membrane poten-
tials and the iPRCs. V ∗

d is attenuated and smoothed compared to V ∗
s . There

is also a delay that is manifested as a phase-shift to the right. Similar effects
are seen in the iPRCs, but the delay effect in Zd is manifested as shifted
to the left when compared to Zs. This is because a current perturbation to
the dendrites must first travel through the dendrites before affecting the active
processes in the somata. Note that the membrane potentials and the iPRCs for
Iapplied = 12µA/cm2 look qualitatively similar to those for Iapplied = 8µA/cm2,
but the phase-shifts and the smoothing effects of the dendrites are relatively
greater for the higher frequency oscillations.
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Fig. 1. (a) Iapplied = 8µA/cm2; (b)Iapplied = 12µA/cm2. [top] periodic oscillations in
transmembrane potential (mV) vs time for somatic compartment (V ∗

s (t), solid line)
and dendritic compartment (V ∗

d (t), dashed line). [middle] iPRCs for perturbations
to the somatic compartment (Zs, solid line) and perturbations to the dendritic
compartment (Zd, dashed line). [bottom] G-functions for somatic coupling (Gs,
solid line) and dendritic coupling (Gd, dashed line). φ/T = 0, 1 and φ/T = 1/2
correspond to synchrony and anti-phase activity, respectively.
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For Iapplied = 8µA/cm2, Gs(φ) indicates that synchronous and anti-phase
phase-locked states exist when cells are electrically coupled via the somata,
but only the synchronous state is stable; Gd(φ) shows that the same result
holds for dendritic electrical coupling in this case. However, increased filtering
effects at higher frequencies can lead to different phase-locking for the different
coupling locations. Gs(φ) for Iapplied = 12µA/cm2 shows that somatic coupling
yields stable synchronous activity and unstable anti-phase activity, whereas
Gd(φ) indicates that dendritic coupling produces phase-locked states with the
opposite stability: stable anti-phase and unstable synchrony.

Figure 2 depicts bifurcation diagrams that plot the phase-difference of phase-
locked states as a function of constant current applied to the soma Iapplied. The
bifurcation diagram for somatic electrical coupling is qualitatively the same
as that for the single compartment FS model (not shown). Synchronous ac-
tivity is stable over the entire frequency range studied, 10− 130Hz (Iapplied =
3.5−15µA/cm2); stable anti-phase activity co-exists with the stable synchrony
but only at relatively low frequencies. The bifurcation diagram for dendritic
coupling is qualitatively similar to that for somatic coupling at lower fre-
quencies, but at high frequencies, the synchronous state becomes unstable
and the anti-phase state becomes stable. In an intermediate frequency range
(83−93Hz), only an asynchronous non-anti-phase phase-locked state is stable.

The effective electronic distance from the soma of dendritic electrical coupling
is controlled by gsd. When gsd is increased, the dendritic filtering effects are
increased and the stability transition points are shifted to lower frequencies.
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Fig. 2. Bifurcation diagrams for somatic coupling and dendritic compartment. Solid
lines indicate phase-locked states that are stable; dashed lines indicate phase-locked
states that are unstable. φ/T = 0, 1 and φ/T = 1/2 correspond to synchrony and
anti-phase activity, respectively.
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4 Conclusions

The results presented in this paper demonstrate that, when neurons are not
electrotonically compact, the location of weak electrical coupling can have sub-
stantial effects on synchronization patterns. Oscillations at higher frequencies
are particularly sensitive to the location of the coupling. The mechanisms gen-
erating these effects arise from the filtering properties (smoothing and phase
shifts) of the dendrites. A better understanding of these results and the mech-
anisms that underlie them could be important for understanding synchronous
oscillations observed in experiments.
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