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Abstract We examine the effects of dendritic filtering on the existence, stability,
and robustness of phase-locked states to heterogeneity and noise in a pair of elec-
trically coupled ball-and-stick neurons with passive dendrites. We use the theory of
weakly coupled oscillators and analytically derived filtering properties of the dendritic
coupling to systematically explore how the electrotonic length and diameter of den-
drites can alter phase-locking. In the case of a fixed value of the coupling conductance
(gc) taken from the literature, we find that repeated exchanges in stability between
the synchronous and anti-phase states can occur as the electrical coupling becomes
more distally located on the dendrites. However, the robustness of the phase-locked
states in this case decreases rapidly towards zero as the distance between the electrical
coupling and the somata increases. Published estimates of gc are calculated from the
experimentally measured coupling coefficient (CC) based on a single-compartment
description of a neuron, and therefore may be severe underestimates of gc. With this in
mind, we re-examine the stability and robustness of phase-locking using a fixed value
of CC , which imposes a limit on the maximum distance the electrical coupling can be
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located away from the somata. In this case, although the phase-locked states remain
robust over the entire range of possible coupling locations, no exchanges in stability
with changing coupling position are observed except for a single exchange that occurs
in the case of a high somatic firing frequency and a large dendritic radius. Thus, our
analysis suggests that multiple exchanges in stability with changing coupling location
are unlikely to be observed in real neural systems.

Keywords Mathematical Neuroscience · Ball-and-stick neuronal model · Phase
response curves · Electrical Coupling · Dendrites · Synchronization

Mathematics Subject Classification (2000) 92B25 · 37N25

1 Introduction

Synchronization of oscillatory electrical activity in neuronal networks has been
observed in many neural systems and has been linked to various behavioral functions
such as feeding, breathing, and locomotion (Ono et al. 1986; Rekling and Feldman
1998; Tresch and Kiehn 2002). In the mammalian cortex, these oscillations have been
hypothesized to be involved in cognition and sensory information processing, (e.g.,
Averbeck and Lee 2004; Ward 2003), however their precise functional role is the
topic of much debate. Nonetheless, recent experimental and theoretical studies have
shed light on the mechanisms underlying cortical oscillations (Cardin et al. 2009;
Gonzalez-Burgos and Lewis 2008; Kopell and Ermentrout 2003; Lewis and Rinzel
2003; Mancilla et al. 2007; Mann and Paulsen 2005; Salinas and Sejnowski 2011).
Results from many of these studies suggest that networks of inhibitory neurons play
a fundamental role in generating the oscillatory electrical behavior seen in the mam-
malian neocortex (Buzsáki and Draguhn 2004; Buzsáki 1997; Cardin et al. 2009;
Gonzalez-Burgos and Lewis 2008; McBain and Fisahn 2001; Sohal et al. 2009; Wang
and Buzsáki 1996). Direct electrical recordings have revealed that inhibitory neurons
are highly interconnected by electrical synapses (Amitai et al. 2004; Connors and Long
2004; Galaretta and Hestrin 1999; Gibson et al. 1999), and evidence suggests that
this electrical coupling helps to coordinate synchronous oscillatory behavior (Beier-
leinet al. 2000; Gibson et al. 2005; Hestrin and Galarreta 2005; Mancilla et al. 2007;
Saraga et al. 2006; Traub et al. 2001).

Most theoretical studies that examine the synchronization properties of inhibitory
networks model neurons as single-compartment objects, ignoring the spatial anatomy
of the cell. This simplification is made for mathematical tractability and compu-
tational efficiency. However, many neurons are not electrotonically compact, and
single-compartment models cannot be expected to fully capture their behavior. Indeed,
previous work has shown that dendritic properties can have significant effects on neu-
ronal firing dynamics at the single cell level (Mainen and Sejnowski 1996; Schwem-
mer and Lewis 2011, 2012), and in network synchronization (Bressloff and Coombes
1997; Crook et al. 1998; Lewis and Rinzel 2004; Remme et al. 2009; Saraga and
Skinner 2004; Saraga et al. 2006; Zahid and Skinner 2009). This is true even if the
dendrites are passive. Experimental studies have revealed that cortical inhibitory neu-
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rons are highly interconnected by electrical synapses on their dendrites (Amitai et al.
2004; Fukuda and Kosaka 2000, 2003; Fukuda et al. 2006). Furthermore, the dendrites
of these inhibitory neurons appear to display effectively passive electrical behavior
(Hu et al. 2010). This suggests that passive dendritic properties and electrical coupling
may play an important role in the synchronization of inhibitory networks, and, conse-
quently, in the generation of the observed synchronous electrical activity in the cortex.
Therefore, it is necessary to understand how dendritic filtering affects synchronization
patterns and their robustness.

The effects of dendritic properties on the phase-locking behavior of neurons cou-
pled with dendro-dendritic electrical synapses have been examined in previous stud-
ies. Lewis and Rinzel (2004), Saraga and Skinner (2004), Saraga et al. (2006), and
Zahid and Skinner (2009) explored these effects using multi-compartmental neuronal
models. These studies find that dendritic properties can significantly influence phase-
locking behavior in neuronal networks, but they did not examine the detailed mech-
anisms by which dendritic filtering affects phase-locking. Crook et al. (1998) and
Bressloff and Coombes (1997) directly examined the mechanism by which dendritic
filtering affects the existence and stability of phase-locking in spatially extended neu-
rons coupled with dendro-dendritic chemical synapses. However, these studies on
chemical synapses, as well as the aforementioned studies on electrical synapses, lacked
a systematic exploration of the robustness of phase-locking to heterogeneity and noise.
There are varying levels of heterogeneity and noise in real neuronal networks, and
therefore, when interpreting the results of modeling studies, one must also consider
the robustness of the phase-locked states to get a complete picture. If a phase-locked
state in a neuronal network model is not robust, then it is highly unlikely that it will
be observed in a real neural system.

Using a formalism similar to Crook et al. (1998) and Bressloff and Coombes (1997),
we examine the effects of dendritic filtering on the existence and stability of phase-
locked states in a pair of electrically coupled neurons, and we include a systematic
exploration of the robustness of phase-locked states to heterogeneity and noise. Each
neuron is modeled as an isopotential somatic oscillator attached to a passive dendritic
cable using the “ball-and-stick” model (Rall 1960). The two ball-and-stick neurons are
coupled via an electrial synapse located at the distal end of their dendrites. We use the
theory of weakly coupled oscillators (Ermentrout and Kopell 1984; Kuramoto 1984;
Neu 1979; Schwemmer and Lewis 2012) to derive a single scalar differential equa-
tion that governs the dynamics of the phase-difference between the two ball-and-stick
neurons. This equation inlcudes an analytical representation of the filtering properties
of the dendritic coupling. We then use the phase model to systematically explore how
the electrotonic length, dendritic diameter and electrical coupling strength can alter
the stability and robustness of phase-locked states to heterogeneity in intrinsic firing
frequency. We extend our phase model to incorporate heterogeneities in dendritic para-
meters, e.g., heterogeneity in dendritic length, and explore the stability and robustness
of phase-locking in light of these additional heterogeneities. Lastly, we show that
qualitatively similar results hold when considering robustness of phase-locking to
noise.
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Fig. 1 Two electrically coupled
ball-and-stick neurons. Each
neuron is modeled as a
ball-and-stick neuron, which
consists of an active soma
attached to a thin passive
dendritic cable. The two neurons
are then electrically coupled by a
linear ohmic resistor with
conductance gc at the distal
(x = L) end of the dendrite. The
terms next to the arrows
represent axial currents flowing
between the dendrites and the
somata

2 Electrically coupled ball-and-stick model

We consider a model of a pair of spatially extended neurons that are coupled by
an electrical synapse located between the dendrites of the neurons. We model the
electrical activity of the isolated neurons using the “ball-and-stick” model (Bressloff
and Coombes 1997; Crook et al. 1998) that consists of a spherical active isopotential
soma attached to a single thin passive dendrite. We make the assumption that the
electrical synapse between the two neurons is located at the distal end of the dendrite
(see Fig. 1). This assumption is made for ease of mathematical computation, but
could be relaxed to place the synapse at any point along the dendrite (e.g., Bressloff
and Coombes 1997). We initially assume that the two neurons are identical, but we
introduce heterogeneity in Sect. 3.2.

The dendrite of each neuron is modeled as a one-dimensional passive cable of
physical length L (Rall 1957, 1977)

Cm
∂v j

∂t
= a

2Ri

∂2v j

∂x2 − gL D(v j − EL D), x ∈ (0, L), (1)

where v j (x, t) is the voltage (in mV) in the dendrite of the j th neuron at position x
and time t (in ms), gL D is the leakage conductance in the dendrite (in mS/cm2), Ri is
the internal resistivity of the dendrite (in k� cm), a is the radius of the dendrite (in
cm), EL D is the leakage channel reversal potential of the in the dendrite (in mV), and
Cm is the specific membrane capacitance (in µF/cm2).

Hodgkin–Huxley (HH) type equations are used to model the electrical activity of
each soma. An application of the conservation of current law at the junction connecting
the spherical soma and the dendrite (x = 0) yields the equation for the proximal
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boundary condition

Cm
∂v j

∂t
(0, t) = −Iion,S(v j (0), �w)+ I + a2

d2 Ri

∂v j

∂x
(0, t), (2)

where Iion,S(v j , �w) (in µA/cm2) represents the sum of the HH-type ionic currents in
the j th soma, �w is a vector containing the gating variables of the ionic conductances,
and d is the diameter of the soma (in cm). The gating variables in the vector �w are
described by equations of the form

d �w
dt

= 1

τ �w
( �w∞(v)− �w). (3)

The last term in Eq. (2) represents the axial current flowing between the dendrite and
the soma. The parameter I is the somatic bias current (in µA/cm2). Note that changes
in I are equivalent to changes in the leakage reversal potential of the somata, EL , and
could be thought of as being due to either externally applied current to the soma or the
effects of a neuromodulator. The values of I and EL are chosen such that the isolated
soma undergoes asymptotically stable T -periodic (limit cycle) oscillations. We define
vLC (t) to be the membrane potential component of each isolated somata’s limit cycle.

The two neurons are electrically coupled at the distal end (x = L) of their respective
dendrites (see Fig. 1). Invoking conservation of current once again yields the distal
boundary condition

1

Ri

∂v j

∂x
(L , t) = gc

πa2 (vk(L , t)− v j (L , t)), (4)

where the electrical synapse is modeled as a linear ohmic resistor with conductance gc

in units of mS. It is important to note that the term a2

d2 Ri

∂v j
∂x (0, t) in Eq. (2) incorporates

the effects of the electrical coupling and the dendrites on the dynamics of the somatic
oscillators.

This model is similar to the one studied by Crook et al. (1998) except for the fact that
they studied two ball-and-stick neurons coupled with chemical synapses rather than
electrical coupling. In all the simulations presented here, we use the fast-spiking (FS)
interneuron model of Erisir et al. (1999). However, the basic analysis that we employ
is general and can be applied to any oscillatory somatic dynamics with similar results.

The subsequent analysis relies on a certain combination of model parameters being
sufficiently “small”. To identify this small compound parameter, we nondimension-

alize the model (1–4). We set Vj = Vj (x, t) = v j (λx,τDt)
−EL

(where EL is the leakage

reversal potential in the soma), x = x
λ

, t = t
τD

, λ =
√

a
2Ri gL D

is the length constant

of the dendrite, and τD = Cm
gL D

is the membrane time constant of the dendrite. The
resulting nondimensional equations for the coupled ball-and-stick model neurons are
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⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂Vj

∂t = ∂2Vj

∂x2 − (Vj − E L D)

∂Vj

∂t (0, t) = −I ion,S(Vj (0, t), �w)+ I + ε
∂Vj
∂x (0, t)

∂Vj
∂x

( L
λ
, t

) = g
(
Vk

( L
λ
, t

) − Vj
( L
λ
, t

))
(5)

where j, k = 1, 2 with j �= k, L
λ

is the electrotonic length of the dendrite, E L D = EL D−EL
,

I ion,S(Vj (0, t), �w) = 1
−gL D EL

Iion,S((−EL)Vj (0, t), �w), I = 1
−gL D EL

I , and

g = gc Riλ

πa2 (6)

ε = a2

d2gL D Riλ
. (7)

Also, Eq. (3) becomes d �w
dt = τD

τ �w ( �w∞(−EL Vj (0, t))− �w). We also define the nondi-

mensionalized period of the limit cycle to be T = T
τD

, and the nondimensional voltage
component of the isolated somata’s limit cycle as VLC (t).

The term ε
∂Vj
∂x (0, t) in Eq. (5) is the axial current at the soma-dendritic junction and

is the perturbation to the j th soma’s membrane potential dynamics and incorporates
the effects of the electrical coupling. This perturbation will be weak if

ε = a2

d2gL D Riλ
= a2

d2

√
2

gL D Ri a

is small. One interpretation of ε being small is if a � d, i.e., if the radius of each

dendrite is small relative to the diameter of each of the somata, and if
√

2
gL D Ri a

is O(1)

or less so that ε � 1.

3 Theory of weak coupling and reduction to a phase model

The theory of weak coupling (Ermentrout and Kopell 1984; Kuramoto 1984; Neu
1979; Schwemmer and Lewis 2012), has been widely used to analyze dynamics in
networks of oscillating neurons (e.g., Ermentrout 1996; Hoppensteadt and Izikevich
1997; Lewis and Rinzel 2003; Pfeuty et al. 2003; Schwemmer and Lewis 2012).
Consider a network of weakly coupled neurons such that each neuron when isolated
from the network displays T -periodic limit cycle oscillations. In this case, the complete
state of each neuron can be approximated by its phase on its T -periodic limit cycle,
θ j (t) = ωt + φ j (t) ∈ [0, 1), where ω = 1

T
is the non-dimensional frequency of the

unperturbed oscillations and φ j (t) is the relative phase of the j th neuron. Thus, this
theory enables one to significantly reduce the number of equations that describe a
neuronal network: a system that has N neurons each described by M equations can be
reduced to a system of N equations that describe the evolution of each neurons’ phase
variable θ j (t). For a pair of coupled neurons, the dynamics of the system can be further
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Fig. 2 Voltage component of the limit cycle and phase response curves. The voltage component of the
limit cycle (upper plots) along with the corresponding phase response curve (lower plots) are plotted as a
function of time for two different firing frequencies a 31 Hz and b 94 Hz

reduced to the consideration of a single scalar differential equation that describes the
evolution of the phase difference between the two neurons, φ = θk − θ j = φk − φ j .

According the theory of weakly coupled oscillators, the evolution of the j th neu-
ronal oscillator’s relative phase is governed by the phase equation

dφ j

dt
= 1

T

T∫

0

Z(s)Icoupl(s; T (φk − φ j ))ds

= H(φk − φ j ), j, k = 1, 2; j �= k, (8)

where H(φk − φ j ) is known as the interaction function and describes the modulation
of the j th oscillator’s instantaneous frequency resulting from the coupling current,
Icoupl(s; T (φk − φ j )). Note that Icoupl(s; T (φk − φ j )), and therefore H(φk − φ j ),
is a function of the difference between the relative phases of neuron j and neuron k,
φk −φ j . Z(s) is the infinitesimal phase response curve (PRC) of the somatic oscillator.
The PRC quantifies the change in phase due to a δ-function current perturbation at a
particular phase on the limit cycle. The PRC can be computed by perturbing the isolated
neuron with a small brief current pulse at various different phases along its cycle and
measuring the resulting change in period (Netoff et al. 2012). Alternatively, the PRC
for model neurons can be found by computing the solution to the adjoint problem
of the system linearized around its limit cycle (Schwemmer and Lewis 2012). For
reference, Fig. 2 plots the voltage component of the limit cycle and the corresponding
phase response curve of the FS interneuron model of Erisir et al. (1999) for the two
different firing frequencies that we utilize in illustrating our results. The integral in the
phase model (8) is the average of Z(s)Icoupl(s; T (φk − φ j )) over one period of the
oscillations and stems from the fact that changes in the relative phase of the neuron φ j

occur on a time scale much slower than the period of the unperturbed oscillations T .

3.1 Phase model for the electrically coupled ball-and-stick neurons

The theory of weak coupling can be applied to the electrically coupled ball-and-stick
neurons by considering the “somato-dendritic current” as the weak perturbation to the
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somata, following Bressloff and Coombes (1997), Crook et al. (1998), Remme et al.
(2009), and Schwemmer and Lewis (2011). Note that, because of the construction of
the electrically coupled ball-and-stick neuron and assumption that the dendrite only
weakly affects the somatic dynamics, the somata are considered to be the oscillatory
units in our system. Therefore, in order to use the theory of weakly coupled oscillators,
we only need the PRC for the somatic oscillator. The dendritic dynamics are considered
to be part of the coupling structure and, thus, incorporated into the perturbation to the
oscillatory somatic dynamics. During oscillations in the coupled ball-and-stick model,
a current flows between the electrical synapse connecting the two cells, and between
the soma and the dendrite of each of the two neurons. The somato-dendritic current
that modulates the intrinsic frequency of the j th somata is given by

Icoupl(s; T (φk − φ j )) = ε
∂Vj

∂x
(0, s) (9)

in the phase model (8). As written, ε
∂Vj
∂x (0, s) does not have an explicit depen-

dence on the phases of the two neurons. To obtain the explicit dependence of the
somato-dendritic current on phase, we compute the solution of the coupled ball-
and-stick system (5) to leading order in ε (i.e., we set ε = 0). In this case, the
somatic (x = 0) boundary condition corresponds to the isolated somatic dynam-
ics: Vj (0, t) = VLC (t + Tφ j ), where VLC (·) is the voltage component of isolated
somata’s limit cycle. The dependence on φ j in Vj (0, t) = VLC (t + Tφ j ) stems from
the assumption that the perturbations to the oscillator are weak enough to only affect
how quickly the oscillator moves around its limit cycle. This approximation simplifies
the boundary condition at the soma (x = 0) and yields the leading order approximation
for the dendritic dynamics

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂Vj

∂t = ∂2Vj

∂x2 − (Vj − E L D)

Vj (0, t) = VLC (t + Tφ j )

∂Vj
∂x

( L
λ
, t

) = g
(
Vk

( L
λ
, t

) − Vj
( L
λ
, t

))
.

(10)

System (10) is a set of two coupled first-order linear partial differential equations with
T -periodic forcing at one end, and a robin boundary condition at the distal end where
the electrical coupling is situated. Therefore, the dendritic membrane potential Vj (x, t)
can be obtained in the form of a Fourier series. Expanding the somatic potential in a
Fourier series,

VLC (t + Tφ j ) = 1

T

∑

n∈Z

Vne2π in(t+Tφ j )/T , (11)

and solving system (10) yields
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Vj (x, t; Tφ j , Tφk) =
[(

V0

T
−E L D

)
(c0+d0)

]
sinh(x)+

(
V0

T
−E L D

)
cosh(x)

+ 1

T

∑

n �=0

[
Vn

(
1

bn
cne2π inTφk/T + 1

bn
dne2π inTφ j /T

)
sinh(bn x)

+Vne2π inTφ j /T cosh(bn x)

]
e2π int/T + E L D (12)

where bn =
√

1 + 2π in/T and

cn = g

cosh2
(
bn

L
λ

) + g
bn

sinh
(
2bn

L
λ

) (13)

dn = g2

bn

1

cosh2
(
bn

L
λ

) 1

2 (g/bn)
2 tanh

(
bn

L
λ

) + 3(g/bn)+ coth
(
bn

L
λ

)

− bn
sinh

(
bn

L
λ

) + g
bn

cosh
(
bn

L
λ

)

cosh
(
bn

L
λ

) + g
bn

sinh
(
bn

L
λ

) . (14)

Differentiating Vj (x, t; Tφ j , Tφk) (12) with respect to x , evaluating at x = 0, and
multiplying by ε yields the phase-dependent somato-dendritic current into cell j as a
function of t and parameterized by the phases of the two neurons

Ĩcoupl(t; Tφ j , Tφk)) = ε
∂Vj

∂x
(0, t; Tφ j , Tφk)

= εc0

(
V0

T
− E L D

)
+ 1

T

∑

n �=0

εcn Vne2π in(t+Tφk )/T

+ εd0

(
V0

T
− E L D

)
+ 1

T

∑

n �=0

εdn Vne2π in(t+Tφ j )/T (15)

As with standard filtering theory (and cable theory; Koch 1999), cn and dn are com-
plex numbers and contain the filtering effects of the dendritic coupling. Specifically,
cn contains the attenuation and phase-shift effects that act on the nth Fourier mode of
the membrane potential of soma k. The interpretation of dn are similar to that of cn ,
however, dn contains the “self-effects” of the j th soma on its own somato-dendritic
current.

By substituting the somato-dendritic current as a function of the phase-difference
between the two neurons

Icoupl(t; T (φk − φ j )) = Ĩcoupl(t; 0, T (φk − φ j )), (16)

into the phase model (8) and expanding the PRC in a Fourier series
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Z(t) = 1

T

∑

m∈Z

Zme2π imt/T ,

we obtain the phase model for the system of coupled ball-and-stick neurons

dφ j

dt
= 1

T

T∫

0

Z(s)ε
∂Vj

∂x
(0, s, 0; T (φk − φ j ))ds

= εc0〈Z〉 (〈VLC 〉 − E L D
) + 1

T
2

∑

n �=0

[
εcn Z−n Vne2π in(φk−φ j )

]

+ εd0〈Z〉 (〈VLC 〉 − E L D
) + 1

T
2

∑

n �=0

[
εdn Z−n Vn

]
(17)

where 〈VLC 〉 = V0/T and 〈Z〉 = Z0/T are the mean values of VLC (t) and Z(t),
respectively.

For convenience of physiological interpretation, the values of all quantities are
reported in dimensional terms in the results section. The phase model for the coupled
ball-and-stick neurons in dimensional terms is

dφ j

dt
= 1

τD

(
εc0〈z〉 (〈vLC 〉 − EL D)+ 1

T 2

∑

n �=0

[
εcnz−nvne2π in(φk−φ j )

]

+ εd0〈z〉 (〈vLC 〉 − EL D)+ 1

T 2

∑

n �=0

[
εdnz−nvn

] )

= 1

τD
H(φk − φ j ), j, k = 1, 2; j �= k,

where zn and vn are the Fourier coefficients of the dimensional phase response curve
and voltage component of the somatic limit cycle, respectively. Note that z(t) has units
of mV −1.

Finally, if we set φ = φk − φ j and subtract the respective differential equations
for φk and φ j , we obtain a single differential equation for the evolution of the phase
difference of the two identical oscillating coupled ball-and-stick neurons

dφ

dt
= 1

τD
G(φ), (18)

where

G(φ) = 1

T 2

∑

n �=0

εcnz−nvn[e−2π inφ − e2π inφ]. (19)

Note that the self-effects captured by the dn terms cancel out in the definition of G(φ)
(when the dendrites are homogeneous).
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By analyzing this phase model, we can understand how dendritic properties and
electrical coupling affect the phase-locking dynamics of the two ball-and-stick neu-
rons. The zeros of the function G(φ), φ∗, correspond to phase-locked states, i.e.,
steady-state phase differences between the two neurons. A phase-locked state will be
stable if G ′(φ∗) < 0, and unstable if G ′(φ∗) > 0. Figure 3 shows an example G(φ) in
which both synchrony φ∗

S = 0, 1 and anti-phase φ∗
AP = 0.5 are phase-locked states.

Only the synchronous state is stable as G ′(φ∗
S) < 0, and anti-phase is unstable since

G ′(φ∗
AP ) > 0. Thus, for this example, any initial phase difference (other than exactly

φ(0) = 0.5) will lead to the two oscillators eventually synchronizing their firing.

3.2 Including heterogeneity in the phase model

The above derivation of the phase model assumed that the two coupled neurons
were identical. Neurons are heterogeneous objects. If the heterogeneity is taken to
be between the two somata, then the effect of this heterogeneity on the phase model
is manifested as a difference in intrinsic firing frequency between the two somata
(Kuramoto 1984; Schwemmer and Lewis 2012)

dφ j

dt
= 1

τD
H(φk − φ j )− �ω

2
(20)

dφk

dt
= 1

τD
H(φ j − φk)+ �ω

2
(21)

where �ω represents the difference in intrinsic firing frequency between the two
neurons. This changes the equation for the phase difference (18) to

dφ

dt
= �ω + 1

τD
G(φ). (22)

Note that when the dendrites of the two neurons are heterogeneous, �ω depends
on dn and is no longer constant as in the above equation (see Sect. 6). The phase-
locked states are no longer given by the zeros of G(φ), but rather are given by the
intersections of G(φ)/τD with the line −�ω. The example in Fig. 3 shows that the
presence of such a frequency difference �ω causes the phase-locked states to shift
away from pure synchrony and pure anti-phase. As �ω is increased, the stable and
unstable steady-states approach each other and eventually collide in a saddle node

bifurcation when the frequency difference is �ω∗ = maxφ
∣∣∣ 1
τD

G(φ)
∣∣∣. For frequency

differences greater than�ω∗, no 1:1 phase-locked states exist. That is,�ω∗ represents
the maximum amount of frequency heterogeneity between the two oscillators that the
system can tolerate before 1:1 phase-locking is lost.

In what follows, we will define the robustness of phase-locking to be the maximum
percent frequency heterogeneity possible before 1:1 phase-locking is lost, i.e., �ω

∗
ω

where ω = 1
T is the intrinsic firing frequency of the two somata. Thus, we consider

phase-locking in systems with larger �ω
∗

ω
to be more resilient to heterogeneity.
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Fig. 3 Phase-locking in the presence of heterogeneity. The figure plots the right hand side of Eq. (18)
with an example G function for the case of electrical coupling between the somata ( L

λ
= 0) and somatic

firing frequency of 31 Hz. The horizontal dashed lines represent varying levels of frequency heterogeneity
between the two oscillators. Steady-state phase-locked states are represented by the intersections of �ω

and 1
τD

G(φ). �ω∗ = maxφ
∣∣∣ 1
τD

G(φ)
∣∣∣ is the largest amount of frequency heterogeneity the system can

tolerate before 1:1 phase-locking is completely lost

4 Robustness of phase-locking to heterogeneity in intrinsic frequency

We examine the effects of dendritic properties and electrical coupling on the stability
and robustness of phase-locking in the coupled ball-and-stick model. Note that other
studies have explored how different intrinsic currents in the soma affect the PRC
and thus affect phase-locking (Ermentrout et al. 2001; Fink et al. 2011; Mancilla et
al. 2007; Pfeuty et al. 2003). Here, we assume certain particular somatic dynamics
and focus on how all of the dendritic parameters affect phase-locking through their
influence on the filtering coefficients. However, we stress that our basic results do
not fundamentally depend on the specifics of the somatic dynamics. In all figures,
we use a model for neocortical FS interneurons due to Erisir et al. (1999) to model
the somatic firing dynamics. The values for the parameters of this model as well as
dendritic parameters that are held constant are detailed in the Appendix A. We vary the
dendritic radius a and the electrotonic length of each dendrite L

λ
which sets the position

of the electrical coupling. We also hold the gap junction conductance gc constant at a
value of 400 pS, which is a conservative estimate of the conductance of mammalian
cortical electrical coupling (Connors and Long 2004). With these parameter values,
we find that changing the location of the coupling can induce interesting alternations
in the stability of the sychronous and the anti-phase state. However, the robustness
of phase-locking decays rapidly as the position of the electrical coupling is located
further away from the somata.

4.1 Existence and stability of phase-locking

Figure 4 plots the bifurcation diagrams of the phase-locked states (upper panels) as
a function of the electrotonic length of the dendrite (and therefore the location of the
electrical coupling) for different somatic firing frequencies ω and dendritic radii a.
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Fig. 4 Stability and robustness of phase-locking to heterogeneity. Stability and robustness of the phase-
locked states are plotted as a function of L

λ
when the conductance of the electrical coupling is 400 pS and

the somata are firing at a frequency of 31 Hz (a, c) and 94 Hz (b, d). The radius of the dendrite is 0.2 µm in
a and b and 2 µm in c and d. The upper panels plot the stability of the phase-locked solutions of Eq. (19).
The stable phase-locked states are plotted as thick lines while the unstable states are plotted as thin lines. The
lower panels plot the robustness of the phase-locked states where robustness is measured as the maximum

percent frequency heterogeneity the system can tolerate before 1:1 phase-locking is lost, i.e., �ω
∗

ω . For the
higher firing frequency, there are more exhanges in stability between the synchronous and anti-phase states
as the positions of the electrical synapse is moved further away from the somata. However, for all cases
shown, the robustness of phase-locking decays rapidly as L

λ is increased

For ω = 31 Hz and a = 0.2 µm or a = 2 µm as in (a) and (c), when the coupling is
between the somata ( L

λ
= 0) the synchronous solution is stable while the anti-phase

solution is unstable. As L
λ

increases, a subcritical pitchfork bifurcation occurs and the
anti-phase state becomes stable. This is soon followed by an additional subcritical
pitchfork bifurcation which causes the synchronous state to become unstable. Thus,
there is an exchange of stability between the synchronous and anti-phase solutions
with a small region of bistability between these two states. When the firing frequency
is 94 Hz and a = 0.2 µm or a = 2 µm as in Fig. 4b, d, at L

λ
= 0 the synchronous

state is stable while the anti-phase state is unstable. As we increase L
λ

, we again get
an exchange of stability between the two states, however the first exchange occurs at
a lower value of L

λ
and there are several subsequent exhanges of stability at larger
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values of L
λ

. Furthermore, the bifurcations associated with the exchanges of stability
are nearly vertical. Note that this alternation of stability between synchrony and anti-
phase as the synapse is moved further away from the soma was also found by Crook
et al. (1998) in the case of chemical synapses.

4.2 Dendritic filtering and bifurcations of phase-locked states

As the membrane potential of the somata of cell j oscillates, its effects on the den-
dritic membrane potential propagates through the passive dendrites and gap junction.
Different Fourier modes of the membrane potential decay and propagate through the
dendrite at different rates, leading to particular attenuation and phase shifts of each
mode at the somato-dendritic junction of cell k. By examining these filtering properties
of the dendrite, we can understand how the location of the electrical coupling leads to
the behavior described in the previous section. As mentioned earlier, the effects of the
dendritic filtering and electrical coupling on phase-locking are completely captured by
the εcn terms in the coupling current and, therefore, in G(φ) (Eq. 19). The definition
of cn (13) reveals the explicit dependence of cn (and therefore the filtering properties
of coupling between the somata) on the nondimensional gap junctional conductance,
g, the electrotonic length of the dendrite, L

λ
, and the intrinsic period of the somatic

oscillators T . The cn terms are complex numbers and can be written as

cn

(
g,

L

λ
,

T

τD

)
= |cn|eiψn . (23)

ε|cn| and ψn respectively represent the attenuation factor and phase shift of the nth
mode of the somato-dendritic current caused by the dendritic filtering. Note that the
attenuation factor scales the amplitude of the nth Fourier mode of the coupling current
flowing into cell j resulting from fluctuations of somata k’s membrane potential (see
Eq. 16).

Using (23), G(φ) can be rewritten as

G(φ) = 1

T 2

∑

n �=0

ε|cn||z−nvn|ei(ξn+ψn)[e−2π inφ − e2π inφ] (24)

= 4ε

T 2

∑

n=1

ε|cn||znvn| sin(ξn + ψn) sin(2πnφ), (25)

where ξn is the phase shift corresponding to znvn , i.e., znvn = |znvn|eiξn .
Figure 5 plots the attenuation factor ε|cn| and the phase shift ψn as a function of

L
λ

and n for different firing frequencies and different dendritic radii. In all cases, the
figures reveal that ε|cn| decays rapidly with L

λ
and that this decay is faster for higher

n. Furthermore, increasing the firing frequency causes an increase in the attentuation
of the higher modes relative to the first mode. Figure 5e, f plots the phase shift of the
first mode ψ1 for the two different firing frequencies, high and low respectively. In
both plots, as L

λ
increases, the magnitude of the phase shift increases monotonically
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Fig. 5 Dendritic filtering properties. In a–d, the attenuation factor ε|cn | is plotted as a function of L
λ (left

panels) and n (right panels). The intrinsic firing frequency is 31 Hz in a, c, and e, and 94 Hz in b, d, and
f. The radius of the dendrite is 0.2 µm in a and b, and 2 µm in c and d. In the left hand panels of a–d,
the solid lines plot the n = 1 mode of the attenuation factor while the dashed lines plot the n = 5 mode.
Similarly, in the right hand panels of each figure, the solid lines (dashed lines) plot the attenuation factor
when L

λ
= 1 ( L

λ
= 2). The phase shift factor of the first mode ψ1 is plotted as a function of L

λ
when the

neuron is firing at a frequency of 31 Hz (e) and 94 Hz (f) and when the dendritic radius is a = 0.2 µm
(solid line) and a = 2 µm (dashed line). The phase shift is also plotted as a function of firing frequency
for g L

λ
= 1 and h L

λ
= 2. In all figures, gc = 400 pS. The rapid decay of the attenuation factor with

increasing L
λ explains the decay in robustness observed in Fig. 4. The periodic nature of the phase-shift

causes the exchanges in stability observed in Fig. 4
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but the periodic nature of phase shifts makes it an effectively oscillatory function with
φn ∈ [−π, π). Comparing Fig. 5e, f, one can clearly see thatψ1 oscillates more rapidly
with L

λ
at higher firing frequencies. Note that the rate of increase of the magnitude of

ψn also increases as n is increased (not shown). Figure 5g, h plots the phase shift of
the first mode as a function of the somatic firing frequency for L

λ
= 1 and L

λ
= 2,

respectively. Note that the magnitude of the phase shift is larger for higher firing
frequencies. Furthermore, increasing the dendritic length causes the magnitude of the
phase shift to increase more rapidly [compare (g) and (h)]. The same qualitative trends
occur for higher modes.

It is the periodic oscillations in the phase shifts that are primarily responsible for
the exchanges in stability between the synchronous and anti-phase states described in
the previous section. To understand why this is the case, it is instructive to examine
the dominant (n = 1) mode of the expansion of G(φ). Replacing G(φ) with its first
mode results in the following approximation to (18)

dφ

dt
= 1

τD
G(φ) ≈ 1

τD

4

T 2 ε|c1||z1v1| sin(ξ1 + ψ1) sin(2πφ). (26)

This approximate phase model has phase-locked states only at φ∗ = 0, 1
2 , correspond-

ing to synchrony and anti-phase. The stability of the synchronous and anti-phase states
are given respectively by the signs of

G ′(0) ≈
[

8π

T 2 ε|c1||z1v1|
]

sin(ξ1 + ψ1)

G ′(1/2) ≈ −
[

8π

T 2 ε|c1||z1v1|
]

sin(ξ1 + ψ1). (27)

Thus, the stability of the synchronous and anti-phase states will be determined by
the sign of sin(ξ1 + ψ1

( L
λ

)
). Specifically, as ψ1

( L
λ

)
changes with increased L

λ
,

the sign of sin(ξ1 + ψ1
( L
λ

)
) will change periodically inducing a switch in stabil-

ity of the synchronous and anti-phase states. Furthermore, the switches in stabil-
ity (bifurcations) will occur when ξ1 + ψ1

( L
λ

)
is equal to an integer multiple of

π . When only the first mode (n = 1) of G(φ) is taken into consideration, as in
(27), the exchanges of stability will arise from vertical bifurcations, i.e., a degen-
erate bifurcations where there are instantaneous changes in the stability of various
steady-states.

For high firing frequencies, the first mode of G(φ) is highly dominant (see
Fig. 5a–d) resulting in almost vertical bifurcations of steady-states with fast exchanges
in stability, as in Fig. 4b, d. For lower firing frequencies, the first mode of G(φ)
is less dominant and including the higher modes of the expansion will result in
smoother bifurcations, as in Fig. 4a, c. Note that this implies that additional bifur-
cations would be observed in Fig. 4 if L

λ
were increased well-past 5. A simi-

lar interpretation of this alternation in stability was given by Crook et al. (1998)
for the case of two ball-and-stick neurons coupled with chemical synapses. Note
that increasing the dendritic radius to 2 µm (dotted line) causes only a small
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leftwards shift of ψ1 for both firing frequencies (see Fig. 5e, f). This implies that
increasing the dendritic radius would cause the switches in stability between syn-
chrony and anti-phase seen in Fig. 4 to occur for only slighly smaller values
of L

λ
.

4.3 Robustness of phase-locked states

In this section, we examine the robustness of the phase-locked solutions to heterogene-
ity. Although prior studies (Bressloff and Coombes 1997; Crook et al. 1998; Lewis
and Rinzel 2004; Remme et al. 2009) have examined the effects of dendritic properties
on the existence and stability of phase-locking, the robustness of these phase locked
states to heterogeneity and/or noise has not been examined explicitly. Because real
neural systems are subject to varying amounts of heterogenity and noise, examining
the robustness of the phase-locked solutions is of vital importance.

The lower planels in Fig. 4 plot the measure of robustness of the stable phase-locked
states as a function of the position of the electrical coupling L

λ
. Recall robustness is

measured by the maximum relative frequency difference between the two cells that
allows 1:1 phase-locking to occur �ω

∗
ω

. When the intrinsic firing frequency is 31 Hz,
as in Fig. 4a, c, robustness decays with increasing L

λ
and is approximately 0.5 %

at L
λ

= 2, i.e., robustness is effectively zero well before the bifurcation to stable
anti-phase. Increasing the firing frequency as in Fig. 4b, d, causes the robustness
to decay more rapidly. Note that �ω∗

ω
is zero at the points where the synchronous

and anti-phase states exchange stability, which is a necessary consequence of there
being a bifurcation. After the first bifurcation, there is an increase in robustness of the
anti-phase state, however, the robustness never goes far above 0.5 %. Increasing the
radius an order of magnitude from 0.2 to 2 µm causes an increase in the robustness
(especially at lower values of L

λ
) but this large increase in radius still leads to a small

level of robustness at moderate values of L
λ

. The small level of robustness observed
in all of the above cases suggests that it is highly unlikely that even a single exchange
in the stability of the synchronous and anti-phase states would be observed in real
electrically coupled neurons.

Plugging Eq. (25) into Eq. (22), we find that the maximum relative frequency
difference before 1:1 phase-locking is lost obeys the following inequality

�ω∗

ω
= max

φ

∣∣∣∣
T

τD
G(φ)

∣∣∣∣

= max
φ

∣∣∣∣∣
4

T τD

∞∑

n=1

|znvn| sin

(
ψn

(
L

λ

)
+ ξn

)
ε

∣∣∣∣cn

(
L

λ

)∣∣∣∣
∣∣∣∣∣

≤ 4

T τD

∞∑

n=1

|znvn|ε
∣∣∣∣cn

(
L

λ

)∣∣∣∣

≤ ε

∣∣∣∣c1

(
L

λ

)∣∣∣∣
{

4

T τD

∞∑

n=1

|znvn|
}
.
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Thus, the overall rapid decay in the robustness of phase-locked states with increasing
L
λ

(including dependence on dendritic radius and intrinsic somatic firing frequency)
can be understood in terms of the attenuation factor of the first mode ε

∣∣c1
( L
λ

)∣∣, as
described in the section 4.2. Note, however, that the non-monotonicity in robustness
that is observed in Fig. 4b, d can be explained by examining Eq. (26) and recalling the
fact that the phase shifts are periodic functions of L

λ
. Thus, the robustness in this case

is also affected by the magnitude of the sinusoidal terms | sin(ξn + ψn
( L
λ

)
)| which

will necessarily be zero when there is a shift in stability of the phase-locked states,
i.e., at bifurcation points.

5 Re-examining the robustness of phase-locking for fixed coupling coefficient

The results in Sect. 4 suggest that the phase-locking of electrically coupled neurons
with dendritic structure is extremely fragile to heterogeneity when the coupling is
located beyond proximal dendrites. Furthermore, in Sect. 7, we will show that qual-
itatively similar results hold when considering robustness to weak somatic noise.
Thus, given the high level of heterogeneity and noise in real neural systems, it would
appear that phase-locking between neurons with distal electrical coupling is unlikely to
be observed. However, note that we used a fixed coupling conductance gc = 400
pS which comes from estimates in previous studies, (e.g Amitai et al. 2004; Beier-
leinet al. 2000; Gibson et al. 1999; Connors and Long 2004). These studies use single-
compartment models to estimate gc from the experimentally measured coupling coeffi-
cient (CC). By neglecting the spatial properties of the neurons, the estimates resulting
from this model will substantially underestimate gc for coupling on distal dendrites
(Prinz and Fromherz 2002). This, in turn, could substantially affect the estimates of
the robustness of phase-locking. To address this issue, we re-examine the dependence
of phase-locking on L

λ
using a fixed CC and using ball-and-stick model neurons to

derive an estimate of gc from the coupling coefficient. In particular, we use a value of
CC = 0.05 which is in the range of values measured for putative electrical coupling
on distal dendrites between cortical inhibitory neurons (Amitai et al. 2004).

5.1 Properties of the coupling coefficient

The CC between cell 1 and cell 2 is measured by injecting a current in cell 1 and
measuring the change in potential for both cells that results from this current injection,
i.e., �V1 and �V2. The CC is then given by

CC = �V2

�V1
. (28)

By assuming each cell is a single passive compartment, it can be shown that

gc = πd2gL
CC

1 − CC
, (29)
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Fig. 6 Coupling coefficient of the ball-and-stick model. a Coupling coefficient as a function of L
λ when

gc = 400 pS and the dendritic radius is 0.2 µm (solid line) or 2 µm (dashed line). For reference, the
dash-dotted line plots the value CC = 0.05 we use in our analysis. The coupling coefficient decays as the
coupling is positioned further way from the cell bodies and the rate of this decay is increased as the dendritic
radius is increased. b Electrical synaptic conductance estimated using the CC as a function of L

λ
when

CC = 0.05. Again for reference the inset is a blow up of the region L
λ ∈ [0, 1] and the the dash-dotted

line plots gc = 400 pS which is the value we used in the previous section. To maintain a fixed CC the
gap junctional conductance must increase as L

λ
is increased. c Maximum distance the electrical synapse

can be located away from the cell bodies L∗
λ as a function of dendritic radius a. The two solid gray circles

highlight the values a = 0.2 µm and a = 2 µm which are the dendritic radius values we utilize in our
analysis

where d is the diameter of each compartment and gL is the resting membrane con-
ductance (Bennett 1977). Estimating gc in this manner omits the effect of dendritic
filtering. The value of the coupling coefficient for two identical electrically-coupled-
ball-and-stick neurons was derived by Prinz and Fromherz (2002). In the Appendix
B we present an alternate derivation that allows for heterogeneity in the dendritic
parameters of the two neurons. For the case of identical neurons

CC = 2εgL Dg

gL + sinh
(
2 L
λ

)
[εgL D + 2gL g] + cosh

(
2 L
λ

)
[2εgL Dg + gL ]

. (30)

Figure 6a plots CC as a function of L
λ

for gc = 400 pS. Note that CC decays
with increasing L

λ
, and the rate of this decay is increased as the dendritic radius a is

increased. Using (30) the electrical coupling conductance can be estimated for a fixed
value of CC

gc = γ
CC

1 − αCC
(31)

γ = πa2

Riλ2εgL D

[
gL + εgL D sinh

(
2

L

λ

)
+ gL cosh

(
2

L

λ

)]

α =
[

gL

εgL D
sinh

(
2

L

λ

)
+ cosh

(
2

L

λ

)]
.

Note that Eq. (31) limits to (29) as L
λ

→ 0. Equation (31) shows that gc is an increasing
function of L

λ
until a discontinuity is reached at
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L∗

λ
= i

2

⎛
⎝sin−1

⎛
⎝εgL D

CC

1√
(εgL D)2 − g2

L

⎞
⎠ − tan−1

(
(εgL D)

2

gLi

)⎞
⎠ . (32)

Note that the right hand side of the above equation is a real number. 2 L∗
λ

can be
interpreted as the electrotonic length of a single dendrite that connects the two somata
and yields a particular coupling coefficient of CC . Figure 6b plots gc as a function
of L

λ
for CC = 0.05. Figure 6c shows that, for a fixed value of CC = 0.05, the

maximum distance that the electrical coupling can be located away from the somata,
L∗
λ

, increases as the dendritic radius is increased but eventually saturates. Thus, fixing
the coupling coefficient imposes a maximal distance that the electrical coupling can
be located from the somata.

5.2 Existence, stability, and robustness re-visited

We now examine how dendritic properties and electrical coupling affect the existence,
stability, and robustness of phase-locking for a fixed CC = 0.05 when the coupling
conductance value is calculated using (31). Note that gc = 400 pS would yield a
CC = 0.14 when L

λ
= 0 and a CC = 0.027 when L

λ
= 1 and a = 0.2 µ m. From

these values we expect that, when the coupling is between the somata or proximal
dendrites, the phase-locked states from the previous analysis with fixed gc = 400 pS
will have greater robustness than phase-locked states for a fixed CC = 0.05. On the
other hand, when the coupling is located on distal dendrites, phase-locked states with
a fixed CC = 0.05 will have greater robustness than those for fixed gc = 400 pS.

Similar to Fig. 4, Fig. 7 plots the bifurcation diagrams of the phase-locked states
and their robustness as a function of the location of the electrical coupling for different
somatic firing frequencies and different dendritic radii. Note that, because of the fixed
CC , L

λ
in Fig. 7 cannot be increased beyond L∗

λ
. As a result of this limitation on L

λ
,

only the synchronous solution is stable for all parameters shown except for when the
firing frequency is high (ω = 94 Hz) and the dendritic radius is large (a = 2 µm),
in which case there is only a single exchange in stability between the synchronous
and anti-phase solutions rather than multiple exchanges as seen in Fig. 4. Consistent
with our expectations, the lower panels in Fig. 7 show that the phase-locked states for
a fixed CC = 0.05 (solid black lines) are less robust at lower values of L

λ
and are

more robust at higher values of L
λ

than the corresponding phase-locked states for a
fixed gc = 400 pS (solid gray lines). Interestingly, in all cases shown for a fixed CC ,
robustness increases with increasing L

λ
at least for small values of L

λ
.

As was the case for fixed gc, the bifurcation scenarios and the associated robust-
ness of the phase-locked states for fixed CC can be understood in terms of the filtering
properties of the dendrites. The lack of exchanges in stability between the synchronous
and anti-phase states arises from the limited changes in the phase shifts ψn as L

λ
is

increased (Fig. 8e, f). The robustness results described above can be explained by the
variation of the attenuation factors ε|cn| with L

λ
. Specifically, ε|cn| show an increase

with L
λ

at small values of L
λ

and are relatively high for large values of L
λ

compared
to those for fixed gc (Fig. 8a–d). This results from the fact that when CC is fixed,
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Fig. 7 Stability and robustness phase-locking to heterogeneity for a fixed coupling coefficient. Stability

and robustness of the phase-locked states are plotted as a function of L
λ ∈ [0, L∗

λ ] when the coupling
coefficient is fixed at CC = 0.05 and the somata are firing at a frequency of 31 Hz (a, c) and 94 Hz (b, d).
The radius of the dendrite is 0.2 µm in a and b and 2 µm in c and d. The upper panels plot the stability of
the phase-locked solutions of equation (19). The stable phase-locked states are plotted as thick lines while
the unstable states are plotted as thin lines. The lower panels plot the robustness of the phase-locked states
where robustness is measured as the maximum percent frequency heterogeneity the system can tolerate

before 1:1 phase-locking is lost, i.e., �ω
∗

ω . For reference, the robustness of the corresponding phase-locked
states when gc = 400 pS is plotted as the light gray curves (see Fig. 4). Fixing CC causes fewer exchanges
in stability as L

λ
is increased, and it also causes the phase-locked states to be more robust than those for a

fixed gc

gc increases with increasing L
λ

, according to equation (31) and seen in Fig. 6b. Note
that, with all other explicit parameters in the model held constant, the attenuation
factors decrease with increases in L

λ
and increase with increases in the coupling con-

ductance gc. Thus, for fixed CC , when L
λ

is increased and there is a corresponding
increase in gc, the attentuation factors can increase with L

λ
or have a non-monotonic

dependence as observed in Fig. 8.
Figure 9 demonstrates that the previous observations regarding the robustness of

phase-locking for fixed gc and fixed CC carry over to a wide range of somatic firing
frequencies. Specifically, Fig. 9a, d show that phase-locked states are more robust for
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Fig. 8 Dendritic filtering properties for a fixed coupling coefficient. In a–d, the attenuation factor ε|cn | is

plotted as a function of L
λ

∈ [0, L∗
λ

] (left panels) and n (right panels). The intrinsic firing frequency is 31
Hz in a, c, and e, and 94 Hz in b, d, and f. The radius of the dendrite is 0.2 µm in a and b, and 2 µm in
c and d. In the left hand panels of a–d, the solid lines plot the n = 1 mode of the attenuation factor while
the dashed lines plot the n = 5 mode. Similarly, in the right hand panels of each figure, the solid lines
(dashed lines) plot the attenuation factor when L

λ
= 1 ( L

λ
= 2). The phase shift factor of the first mode ψ1

is plotted as a function of L
λ

when the neuron is firing at a frequency of 31 Hz (e) and 94 Hz (f) and when the
dendritic radius is a = 0.2 µm (solid line) and a = 2 µm (dashed line). In all figures, CC = 0.05. Fixing
CC causes gc to increase with L

λ . This causes the magnitude of the phase-shift for fixed CC to increase

more slowly with L
λ

than the case of a fixed gc . This leads to fewer exchanges in stability of phase-locked
states for the case of a fixed CC . It also causes the attenuation factors to sometimes have a non-monotonic
dependence on L

λ

fixed gc = 400 pS (CC = 0.14) than for fixed CC = 0.05 (gc = 170 pS) when
the coupling is between the somata, i.e., L

λ
= 0. On the other hand, when L

λ
= 1

and a = 0.2 µm, Fig. 9b, d show that phase-locked states are less robust for fixed
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Fig. 9 Comparison of the robustness of phase-locking to heterogeneity as firing frequency is varied for a
fixed gc and a Fixed CC . Robustness of the phase-locked states is plotted as a function of firing frequency
when the electrical coupling conductance is held constant at 400 pS (a–c) and when the coupling coefficient
is held constant at 0.05 (d–f). In a and d, the dendritic length ( L

λ
) is equal to zero while in b, c, e and f

L
λ

= 1. The dendritic radius is 0.2 µm in b and e and 2 µm in c and f. Note the difference in the y-axis
scale for f. For all firing frequencies, fixing CC results in more robust phase-locking for distally located
electrical synapses than for a fixed gc

gc = 400 pS (CC = 0.027) than for fixed CC = 0.05 (gc effectively infinite).
Similarly, when L

λ
= 1 and a = 2 µ m, Fig. 9c, e again show that phase-locked

states are less robust for fixed gc = 400 pS (CC = 0.01) than for fixed CC = 0.05
(gc = 2430 pS).

6 The effects of dendritic heterogeneity

The previous sections have considered heterogeneity between the somatic dynamics.
However, heterogeneity can also exist in the dendrites of the two neurons. In this
section we consider two natural sources of heterogeneity: the electrotonic lengths of
the dendrites of the two neurons, and the leakage channel reversal potentials. Including
these dendritic heterogeneities in the nondimensional coupled ball-and-stick model
(5) yields

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vj

∂t = ∂2Vj

∂x2 − (Vj − E
j
L D)

∂Vj

∂t (0, t) = −I ion,S(Vj (0, t), �w)+ I + ε
∂Vj
∂x (0, t)

∂Vj
∂x

(
L j
λ
, t

)
= g

(
Vk

(
Lk
λ
, t

)
− Vj

(
L j
λ
, t

))
,

(33)
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where
L j
λ

is the electrotonic length of the dendrite of the j th neuron, and E
j
L D is the

nondimensional dendritic leakage reversal potential of the j th neuron. Approximating
the solution of above system as in Sect. 3.1 yields

Vj (x, t, Tφ j , Tφk) =
[(

V0

T
− E

k
L D

)
c jk

0 +
(

V0

T
− E

j
L D

)
d jk

0 + (E
k
L D − E

j
L D) f jk

]
sinh(x)

+
(

V0

T
− E

j
L D

)
cosh(x)+ 1

T

∑

n �=0

[
Vn

(
1

bn
c jk

n e2π inTφk/T

+ 1

bn
d jk

n e2π inTφ j /T
)

sinh(bn x)+ Vne2π inTφ j /T cosh(bn x)

]
e2π int/T

+ E
j
L D (34)

where bn =
√

1 + 2π in/T and

c jk
n = g

cosh
(

bn
L j
λ

) 1

cosh
(

bn
Lk
λ

)
+ g

bn
tanh

(
bn

L j
λ

)
cosh

(
bn

Lk
λ

)
+ g

bn
sinh

(
bn

Lk
λ

)

(35)

d jk
n = −bn

sinh
(

bn

(
L j +Lk
λ

))
+ sinh

(
bn

(
L j −Lk
λ

))
+ 2 g

bn
cosh

(
bn

(
L j +Lk
λ

))

cosh
(

bn

(
L j +Lk
λ

))
+ cosh

(
bn

(
L j −Lk
λ

))
+ 2 g

bn
sinh

(
bn

(
L j +Lk
λ

))

(36)

f jk = g

cosh
(

L j
λ

)
+ g sinh

(
L j
λ

)
+ g cosh

(
L j
λ

)
tanh

(
Lk
λ

) (37)

Thus, the phase model in dimensional form is given by

dφ j

dt
= 1

τD

(
ν j + 1

T 2

∑

n �=0

[
εc jk

n z−nvne2π in(φk−φ j )
])

= 1

τD

(
ν j + Hhet (φk − φ j )

)
, (38)

where

ν j = 〈z〉
[(

〈v〉 − Ek
L D

)
εc jk

0 +
(
〈v〉 − E j

L D

)
εd jk

0 + (Ek
L D − E j

L D)ε f jk
]

+ 1

T 2

∑

n �=0

εd jk
n z−nvn . (39)
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Letting φ = φk − φ j ,

dφ

dt
= 1

τD

(
νk − ν j + Hhet (−φ)− Hhet (φ)

)

= 1

τD

(
�ν + 1

T 2

∑

n �=0

{
z−nvnε

(
ck j

n e−2π inφ − c jk
n e2π inφ

) })

= 1

τD
Ghet (φ), (40)

where

�ν = ε〈z〉
[(

〈v〉 − E j
L D

)
(ck j

0 − d jk
0 )+

(
〈v〉 − Ek

L D

)
(dkj

0 − c jk
0 )

+
(

E j
L D − Ek

L D

)
( f k j + f jk)

]
+ 1

T 2

∑

n �=0

z−nvnε(d
kj
n − d jk

n ) (41)

As before, heterogeneity in the somatic firing frequency can be included in the
phase model (40) resulting in

dφ

dt
= �ω + 1

τD
Ghet (φ). (42)

This phase model allows us to now probe how the additional dendritic hetero-
geneities affect the stability and robustness of phase-locking.

The dendritic heterogeneities will cause asymmetry in the coupling coefficient. We
denote the directional CC measured when the current is injected into cell j and the
change in potential of cell k is divided by the change in potential of cell j as

CCk = �Vk

�Vj
=

gL D
gL
ε

g
λ
ρ

(
−γ jβ j + α j cosh

(
L j
λ

))

gL D
gL
ερ

(( g
λ

)2
γk cosh

(
L j
λ

)
− αkβ j

)
+ 1

, (43)

where

ρ = 1

αkα j − ( g
λ

)2
γkγ j

α j =
[

1

λ
+ gL D

gL

εg

λ

]
cosh

(
L j

λ

)
+

[
g

λ
+ gL D

gL

ε

λ

]
sinh

(
L j

λ

)

β j = 1

λ
sinh

(
L j

λ

)
+ g

λ
cosh

(
L j

λ

)

γ j = sinh

(
L j

λ

)
+ gL D

gL
ε cosh

(
L j

λ

)
.
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The details of this calculation are provided in the Appendix B. Except for the case of
L j
λ

= Lk
λ

, there is no simple closed form for the coupling conductance estimated from
fixed CCk . Thus, we will use Eq. (43) to numerically solve for gc when the coupling
coefficient for neuron k is fixed. Note that by ensuring that CCk is fixed, CC j will
still vary with system parameters.

6.1 Asymmetry in dendritic length

Here we explore the effect of asymmetric dendrites on the existence, stability, and
robustness of phase-locking. We denote the position of the electrical coupling between
the dendrites of the two ball-and-stick neurons by

β = L1

L1 + L2
. (44)

In our calculations, we set the total length of the dendrites L1
λ

+ L2
λ

= 1.5. For
this combined length and symmetric dendrites (β = 1

2 ), a coupling coefficient CC1 =
CC2 = 0.05 approximately corresponds to a conductance gc = 400 pS. That is, when
β = 1

2 , the stability and robustness of phase-locking for fixed CC and fixed gc are
similar. We also set E1

L D = E2
L D = −70 mV, but note that similar results are obtained

when heterogeneity in EL D is considered.
Figure 10 plots the bifurcation diagrams and corresponding robustness for the

phase-locked state as a function of the coupling position β when the neurons are
firing at a frequency of 31 Hz. The coupling conductance is held fixed, gc = 400 pS,
in (a) and (b), while the coupling coefficient CC1 = 0.05 is held constant in (c)
and (d). The figure shows that fixed CC1 = 0.05 preserves 1:1 phase-locking more
effectively than fixed gc = 400 pS with changes in the coupling position and/or
changes in heterogenity in intrinsic firing frequency. However, it can be seen that
the existence of 1:1 phase-locking is fragile to changes in the coupling position.
This is particularly true for the larger dendritic radius where even small asymme-
tries in dendritic length completely annhilate the 1:1 phase-locked state. In fact,
for all cases shown, dendro-somatic coupling β = 0, 1 never supports 1:1 phase-
locking.

7 Robustness to weak somatic noise

To further explore robustness of phase-locked states, we examine the situation in which
the somata are also receiving small amplitude white noise current inputs. The addition
of the white noise inputs to the somata results in additive noise in the phase equations
(Kuramoto 1984; Pfeuty et al. 2005). We now outline the steps to obtain the steady-state
probability density of the phase-difference between two coupled oscillators ρss(φ)

(Kuramoto 1984; Pfeuty et al. 2005).
First, if small amplitude independent white noise current is applied to the somata

in the electrically coupled ball-and-stick model, the resulting nondimensional model
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Fig. 10 Effect of changing coupling position on stability and robustness to heterogeneity of phase-locking.
The stability (upper plots) and robustness (lower plots) of phase-locking is plotted as a function of the
coupling position for asymmetric dendrites β when the somata are firing at a frequency of 31 Hz. In a and
b the coupling conductance is fixed at gc = 400 pS. In c and d the directional coupling coefficient for cell
1 fixed at CC1 = 0.05. The dendritic radius is a = 0.2 µm in a and c and a = 2 µm in b and d. The sum
of the electronic lengths of the two dendrites is fixed at L1

λ
+ L2

λ
= 1.5. Note that 1:1 phase-locking is

fragile to changes in the position of the electrical coupling, especially for larger dendritic radii

equations would be

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂Vj

∂t = ∂2Vj

∂x2 − (Vj − E L D)

∂Vj

∂t (0, t) = −I ion,S(Vj (0, t), �w)+ I + ε
∂Vj
∂x (0, t)+ σξ j (t)

∂Vj
∂x

( L
λ
, t

) = g
(
Vk

( L
λ
, t

) − Vj
( L
λ
, t

))
,

(45)

where σ 2 is O(ε). The term ξ j (t) represents Gaussian white noise with zero mean
and unit variance (i.e., 〈ξ j (t)〉 = 0 and 〈ξ j (t)ξ j (t

′
)〉 = δ(t − t ′)). Performing the

phase reduction for this system as in Sect. 3.1 yields the dimensional phase equation
(Teramae et al. 2009; Teramae and Tanaka 2004)

dφ j

dt
= 1

τD
H(φk − φ j )+ σ√

τD
sφξ j (t), (46)

where ξ j (t) = ξ j (τDt) and the term sφ =
(

1
T

∫ T
0 [−EL z(t̃)]2dt̃

)1/2
comes from

averaging the noisy phase equations (Kuramoto 1984; Pfeuty et al. 2005). If we now
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let φ = φ2 − φ1, we arrive at

dφ

dt
= 1

τD
G(φ)+ σ√

τD
sφ

√
2η(t), (47)

where G(φ) = H(−φ) − H(φ),
√

2η(t) = ξ2(t) − ξ1(t), and η(t) is also Gaussian
white noise with zero mean and unit variance.

The non-linear Langevin equation (47) corresponds to the following Fokker–Planck
equation Risken (1989); Stratonovich (1967); van Kampen (1981)

∂ρ

∂t
(φ, t) = − ∂

∂φ

[
ε

τD
Ḡ(φ)ρ(φ, t)

]
+

(
σ sφ√
τD

)2
∂2ρ

∂φ2 (φ, t), (48)

where εḠ(φ) = G(φ) (see Eq. 19), and ρ(φ, t)�φ is the probability that the neurons
will have a phase difference that is in the interval (φ, φ+�φ) at time t for small�φ.

The steady-state density
(
∂ρ
∂t = 0

)
is

ρ(φ) = eM(φ)

∫ T
0 e−M(φ̄)

, (49)

where

M(φ) = ε

(σ sφ)2

φ∫

0

Ḡ(φ̄)dφ̄, (50)

where ε
(σ sφ)2

represents the ratio of the strength of the dendritic perturbation to the

variance of the noise in the soma. Pfeuty et al. (2005) showed that spike-train cross-
correlogram of the two neurons is equivalent to this steady-state density (49) for small
ε.

The steady-state density ρ(φ) can be used to examine how dendritic properties
affect phase-locking dynamics in the presence of background noise. Because the noise
comes in additively, the stable steady-state phase differences of the noiseless system
will correspond to peaks in the steady-state density function. Figure 11 plots ρss(φ)

for the example G function from Fig. 3. It can clearly be seen that the density has
a peak around φ = 0 corresponding to stable synchrony in the noiseless system.
Increasing the strength of the noise σ acts to smear out the density function. As the
noise increases, the density approaches the uniform distribution for which all phase
differences are equally likely. A strongly peaked density function indicates that the
phase-locked state is robust to background noise. To quantify the robustness of the
phase-locked states to noise, we use the so-called Kuramoto index (Kuramoto 1984):

Rn =
∣∣∣∣∣∣

1∫

0

ρss(φ)e
2π iφdφ

∣∣∣∣∣∣
. (51)
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Fig. 11 Phase-locking in the
presence of noise. The figure
plots an example
cross-correlogram (steady-state
phase difference density)
between the phases of the two
cells with varying levels of
somatic noise strength σ for the
example G function from Fig. 3.
A more peaked
cross-correlogram for a given
noise level, σ , indicates a more
robust phase-locked state −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
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Rn = 1 corresponds to precise phase-locking, i.e., ρss(φ) = δ(φ − φss) a delta-
function density centered at a phase-locked state of the deterministic system; while
Rn = 0 corresponds to the phases being uniformly distributed. In all subsequent
figures, σ is chosen so that T

τD

(
σ sφ

)2 = 0.01, i.e., the noise level can only cause
a maximum of 1 % change in the average frequency. This is chosen to illustrate the
fact that even in the presence of very small noise, dendritic properties can have large
effects on robustness.

Figure 12 plots the stability and robustness of phase-locking to noise for a fixed
gc = 400 pS at various firing frequencies and denritic radii. The bifurcation diagrams
(top panels) are for the noiseless system which are exactly the same as Fig. 4. The solid
curves correspond to peaks of ρss(φ). Similar to Fig. 4, Fig. 12 reveals that, for a fixed
gc, the robustness of phase-locking to noise decays rapidly to zero as the position of the
electrical coupling is moved further away from the cell bodies. In particular, for firing
frequencies of 31 Hz and 94 Hz and dendritic radii of 0.2 and 2 µm, the Kuramoto
index Rn is less than 0.2 for values of L

λ
≥ 2. Note that the system undergoes at

most one exchange in stability before significant robustness is lost. Figure 13 plots
the stability and robustness of phase-locking to noise for a fixed CC = 0.05 for the
same firing frequencies and dendritic radii. Similar to Fig. 7, the figure shows that
the phase-locked states for a fixed CC = 0.05 are less robust at lower values of
L
λ

and are more robust at higher values of L
λ

than the corresponding phase-locked
states for a fixed gc = 400 pS. However, note that for all possible dendritic lengths,
the only single exchange in stability occurs at high somatic firing frequency and
a large dendritic radius. Thus, the system displays qualitatively similar results when
considering robustness to heterogeneity or robustness to noise, i.e., multiple exchanges
in stability appear to be highly unlikely when considering changes in location of the
electrical coupling.

8 Discussion

Many theoretical and experimental studies have provided evidence suggesting that
electrical synapses aide in coordinating robust synchronous activity in networks of
cortical inhibitory neurons. Most of the theoretical studies assume the electrical
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Fig. 12 Stability and robustness of phase-locking to noise for a fixed coupling conductance. Stability and
robustness of the phase-locked states are plotted as a function of L

λ when the conductance of the electrical
coupling is 400 pS and the somata are firing at a frequency of 31 Hz (a, c) and 94 Hz (b, d). The radius of the
dendrite is 0.2 µm in a and b and 2 µm in c and d. The upper panels plot the stability of the phase-locked
solutions of Eq. (19). The stable phase-locked states are plotted as thick lines while the unstable states are
plotted as thin lines. The lower panels plot the robustness of the phase-locked states where robustness is
measured using the Kuramoto index Rn . Note that the effects of noise on phase-locked states and robustness
are qualitatively similar to the effects of heterogeneity in intrinsic frequency (see Fig. 4)

synapses are located directly between the somata. The recent experimental findings
that these inhibitory neurons are highly interconnected by electrical synapses located
on their dendrites leads to the question of whether or not dendro-dendritic electrical
synapses facilitate robust synchronous oscillatory behavior (Amitai et al. 2004; Fukuda
and Kosaka 2000, 2003; Fukuda et al. 2006). Although a few modeling studies have
examined the effects of dendritic properties on the existence and stability of phase-
locking in dendritically coupled neurons (see Lewis and Skinner 2012), the robustness
of these phase-locked states to heterogeneity and noise has not been explored in detail.
In order to gain insight into the role that dendro-dendritic electrical coupling plays in
generating synchronous oscillatory behaviour, we use the theory of weakly coupled
oscillators to examine phase-locking in an electrically coupled pair of ball-and-stick
model neurons. Our study focuses on how dendritic filtering and the location of the
electrical synapse affect the existence, stability and robustness of phase-locked states.

Using published estimates of the electrical coupling conductance between two
cortical inhibitory neurons gc = 400 pS (Amitai et al. 2004; Beierleinet al. 2000;
Gibson et al. 2005; Connors and Long 2004), our analysis reveals that the position of the
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Fig. 13 Stability and robustness of phase-locking to noise for a fixed coupling coefficient. Stability and
robustness of the phase-locked states are plotted as a function of L

λ when the coupling coefficient is fixed
at CC = 0.05 and the somata are firing at a frequency of 31 Hz (a, c) and 94 Hz (b, d). The radius of the
dendrite is 0.2 µm in a and b and 2 µm in c and d. The upper panels plot the stability of the phase-locked
solutions of Eq. (19). The stable phase-locked states are plotted as thick lines while the unstable states are
plotted as thin lines. The lower panels plot the robustness of the phase-locked states where robustness is
measured using the Kuramoto index Rn . Note that the effects of noise on phase-locked states and robustness
are qualitatively similar to the effects of heterogeneity in intrinsic frequency (see Fig. 7)

electrical coupling plays an important role in determining the existence and stability of
the synchronous and anti-phase states. As the location of the electrical synapse occurs
further away from the somata, multiple exchanges in stability between the synchronous
and anti-phase states can arise. However, the robustness of the phase-locked states
in this case decreases rapidly towards zero as the distance between the electrical
coupling and the somata increases. For all the parameters we examined, robustness to
heterogeneities in intrinsic firing frequencies decays to ∼0.5 % by the time L

λ
= 2.

The rapidness of the decay in robustness suggests that multiple exchanges in stability
are unlikely to be observed in real neurons. However, it is important to note that the
published estimates of gc (as cited above) are calculated from the experimentally
measured coupling coefficient (CC) based on a single-compartment description of a
neuron (Bennett 1977), which neglects spatial properties. As such, gc = 400 pS may
be a severe underestimate of the actual value of the electrical coupling conductance
when it is located on the distal dendrites (Prinz and Fromherz 2002). With this in mind,
we re-examine the stability and robustness of phase-locking using a fixed value of
the experimentally measured coupling coefficient rather than a fixed gc. Specifically,
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we take CC = 0.05 (Amitai et al. 2004) and use ball-and-stick model neurons to
derive the corresponding gc (Prinz and Fromherz 2002). As expected, we find that the
phase-locked states are less robust for more proximal coupling positions and more
robust for more distal coupling positions for fixed CC = 0.05 as compared to the
corresponding phase-locked states for a fixed gc = 400 pS. Curiously, with a fixed
CC = 0.05, no exhanges in stability with changing coupling position are observed
except for a single exchange which was found in the extreme case of a high somatic
firing frequency and a large dendritic radius. Furthermore, the existence of 1:1 phase-
locking is fragile to asymmetries in dendritic length. We also show that the same results
hold qualitatively when considering robustness of phase-locking to noise. Thus, our
analysis for both fixed gc and fixed CC suggest that multiple exchanges in stability
between the synchronous and anti-phase states with changing coupling position are
unlikely to be observed in real neural systems.

The present study builds off previous work that has examined the existence and
stability of phase-locking in neurons with passive dendrites (Bressloff and Coombes
1997; Crook et al. 1998; Lewis and Rinzel 2004; Remme et al. 2009). These studies find
that the position of coupling along the dendrite is an important factor in determining
phase-locking behavior. In particular, Crook et al. (1998) and Bressloff and Coombes
(1997) examine how the position of dendro-dendritic chemical synapses affect the
phase-locking behavior in networks of neuronal oscillators. Similar to the present
study, they find interesting exchanges in the stability of the synchronous and anti-phase
phase-locked states with changing coupling position, and they provide explanations
for this behavior in terms of filtering properties of the dendrite. A crucial difference
between the current work and all of the previous studies listed above is our systematic
examination of the robustness of the phase-locked states to heterogeneity and noise.
Our results on neurons coupled by electrical synapses suggests that the robustness of
the multiple exchanges in stability observed in neurons coupled by chemical synapses
warrants further investigation.

We have modeled the dendrite of each neuron as a single passive cable. Thus, we
have neglected the detailed branching structure of dendritic trees and the fact that
the dendrites of some neurons possess high levels of active voltage-gated conduc-
tances (Johnston and Narayanan 2008). In terms of dendritic structure, we expect
that the addition of realistic morphologies will not fundamentally change our basic
results. Indeed one could calculate the filtering coefficients corresponding to a more
complex passive dendritic tree (Bressloff and Coombes 1997), however, the filtering
coefficients obtained will be very similar to those of a single branch (i.e., attenua-
tion factors will decrease and the magnitudes of the phase-shifts will increase with
increases in the electrotonic distance between the somata, 2 L

λ
, and in the somatic fir-

ing frequency, ω). In fact, if dendritic trees follow Rall’s 3/2 rule, then each dendritic
tree can be reduced to an equivalent cylinder (Rall 1959). Furthermore, similar to the
results we present using the ball-and-stick model, studies using detailed multicompart-
ment models of hippocampal inhibitory neurons have demonstrated that the location of
dendro-dendritic electrical synapses plays an important role in determining network
synchronization (Saraga et al. 2006; Saraga and Skinner 2004; Zahid and Skinner
2009). In particular, Saraga et al. (2006) find that synchronization of neurons with
passive dendrites required extremely large coupling conductances when the electrical
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synapses are located on the distal dendrites and that 1:1 phase-locking was very fragile
to heterogeneities in this case. In terms of dendritic nonlinearities, Saraga et al. (2006)
and others (Saraga and Skinner 2004; Traub et al. 2001; Zahid and Skinner 2009) also
show that active dendritic conductances strongly facilitate robust synchronization of
electrically coupled heterogeneous cells. As such, we expect the inclusion of active
dendritic currents in our model to increase the robustness of the phase-locked states. In
fact, active dendritic currents may also significantly change the synchronization prop-
erties. However, we note that recent experimental findings show that the dendrites of
hippocampal fast-spiking inhibitory neurons express sodium channels at low density,
if at all (Hu et al. 2010). Therefore, the dendrites in these neurons should be well
modeled by passive or weakly nonlinear cables.
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Appendix A: Somatic model and system parameters

We used a model of a cortical inhibitory fast spiking interneuron due to Erisir et al.
(1999) to describe our somatic dynamics. The model equations and parameters are

Cm
dv

dt
= −gNam3h(v(t)− ENa)− gK n2(v(t)− EK )− gKs n4

s (v(t)− EK )

−gL(v(t)− EL)+ I
dm

dt
= αm(v)(1 − m)− βm(v)m

dh

dt
= αh(v)(1 − h)− βh(v)h

dn

dt
= αn(v)(1 − n)− βn(v)n

dns

dt
= αns (v)(1 − ns)− βns (v)ns

where

αm(v) = 40.0(75.5 − v)

exp((75.0 − v)/(13.5))− 1.0
βm(v) = 1.2262

exp(v/42.248)

αh(v) = 0.0035

exp(v/24.186)
βh(v) = −0.017(51.25 + v)

exp(−(52.25 + v)/5.2)− 1.0

αn(v) = (95.0 − v)

exp((95.0 − v)/11.8)− 1.0
βn(v) = 0.025

exp(v/22.22)

αns (v) = −0.014(44.0 + v)

exp(−(44.0 + v)/2.3)− 1.0
βns (v) = 0.0043

exp((44.0 + v)/34.0)
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and

Cm = 1.0µF/cm2 gNa = 112.5 mS/cm2 gK = 225mS/cm2

gKs = 0.225 mS/cm2 gL = 0.25 mS/cm2 ENa = 74.0 mV

EK = −90.0 mV EL = −70.0mV

The cable parameters we hold constant are

gL D = 0.2 mS/cm2 d = 0.002 cm Ri = 0.1 k� cm

Appendix B: Coupling coefficient

Here we derive the directional coupling coefficient for two electrically coupled ball-
and-stick neurons with heterogeneity in dendritic length. The equations are given by

Cm
∂v̄ j

∂t
= a

2Ri

∂2v̄ j

∂x2 − gL D(v̄ j − EL D)

Cm
∂v̄ j

∂t
(0, t) = −gL(v̄ j (0, t)− EL)+ I + a2

d2 Ri

∂v̄ j

∂x
(0, t)

πa2

Ri

∂v̄ j

∂x
(L j , t) = gc(v̄k(Lk, t)− v̄ j (L j , t)).

If a current I is applied to the soma of cell j , the steady-state equations are then

d2v j

dx2 = 2Ri gL D

a
(v j − EL D) = 1

λ2 (v j − EL D)

a2

d2 Ri

dv j

dx
(0) = gL(v j (0)− EL)− I

dv j

dx
(L j ) = gc Ri

πa2 (vk(Lk)− v j (L j )),

where v j (x) = v̄ j (x,∞), j, k = 1, 2; j �= k. The solutions of the above system are
given by

v j (x) = A j sinh
( x

λ

)
+ B j cosh

( x

λ

)
+ EL D

vk(x) = Ak sinh
( x

λ

)
+ Bk cosh

( x

λ

)
+ EL D,

where

B j = gL D

gL
εA j + F + I

gL
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Bk = gL D

gL
εAk + F

A j = g

λ

γk

α jαk − ( g
λ

)2
γkγ j

(
g

λ

[
F + I

gL

]
cosh

(
L j

λ

)
− Fβk

)

+ αk

α jαk − ( g
λ

)2
γkγ j

(
g

λ
F cosh

(
Lk

λ

)
−

[
F + I

gL

]
β j

)

Ak = g

λ

γ j

α jαk − ( g
λ

)2
γkγ j

(
g

λ
F cosh

(
Lk

λ

)
−

[
F + I

gL

]
β j

)

+ α j

α jαk − ( g
λ

)2
γkγ j

(
g

λ

[
F + I

gL

]
cosh

(
L j

λ

)
− Fβk

)
,

and

α j =
[

1

λ
+ gL D

gL

εg

λ

]
cosh

(
L j

λ

)
+

[
g

λ
+ gL D

gL

ε

λ

]
sinh

(
L j

λ

)

β j = 1

λ
sinh

(
L j

λ

)
+ g

λ
cosh

(
L j

λ

)

γ j = sinh

(
L j

λ

)
+ gL D

gL
ε cosh

(
L j

λ

)

F = EL − EL D

g = gc Riλ

πa2

ε = a2

d2 Ri gL Dλ
,

and αk , βk , and γk are defined similarly. The coupling coefficient is then �vk (0)
�v j (0)

, i.e.,
the difference in the steady state potentials for the two somata when current I is
injected into the soma of cell j and no current is injected into either cell. Let the
coefficients Ã j , Ãk, B̃ j and B̃k correspond to the steady state potentials when no
current is injected into either cell (i.e., set I = 0 in the equations for A j , Ak, B j and
Bk). Then the directional coupling coefficient that measures the DC attenuation from
cell j to cell k is

CCk = �vk(0)

�v j (0)
= Bk − B̃k

B j − B̃ j

=
gL D
gL
ε

g
λ
ρ

(
−γ jβ j + α j cosh

(
L j
λ

))

gL D
gL
ερ

(( g
λ

)2
γk cosh

(
L j
λ

)
− αkβ j

)
+ 1

,
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where

ρ = 1

αkα j − ( g
λ

)2
γkγ j

.

If L j = Lk = L , then we arrive at the coupling coefficent for two identical ball-
and-stick neurons

CC = 2εgL Dg

gL + sinh
(
2 L
λ

) [εgL D + 2ggL ] + cosh
(
2 L
λ

) [2εggL D + gL ] .

Furthermore, if L
λ

= 0, we arrive at

CC = εgL Dg

gL + εgL Dg

= gc

πd2gL + gc
,

which is the coupling coefficient assuming two coupled single-compartment neurons
Bennett (1977).
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