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gap junction/electrical synapse/electrical coupling

Gap junction: Structure
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VOLTAGE-GATING OF GAP JUNCTIONS
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From Teubner et al (2000) J. Membrane. Biol. 176: 249-262: Voltage gating of (homotypic) Cx36 gap junctions
expressed in Xenopus Oocytes (A,B) and transfected Hela cells (C). (A,C) initial and steady state normalized gap
junction conductance (filled and open symbols respectively) as a function of transjunctional potential V.. (B)
Representative junctional current for voltage clamp steps up to +120mV in 20mV increments.
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goal:

Explore the effects of gap junction voltage-gating
on phase-locking in networks of coupled cells.

Model: Pairs of oscillating spiking cells.
Technique: Theory of weak coupled oscillators.
Conditions: A. no voltage-gating

B. fast voltage-gating

C. slow voltage-gating
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MODEL

Electrical coupling voltage-gating dynamics:

ds
TSEZSOO(VK _Vj)_S

AV |-V .
S, (AV) = 1-tanh£H—Sh'ﬂJ Scale
Vscale

*scaled to set S (0)=1

Vshift = 40mV, Vscale =smV

Vshift :10mV, Vscale =20mV




THEORY OF WEAK COUPLING

general: Malkin; Neu; Kuramoto; Ermentrout & Kopell; Hansel et al, ..., Schwemmer & Lewis
electrical coupling: Lewis & Rinzel, Mancilla et al, Pfeuty et al, ..., Lewis & Skinner

1. Intrinsic dynamics of the neurons dominate:

~ period T Vj (t) EVO (t + gj (t))

~ intrinsic limit cycle

oscillation:
slowly evolving
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O 10 20 30 40 & 60 70 80 90
time (ms




THEORY OF WEAK COUPLING

2. Response (phase-shift) of a single cell to a “smal

current stimulus:
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o-function-like

Infinitessimal phase resetting

curve (iPRC) Z(t): the normalized
phase shift Ab; of a cell in response to a
small 8-function current stimulus of
amplitude (total charge) l;,, At thatis
delivered at phase t+9j.
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THEORY OF WEAK COUPLING

3. The effects of small continuously applied perturbations (coupling and
heterogeneity) add sequentially according to the iPRC
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THEORY OF WEAK COUPLING

3. The effects of small continuously applied perturbations (coupling and
heterogeneity) add sequentially according to the iPRC

( do;
dt

Z(’[+9j) l<iim (’[,Qj,ﬁk) phase equations
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THEORY OF WEAK COUPLING

4. Averaging over an oscillation cycle:

Average RHS of equations for the phases over period T to capture average rate of
phase shift due to effect of the coupling and heterogeneity:
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A. NO VOLTAGE-GATING

i.e., constant S=S; =1

jza)gs(va (6, -6,) -V, () df +

g. H(=(6,-6))+(-1)

,AIQ
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Phase-locking (according to the theory of weakly coupled oscillators) with Al = 0:
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The effects of heterogeneity (phase shifts and the loss of 1:1 phase-locking):
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Schematic of Arnold Tongues:
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A. NO VOLTAGE-GATING

%
dv,

CE = _Iion (Vl’ml’hlinl) + Iapplied +dc (VZ _Vl)

dv,

CW:_Iion(VZ’mZ’hZ’nl)+ Iapplied + 0. (Vl _Vz)

Intuition: electrical coupling promotes synchrony.




PRCs and phase-locking “predictions” for electrically coupled neurons
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*Mancilla, Lewis et al. (2007) J. Neurosci._




50 Hz Synchrony
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*Mancilla, Lewis et al. (2007) J. Neurosci._



PRCs and phase-locking “predictions” for electrically coupled neurons
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*Mancilla, Lewis et al. (2007) J. Neurosci._

Q: mechanism of antiphase? (see Lewis and Skinner review).




Q: What does voltage-gating do to the

synchronous and anti-phase states?




“FAST” VOLTAGE-GATING
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prediction from theory : voltage-gating can promote anti-phase activity.
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prediction from theory : voltage-gating can promote anti-phase activity.
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Without voltage-gating, the theory predicts a stable synchronous With voltage-gating, the synchronous state (S) and the
activity (S) and a marginally stable anti-phase state. anti-phase state (AP) appear to be ‘equally’ stable.
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With voltage-gating, both synchrony (S) and anti-phase (AP)
activity were stable.




Phase model with (weak) additive white noise:

e 3.G(¢)+ Al Q + o7 7(t)

. -[f][z(f)]zdf ]

0

Fokker-Planck equation for distribution of phase difference:

Z0.0)=—21(6.6()+ a1 Q)olp ]+ or

O(@,t) = prob. that cells will have phase difference ¢ at time t.




effect of noise
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Steady state cross-correlogram p ( l//) for two level of noise (solid - ‘low’ noise; dotted — ‘high’ noise ).
£ () is determined using the theory of weakly coupled oscillators (Pfeuty et al., 2005):

,O(VI) - eXp(K(W)) . where K(W) _ chz

[exp(K (7)) dy7




C. “SLOW” VOLTAGE-GATING

For slow voltage-gating, both the relative phases and S evolve on time scales much slower than the
period T. Therefore, we can average their dynamics over the period T.

( do,

dt

,All

jZ(t)dt

:%jz(f) 9,5, (Vo — (6, ~ 6V, (£)) df +(

i Al

= 0.5, H (_(ej _gk))-i_(_ ) Q

ds 17 - SN\ F
Bo _ 2 1{s, (v, (6, -8,) -V, (D)) df -
° dt To ( i b i ) 0

=3, (_(91' _ek))_so




predictions from theory : voltage-gating always decreases the robustness
of anti-phase activity._
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effect of heterogeneity : examining dynamics in the phase plane
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effect of heterogeneity : examining dynamics in the phase plane
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SUMMARY

We have found a variety of effects that depend on the degree and type of
voltage-gating as well as the intrinsic dynamics of the cells. Here, we include
two examples of the effects of voltage-gated electrical coupling in pairs of
spiking neurons:

[1] When the voltage-gating process is “fast”, it can promote anti-phase
activity. This is a result of a diminished synchronizing effect of the spikes.

[2] When the voltage-gating process is “slow”, it always promotes
synchronous activity. Because it decreases the coupling strength only, slow
rectification has no effect on the existence of phase-locked states in
homogeneous, noiseless networks. However, it alters the robustness of these
states. The synchronous state is relatively unaffected by the rectification, but
the coupling strength can decrease substantially during asynchronous
activity. Thus, the effective robustness of synchronous state increases in the
presence of noise and heterogeneity.




