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A fundamental challenge in neuroscience is to understand how
biologically salient motor behaviors emerge from properties of the
underlying neural circuits. Crayfish, krill, prawns, lobsters, and
other long-tailed crustaceans swim by rhythmically moving limbs
called swimmerets. Over the entire biological range of animal size
and paddling frequency, movements of adjacent swimmerets
maintain an approximate quarter-period phase difference with
themore posterior limbs leading the cycle. We use a computational
fluid dynamics model to show that this frequency-invariant stroke
pattern is the most effective and mechanically efficient paddling
rhythm across the full range of biologically relevant Reynolds
numbers in crustacean swimming. We then show that the organiza-
tion of the neural circuit underlying swimmeret coordination provides
a robust mechanism for generating this stroke pattern. Specifically,
thewave-like limb coordination emerges robustly from a combination
of the half-center structure of the local central pattern generating
circuits (CPGs) that drive the movements of each limb, the asymmetric
network topology of the connections between local CPGs, and the
phase response properties of the local CPGs, which we measure ex-
perimentally. Thus, the crustacean swimmeret system serves as a
concrete example in which the architecture of a neural circuit leads to
optimal behavior in a robust manner. Furthermore, we consider all
possible connection topologies between local CPGs and show that the
natural connectivity pattern generates the biomechanically optimal
stroke pattern most robustly. Given the high metabolic cost of
crustacean swimming, our results suggest that natural selection
has pushed the swimmeret neural circuit toward a connection
topology that produces optimal behavior.

locomotion | coupled oscillators | phase locking | metachronal waves

It is widely believed that neural circuits have evolved to opti-
mize behavior that increases reproductive fitness. Despite this

belief, few studies have clearly identified the neural mechanisms
producing optimal behaviors. The complexity of behaviors gen-
erally makes it difficult to assess their optimality, and neural circuits
are often too complicated to concretely link neural mechanisms to
the overt behavior. Energy-intensive locomotion such as steady
swimming, walking, and flying provides important model systems for
studying optimality because the goal of the behavior is clear and it is
likely to have been optimized for efficiency (1). For example, the
kinematics of locomotion has been shown to be optimal in the cases
of the undulatory motion of the sandfish lizard and the lamprey
(2, 3). On the other hand, the neural circuits underlying locomotion
in most organisms are not sufficiently characterized to understand
how they give rise to the optimal motor behavior. Because of the
distinct frequency-invariant stroke pattern and the relative simplicity
of the neuronal circuit, limb coordination of long-tailed crustaceans
during steady swimming provides an ideal model system for exam-
ining the optimality of motor behavior and its neural underpinnings.
During forward swimming, long-tailed crustaceans, like cray-

fish, krill, shrimp, and lobsters, propel themselves through the
water using four or five pairs of abdominal limbs called swim-
merets that move rhythmically through cycles of power strokes
(PSs) and return strokes (RSs). Although these animals vary in
size from 0.5 cm to over 40 cm and beat their swimmerets with

frequencies ranging from about 1 to 10 Hz (4, 5), the stroke
pattern is invariant: limbs on neighboring abdominal segments
always maintain an approximate quarter-period (0.25) phase
difference in a tail-to-head metachronal wave (Fig. 1). This
phenomenon is known as phase constancy. Measurements of the
metabolic cost of krill swimming show that up to 73% of their
daily energy expenditure is devoted to paddling (6). This and the
facts that the distinct limb coordination is the only stroke pattern
that these crustaceans exhibit when the swimmeret system is
active and that this limb coordination is conserved across many
species suggest that the stroke pattern is biomechanically opti-
mized for swimming. This in turn suggests that evolution has
pushed the properties of the underlying neural circuit to produce
the distinct phase constant limb coordination.
Metachronal waves of motor activity during locomotion are ob-

served in many animals, and the underlying neural circuits have
been shown to consist of chains of local pattern-generating micro-
circuits [i.e., local central pattern generators (CPGs)] (7–10). This is
the case for the neural circuits that control the undulatory motion of
bony fish, amphibians, and lamprey during swimming (9–12) and
the movements of swimmerets in crayfish (Pacifastacus leniusculus)
(13). By modeling the neural circuit of the crayfish swimmeret
system as a chain of generic phase oscillators, previous theoretical
studies (14–16) showed that the tail-to-head 0.25 phase constant
stroke pattern could be achieved if the phase response properties of
the local CPGs to inputs from ascending and descending inter-CPG
connections satisfy two different constraints. Similar results were
obtained for the lamprey swimming neural circuit (11, 17). Many
studies (e.g., refs. 14, 16, and 18) have addressed aspects of how
these two constraints are satisfied, but it remains unclear how they
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are achieved and maintained over a wide range of frequencies.
Recent experimental work has elucidated the cellular composition
of the local swimmeret CPGs and the synaptic organization of the
circuit that connects them in the crayfish swimmeret system (13, 19,
20), allowing these issues to be directly addressed.
In this article, we first use computational fluid dynamics simu-

lations to show that the metachronal multilimb stroke pattern with
∼0.25 intersegmental phase differences is the most effective and
efficient metachronal stroke pattern across the entire biologically
relevant range of body sizes and stroke frequencies in crustacean
swimming. We then show that the half-center structure of the local-
CPG circuits (21–23) and the topology of the inter-CPG con-
nections in the crayfish swimmeret circuit (19, 20) provide a robust
neural mechanism for producing the 0.25 phase-locked metachronal
wave. This reduces the previously determined constraints on the
phase response properties of the CPGs to a single condition. Fur-
thermore, we experimentally measure the phase response proper-
ties of the crayfish swimmeret CPG circuit and show that this single
condition holds. Finally, we consider all possible topologies for
connections between the local CPGs and show that the network
topology present in the crayfish swimmeret circuit generates the
biomechanically optimal stoke pattern most robustly.

The Mechanical Advantage of the Tail-to-Head Metachronal
Wave of Swimmeret Coordination
Metachronal waves of ciliary beating in microorganisms are the
subject of intense recent study (24–27). These previous works
found that metachronal waves may allow cilia to propel cells
forward with higher propulsion velocity and efficiency. However,
metachronal waves in ciliary beating differ from the metachronal
paddling rhythm in crustacean swimming in many ways: (i)
Swimmerets are plate-like paddles, whereas cilia are hair-like
appendages. (ii) The limb angle of swimmerets changes smoothly
through the cycle with a duty cycle of approximately one-half,
whereas cilia use a fast power stroke and a slow sweeping re-
covery stroke. (iii) Although both swimmerets and cilia beat in
a back-to-front metachronal wave, the phase difference between
neighboring swimmerets is ∼25%, whereas the phase difference
between appendages varies from ∼1% to ∼10% depending on
the organism and location of the cilia on the organism. (iv)
Evidence suggests that phase locking of cilia occurs through
hydrodynamic forces, whereas neural activity is the primary
determinant of phase locking of crustacean swimmerets. (v) The
fluid dynamics resulting from cellular level metachronal waves
are characterized by Reynolds numbers (Re) close to 0. The Re
characterizes the relative importance of inertial forces to viscous
forces in the flow. For Re ≈ 0, viscous forces dominate and in-
ertial forces can be neglected. The Re increases with the size of

the animal (characteristic length scale) and decreases with the
stroke period (characteristic time scale). The natural variation in
a crustacean’s size and stroke frequency leads to Re ranging from
about 10 to 1,000 (SI Text, section 1.1), under which both viscous
and inertial effects are relevant. Hence, the fluid dynamics of cilia
beating are significantly different from the fluid dynamics of crus-
tacean swimming. Relatively few studies have examined meta-
chronal limb paddling for the range of Re under which crustaceans
operate (28–30). Recently, a model based on drag forces alone
predicted a slight mechanical advantage of metachronal wave in krill
swimming (31). However, this model does not capture the nonlinear
interactions of the forces generated by the multiple limbs arising
from the local flow, which have a significant effect on swimming
when limbs are close to each other. To capture this essential effect,
we build a computational fluid dynamics model and numerically
compute the flow field produced by crayfish’s tail-to-head meta-
chronal limb stroke pattern and other hypothetical patterns.
Our fluid dynamics model consists of four rigid paddles as

limbs moving with prescribed motion attached to a fixed wall
immersed in a two-dimensional fluid. To approximate the fact
that swimmerets are straight and fanned-out during PS and are
curled and folded during RS, we treat swimmerets as imperme-
able during PS and permeable during RS (see Materials and
Methods, SI Text, section 1, and Figs. S1–S6 for details).
We compute the flux of the fluid moving in the tail direction and

take its time average as a measure of the effectiveness of the
swimmeret stroke pattern. Fig. 2B depicts the flux of three different
stroke patterns (the natural tail-to-head metachronal wave with 0.25
intersegmental phase differences, the in-phase rhythm, and the
head-to-tail metachronal wave with 0.75 intersegmental phase dif-
ferences) at an intermediate Reynolds number (Re = 200). Both
metachronal stroke patterns produce smoother temporal variation
in flux compared to the in-phase rhythm because PS and RS are
evenly distributed in time among the four limbs. A remarkable ob-
servation is that the natural tail-to-head metachronal wave produces
a 60% increase in average flux over that of the in-phase rhythm and
a 500% increase over that of the head-to-tail metachronal wave.
To illustrate this increased effectiveness of the natural tail-to-

head metachronal wave over other stroke patterns, we put in
free-flowing tracers in the flow and observe how different stroke
patterns lead to different tracer displacement. To allow the ini-
tial transient effect to disappear, we first let the swimmerets beat
for five periods. At the end of the fifth period, we put in the
passive tracers uniformly underneath the body. We observe how
the passive tracers move as the swimmerets undergo another five
periods of strokes under the three different stroke patterns (Fig.
2A and Movies S1–S3). Fig. 2A illustrates that, with the natural
0.25 phase-locked tail-to-head metachrony, the majority of the
tracers are propelled toward the tail direction. The in-phase
rhythm is less effective in driving the tracers toward the tail di-
rection compared to the natural tail-to-head metachrony. With
the 0.75 phase-locked head-to-tail metachrony, it is not clear
whether the tracers are flowing in any particular direction.
Overall, among the three stroke patterns, the natural tail-to-head
metachronal wave of swimmeret coordination is the most ef-
fective stroke pattern in maximizing flux.
The above results are based on simulations for an intermediate

Reynolds number (Re = 200). As the Re changes, the flow char-
acteristics change significantly (Movies S1–S3). Nevertheless, the
relative advantage of the tail-to-head metachronal wave over other
metachronies is preserved across biologically relevant Reynolds
numbers. Fig. 2C shows that the natural tail-to-head metachronal
wave of swimmeret coordination with 0.25 intersegmental phase
differences produces the largest average flux among all meta-
chronal waves for Re= 50, 200, and 800.
As a measure of the efficiency of the stroke pattern, we nor-

malize the average flux by the average power consumption per
stroke period (SI Text, section 1.3). The natural tail-to-head

Fig. 1. Forward swimming of a crustacean. Cycles of power strokes (PSs) and
return strokes (RSs) of the swimmerets provide the thrust for forward swim-
ming. Movement of neighboring swimmerets maintains a quarter-period
phase difference with the more posterior swimmeret leading the cycle. Image
courtesy of Wikimedia Commons/Øystein Paulsen.
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metachronal wave of swimmeret coordination achieves close-to-
maximal efficiency among all metachronies over a wide range of
biologically relevant Reynolds numbers. Fig. 2D shows that the
efficiency peaks at 0.125 phase difference closely followed by the
0.25 phase difference. Across Reynolds numbers from 50 to 800,
the natural tail-to-head metachronal wave is up to 30% more
efficient than the in-phase rhythm and 300% to 550% more ef-
ficient than the head-to-tail metachronal wave.
Overall, the above results show that the natural 0.25 phase-

locked metachrony leads to near-maximal effectiveness and
efficiency over the full span of biologically relevant Reynolds
numbers in crustacean swimming, i.e., a significant biomechanical
advantage is preserved despite the large variation in crustaceans’
size and swimmeret stroke frequency. The biomechanical opti-
mality of the tail-to-head metachronal wave with approximate
0.25 intersegmental phase differences that is independent of
swimmeret beat frequencies raises the question: What are the
neural mechanisms that maintain this limb coordination in such
a robust manner?

A Robust Neural Mechanism Producing Phase Constancy
The isolated neural ventral cord of the crayfish, which contains
the neural circuit driving the movement of the swimmerets, dis-
plays fictive locomotion (Fig. 3A). That is, it expresses rhythmic
neural activity that is analogous to the distinct stroke pattern
observed behaviorally (13, 32). This centrally generated rhythm is
the primary determinant of the swimmeret coordination (SI Text,
sections 1.2, 2.1, and 3). Experiments on the crayfish neural
ventral cord indicate that (i) each swimmeret is innervated by an
anatomically separate and functionally independent CPG (22,
33), and (ii) these CPGs are connected through ascending and
descending coordinating neurons (19). Thus, the neural circuit
driving metachronal swimmeret movements can be considered as
a chain of four pairs of neuronal oscillators.
A useful mathematical framework for studying dynamics of

interconnected CPGs is the coupled phase model (17, 34), where
the state of each CPG is described completely by its phase. If the
ith CPG is isolated, then its phase θi (0≤ θi < 1) will evolve at its
intrinsic frequency ω, i.e., θi = ðωt+ϕ0

i Þ mod 1, where ϕ0
i is the

initial phase of the CPG. If the ith CPG is coupled with the jth
CPG, then the rate of change of phase will be sped up or slowed
down due to input from this intersegmental coupling. The
magnitude of the acceleration or deceleration of phase depends
on the timing and structure of the input from the jth CPG and
the state-dependent response of the ith CPG. This effect is
quantified by the “interaction function,” which is a function of

the phase difference between the two coupled CPGs (18, 35) and
is related to the phase response curve (SI Text, section 2.2).
Previously, Skinner et al. (15) used the phase model framework

to describe the neural circuit of the crayfish swimmeret system as
a chain of four generic oscillators with nearest-neighbor coupling:
8>>>>>>><
>>>>>>>:

dθ1
dt

=ω+Hascðθ2 − θ1Þ;
dθi
dt

=ω+Hascðθi+1 − θiÞ+Hdscðθi−1 − θiÞ;
dθ4
dt

=ω+Hdscðθ3 − θ4Þ;

i= 2 and 3;

[1]

where Hasc and Hdsc are the interaction functions for ascend-
ing and descending connections, respectively. Because the in-
teraction functions are functions of the phase difference
between the CPGs, they are 1-periodic functions. Phase-locked
rhythms correspond to states in which the intersegmental phase
differences Δθi = θi+1 − θi are constant, i.e., ðdΔθiÞ=dt= 0 for
i= 1;   2;   and  3. Metachronal waves correspond to phase-locked
states where Δθi are equal. Note that the tail-to-head 0.25 phase-
locked state requires both Hascð0:25Þ= 0 and Hdscð−0:25Þ= 0. The
question remains as to how the structure of the crayfish neural
circuit maintains these two constraints on the interaction functions,
and therefore maintains the optimal stroke pattern, over a broad
range of stroke frequencies. However, recent experimental findings
elucidating the structure of the crayfish swimmeret neural circuit
allow this question to be addressed.
Accumulated anatomical and physiological results on the local

and intersegmental circuitry of the crayfish swimmeret system
(13, 19, 20, 23, 36) have revealed the following circuit architec-
ture (for a more detailed description of the circuit, see SI Text,
section 2.1 and Fig. S7): Each local CPG is composed of a half-
center oscillator (HCO) that consists of two mutually inhibited
neurons, a P cell and an R cell, that oscillate in antiphase. The P
cell drives the PS motor neurons, and the R cell drives the RS
motor neurons. Each local HCO has the same frequency and
is effectively coupled with its nearest neighbor(s) through in-
tersegmental connections diagramed in Fig. 3B. The descending
connection is effectively excitatory and goes from the P cell of an
HCO to the R cell of its more posterior neighbor HCO. The as-
cending connection is effectively excitatory and goes from the R cell
in an HCO to the R cell of its more anterior neighbor HCO.
The ascending and the descending intersegmental connections

Fig. 2. Computational fluid dynamics model of
crayfish swimmeret paddling. (A) Snapshots of
the flow field at Reynolds number 200 under the
natural tail-to-head metachrony with 0.25 phase
difference, the hypothetical in-phase rhythm,
and the hypothetical head-to-tail metachrony
with 0.75 phase difference. Free-flowing tracers
are shown as green dots; red denotes positive
vorticity; and blue denotes negative vorticity. (B)
Flux vs. normalized time for flows in A. (C ) Av-
erage flux vs. phase difference. (D) Efficiency vs.
phase difference. For B–D, the curves are nor-
malized by the time-averaged flux or efficiency
of the in-phase rhythm. For C and D, results for
three Reynolds numbers are provided: 50 (cyan
curve with “O”), 200 (black curve with “+”), and
800 (magenta curve with “☐”).
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between nearest neighbors have similar strength and dynamics.
We will show that the CPGs’ half-center structure and the
asymmetric intersegmental connectivity described above provide
a robust mechanism for generating the 0.25 phase constancy
independent of the intrinsic properties of the CPGs and details
of the intersegmental coupling.

A Phase Model for Two Coupled HCOs. It is instructive to first consider
a subnetwork of two coupled HCOs in which each HCO has only
one incoming connection and one outgoing connection. Because
(i) the ascending connection between the HCOs is between R
cells, (ii) the descending connection links a P cell to an R cell, and
(iii) the P and R cells in each HCO are in antiphase, the
descending output is effectively phase delayed by a half-period
with respect to the ascending output. In the phase model, the
entire local module is considered to be an oscillatory unit, whose
state is described by its phase θi alone, but the ascending and
descending outputs are in antiphase, i.e., θi and θi + 0:5, re-
spectively. Hence, by defining Hðθ2 − θ1Þ=Hascðθ2 − θ1Þ, the
interaction function for the descending connection can be rewritten

as Hdscðθ1 − θ2Þ=Hðθ1 − θ2 + 0:5Þ. Therefore, the dynamics of the
two HCOs is described by a system of two differential equations:

8>><
>>:

dθ1
dt

=ω+Hascðθ2 − θ1Þ=ω+Hðθ2 − θ1Þ;
dθ2
dt

=ω+Hdscðθ1 − θ2Þ=ω+Hðθ1 − θ2 + 0:5Þ:
[2]

It follows that the phase difference Δθ= θ2 − θ1 between the HCOs
is given by a single differential equation:

dΔθ
dt

=Hð−Δθ+ 0:5Þ−HðΔθÞ: [3]

Because H has a period of 1, Eq. 3 reveals that Δθ = 0.25 and
0.75 are always phase-locked states. We stress that this result is
independent of the frequency of the oscillator and does not rely
on tuning any specific biophysical parameters. This implies that
the phase constancy of the 0.25 phase-locked state arises robustly
from the organization of the neuronal circuitry (37).
The invariance of the phase-locked state with the 0.25 phase

difference can be understood by considering the timing of the out-
put from thehalf-center oscillators relative to the phase atwhich the
oscillators receive the input. Suppose thatHCO-2 is phase advanced
by 0.25 relative toHCO-1. TheR cell ofHCO-1 receives input from
the R cell of HCO-2 that is phase advanced by 0.25. On the other
hand, the R cell of HCO-2 receives input from the P cell of HCO-1,
which is a half-period out of phase with the R cell of HCO-1. Thus,
theRcell ofHCO-2 receives input that is effectivelyphaseadvanced
by 0.25 (i.e., −0:25+ 0:5). This implies that both oscillators receive
input at the exact same phases in their cycles. Therefore, they adjust
their instantaneous frequencies in the exact same way, and HCO-2
remains phase advanced by 0.25 relative to HCO-1.

The Full Circuit of Four Coupled HCOs. Although the crayfish’s four-
HCO neural circuit is not a trivial generalization of the two-
HCO circuit, the half-center structure of the CPG and the
asymmetric intersegmental connectivity are still the key organi-
zational features of the four-HCO neural circuit that gives rise
to an approximate 0.25 phase constancy. From Eq. 1, the dy-
namics of the phase differences between each neighboring HCO
½ðΔθ1;Δθ2;Δθ3Þ, where Δθi = θi+1 − θi� are described by:
8>>>>>>><
>>>>>>>:

dΔθ1
dt

=HascðΔθ2Þ+Hdscð−Δθ1Þ−HascðΔθ1Þ;
dΔθ2
dt

=HascðΔθ3Þ+Hdscð−Δθ2Þ−HascðΔθ2Þ−Hdscð−Δθ1Þ;
dΔθ3
dt

=Hdscð−Δθ3Þ−HascðΔθ3Þ−Hdscð−Δθ2Þ:
[4]

As mentioned earlier, ðΔθ1;Δθ2;Δθ3Þ= ð0:25; 0:25; 0:25Þ is a
phase-locked state if and only if both Hascð0:25Þ= 0 and
Hdscð−0:25Þ= 0. Note that these are two independent conditions
that the crayfish swimmeret neural circuit needs to satisfy. However,
because of the half-center structure of the CPGs and the interseg-
mental connectivity (Fig. 3B), one of the above two conditions is
eliminated. Recall that the descending outputs are effectively phase
delayed by a half-period with respect to the ascending outputs, i.e.,
Hascðθ2 − θ1Þ=Hðθ2 − θ1Þ and Hdscðθ1 − θ2Þ=Hðθ1 − θ2 + 0:5Þ.
By substituting these expressions into Eq. 4, we find that
ðΔθ1;Δθ2;Δθ3Þ= ð0:25; 0:25; 0:25Þ is a phase-locked state if and
only ifHð0:25Þ= 0. That is, because of the special organization of
the four-HCO neural circuit, the crayfish swimmeret neural cir-
cuit only needs to meet one condition to produce the tail-to-
head 0.25 phase locking.

Fig. 3. Neuronal circuitry underlying the crayfish swimmeret system. (A)
The neural circuit underlying the crayfish swimmeret system consists of
a chain of four CPGs located in the abdominal ganglion A2–A5. Each CPG
innervates motor neurons that drive the power strokes (PSs) and return
strokes (RSs) of a swimmeret. The dissected neural cord in isolation can
generate the tail-to-head metachronal wave of neuronal activity as seen
in the simultaneous extracellular recordings from the four PS motor
nerves, PS2–PS5. (B) Schematic diagram of the neural circuit composed of
a chain of four coupled CPGs. Each CPG is modeled as an HCO consisting
of two mutually inhibited cells (large circles in diagram) that oscillate in
antiphase. Cells in HCOs denoted by iP drive PS motor neurons, and cells
denoted by iR drive RS motor neurons (i = 1, 2, 3, and 4). The small solid
black circles symbolize inhibitory connections, the small solid triangles
symbolize excitatory connections, and the colors indicate the origin of
each intersegmental connection. (C ) Experimentally measured inter-
action function H for a crayfish swimmeret CPG. (D) The natural network
topology (a1) in the crayfish swimmeret neural circuit and three hypo-
thetical network topologies, (a2), (s1), and (s2), in a chain of four HCOs
with nearest-neighbor coupling. Only the middle two HCOs are shown.
The small open circles symbolize either excitatory or inhibitory con-
nections.
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Furthermore, the condition Hð0:25Þ= 0 can be relaxed if
we allow a small deviation from the exact 0.25 phase locking,
i.e., if we consider an approximate 0.25 phase-locked solu-
tion ðΔθ1;Δθ2;Δθ3Þ= ð0:25+ «; 0:25; 0:25− «Þ for some small «.
From Eq. 4, an approximate 0.25 phase locking exists if and
only if Hð0:25Þ+ Hð0:25− «Þ−Hð0:25+ «Þ= 0. This condition
is equivalent to the condition that «≈Hð0:25Þ=2H′ð0:25Þ is small.
For example, if the ratio jHð0:25Þ=H′ð0:25Þj is less than 20%, the
resulting phase differences will be between 0.15 and 0.35 approx-
imately. In addition, one can show that the tail-to-head 0.25 phase
locking is stable if H has a positive slope at 0.25, i.e., H′ð0:25Þ> 0
(SI Text, section 2.3 and Tables S1 and S2). Note that, in the above
analysis, we have assumed identical strength for ascending and
descending connections because experimental results have shown
that they are similar in strength and dynamics. In SI Text, section
2.4, we further show that this equal strength minimizes the de-
viation of the phase-locked state from 0.25.

Experimentally Measured Interaction Function. Our analysis shows
that if each crayfish swimmeret local CPG (the kernel of which is
a HCO) satisfies the condition that «=Hð0:25Þ=2H′ð0:25Þ is
small, then the swimmeret neuronal circuitry gives rise to the
robust 0.25 phase locking. Indeed, Fig. 3C shows that the ex-
perimentally measured interaction function HðθÞ is relatively
small at 0.25, and has a relatively steep positive slope at this
point, giving rise to «≈Hð0:25Þ=2H′ð0:25Þ= 0:06. Therefore,
both the existence condition (« is small) and the stability con-
dition [H′ð0:25Þ> 0] predicted by our mathematical model are
satisfied. It can be further shown that these conditions on the
interaction function arise from the generic phase response
properties of HCOs (SI Text, section 2.6).

Discussion
Our results demonstrate that the distinct limb coordination in crus-
tacean swimming provides the biomechanically optimal stroke pat-
tern over a wide range of biologically relevant paddling frequencies
and animal sizes, i.e., Reynolds numbers (Re). Furthermore, the
relative simplicity of the crustacean nervous system and recent
advances in the knowledge of the crayfish swimmeret neuronal
circuit allow us to identify how the structure of the circuit robustly
gives rise to this stroke pattern. Thus, the swimmeret system of long-
tailed crustaceans serves as a concrete example of how the archi-
tecture of a neural circuit gives rise to optimal locomotor behavior.
Our computational fluid dynamics simulations show that the flow

characteristics are substantially different as the Re changes from 50
to 800 (Movies S1–S3). Despite these differences, the distinct tail-
to-head metachronal stroke pattern maintains a significant advan-
tage over other stroke patterns. Furthermore, the relative advantage
of this limb coordination persists over the natural variation of limb
spacing (SI Text, section 1.3, and Fig. S6). This suggests that the
primary mechanism that gives the distinct tail-to-head metachronal
stroke pattern a significant advantage over other stroke patterns
does not involve careful timing of limb movements to exploit subtle
fluid–structure interactions. Instead, we conjecture that the advan-
tage arises from a simple, robust geometric mechanism based on the
asymmetric arrangement of the neighboring limbs during PSs and
RSs. Because PS generates positive flux whereas RS counteracts the
flux generation, an efficient stroke pattern should maximize the
effect of PS while minimizing the effect of RS. As illustrated in
Fig. 4, under the natural tail-to-head metachrony with 0.25 phase
difference, the volume of fluid enclosed by the neighboring limbs
during PS is much larger than that during RS. This significant
asymmetry in the volume of fluid enclosed by the PS and the RS
leads to a very effective mechanism for generating positive flux.
Therefore, a significantly larger average flux is generated under
the natural 0.25 phase-locked rhythm compared to the case with
the in-phase rhythm, under which the PS and the RS enclose the
same volume of fluid. Similar to the reasoning above, under the

hypothetical 0.75 phase-locked head-to-tail metachrony, the PS
encloses a much smaller volume of fluid than the RS does.
Hence, the head-to-tail metachrony is an ineffective stroke pat-
tern for generating positive flux.
Experimental results show that the timing of the swimmeret

movements is strongly correlated with the timing of the bursts of
muscle activity caused by motor neuron input (38). Furthermore,
long-tailed crustaceans exhibit the distinct tail-to-head stroke
pattern in a variety of swimming modes, including forward
swimming and hovering, in which the limbs experience different
hydrodynamic forces (29). These observations suggest that the
intersegmental phase differences between swimmerets result pri-
marily from neural input to the muscles rather than from the
interaction between hydrodynamic forces and passive body me-
chanics. Neural input to the muscles is shaped by the rhythm in-
trinsically generated in the central nervous system and sensory
feedback. However, while proprioceptive reflexes appear to be
able to increase the PS motor drive to compensate for changes in
load on the swimmerets (39, 40), extensive experimental evidence
suggests that proprioceptive feedback has little effect on interlimb
coordination (41–43). Thus, sensory feedback, hydrodynamic
forces, and limb mechanics are likely to influence the stroke ki-
nematics of an individual limb and the animal’s overall swimming
performance, but the feedforward drive from the central nervous
system is the primary determinant of coordination between limbs.
(See SI Text, section 1.2 and section 3, for details.)
The key organizational features of the crayfish neural circuit for

producing the phase constancy with 0.25 intersegmental phase
differences are the internal half-center structure of the local CPG
and the topology of the ascending and descending connections
between the local CPGs. To highlight this fact, let us consider other
hypothetical patterns of intersegmental connection in a chain of
four HCO-based CPGs. Fig. 3D shows the four fundamentally
different connectivity patterns that can occur between HCOs with
only one ascending and one descending connection. Connection
scheme (a1) is the connectivity that is present in the crayfish
swimmeret neural circuit, and (a2), (s1), and (s2) are three hypo-
thetical network topologies. Depending on whether the coupling is
between a P cell and an R cell or between the same cell type, the
overall network topology can be asymmetric or symmetric. It can
be shown (SI Text, section 2.3) that a symmetric network topology
(s1) or (s2) can robustly produce the in-phase rhythm and the
antiphase rhythm (0.5 phase difference); however, they do not
robustly produce the natural tail-to-head metachronal wave (0.25
phase difference). Furthermore, given the response properties of
the crayfish swimmeret local CPGs (as in Fig. 3C), the asymmetric
topology (a2) can robustly produce the head-to-tail metachronal
wave (0.75 phase difference) but not the natural tail-to-head
metachronal wave (0.25 phase difference).
The results discussed above can be extended beyond circuits with

single ascending and descending connections between neighboring
modules and equal connection strengths. In fact, it can be shown
that, in the chain of four HCOs, equal ascending and descending
connection strengths minimize the deviation of the intersegmental
phase difference from 0.25 (SI Text, section 2.4). Furthermore, if
multiple ascending or descending connections between neighbor-
ing HCOs are permitted, then circuit topologies other than (a1) can
produce robust phase locking with phase lags of 0.25, but these con-
nectivity schemes must have an analogous structure to the (a1)

Fig. 4. Position of neighboring limbs in the middle of the PS and the RS,
respectively, in the natural 0.25 phase-locked rhythm.
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connection scheme. That is, descending connections must link P and
R cells, whereas ascending connections must link R cells to R cells
and/or P cells to P cells, and the connection strengths must be ap-
propriately balanced (SIText, section 2.5). Although it is possible that
other connectivity schemes could support the 0.25 tail-to-head met-
achronal limb coordination, well-tuned compensatory mechanisms
would be required tomaintain this coordination over a wide range of
paddling frequencies. Thus, the natural asymmetric circuit topology
(a1) appears to generate this stroke pattern with the maximal ro-
bustness and minimal requirements.
HCOs are general, primitive motifs in locomotor CPGs and

often serve as building blocks for networks of CPGs (44, 45).
This fact and our finding that the natural asymmetric network
topology in the crayfish swimmeret neural circuit is superior to
all other intersegmental connectivity schemes in a chain of
HCOs in robustly producing the biomechanically optimal tail-to-
head metachronal stroke pattern suggest that similar neural
circuits drive coordinated swimmeret movement in all long-tailed
crustaceans. Furthermore, given the large metabolic cost of crus-
tacean swimming (6, 46), our results suggest that the asymmetric
network topology is the result of natural selection in favor of more
effective and efficient swimming.

Materials and Methods
In our fluid model of the swimmeret system, the motion of the limbs drives the
motion of the surrounding fluid. The equations that determine themotion of the
fluid are Navier–Stokes equations. We use the immersed boundary method, in
which structures (limbs and body) are represented in a moving, Lagrangian co-
ordinate system, whereas fluid variables are represented in a fixed, Eulerian co-
ordinated system (47). Because the limbs during PSs and the body are
impermeable, the fluid is forced to move with the prescribed velocity on
these structures. When the limbs become permeable during RSs, the fluid will
permeatethroughtheorthogonaldirectionof the limbwithaslipvelocity.SI Text,
section 1,providesadetaileddescriptionofourfluidmodel, thebiomechanics of
the swimmerets, and the numerical method for the fluid model.

To experimentally measure the interaction function H of a crayfish
swimmeret local CPG, we effectively isolate local CPGs in the isolated neural
ventral cord preparation and subject them to input that mimics the input
from neighboring CPGs (19, 20). By varying the phase of the input within the
local CPG’s cycle and plotting changes in cycle period as a function of phase,
we construct the interaction function H plotted in Fig. 3C (SI Text, section
2.2; see also figure 2 in ref. 20) (48).
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Section 1. Fluid Dynamics Model
Section 1.1. Fluid Model. Our model of the swimmeret system
consists of four rigid paddles (limbs) attached to a fixed rigid wall
(body) immersed in a two-dimensional fluid. The limbs move with
a prescribed swinging motion mimicking the power strokes (PSs)
and return strokes (RSs) of the swimmerets. Specifically, the
angle between the limb and the body (Fig. S1) is prescribed to be
αiðtÞ= α−Acosð2πððt=TÞ+ϕiÞÞ, where A= π=4 is the amplitude,
α= π=2 is the mean angle, T is the stroke period, ϕi is the relative
phase of the ith limb, and t is time. Different stroke timing patterns
are realized through the choice of relative phase ϕi, e.g., the nat-
ural tail-to-head metachrony with 0.25 phase difference is achieved
using ϕ1 = 0, ϕ2 = 0:25, ϕ3 = 0:5, and ϕ4 = 0:75. Limbs are attached
to the fixed wall with a neighboring limb spacing of w= 2:25 cm:
Crustaceans vary in size and their swimmerets can stroke

with different frequencies. The Reynolds number is defined as
Re= L̂Û=υ, where L̂ is a characteristic length, Û is a characteristic
velocity, and υ= 0:01 cm2=s is the kinematic viscosity of water at
20 °C. We take the limb length llimb as L̂, and the maximal velocity
of the limb umax = ð2πAllimbÞ=T as Û, where A is the swimmeret
stroke amplitude. For example, typical parameters associated with
fast forward swimming of Antarctic krill (1) are llimb ≈ 0:5 cm,
T ≈ 0:2 s, and A≈ π=4, which give Re≈ 600: For adult crayfish (2),
llimb ≈ 1 cm, T ranges from 0.25 to 1 s and A≈ π=8, which give
Reynolds number spanning from 250 to 1,000. Younger crayfish
have shorter limbs, which results in Reynolds numbers in the order
of 10. In our simulations, we use Re = 50, 200, and 800 achieved
by fixing llimb = 1:5 cm, A= π=4, and adjusting T accordingly.
The motion of the limbs drives the motion of the surrounding

fluid. The equations that determine the motion of the fluid are
Navier–Stokes equations:

ρ

 
∂~u
∂t

+~u ·∇~u

!
=−∇p+ μΔ~u+~f ; [S1]

∇ ·~u= 0: [S2]

The variable t is time, ~u is the fluid velocity, p is the pressure,
~f is the applied force density, ρ is the fluid density, and μ is the
viscosity. We use the immersed boundary method, in which
structures (limbs and body) are represented in a moving, La-
grangian coordinate system, whereas fluid variables are repre-
sented in a fixed, Eulerian coordinated system (3). The force
density~f is determined implicitly by the boundary condition on
the immersed structures.
The immersed structures (limbs and wall) are parameterized by

arc length s, and their position is denoted by ~Xðs; tÞ. We use
capital letters ~Uðs; tÞ;~Fðs; tÞ; ~Xðs; tÞ for the velocity, force density,
and position defined in the Lagrangian coordinates, and lower-
case letters for fluid variables in the Eulerian coordinates. The
force density ~f ð~x; tÞ in Eq. 1 is obtained from the force density
~Fðs; tÞ by:

~f
�
~x; t
�
= S
�
~F
�
=

Z
structure

~Fðs; tÞδ
�
~x−Xðs; tÞ

�
ds; [S3]

where δð~xÞ is the Dirac delta function. The operator S “spreads”
the force density from the immersed boundary coordinates to
force density in the fluid coordinates. The fluid velocity interpo-
lated to the immersed structure is:

~Uðs; tÞ= Sp
�
~u
�
=

Z
fluid

~u
�
~x; t
�
δ
�
~x−Xðs; tÞ�d~x: [S4]

Note that ~Uðs; tÞ is different from the velocity of the limbs
prescribed as ~UIBðs; tÞ= ð∂~Xðs; tÞÞ=∂t.
Because the limbs during PS and the body are impermeable, the

fluid is forced to move with the prescribed velocity on these
structures. When the limbs become permeable during RS, the
fluid will permeate through the orthogonal direction~n of the limb
with velocity Uslip. Then the velocity of the structures and the
fluid satisfy:

~UIBðs; tÞ= Sp
�
~u
�
−Uslip~n: [S5]

The slip velocity is proportional to the pressure jump across the
permeable structure, given by Uslip =−ξ½p�, where ξ is a perme-
ability coefficient. The pressure jump, [p], is related to the im-
mersed boundary force at the limb by ½p�=~F ·~n (4, 5). Therefore,
the fluid velocity is required to satisfy:

~UIB = Sp
�
~u
�
+B~F; [S6]

where

B=
�

0; on  the  limbs  during  PS  and  on  the  body;
ξ~n~nT ; on  the  limbs  during RS; [S7]

and ~n is a unit column vector that points at the orthogonal di-
rection of the limb with the positive direction defined as the tail
direction. The fluid velocity~u, pressure p, and the structure force
density ~F are determined by the system Eqs. S1, S2, and S6,
where the Lagrangian and Eulerian variables are related through
Eqs. S3 and S4.

Section 1.2. Biomechanics of Swimmerets and Justification of the
Fluid Model Assumptions. Swimmerets are constructed of a series
of three rigid, hollow tubes connected by joints. The tube closest
to the body wall, the very short “coxa,” is connected to the body
by a joint made of a short section of thinner, flexible membrane that
permits large rotation of the joint in one plane. The distal end of
coxa is connected by a similar joint to the much longer “basipodite,”
which at its distal end is connected again to two “rami” that are the
distal ends of the swimmerets. Because the greatest range of rota-
tion is at the base of the limb, at the body wall–coax joint and the
coxa–basipodite joint, we model the swimmeret as a rigid paddle
that rotates about its connection to the rigid body. The pair of distal
rami are extended during each PS movement, but flexed somewhat
during each RS movement, reducing their drag. To approximate
this fact that swimmerets are straight and fanned-out during PS and
are curled and folded during RS, we treat swimmerets as imper-
meable during PS and permeable during RS.
The motion of the swimmerets is driven by striated skeletal

muscles that change the angle of rotation about the joints. There are
two functional sets of muscles, PS muscles and RS muscles, that
operate across each joint. The largest muscles operate across the
joint that connects the swimmeret to the body (6, 7), and these
produce most of the force that drives each PS and RS. This mus-
culature is innervated by motor axons that project from the central
pattern generator (CPG) in the abdominal segment on which the
swimmeret is mounted. Bursts of action potentials in motor axons
lead to bursts of electrical activity in the PS and RS muscles.
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Fig. S2 (from ref. 1) shows the position of a swimmeret (i.e.,
the angle of the joint that connects the swimmeret to the body)
and the corresponding electrical activity in power stroke muscles
(PSm) and return stroke muscles (RSm). The swimmeret posi-
tion changes smoothly over time in an almost sinusoidal manner.
Note, however, that there are variations from cycle to cycle. Nev-
ertheless, the timing of the swimmeret movements is strongly
correlated with the timing of the bursts of muscle activity caused by
the motor neuron input. We note further that the distinct tail-to-
head metachronal interlimb coordination is maintained in a variety
of swimming modes [forward swimming, upside-down swimming,
hovering, and tethered swimming (1, 8)] in which the swimmerets
experience different hydrodynamic forces. These observations im-
ply that the nonlinearity of muscles and the passive viscoelasticity
of the skeleton that complicate analysis of fish swimming (9, 10)
are not primary factors for understanding the mechanisms un-
derlying the intersegmental phase differences between swimmerets
during swimming in long-tailed crustaceans. Thus, the motion of
the swimmerets in a fluid dynamics model can be well approxi-
mated by prescribing their positions, as we do in our model.

Section 1.3. Numerical Method for the Fluid Model. The computa-
tional domain is a 60-cm–wide and 10-cm–high rectangle for all
simulations. We use periodic boundary conditions on all four
edges of the rectangular domain to facilitate the use of a Fourier
pseudospectral method (11, 12). The fixed horizontal wall that
mimics the body is a 60-cm–wide horizontal rigid wall in parallel
to the length direction of the domain. This wall enforces the no-
slip condition, i.e., the fluid cannot move relative to the wall.
Hence, the periodic condition in the vertical direction and the
fixed horizontal wall is equivalent to a 10-cm–high channel with
no-slip conditions on the top and the bottom of the domain. In
all relevant figures, the horizontal wall is visualized a distance of
2 cm from top of the computational domain. Note, however, this
2-cm offset is arbitrary and does not affect the results. The limbs
occupy a small rectangular region that is less than 10 cm in width
and 4 cm in height (Fig. S3). We use a 60-cm–long domain,
which is sufficiently long to allow the velocity field to equilibrate
and establish a flow independent of the x coordinate (Fig. S4).
The fluid velocity and pressure are located on a fixed, uniform

Eulerian grid with spacing h= 10=256 cm; ~xi;j = ðxi; yjÞ is the lo-
cation of the (i, j)th Eulerian fluid grid point. The differential
operators in Eqs. S1 and S2 are discretized using the pseudo-
spectral method (11, 12). The immersed structures (the limbs
and the wall) are discretized on a moving Lagrangian grid with
uniform mesh spacing Δs= h; ~Xk = ðXk;YkÞ is the location of the
kth immersed boundary point. The Dirac delta function in Eqs. S3
and S4 is approximated by δð~xÞ≈ δhðxÞδhðyÞ, where~x= ðx; yÞ and

δhðxÞ=
8<
:

1
4h

�
1+ cos

�πx
2h

��
; if jxj< 2h;

0; otherwise:

[S8]

Then the discretized spreading operator Sh and the discretized
interpolation operator Sph are, respectively,

~f i;j = Sh
�
~F
�
=Δs

X
k

~Fk   δhðxi −XkÞδh
�
yj −Yk

�
; [S9]

~Uk = Sph
�
~u
�
= h2

X
i;j

~ui;jδhðxi −XkÞδh
�
yj −Yk

�
: [S10]

For temporal discretization, we use the semiimplicit backward
differentiation formula method, a second-order implicit–explicit
time difference scheme (13) with time step Δt= 2× 10−4T, where

T is the period of the stroke. We use a superscript to denote the
time level, e.g., ~unð~xÞ=~uð~x; nΔtÞ. The fully discretized system is:

ρ
3~un+1 − 4~un +~un−1

2Δt
=−ρ

�
2~un ·∇h~u

n −~un−1 ·∇h~u
n−1
�

−∇hpn+1 + μΔh~u
n+1 + Sh

�
~F
n+1�

;

[S11]

∇h ·~u
n+1 = 0; [S12]

~U
n+1
IB = Sph

�
~un+1

�
+B~F

n+1
; [S13]

where ∇h;∇h·; and Δh are the discretized spatial differential
operators.
Beginning with ~un−1;~un;~F

n
and given ~U

n+1
IB , we approximately

solve the system (Eqs. S11–S13) to obtain ~un+1; pn+1;~F
n+1

, using
the following predictor–corrector method: We first predict the
fluid velocity and pressure by advancing Eqs. S11 and S12 using
the force density from the previous time step as the initial guess.
Then the boundary condition Eq. S13 is enforced to predict the
force density. We repeat this process using the predicted force
density as the approximation to ~F

n+1
. Our method is similar to

the projection approach of Taira and Colonius (14) and the
fractional time stepping of Su, Lai, and Lin (15).
Specifically, our algorithm advances the variables from tn = nΔt

to tn+1 as follows:

1. Solve Eqs. S11 and S12 for~un+1;p using ~F
n
as the initial guess

for ~F
n+1

.
2. Perform a projection (15) of ~un+1;p to enforce the boundary

condition (Eq. S13) by solving:

~un+1 −~un+1;p

Δt
= Sh

�
δ~F
�
; [S14]

~U
n+1

= Sph
�
~un+1

�
+B
�
~F
n
+ δ~F

�
; [S15]

for δ~F.

3. Solve Eqs. S11 and S12 for~un+1 using ~F
n
+ δ~F as the corrected

approximation to ~F
n+1

.
4. Repeat step 2 to update ~F

n+1
.

Given the flow field and structure force density, we compute
the flux of the fluid by Qn = h

P
j~u

nðxend; yjÞ and the power con-
sumption of the limb movement by PCn =Δs

P
k
~F
n
k ·~U

n
k . Average

flux hQi and average power consumption hPCi are obtained by
taking the time average of Qn and PCn over the 10th period,
which allows the initial transient flows to dissipate. Then our
efficiency measure of the stroke pattern is given by hQi=hPCi.
Finally, we calculate the average flux produced by consecutive PS

and RS of a single limb using different values of nondimensional
permeability coefficient ξ̂ and Re (Fig. S5). Average flux in gen-
eral grows positively as ξ̂ increases, but its growth rate decreases as
ξ̂ gets larger. The results shown in the main text are produced
using ξ̂= 0:5, which produces an intermediate average flux. It is
important to note that, although different values of ξ̂ lead to
different absolute values of average flux, ξ̂ does not affect the
significant relative advantage of the tail-to-head metachronal wave
compared to other metachronies.
In Discussion in the main text, we argued that the significant fluid

mechanical advantage of the tail-to-head metachronal rhythm of
limb movement arises from a robust geometric mechanism based on
the asymmetric arrangement of the neighboring limbs during PS
and RS. This further implies that, if neighboring limbs are more
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closely spaced, the relative advantage of the tail-to-head meta-
chrony (and the relative disadvantage of the hypothetical head-to-
tail metachrony) compared to the in-phase rhythm will be
augmented. Fig. S6 shows that for tail-to-head metachronies, the
average flux indeed increases as the limb spacing w shortens,
and for head-to-tail metachronies, the average flux indeed
decreases as w shortens. Note that, with a smaller w, neighboring
limbs can collide if the phase difference is close to 0.5 (anti-
phase). To avoid limb collision, the simulations are performed
for phase differences that do not lead to collision.

Section 2. Neural Circuit of Swimmeret System
Section 2.1. Neural Circuit of Swimmeret System and Reduction to
Phase Model. This subsection provides a detailed description of
the neural circuit of the crayfish swimmeret system and explains
how it relates to the idealized circuit model and the phase model
presented in the main text.
The coordinatedmovements of swimmerets are driven by amotor

pattern generated by neural mechanisms intrinsic to the central
nervous system (CNS). The crustacean CNS consists of segmental
ganglia connected by axons to form a ventral nerve cord running the
length of the body. In those abdominal segments that carry a pair of
swimmerets, the segmental ganglion contains two neural modules,
each of which contains the complete innervation of one swimmeret.
Each swimmeret has its own set of motor neurons that innervate
functionally antagonist PS and RS muscles (16).
Our phase models of this nervous system are based on detailed

experimental and anatomical descriptions of the cellular compo-
nents and organization of individual swimmeret modules (16, 17)
and similarly detailed descriptions of the components and orga-
nization of the intersegmental coordinating circuit (18, 19). In
each swimmeret module, a pattern-generating circuit organizes
the swimmeret’s motor neurons so that PS and RS motor neurons
fire alternating bursts of action potentials. Each module can op-
erate independently, but the series of four pairs of modules are
normally coordinated by intersegmental connections that impose
the phase differences characteristic of swimmeret movements
during forward swimming. This distinct pattern can be expressed
by the isolated abdominal nerve cord without any need for cycle-
by-cycle proprioceptive information (2, 20). These in vitro motor
patterns, “fictive locomotion,” show the same PS–RS alternation
and the posterior-to-anterior intersegmental phase delays char-
acteristic of coordinated swimmeret beating (Fig. 3A). These
phase relations are maintained through a 10-fold range of periods.
Fig. S7 depicts the synaptic organization of the circuit that

generates and coordinates activity in the swimmeret modules in
ganglia A2, A3, A4, andA5 (Fig. 3). The key features of the circuit
are as follows.
The local circuit in each module produces rhythmic antiphase PS-RS activity.
The pattern-generating kernel of each module is formed by non-
spiking local interneurons, IPS and IRS, which are connected by
reciprocal inhibition. This “half-center” structure produces antiphase
activity in the IPS and IRS interneurons that gate their synapses
in an on and off manner with an approximately half-period duty
cycle. Experimental measurements show that the intrinsic frequen-
cies of the pattern-generating kernels in each module are similar (2).
Ascending output is in-phase with the PS of the local module, whereas
descending output is in-phase with the RS of the local module. The pat-
tern-generating kernel drives the activity of the PS and RS motor
neurons and spiking neurons, ASCE and DSC. ASCE neurons fire
bursts of spikes that are in-phase with the module’s PS motor
neurons, carrying information of the local module’s phase to
more anterior modules. DSC neurons fire bursts of spikes that
are in phase with the module’s RS motor neurons, carrying in-
formation of the local module’s phase to more posterior modules.
All coordinating input coming into a local module is transmitted to the
IRS neuron (through ComInt1). The local nonspiking interneuron
ComInt1 (CI1) is the target of all intersegmental synaptic input to

the module via ASCE and DSC axons. Each ComInt1 transmits
the coordinating information to the IRS neuron in its own pat-
tern-generating kernel. Although each module receives input
from all other modules, synaptic connections between nearest-
neighboring modules are significantly stronger than longer-range
connections (19). Synaptic input from ascending and descending
input from neighboring modules onto CI1 are similar in strength
and dynamics, and therefore the local oscillating module re-
sponds to ascending and descending input in a similar manner.
The idealized model circuit that we describe in the main text

highlights the topological structure of the swimmeret circuit. We
describe the circuit as a chain of half-centered oscillators (HCOs)
that captures all of the key experimentally determined features of the
circuit (18, 19, 21). Specifically, (i) each pattern-generating circuit is
condensed into a half-center oscillator composed of two reciprocally
inhibitory cells, and (ii) the trisynaptic intersegmental connections
are collapsed to single monosynaptic connections between cells in
the pattern-generating kernels, i.e., ascending connections project
from a cell in-phase with the IRS neuron (the R cell) in the more
posterior kernel to a cell in-phase with the IRS neuron (the R cell)
in the more anterior kernel, whereas descending connections
project from a cell in-phase with the IPS neuron (the P cell) in the
more anterior kernel to a cell in-phase with the IRS neuron (the R
cell) in the more posterior kernel (as shown in Fig. S6 and Fig. 3).
This model encapsulates the known cellular composition and syn-
aptic organization of a module’s 90–100 neurons. Because longer-
range connections are significantly weaker than nearest-neighbor
connections, we have not included them in our model.
The main text explains how this idealized model of the circuit is

reduced to our phase model. However, it is important to note that
we use the idealized model only to simplify the description of the
circuit and to highlight the topological structure of the swimmeret
circuit. The phase model is in fact more general than the idealized
description of the circuit. The basic assumption in all reductions
to phase models is that the coupling between oscillators is suf-
ficiently weak, i.e., the dynamics of the oscillators are dominated
by internal dynamics and coupling does not alter the activity
significantly other than to cause relatively small phase shifts on
any particular cycle. This appears to be a reasonable assumption
for the swimmeret circuit because perturbations to CI1 that are
similar to ASCE and DSC input result in phase shifts below 10%
[phase response curve (PRC) data, Fig. 3C]. Other than this
basic assumption, our phase model only assumes that (i) the
individual modules are intrinsically oscillating, (ii) ascending
output of a module is in antiphase with the descending output,
and (iii) ascending and descending inputs have the same effect
on a module’s phase. These follow directly from the description
of the full swimmeret neural circuit described above. It implies
that the ascending and descending interaction functions have
the same shape. Thus, our phase model captures all of the
essential features of the swimmeret circuit and is independent
of other details of the system.

Section 2.2. Measuring the Interaction Function of a Local Swimmeret
CPG. The relationship between the interaction function and the PRC of
a neural oscillator. When a stimulus is delivered to a neural oscil-
lator, there is a change in timing of the oscillator, i.e., the stimulus
causes a phase shift to occur. The magnitude and the sign of the
phase shift depend on the characteristics of the stimulus and
the oscillator’s phase at the time which the stimulus is delivered.
The relationship between the phase shift ðΔθÞ and the phase at
which the stimulus is delivered ðθ=ωt+φÞ is quantified by the
PRC of a neural oscillator. When the PRC is generated using a
small abrupt (delta function) stimulus and the phase shifts are
normalized by the magnitude of the stimulus (i.e., the total charge
delivered), it is referred to as the infinitesimal PRC (iPRC) or
phase-dependent sensitivity function.
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The iPRC Zðωt+φÞ can be viewed as a Green’s function or
impulse–response function for the neural oscillator and there-
fore can be used to estimate the oscillator’s PRC for arbitrary
time-dependent small-magnitude stimuli IstimðtÞ (22):

ΔθðφÞ=
Z∞
t=0

Zðωt+φÞIstimðtÞdt: [S16]

Note that, if the duration of the stimulus is less than the period of
the oscillation T, then

ΔθðφÞ=
ZT
t=0

Zðωt+φÞIstimðtÞdt=T
Z1
s=0

Zðs+φÞIstimðsTÞds:

[S17]

The theory of weakly coupled oscillators uses the iPRC in
a similar manner to determine the interaction function between
coupled oscillators (23). Specifically, the interaction function H
is given by the convolution of the iPRC Zðωt+φiÞ of the post-
synaptic oscillator (i) and the periodic synaptic coupling current
Icoupðt+φjTÞ that the postsynaptic oscillator receives due to ac-
tivity in the presynaptic oscillator (j):

H
�
−
�
φi −φj

��
=
1
T

ZT
t=0

Zðωt+φiÞIcoup
��

ωt+φj

�
T
�
dt

=
Z1
s=0

Z
�
s+
�
φi −φj

��
IcoupðsTÞds:

[S18]

The above expression for the PRC ΔθðφÞ and the interaction
function Hð−φÞ imply that, if the coupling current IcoupðtÞ is
“on” for less than the full period and the stimulus IstimðtÞ is
approximately equal to the coupling current IcoupðtÞ, then the
interaction function H can be estimated by the PRC as follows:

Hð−φÞ=ΔφðφÞ
T

: [S19]

Measuring the PRC of a local swimmeret CPG. All coordinating in-
formation reaches the kernel of each swimmeret CPG through its
ComInt1 (CI1) (18, 24). During each cycle of the normal motor
pattern in the swimmeret circuit, each coordinating neuron that
provides input to a local CPG evokes a burst of synaptic current
in CI1 with a duration of approximately one-half of the period,
i.e., less than a full period (19). Therefore, an estimate of the
interaction function for the local CPGs can be obtained by
measuring the PRC of a local CPG using a stimulus that ap-
proximates the synaptic current in CI1 evoked by a coordinating
neuron during a single cycle.
The PRC of a local swimmeret CPG was measured experi-

mentally by calculating the change in cycle period caused by
occasional perturbations of the membrane potential of CI1. In
these experiments, the abdominal nerve cord of a crayfish, Pa-
sifastacus leniusculus, was removed to a saline-filled experimen-
tal dish, using methods described in detail in ref. 18. Extracel-
lular recording electrodes were placed on PS branches of the
nerve innervating selected swimmerets (Fig. 3A) and attached to
high-gain preamplifiers. Intracellular recordings from ComInt1
neurons were made with a glass microelectrode attached to an
SEC 05 amplifier (npi electronic). These recordings were digi-
tized at 10 kHz with an Axon Instruments Digidata 1322A and
analyzed using pClamp (Molecular Devices) and Dataview
(www.st-andrews.ac.uk/∼wjh/).

In experiments during which the CPG was steadily producing
its normal periodic PS bursts, the ComInt1 neuron’s membrane
potential was voltage clamped using single-electrode voltage-
clamp techniques (19). Perturbations of the CPG were caused by
step changes from −50 to −25 mV that lasted 250 ms (approx-
imately one-half of the period). Perturbations were delivered at
different phases in the CPG’s cycle of activity. The period of
a cycle, T, was defined as the time from the start of one burst of
impulses in the PS recording (Fig. 3A) to the start of the next
burst. The phase of the perturbation in the cycle during which it
occurred was calculated as the time from the start of the cycle to
the start of the step, divided by hTi (19). Changes in period were
calculated as the difference between the mean period of the four
preceding unperturbed cycles, hTi, and the measured period, Ti,
of the cycle in which the step occurred. Normalizing this dif-
ference to the mean period, ðhTi−TiÞ=hTi, and plotting it vs. the
phase of the step created the interaction function (Fig. 3C).
In Fig. 3C, a “locally-weighted estimate” curve has been fitted

to the experimental data using MATLAB’s “robust lowess”
function (MathWorks). This function takes into account that the
experimental phases were irregularly spaced. To avoid errors in
the calculation of these curves near their ends, we took advan-
tage of the periodic property of the motor pattern (Fig. 3A) by
extending the data range from 1.0 to 1.25 by copying the points
from 0.0 to 0.25, and from −0.75 to 0.0 with points from 0.75 to
1.0. Then we fitted over the range −0.75 to 1.25 and plotted the
fitted curve between 0 and 1.0.

Section 2.3. Other Hypothetical Network Topologies in a Chain of
HCOs and the Stability of the Phase-Locked Metachronal Patterns.
The key organizational feature of the neural circuit of the cray-
fish swimmeret system giving rise to the 0.25 phase constancy is
the half-center structure of the local CPG and the topology of the
intersegmental coupling. To highlight this fact, we determine the
invariant phase-locked states that can arise in hypothetical networks
with similar circuit properties to the natural crayfish swimmeret
circuit. Specifically, we rearrange the intersegmental coupling while
preserving the basic circuit properties, i.e., (i) each HCO has one
ascending and one descending connection with the same sign
(excitatory or inhibitory) and strength, and (ii) the incoming con-
nections target a single cell in the HCO. Under these conditions,
there are 32 different network topologies possible between each
pair of neighboring HCOs. If we do not immediately distinguish
the difference between inhibitory and excitatory connections, there
are 16 possible topologies. Using the symmetry that the P and R
cells in each HCO are identical and are always in antiphase, we can
further reduce the 16 possible topologies to four fundamentally
different network topologies shown in Fig. 3D.
The network topologies (s1) and (s2) are symmetric in the sense

that both the ascending and descending connections are between
either two P cells or one P cell and one R cell, whereas the
network topologies (a1) and (a2) are asymmetric because one of
the two connections goes from P to P (or R to R) and the other
connection goes from P to R (or R to P). The asymmetric to-
pology (a1) corresponds to the natural crayfish swimmeret system.
Note that longer-range connections exist (e.g., between the most
anterior HCO and themost posterior HCO). However, the nearest-
neighbor coupling are significantly stronger than longer-range
coupling (19), and therefore longer-range connections are not in-
cluded in our model.
A pair of HCOs: Existence and stability of phase constant rhythms.We have
shown in the main text that phase differences Δθ= 0:25 and 0:75
are two phase-locked states under crayfish’s asymmetric network
topology (a1) regardless of the specific shape of the interaction
function H. Here, we examine the existence and stability of phase-
locked states in the other three network topologies, (a2), (s1), and
(s2) (Fig. 3D).
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Recall that, in main text, we definedHðΔθÞ to be the interaction
function for an ascending input from an R cell to an R cell, and
consequently, Hð−Δθ+ 0:5Þ to be the interaction function for
a descending input from P to R. With the above convention, we
have the following:

• Under the asymmetric topology (a2), because the ascending
input is from R to P, this input is effectively phase delayed by
a half-period with respect to an ascending input from R to R.
Thus, the interaction function for the ascending connection in
this (a2) topology is HðΔθ+ 0:5Þ. Because the descending in-
put is from P to P, this input is effectively phase delayed by
a half-period with respect to a descending input from P to R.
Thus, the interaction function for the descending connection
in this (a2) topology is Hðð−Δθ+ 0:5Þ+ 0:5Þ=Hð−ΔθÞ.

• Under the symmetric topology (s1), because both the ascend-
ing and descending connections are between P cells, the as-
cending input is effectively in-phase with an ascending input
from R to R, and the descending input is effectively phase
delayed by a half-period with respect to a descending input from
P to R. Thus, the interaction functions for the ascending and
descending connections are HðΔθÞ and Hðð−Δθ+ 0:5Þ+ 0:5Þ=
Hð−ΔθÞ, respectively.

• Under the symmetric topology (s2), because both the de-
scending and ascending connections are from an R cell to a
P cell, the ascending input is effectively phase delayed by a
half-period with respect to an ascending input from R to R,
and the descending input is effectively in-phase with a de-
scending input from P to R. Thus, the interaction functions
for the ascending and descending connections are HðΔθ+ 0:5Þ
and Hð−Δθ+ 0:5Þ, respectively.
Using a general notation, the dynamics of the phase difference

between a pair of HCOs are described by the phase model:

dΔθ
dt

=Hð−Δθ+φ1Þ−HðΔθ+φ2Þ=: GðΔθÞ; [S20]

where φ1 = 0:5;φ2 = 0 for (a1) topology, φ1 = 0;φ2 = 0:5 for (a2)
topology, φ1 =φ2 = 0 for (s1) topology, and φ1 =φ2 = 0:5 for (s2)
topology. A phase-locked state of the coupled oscillators with
Δθp phase difference (i.e., a steady state of the dynamical system
described by Eq. S20) corresponds to GðΔθpÞ= 0. Noting that H
has a period of 1, it can readily be seen that Δθp = 0 and 0:5 are
two invariant phase-locked states under the two symmetric net-
work topologies (s1) and (s2). Similarly, Δθp = 0:25 and 0:75 are
two invariant phase-locked states under the two asymmetric net-
work topologies (a1) and (a2).
The stability of these phase-locked states withΔθp phase difference

depends on the sign of G′ðΔθpÞ=−H′ð−Δθ+φ1Þ−H′ðΔθ+φ2Þ.

The phase-locked state Δθp is stable if G′ðΔθpÞ< 0, unstable if
G′ðΔθpÞ> 0. For example, a stable phase-locked state at Δθp = 0:25
arising in the natural asymmetric topology (a1) of the crayfish
swimmeret system requires that H′ð0:25Þ> 0. On the other hand,
the stable phase-locked state at Δθp = 0:25 arising in the hypo-
thetical asymmetric topology (a2) requires that H′ð0:75Þ> 0.

A chain of four HCO: Existence and stability of phase constant rhythms.
We extend the analysis of the two-HCOmodel above to a four-HCO
model with nearest-neighbor coupling. The phase differences in
a four-HCO chain are ðΔθ1;Δθ2;Δθ3Þ= ðθ2 − θ1; θ3 − θ2; θ4 − θ3Þ.
A phase-locked state ðΔθp;Δθp;ΔθpÞ that corresponds to a meta-
chronal wave in a four-HCO chain satisfies the following:

HðΔθp +φ2Þ+Hð−Δθp +φ1Þ−HðΔθp +φ2Þ= 0;

HðΔθp +φ2Þ+Hð−Δθp +φ1Þ−HðΔθp +φ2Þ−Hð−Δθp +φ1Þ= 0;

Hð−Δθp +φ1Þ−HðΔθp +φ2Þ−Hð−Δθp +φ1Þ= 0; [S21]

where φ1;φ2 are the phase shifts determined by the neural circuit
topology (as defined in the previous subsection on the two-HCO
system). Using the same analysis for the ð0:25; 0:25; 0:25Þ phase-
locked state (referred simply as the 0.25 phase-locked state) in the
main text, we obtain the conditions, listed in Table S1, for the
existence of other phase-locked states (i.e., in-phase, 0.5 phase lock-
ing, and 0.75 phase locking) for each of the four distinct network
topologies. With an appropriate network topology as determined by
the two-HCO system, the restrictions on H will be reduced to a sin-
gle condition [HðΔθpÞ= 0 or Hð−ΔθpÞ= 0] for the phase-locked
state Δθp = 0; 0:25; 0:5; or 0:75. This strict condition can be further
relaxed by allowing a small deviation from the exact phase-locked
state to be ðΔθ1;Δθ2;Δθ3Þ= ðΔθp + «;Δθp;Δθp − «Þ, where « is
a small constant. Specifically, substituting the phase-locked state
ðΔθp + «;Δθp;Δθp − «Þ in Eq. S21 leads to a single algebraic equa-
tion of the form Hð±ΔθpÞ+Hð±Δθp   ∓  «Þ−Hð±Δθp ± «Þ= 0.
Because we assume « is small, this is equivalent to the condition
that ðHð±ΔθpÞÞ=ð2H′ð±ΔθpÞÞ is small. The exact conditions
for the existence of an approximate Δθp phase-locked state
under the four distinct network topologies are summarized in
Table S1.
It is important to note that the topology of the four-HCO chain

provides a robust mechanism for generating phase constant
rhythm with minimal requirement independently of the bio-
physical details. Specifically, we do not need multiple con-
ditions on H, and therefore careful tuning of the HCO’s
properties or the synaptic dynamics is not necessary to achieve
the 0.25 or 0.75 phase constancy with an asymmetric network
topology, or to achieve a 0 or 0.5 phase constancy with a
symmetric topology. However, it would require more than one
condition for an asymmetric topology to have phase con-
stancies other than 0.25 or 0.75, or for a symmetric topology
to have phase constancies other than the in-phase or anti-
phase rhythm.
The stability of the phase-locked state ðΔθ1;Δθ2;Δθ3Þ=

ðΔθp + «;Δθp;Δθp − «Þ depends on the eigenvalues of the Jacobian
matrix of the left-hand side of Eq. S21:

The phase-locked state ðΔθp + «;Δθp;Δθp − «Þ is stable if matrix J
is negative-definite and is unstable otherwise. With sufficiently small
«, the eigenvalues of J are approximately equal to the eigenvalues of
JðΔθp; 0Þ. With an appropriate network topology for the phase-
locked state Δθp = 0; 0:25; 0:5; or 0:75, matrix JðΔθp; 0Þ takes
the form:

JðΔθp; «Þ=
0
@−H′ð−Δθp − «+φ1Þ−H′ðΔθp + «+φ2Þ H′ðΔθp +φ2Þ 0

H′ð−Δθp − «+φ1Þ −H′ð−Δθp +φ1Þ−H′ðΔθp +φ2Þ H′ðΔθp − «+φ2Þ
0 H′ð−Δθp +φ1Þ −H′ð−Δθp + «+φ1Þ−H′ðΔθp − «+φ2Þ

1
A:
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H′ð±ΔθpÞ
0
@−2 1 0

1 −2 1
0 1 −2

1
A:

Therefore, the stability of the phase-locked state is determined
by the sign of H′ð±ΔθpÞ. Notice that this gives the same stability
conditions as in the two-HCO case. For example, a stable phase-
locked state at Δθp = 0:25 arising in the natural asymmetric to-
pology (a1) of the crayfish swimmeret system requires that
H′ð0:25Þ> 0. On the other hand, the stable phase-locked state at
Δθp = 0:25 arising in the hypothetical asymmetric topology (a2)
requires that H′ð0:75Þ> 0. As presented in the main text, exper-
imentally measured H shows that H′ð0:25Þ> 0 but H′ð0:75Þ< 0
(Fig. 3C), which are consistent with our model predications. The
stability conditions of phase constancies in the four distinct net-
work topologies are summarized in Table S2.

Section 2.4. Equal Ascending and Descending Connection Strengths
Minimize the Deviation of the Phase-Locked Metachronal Pattern from
0.25. If the strengths of the ascending and descending connections are
allowed to differ, then a deviation of the phase lag from 0.25 is
expected. In this subsection, we show that ascending and descending
connections with the same strength minimize this deviation.
The dynamics of the phase differences between each neighboring

HCO ðΔθ1;Δθ2;Δθ3Þ are described by Eq. 4 in main text. Under
crayfish’s (a1) circuit topology, the descending inputs are effec-
tively phase delayed by a half-period with respect to the ascend-
ing inputs, i.e., Hascðθ2 − θ1Þ= αHðθ2 − θ1Þ and Hdscðθ1 − θ2Þ=
βHðθ1 − θ2 + 0:5Þ, where α; β are the strengths of the ascending
and descending connections, respectively. When α≠ β, we expect
a deviation of the phase-locked state from (0.25, 0.25, 0.25).
Suppose ðΔθ1;Δθ2;Δθ3Þ= ð0:25+ «1; 0:25+ «2; 0:25+ «3Þ is the
phase-locked state, where «i describe the deviation. If «i are
small, and the interaction function H is smooth near 0.25, then
ð0:25+ «1; 0:25+ «2; 0:25+ «3Þ is a phase-locked state if and only
if the following equations are satisfied:

ða+ 1Þ«1 − a«2 − r= 0;
«1 − ða+ 1Þ«2 + a«3 = 0;
«2 − ða+ 1Þ«3 − ar= 0;

[S22]

where a= α=β and r= ðHð0:25ÞÞ=ðH′ð0:25ÞÞ. Writing «i in terms
of a and r, we have the following:

«1 =− 
a3 − a2 − a− 1
a3 + a2 + a+ 1

r;

«2 =− 
a2 − 1
a2 + 1

r;

«3 =− 
a3 + a2 + a− 1
a3 + a2 + a+ 1

r:

[S23]

When the ascending and descending connections have the same
strength, the phase-locked state reduces to the case we have al-
ready discussed in the main text, i.e., when a = 1, we have «1 =
0:5r; «2 = 0; «3 =−0:5r. In fact, this is the minimal deviation from
the (0.25, 0.25, 0.25) phase-locked state under the 2-normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i=1«
2
i

q
. It can be shown that

P3
i=1«

2
i reaches its unique global

minimum ð1=2Þr2 = ð1=2ÞðHð0:25Þ=H′ð0:25ÞÞ2 when a= ðα=βÞ= 1.
Hence, equal strengths of ascending and descending connections
minimize the deviation of the phase-locked metachronal stroke
pattern from 0.25.

Section 2.5. Robust Phase Constancy for HCOs with Multiple Ascending
and Descending Connections. If connections between each component
of neighboring HCOs are permitted, then circuit topologies other

than (a1) can produce robust phase locking with phase lags of 0.25,
but these connectivity schemes would have symmetries analogous to
the (a1) connection scheme. That is, descending connections must
link P andR cells, whereas ascending connectionsmust linkR cells to
R cells and/or P cells to P cells, and the connection strengths must be
appropriately balanced.
Consider two HCOs with general connectivity. Let αXY be the

relative strength of the ascending connection between cell X and
Y, and βXY be the relative strength of the descending connection
between cell X and Y, where X and Y are either P or R. The
phase model that governs the evolution of the phase difference
between HCOs is given by:

dΔθ
dt

=GðΔθÞ= fβPPHð−ΔθÞ+ βRRHð−ΔθÞ+ βPRHð−Δθ+ 0:5Þ

+ βRPHð−Δθ+ 0:5Þg
−fαPPHðΔθÞ+ αRRHðΔθÞ+ αPRHðΔθ+ 0:5Þ

+ αRPHðΔθ+ 0:5Þg:
[S24]

Therefore, the condition for the Δθp = 0:25 phase-locked state is
as follows:

Gð0:25Þ= ðβPP + βRR − αPR − αRPÞHð−0:25Þ
+ ðβPR + βRP − αPP − αRRÞHð0:25Þ= 0; [S25]

which for general HðΔθÞ requires that

αPP + αRR = βPR + βRP [S26]

and

αPR + αRP = βPP + βRR: [S27]

The condition for stability of the Δθp = 0:25 phase-locked state is
as follows:

G′ð0:25Þ=−ðβPP + βRR + αPR + αRPÞH′ð−0:25Þ
− ðβPR + βRP + αPP + αRRÞH′ð0:25Þ< 0:

[S28]

Assuming that the connectivity is effectively excitatory αXY > 0
and βXY > 0, and that H′ð−0:25Þ< 0 and H′ð0:25Þ> 0 (as shown
in the swimmeret module’s PRC in Fig. 3 of the main text),
Inequality S28 implies that descending connections between P
cell and P cell and between R cell and R cell and ascending
connections between R cell and P cell act to destabilize the
Δθp = 0:25 phase-locked state. Thus, to maximize stability and
robustness:

βPP = βRR = αPR = αRP = 0: [S29]

This, in turn, implies that all descending connections must link P
and R cells, whereas ascending connection must link R cells to R
cells and/or P cells to P cells. Furthermore, from condition S26,
the net ascending connection strength must equal the net de-
scending connection strength. Any connectivity scheme that ful-
fills these requirements would provide the same robustness of
the Δθp = 0:25 phase-locked state for a fixed value of total con-
nectivity strength. However, it is likely that circuits with single
ascending and descending connections would be preferable for
energetic reasons. Therefore, the (a1) connection scheme (or
a connection scheme with all R and P cells exchanged) seems
to be superior to all other connectivity structures.
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Section 2.6. Generic Phase Response Properties of HCOs. It can be
shown that the stability condition [H′ð0:25Þ> 0] and the existence
condition [«=Hð0:25Þ=2H′ð0:25Þ is small] for the tail-to-head
0.25 phase locking arise from the generic properties of HCOs.
Using perturbation and averaging theory, the interaction func-
tion H can be expressed as a convolution of the intersegmental
input into the HCO, IðtÞ, and the infinitesimal PRC (iPRC) of
the HCO, ZðθÞ,

HðθÞ=
Z1
0

ZðsÞ · Iðs+ θÞds [S30]

(ref. 23). iPRCs measure the normalized phase shift of an oscil-
lator in response to a brief perturbation as a function of the
timing of the input. Under the additional assumptions that the
input IðtÞ is fully on when the presynaptic cell is active and is fully
off when the presynaptic cell is suppressed and IðtÞ activates and
deactivates instantaneously with a duty cycle of a half-period, i.e.,
IðtÞ is a square wave oscillating between 0 and 1, it follows that

H′ð0:25Þ=Zð−0:25Þ−Zð−0:25+ 0:5Þ=Zð0:75Þ−Zð0:25Þ;
[S31]

and

«≈
Hð0:25Þ
2H′ð0:25Þ=

R 0:75
0:25 Zðs+ 0:5Þds

2½Zð0:75Þ−Zð0:25Þ�: [S32]

We recently showed that canonical models of HCOs, e.g., the
Wang–Rinzel HCO model (25), have stereotypical phase re-
sponse properties: HCO’s iPRC ZðθÞ always has either a domi-
nant-negative region (phase delaying) in the first half of the
period or a dominant-positive region (phase advancing) in the
second half of the period, or a mixture of both (26). The presence
of the phase-advancing region in the second half of the period
and/or the presence of the phase-delaying region in the first half
of the period suggests that H′ð0:25Þ=Zð0:75Þ−Zð0:25Þ> 0 and
that

R 0:75
0:25 Zðs+ 0:5Þds � 2½Zð0:75Þ−Zð0:25Þ�. For example, if the

iPRC is sinusoidal such as ZðθÞ=−sinð2πθÞ, then we have
H′ð0:25Þ> 0 and «= 0. In the extreme case that the iPRC is
completely flat in the first half of the period and has a positive
bump in the second half of the period, i.e., ZðθÞ= 0 for
0≤ θ< 0:5, ZðθÞ=−sinð2πθÞ for 0:5≤ θ< 1, we would have
H′ð0:25Þ> 0 and «≈ 0:08. Therefore, both the existence condi-
tion and the stability condition for the 0.25 phase constancy are
satisfied in a robust manner as a result of the generic phase
response properties of HCOs.

Section 3. The Effects of Proprioceptive Reflexes on
Swimmeret Coordination
The hydrodynamics forces (i.e., forces due to water movement)
generated by the movement of a swimmeret can affect the motion
of the other swimmerets directly and indirectly through the ac-
tivation of proprioceptive reflexes. As argued in SI Text, section
1.2, the direct effects of hydrodynamic forces on interlimb
coordination appear to be minor relative to the effects of the
forces generated by the muscles. Extensive experimental evi-
dence suggests that the indirect coupling between swimmerets
via proprioceptive feedback also has little effect on interlimb
coordination.
In preparations displaying fictive locomotion, movements

imposed on an individual swimmeret do not significantly affect
the period of the system’s output and have little effect on the
phase of the motor drive to the moved swimmeret (27, 28).
Holding a swimmeret in the fully retracted position that it rea-
ches at the end of each PS strongly activates its major proprio-
ceptors (27, 29), strengthens RS bursts that resist the retraction,
and weaken PS burst that assist it. However, it does not stop the
cycles of PS–RS bursts to that swimmeret or alter the duty cycles
of the PS and RS motor pools or affect the system’s period (30).
This maintained extreme retraction does cause slight shifts in the
phases of PS bursts in neighboring ganglia (less than or equal to
−0.06), but does not affect the strengths of those neighboring
bursts (30). These experimental results support the view that the
temporal structure of the coordinated swimmeret motor pattern
is predominately established by the neural circuits in the animal’s
CNS and is not strongly dependent on proprioceptive input from
the individual swimmerets.
We note that the above observations do not imply that the

effect of proprioceptive feedback on the motion of an individual
swimmeret is insignificant. The proprioceptive innervation of
each swimmeret includes setae that are bent by water movements,
joint receptors that monitor changes in joint angles, and stretch
receptors that monitor the angle of the swimmeret relative to the
abdomen (2, 31). During each PS, water flowing around the
swimmeret bends these setae and activates a local reflex that
increases firing of PS motor neurons, including a subset of these
neurons that innervate curler muscles of the rami (32, 33). As
cycle periods decrease, the velocities of PS movements increase
and encounter increased resistance. Proprioceptive reflexes ap-
pear to be able to increase the PS motor drive to compensate for
increasing load on the limb. However, the extent to which this
“load compensation” is necessary for maximally effective move-
ments remains unresolved.
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Fig. S1. Fluid model of the swimmeret paddling. The four rigid paddles mimic the limbs (swimmerets) and are attached to a fixed wall that represents the
body. These structures are immersed in a two-dimensional fluid. The angle αiðtÞ between the limb and the body is a prescribed function of time. The flux Q(t)
measures the volume of fluid passing through a vertical line across the domain per unit time.

Fig. S2. Simultaneous recordings of swimmeret movements and electrical activity in swimmeret muscles of lobster, Homarus. Notice that the periods of these
movements are neither constant nor the same, but that relative to these movements the phases of power stroke muscle (PSm) and return stroke muscle (RSm)
bursts are stable. (A) Recordings from a PSm and the position of the swimmeret this muscle moved. Bursts of spikes are electrical impulses caused by bursts of
presynaptic spikes in the PS motor neurons that innervated this muscle. Position: a continuous record of the swimmeret’s periodic movements from its anterior
position (protr) to its posterior position (retr). Each upward deflection corresponds to a PS movement. (B) Recordings from a RSm in a separate experiment, and
the position of the swimmeret this muscle moved. Bursts of spikes are electrical impulses caused by bursts of spikes in the RS motor neurons that innervated this
muscle. Position: same as A. The time scale of the two recordings are the same, but the gains of the two position traces are not known to be the same.
(Reprinted with permission from ref. 6.)

Fig. S3. The entire computational domain. The snapshot of the flow field under the natural tail-to-head metachrony with 0.25 phase difference at Re = 200 at
the end of the 10th stroke period. The vorticity of the flow field is shown in red–white–blue color (red denotes positive vorticity, and blue denotes negative
vorticity). The length of the domain is 60 cm, and the height of the domain is 10 cm. The rectangular region enclosed by dashed boundaries is the region shown
in Fig. 2A of the main text and in Movies S1–S3.
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Fig. S4. x-component velocity has settled down to a constant profile near the right boundary of the computational domain. The three figures show the
x-component velocity along the y direction, u(x*, y), on three different vertical slices, x* = 40, 50, and 60 cm, and under three different Reynolds numbers, Re =
50, 200 and 800, respectively. At Re = 50 (Left), the x-component velocity has settled to a constant profile at x = 40 cm, which is about 20 cm downstream from
the most posterior paddle. For Re = 200 (Center) and Re = 800 (Right), the velocity has settled to a constant profile at x = 50 cm, which is about 30 cm
downstream from the most posterior paddle. The above results show that across Reynolds numbers from 50 to 800, a 60 × 10-cm domain is sufficiently wide to
allow the x-component velocity to settle down to a constant profile before reaching the right boundary. Note that the fixed horizontal wall (the body) is
placed at y = 8 cm, and hence the velocity at y = 8 cm is always zero due to the no-slip condition as discussed in SI Text.

Fig. S5. Average flux under different permeability. Time-averaged flux is calculated for a one-limb system using different nondimensional permeability
coefficients ξ̂ = 0, 0.25, 0.5, 1, 2, and 4. Results are simulated under Re = 50 (cyan curve with “O” markers), 200 (black curve with “+” markers), and 800
(magenta curve with “☐” markers). Each curve is normalized by the average flux at ξ̂= 0:5: Description of the one-limb system: The limb swings with a pre-
scribed motion in which the angle between the limb and the body is defined as α1ðtÞ= ðπ=8Þsinð2πt − ðπ=2ÞÞ+ ðπ=2Þ. All the other parameters are the same as in
the four-limb system.
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Fig. S6. Average flux as a function of phase difference under different values of limb spacingw at Re = 50.w = 1:75 cm: blue curve with “O”markers;w =2 cm:
red curve with “+” markers; w = 2:25 cm: black curve with “☐” markers. All curves are normalized by the average flux of the 0 phase difference stroke pattern
with limb spacing w = 2:25 cm.

Fig. S7. Synaptic organization of the intersegmental circuit that coordinates swimmeret modules in ganglia A2, A3, A4, and A5, and its progressive reduction
to the phase model (Fig. 3) (18, 19, 21). (Left) In each module, ASCE and DSC neurons encode coordinating information received through inhibitory synapses
from IPS and IRS interneurons in the module’s pattern-generating kernel. ComInt1 (CI1) neurons in other modules are targets of both ASCE and DSC axons.
Each CI1 transmits their coordinating information through an electrical synapse to an IRS neuron in its own pattern-generating kernel. The large circles
symbolize an identified neuron or group of functionally similar neurons. The small black circles symbolize inhibitory chemical synapses. The triangles symbolize
excitatory chemical synapses; the larger triangles mean stronger synapses. ASCE, ascending coordinating neuron; DSC, descending coordinating neuron; IPS,
inhibitor of power stroke neurons; IRS, inhibitor of return stroke neurons; PS, RS, power stroke and return stroke motor neurons, respectively. The arrows
indicate the direction of impulse traffic in coordinating axons and motor axons. (Center) Two of the four modules of the idealized circuit as described in the
main text. (Right) The phase model for the two modules illustrated in the Center.
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Table S1. Conditions for the existence of robust phase constancies in a chain of four HCOs under four distinct network topologies

Network topology (s1) Network topology (s2) Network topology (a1) Network topology (a2)

0 phase constancy Hð0Þ=0 Hð0:5Þ= 0 Multiple restrictions
on H required

Multiple restrictions
on H required

0.25 phase constancy Multiple restrictions
on H required

Multiple restrictions
on H required

Hð0:25Þ=0 Hð0:75Þ= 0

0.5 phase constancy Hð0:5Þ=0 Hð0Þ=0 Multiple restrictions
on H required

Multiple restrictions
on H required

0.75 phase constancy Multiple restrictions
on H required

Multiple restrictions
on H required

Hð0:75Þ=0 Hð0:25Þ= 0

Approximate
0 phase constancy

«≈ Hð0Þ
2H′ð0Þ is small «≈ Hð0:5Þ

2H′ð0:5Þ is small Multiple restrictions
on H required

Multiple restrictions
on H required

Approximate
0.25 phase constancy

Multiple restrictions
on H required

Multiple restrictions
on H required

«≈ Hð0:25Þ
2H′ð0:25Þ is small «≈ Hð0:75Þ

2H′ð0:75Þ is small

Approximate
0.5 phase constancy

«≈ Hð0:5Þ
2H′ð0:5Þ is small «≈ Hð0Þ

2H′ð0Þ is small Multiple restrictions
on H required

Multiple restrictions
on H required

Approximate
0.75 phase constancy

Multiple restrictions
on H required

Multiple restrictions
on H required

«≈ Hð0:75Þ
2H′ð0:75Þ is small «≈ Hð0:25Þ

2H′ð0:25Þ is small

Table S2. Stability conditions for the robust phase constancies in a chain of four HCOs under four distinct network topologies

Network topology (s1) Network topology (s2) Network topology (a1) Network topology (a2)

0 phase constancy H′ð0Þ>0 H′ð0:5Þ>0 Multiple restrictions
on H required

Multiple restrictions
on H required

0.25 phase constancy Multiple restrictions
on H required

Multiple restrictions
on H required

H′ð0:25Þ> 0 H′ð0:75Þ>0

0.5 phase constancy H′ð0:5Þ>0 H′ð0Þ> 0 Multiple restrictions
on H required

Multiple restrictions
on H required

0.75 phase constancy Multiple restrictions
on H required

Multiple restrictions
on H required

H′ð0:75Þ> 0 H′ð0:25Þ>0
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Movie S1. Flow field under three different stroke patterns at Re = 50. The time is normalized by the period of stroke. Free-flowing tracers shown as green
dots are introduced at the end of the fifth stroke period. The vorticity of the flow field is shown in red–white–blue color (red denotes positive vorticity, and
blue denotes negative vorticity). The natural tail-to-head metachronal wave (0.25 phase difference) is the most effective rhythm among the three stroke
patterns in moving tracers toward the tail direction.

Movie S1
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Movie S2. Flow field under three different stroke patterns at Re = 200. Variables and notations are defined in the same way as in Movie S1.

Movie S2
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Movie S3. Flow field under three different stroke patterns at Re = 800. Variables and notations are defined in the same way as in Movie S1.

Movie S3
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