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Preface

Integral calculus arose originally to solve very practipadblems that merchants,
landowners, and ordinary people faced on a daily basis. Ansoich pressing problems
were the following: How much should one pay for a piece of farnifithat land has an
irregular shape, i.e. is not a simple geometrical shape,dtmwuld its area (and therefore,
its cost) be calculated? How much olive oil or wine, are yottigg when you purchase
a barrel-full? Barrels come is a variety of shapes and sizeshe barrel is not close
to cylindrical, what is its volume (and thus, a reasonableepto pay)? In most such
transactions, the need to accurately measure an area ou@eavent well beyond the
available results of geometry. (It was known how to compueas.of rectangles, triangles,
and polygons. Volumes of cylinders and cubes were also knbwhthese were at best
crude approximations to actual shapes and objects eneedritecommerce.) This led to
motivation for the development of the topic we now call inedgalculus.

Essentially, the approach is based on the idea of “dividecanduer”: that is, cut up
the geometric shape into smaller pieces, and approximasethieces by regular shapes
that can be quantified using simple geometry. In computiegtiea of an irregular shape,
add up the areas of the (approximately regular) little pary@ur “dissection”, to arrive at
an approximation of the desired area of the shape. Depelditngpw fine the dissection
(i.e. how many little parts), this approximation could bétewcrude, or fairly accurate.
The idea of applying a limit to obtain the true dimensionstw bbject was a flash of
inspiration that led to modern day calculus. Similar ideggglato computing the volume
of a 3D object by successive subdivisions.

It is the aim of a calculus course to develop the languageabwliéh such concepts,
to make such concepts systematic, and to find conveniented@eant shortcuts that can
be used to solve a variety of problems that have common fesatuvlore than that, it is
the purpose of this course to show that ideas developed ioritp@al context of geometry
(finding areas or volumes of 2D or 3D shapes) can be genedaize extended to a variety
of applications that have little to do with geometry.

One area of application is that of computing total changeryaome time-dependent
rate of change. We encounter many cases where a processeslatng rate that varies
over time: the rate of production of hormone changes overyatia rate of flow of water
in a river changes over the seasons, or the rate of motion ehile (i.e. its velocity)
changes over its path. Computing the total change over songespan turns out to be
closely related to the same underlying concept of “dividé eonquer”: namely, subdivide
(the time interval) and add up approximate changes over e&itte smaller subintervals.
The same idea applies to quantities that are distributedhrione but rather over space.

XVil



XViii Preface

We show the connection between material that is spatiadyiduted in a nonuniform way
(e.g. a density that varies from point to point) and total ammf material (obtained by
the same process of integration).

A theme that unites much of the approach is that integrabbadchas both analytic
(i.e. pencil and paper) calculations - but these apply tmaeid set of cases, and analogous
numerical (i.e. computer-enabled) calculations. The tedgnd-in-hand, with concepts
that are closely linked. A set of computer labs using a spuleeet tool are an important
part of this course. The importance of seeing calculus froasé two distinct but related
perspectives is stressed: on the one hand, analytic cotigng&an be very powerful and
helpful, but at the same time, many interesting problemsarehallenging to be handled
by integration techniques. Here is where the same ideasd, insthe context of simple
computer algorithms, comes in handy. For this reason, tpeiitance of understanding the
concepts (not just the technical results, or the “formufaeintegrals) is vital: Ideas used to
develop the analytic techniques on which calculus is baaade adapted to develop good
working methods for harnessing computer power to solvelprob. This is particularly
useful in cases where the analytic methods are not suffiorénb technically challenging.

This set of lecture notes grew out of many years of teachimgathematics 103. The
material is organized as follows: In Chapter 1 we develootieic formulae for areas and
volumes of elementary shapes, and show how to set up sunma#tiat describe compound
objects made up of many such shapes. An example to motivege ibeas is the volume
and surface area of a branching structure. In Chapter 2, meattention to the classic
problem of defining and computing the area of a two-dimeradioggion, leading to the
notion of the definite integral. In Chapter 3, we discuss ihehipin of Integral Calculus,
namely the Fundamental Theorem that connects derivativeéndegrals. This allows us
to find a great shortcut to the analytic computations deedribh Chapter 2. Applications
of these ideas to calculating total change from rates of ghaand to computing volumes
and masses are discussed in Chapters 4 and 5.

To expand our reach to other cases, we discuss the techmiguirtegration in Chap-
ter 6. Here, we find that the chain rule of calculus reappearthé form of substitution
integrals), and a variety of miscellaneous tricks are dal/i® simplify integrals. Among
these, the most important is integration by parts, a tectailjat has independent applica-
tions in many areas of science.

We study the ideas of probability in Chapters 7 and 8. Hereesléscover the con-
nection between discrete sums and continuous integradiach,apply the techniques to
computing expected values for random variables. The cdiumebetween the mean (in
probability) and the center of mass (of a density distridutespace) is illustrated.

Many scientific problems are phrased in terms of rules alatesrof change. Quite
often such rules take the form of differential equationsatnearlier differential calculus
course, the student will have made acquaintance with the tdjguch equations and qual-
itative techniques associated with interpreting theiosohs. With the methods of integral
calculus in hand, we can solve some types of differentiabégns analytically. This is
discussed in Chapter 9.

The course concludes with the development of some notion$nite sums and con-
vergence in Chapter 10. Of prime importance, the Tayloesés developed and discussed
in this concluding chapter.



Chapter 1

Areas, volumes and
simple sums

1.1 Introduction

This introductory chapter has several aims. First, we cofmate here a number of basic
formulae for areas and volumes that are used later in dewmgldpe notions of integral
calculus. Among these are areas of simple geometric shajgefoemulae for sums of
certain common sequences. An important idea is introdutaaiely that we can use the
sum of areas of elementary shapes to approximate the areagrefcomplicated objects,
and that the approximation can be made more accurate by agsrotrefinement.

We show using examples how such ideas can be used in cahguthé volumes or
areas of more complex objects. In particular, we concludhk widetailed exploration of
the structure of branched airways in the lung as an appicat ideas in this chapter.

1.2 Areas of simple shapes

One of the main goals in this course will be calculating am@dosed by curves in the
plane and volumes of three dimensional shapes. We will fiatittte tools of calculus will
provide important and powerful techniques for meeting ¢fual. Some shapes are simple
enough that no elaborate techniques are needed to compirtartbas (or volumes). We
briefly survey some of these simple geometric shapes andhiat we know or can easily
determine about their area or volume.

The areas of simple geometrical objects, such as rectapglesielograms, triangles,
and circles are given by elementary formulae. Indeed, oilityatp compute areas and
volumes of more elaborate geometrical objects will restamesof these simple formulae,
summarized below.

Rectangular areas

Most integration techniques discussed in this course asean the idea of carving up
irregular shapes into rectangular strips. Thus, areasavdmgles will play an important
part in those methods.
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e The area of a rectangle with basand height: is
A=b-h
e Any parallelogram with height and basé also has aread = b-h. See Figure 1.1(a)
and (b)

(@) (b)

Figure 1.1.Planar regions whose areas are given by elementary formulae

Areas of triangular shapes

A few illustrative examples in this chapter will be based @@sdcting shapes (such as regu-
lar polygons) into triangles. The areas of triangles arg &asompute, and we summarize

this review material below. However, triangles will playes$ important role in subsequent
integration methods.

e The area of a triangle can be obtained by slicing a rectanglamallelogram in half,
as shown in Figure 1.1(c) and (d). Thus, any triangle witrelbeand height: has
area

1
= —bh.
A 2
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e In some cases, the height of a triangle is not given, but catetermined from other
information provided. For example, if the triangle has sidélengthb andr with
enclosed anglé, as shown on Figure 1.1(e) then its height is simiply rsin(6),
and its area is

A = (1/2)brsin(0)

o If the triangle is isosceles, with two sides of equal lengthand base of length,
as in Figure 1.1(f) then its height can be obtained from Rydhas’s theorem, i.e.
h? =1r? — (b/2)? so that the area of the triangle is

A= (1/2)by/r% — (b/2)2.

1.2.1 Example 1: Finding the area of a polygon using
triangles: a “dissection” method

Using the simple ideas reviewed so far, we can determinerfesaf more complex ge-
ometric shapes. For example, let us compute the area of &argmlygon withn equal
sides, where the length of each sidé is 1. This example illustrates how a complex shape
(the polygon) can be dissected into simpler shapes, namahgtes.

Figure 1.2. An equilateraln-sided polygon with sides of unit length can be dis-
sected inton triangles. One of these triangles is shown at right. Sinagait be further
divided into two Pythagorean triangles, trigonometricattbns can be used to find the
heighth in terms of the length of the ba$¢2 and the anglé /2.

Solution

The polygon has sides, each of length = 1. We dissect the polygon inte isosceles
triangles, as shown in Figure 1.2. We do not know the heightsase triangles, but the
angled can be found. Itis

0=27/n

since togethen, of these identical angles make up a total of 36027 radians.

1This calculation will be used again to find the area of a ciiml&ection 1.2.2. However, note that in later
chapters, our dissections of planar areas will focus mainlyectangular pieces.
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Let h stand for the height of one of the triangles in the dissect@ggon. Then
trigonometric relations relate the height to the base leagtfollows:

2—‘;?: b/TZ = tan(6/2)
Using the fact tha® = 27/n, and rearranging the above expression, we get
B b
2 tan(mw/n)

Thus, the area of each of thetriangles is

1 1 b
A= §bh B §b (2tan(7r/n)> '

The statement of the problem specifies that 1, so

= (zetem)

The area of the entire polygon is theriimes this, namely

n
An-gon= ————.
n-gon 4 tan(w/n)
For example, the area of a square (a polygon with 4 equal,sidest) is

4 1
4tan(m/4)  tan(m/4)
where we have used the fact that(7/4) = 1.
As a second example, the area of a hexagon (6 sided polygon,= 6) is

6 3 3V3

Ahexagon: 4tan(7r/6) 2(1/\/§) 2
Here we used the fact thatn(7/6) = 1/v/3.

Asquare= =1,

1.2.2 Example 2: How Archimedes discovered the area of a
circle: dissect and “take a limit”

As we learn early in school the formula for the area of a ciafleadiusr, A = 2.
But how did this convenient formula come about? and how caddelate it to what we
know about simpler shapes whose areas we have discussed $tefe we discuss how
this formula for the area of a circle was determined long agaifzhimedes using a clever
“dissection” and approximation trick. We have already speri of this idea in dissecting
a polygon into triangles, in Section 1.2.1. Here we see #italty important second step
that formed the “leap of faith” on which most of calculus iskd, namely taking a limit as
the number of subdivisions increases
First, we recall the definition of the constant
2This idea has important parallels with our later developnuérintegration. Here it involves adding up the

areas of triangles, and then taking a limit as the numbeiiafdtes gets larger. Later on, we do much the same,
but using rectangles in the dissections.
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Definition of =

In any circle,r is the ratio of the circumference to the diameter of the eirdComment:
expressed in terms of the radius, this assertion statestfieus fact that the ratio dfrr
to2ris.)

Shown in Figure 1.3 is a sequence of regular polygons insdrib the circle. As the
number of sides of the polygon increases, its area gradbattpmes a better and better
approximation of the area inside the circle. Similar obagons are central to integral
calculus, and we will encounter this idea often. We can cdamphe area of any one of
these polygons by dissecting into triangles. All triangléis be isosceles, since two sides
are radii of the circle, whose length we'll call

Figure 1.3. Archimedes approximated the area of a circle by dissectiimgo triangles.

Let r denote the radius of the circle. Suppose that at one stagaveednn sided
polygon. (If we knew the side length of that polygon, then weady have a formula for
its area. However, this side length is not known to us. Ratlerknow that the polygon
should fit exactly inside a circle of radiuts) This polygon is made up of triangles, each
one an isosceles triangle with two equal sides of lemgihd base of undetermined length
that we will denote by. (See Figure 1.3.) The area of this triangle is

1
Atriangle: §bh-

The area of the whole polygon,, is then

A =n- (area of triangle= n%bh = %(nb)h.
We have grouped terms so th@atb) can be recognized as the perimeter of the polygon
(i.e. the sum of the n equal sides of lengthach). Now consider what happens when we
increase the number of sides of the polygon, taking largérlamgern. Then the height
of each triangle will get closer to the radius of the circled ahe perimeter of the polygon
will get closer and closer to the perimeter of the circle,ethis (by definitionRzr. i.e. as
n — 0o,

h—r, (nb)— 27r

SO
1 1
A= §(nb)h — 5(2#7“)1“ = r?
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We have used the notatior=” to mean that in the limit, ag gets large, the quantity of
interest “approaches” the value shown. This argument ggrtheg the area of a circle must
be

A= mr?.

One of the mostimportantideas contained in this little argut is that by approximating a
shape by a larger and larger number of simple pieces (in #sis,@ large number of trian-
gles), we get a better and better approximation of its arba iflea will appear again soon,
but in most of our standard calculus computations, we wil asollection of rectangles,
rather than triangles, to approximate areas of intereségmns in the plane.

Areas of other shapes

We concentrate here the area of a circle and of other shapes.
e The area of a circle of radiusis
A =72,
e The surface area of a sphere of radius
Spall = 47,
e The surface area of a right circular cylinder of heigland base radiusis

Scy| = 27trh.

Units

The units of area can be metéfsn?), centimeterd (cm?), square inches, etc.

1.3 Simple volumes

Later in this course, we will also be computing the volume8Bfshapes. As in the case
of areas, we collect below some basic formulae for volumederhentary shapes. These
will be useful in our later discussions.

1. The volume of a cube of side lengtiiFigure 1.4a), is
V=5

2. The volume of a rectangular box of dimensiénsw, [ (Figure 1.4b) is
V = hwl.

3. The volume of a cylinder of base ardaand height:, as in Figure 1.4(c), is
V = Ah.

This applies for a cylinder with flat base of any shape, cacol not.
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(@) (b)

(€) (d)

Figure 1.4. 3-dimensional shapes whose volumes are given by elemdatanylae

4. In particular, the volume of a cylinder with a circular bas radius-, (e.g. a disk) is
V = h(mr?).

5. The volume of a sphere of radiugFigure 1.4d), is

V= —-7mr.

6. The volume of a spherical shell (hollow sphere with a stiedlome small thickness,
T) is approximately

V ~ 7 - (surface area of sphere- 47772

7. Similarly, a cylindrical shell of radius, heighth and small thickness; has volume
given approximately by

V ~ 7 - (surface area of cylindge= 277rh.

Units

The units of volume are metérém?), centimeters (cm?), cubic inches, etc.
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1.3.1 Example 3: The Tower of Hanoi: a tower of disks

In this example, we consider how elementary shapes distzs®/e can be used to de-
termine volumes of more complex objects. The Tower of Hasai $hape consisting of a
number of stacked disks. It is a simple calculation to addhepsblumes of these disks, but
if the tower is large, and comprised of many disks, we wouldtvg@me shortcut to avoid
long sums.

Figure 1.5. Computing the volume of a set of disks. (This structure isstiomes
called the tower of Hanoi after a mathematical puzzle by Hraesname.)

(a) Compute the volume of a tower made up of four disks stacdkedne on top of
the other, as shown in Figure 1.5. Assume that the radii oflisles are 1, 2, 3, 4 units and
that each disk has height 1.

(b) Compute the volume of a tower made up of 100 such stacksd divith radii
r=1,2,...,99,100.

Solution
(a) The volume of the four-disk tower is calculated as fokow

V=Vi+Va+Vs+ Vi,

whereV; is the volume of theé'th disk whose radiusis = i, i = 1,2...4. The height of
eachdiskisi =1, so

V = (71?) + (72%) + (73%) + (74®) = 7(1 + 4 + 9 + 16) = 307.
(b) The idea will be the same, but we have to calculate
V=m(12+2% + 3%+ ... +99% + 100%).

It would be tedious to do this by adding up individual termsg dt is also cumbersome
to write down the long list of terms that we will need to add Tjhis motivates inventing
some helpful notation, and finding some clever way of perfogsuch calculations.

SNote that the idea of computing a volume of a radially symin@D shape by dissection into disks will form
one of the main themes in Chapter 5. Here, the sums of the eslwfdisks is exactly the same as the volume of
the tower. Later on, the disks will only approximate the tBevolume, and a limit will be needed to arrive at a
“true volume”.
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1.4 Summations and the “Sigma” notation

We introduce the following notation for the operation of suimg a list of numbers:

N
S=a1+a2+a3+...+aNEZak.
k=1

The Greek symboE (“Sigma”) indicates summation. The symbblused here is
called the “index of summation” and it keeps track of whereaneein the list of summands.
The notatiorkt = 1 that appears underneathindicates where the sum begins (i.e. which
term starts off the series), and the supersa¥ifiells us where it ends. We will be interested
in getting used to this notation, as well as in actually cotimguthe value of the desired
sum using a variety of shortcuts.

Example 4a: Summation notation

Suppose we want to form the sum of ten numbers, each equalte Would write this as

10

S=1+1+1+...1EZI.
k=1

The notation . . signifies that we have left out some of the terms (out of lasgner in cases
where there are too many to conveniently write down.) We atbalve just as well written
the sum with another symbol (e.g) as the index, i.e. the same operation is implied by

10
> oL
n=1

To compute the value of the sum we use the elementary faditdaum of ten ones is just
10, so

Example 4b: Sum of squares

Expand and sum the following:

4
S=> k.
k=1
Solution

4
S:Zkz:1+22+32+42=1+4+9+16:30.
k=1

(We have already seen this sum in part (a) of The Tower of Hanoi
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Example 4c: Common factors

Add up the following list of 100 numbers (only a few of them at®wn):

S=3+3+3+3+...4+3.

Solution

There are 100 terms, all equal, so we can take out a commar fact

100 100
S=3+3+3+3+...+3=>) 3=3) 1=3(100) = 300,
k=1 k=1

Example 4d: Finding the pattern
Write the following terms in summation notation:

S_1+1+1+1
39 27 81

Solution

We recognize that there is a pattern in the sequence of teangely, each one i5/3 raised
to an increasing integer power, i.e.

RROROROS

We can represent this with the “Sigma” notation as follows:
4 1 n
S = = .
()

The “index”n starts at 1, and counts up through 2, 3, and 4, while each tasrthle form of
(1/3)™. This series is geometric seriesto be explored shortly. In most cases, a standard
geometric series starts off with the value 1. We can easilgim@ur notation to include
additional terms, for example:

5 1 n 1 1 2 1 3 1 4 1 5
= —_ pr— 1 —_ —_ —_ — p— .
=2() i) o 6) 6) 4 ()
Learning how to compute the sum of such terms will be impdrtamus, and will be de-

scribed later on in this chapter.

1.4.1 Manipulations of sums

Since addition is commutative and distributive, sums a$laf numbers satisfy many con-
venient properties. We give a few examples below:
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Example 5a: Simple operations

Simplify the following expression:
10 10
IEEDIES
k=1 k=3
Solution

sz 22]( 2+22+23+ +210)_(23++210):2+22

We could have arrived at this conclusion directly from

sz sz ZZk—2+22—2+4—6

k=1

The idea is that all but the first two terms in the first sum walhcel. The only remaining
terms are those correspondingite= 1 andk = 2.

Example 5b: Expanding

Expand the following expression:
> (143,

Solution

5
> (143" = Z1+Z3”
n=0

1.5 Summation formulas

In this section we introduce a few examples of useful sumsgareiformulae that provide
a shortcut to dreary calculations.

The sum of consecutive integers (Gauss’ formula)

We first show that the sum of the firat integers is:

N 1
S—14243+.. . +N= Zk—7+). (1.1)
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The following trick is due to Gauss. By aligning two copiestloé above sum, one
written backwards, we can easily add them up one by one aéytit\e see that:

S= 1 + 2 + ... + (N=-1) + N
+
S= N 4+ (N-1) + ... + 2 + 1
2= (1+N) + (1+N) + ... + 1+N) + (1+N)
Thus, there aréV times the valu¢ N + 1) above, so that
N(1+N)

Thus, Gauss’ formula is confirmed.

Example: Adding up the first 1000 integers

Suppose we want to add up the first 1000 integers. This forisulary useful in what
would otherwise be a huge calculation. We find that

%’k ~1000(1 4 1000)

S=1+2+3+...+1000= = 500(1001) = 500500.

k=1
Two other useful formulae are those for the sums of consexgtjuares and of
consecutive cubes:

The sum of the first NV consecutive square integers

N
N(N +1)(2N +1
Sp=124224+3%+. . + N’ =) k= (W + é( +b (1.2)

k=1

The sum of the first N consecutive cube integers

N 2
N(N +1)
=134+22433 4. 4+ N3 = = | ———2) . 1.
S3 +2°+32 4+ .+ glk ( 5 ) (1.3)
In the Appendix, we show how the formula for the sum of squategers can be

proved by a technique calledathematical induction

1.5.1 Example 3, revisited: Volume of a Tower of Hanoi

Armed with the formula for the sum of squares, we can now retoithe problem of com-
puting the volume of a tower of 100 stacked disks of heightsdlradiir = 1, 2,...,99, 100.
We have
100
V = m(124+274+3%+.. 499°+100°) =7 Y k* =7
k=1

w = 338, 3507 cubic units
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Examples: Evaluating the sums

Compute the following two sums:

20

50
(@)Sa = (2 -3k +2k?), 0SS = > k.

k=1 k=10

Solutions

(a) We can separate this into three individual sums, eacthafwcan be handled by alge-
braic simplification and/or use of the summation formulaestigped so far.

20 20 20 20
Sa=) (2-3k+2k*)=2> 1-3> k+2> k°
k=1 k=1 k=1 k=1

Thus, we get

S, =2(20) -3 (%) +2 (%) = 5150.

(b) We can express the second sum as a difference of two sums:

o) ()

k=10
Thus 50(51 9(10
Sy = <# - %) = 1275 — 45 = 1230.

1.6 Summing the geometric series

Consider a sum of terms that all have the fartp wherer is some real number aridis
an integer power. We refer to a series of this type ge@metric series We have already
seen one example of this type in a previous section. Below iNeskow that the sum of
such a series is given by:

1— N+

N
Sy =1 R = G L
N=1+r+r+r+ 4 I;)r T

(1.4)

wherer # 1. We call this sum a (finite) geometric series. We would likeital
an expression for terms of this form in the general case ofraalynumber-, and finite
number of termsV. First we note that there arfg + 1 terms in this sum, so thatif = 1
then
Sy=14+14+1+...1=N+1

(atotal of N + 1 ones added.) If # 1 we have the following trick:
S= 1 4+ r + 2 + ... + N

rS = ro+ 2 4+ ... 4 Nl
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Subtracting leads to
S—rS=04r+r+...+rN)—(r+r2 . N N
Most of the terms on the right hand side cancel, leaving
S(1—r)=1-rN*L,
Now dividing both sides by — r leads to

1— N+1
g=-_r

1—r

which was the formula to be established.

Example: Geometric series

Compute the following sum:

10
Se=> 2"
k=0

Solution

This is a geometric series

10
1 — 21041192048
S, = § ok — = = 2047.
P 1-2 -1

1.7 Prelude to infinite series

So far, we have looked at several examples of finite seres,series in which there are
only a finite number of termgy (whereN is some integer). We would like to investigate
how the sum of a series behaves when more and more terms adribe are included. It
is evident that in many cases, such as Gauss'’s series (t.40nts of squared or cubed
integers (e.g., Egs. (1.2) and (1.3)), the series simply lgeger and larger as more terms
are included. We say that such sernildgergeas N — oo. Here we will look specifically
for series thatonvergei.e. have a finite sum, even as more and more terms are influde
Let us focus again on the geometric series and determinesftaviour when the
number of terms is increased. Our goal is to find a way of aittach meaning to the

expression
o0
k
Sy = Z "
k=0

when the series becomesiafinite series We will use the following definition:

4Convergence and divergence of series is discussed in figfsth in Chapter 10 in the context of Taylor Series.
However, these concepts are so important that it was fetissay to introduce some preliminary ideas early in
the term.
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1.7.1 The infinite geometric series
Definition

An infinite series that has a finite sum is said tachavergentOtherwise it idivergent

Definition

Suppose tha$ is an (infinite) series whose terms aie Then thepartial sums S,,, of this

series are
n
Sn = Zak.
k=0

We say that the sum of the infinite seriesSisand write

S = Z ag,
k=0
provided that

S = lim Zak.
n—oo k:O
That is, we consider the infinite series as the limit of theiphsums as the number of
termsn is increased. In this case we also say that the infinite sediegerges te.
We will see that only under certain circumstances will iriénéeries have a finite
sum, and we will be interested in exploring two questions:

1. Under what circumstances does an infinite series havet@ in.
2. What value does the partial sum approach as more and nmorg &ee included.

In the case of a geometric series, the sum of the series,dép®nds on the number
of terms in the series; viar™*!. Whenever > 1, orr < —1, this term will get bigger in
magnitude as increases, whereas, for< r < 1, this term decreases in magnitude with
n. We can say that

lim 7"t =0 provided |r| < 1.

n—oo
These observations are illustrated by two specific exangésv. This leads to the fol-
lowing conclusion:

The sum of an infinite geometric series,

oo

S=ldr+r+. . +rF+..=)"r"
k=0

exists providedr| < 1 and is

(1.5)

Examples of convergent and divergent geometric seriesiscassed below.
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1.7.2 Example: A geometric series that converges.

Consider the geometric series with= % ie.

" 2 2 2 2 kzoz'

Then
S B 1— (1/2)n+1
1 -(1/2)
We observe that asincreases, i.e. as we retain more and more terms, we obtain
1—(1/2)n+1 1
lim S, = lim (1/2) = = 2.

n— oo nseo 1—(1/2) 1—(1/2)
In this case, we write
= /1\" 1 1
— :]_ — - 2 ...:2
n;) <2> +5 ()

and we say that “the (infinite) seriesnvergeso 2".

1.7.3 Example: A geometric series that diverges

In contrast, we now investigate the case that 2: then the series consists of terms
1—ont!
1-2

Sn:1+2+22+23+...+2":22k: =9ontl _q
k=0

We observe that as grows larger, the sum continues to grow indefinitely. In tdse, we
say that the surdoes not converg®r, equivalently, that the sudiverges

It is important to remember that an infinite series, i.e. a suth infinitely many
terms added up, can exhibit either one of these two veryrdiftebehaviours. It may
converge in some cases, as the first example showdiverge(fail to converge) in other
cases. We will see examples of each of these trends again.efisential to be able to
distinguish the two. Divergent series (or series that djgemder certain conditions) must
be handled with particular care, for otherwise, we may findt@alictions or seemingly
reasonable calculations that have meaningless results.

1.8 Application of geometric series to the branching
structure of the lungs

In this section, we will compute the volume and surface afgae branched airways of
lungs. We use the summation formulae to arrive at the results, andlso illustrate how
the same calculation could be handled using a simple spreatls

5This section provides an example of how to set up a biologicalevant calculation based on geometric

series. It is further studied in the homework problems. Ailsinexample is given as an exercise for the student
in Lab 1 of this calculus course.
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Our lungs pack an amazingly large surface area into a confiokone. Most of
the oxygen exchange takes place in tiny sacs calleeoli at the terminal branches of the
airways passages. The bronchial tubes conduct air, anibdist it to the many smaller
and smaller tubes that eventually lead to those alveoli.primeiple of this efficient organ
for oxygen exchange is that these very many small strucpinesent a very large surface
area. Oxygen from the air can diffuse across this area ietbltodstream very efficiently.

The lungs, and many other biological “distribution systerase composed of a
branched structure. The initial segment is quite largeiflrbates into smaller segments,
which then bifurcate further, and so on, resulting in a geoimexpansion in the number of
branches, their collective volume, length, etc. In thidisec we apply geometric series to
explore this branched structure of the lung. We will consteusimple mathematical model
and explore its consequences. The model will consist in seefieformulated assumptions
about the way that “daughter branches” are related to tpairent branch”. Based on these
assumptions, and on tools developed in this chapter, welveill predict properties of the
structure as a whole. We will be particularly interestedha volumel” and the surface
areas of the airway passages in the lufigs

o

Segment (

Figure 1.6. Air passages in the lungs consist of a branched structure. ifitiex
n refers to the branch generation, starting from the initiagysnent, labeled. All segments
are assumed to be cylindrical, with radius and lengttv,, in then’th generation.

1.8.1 Assumptions

e The airway passages consist of many “generations” of brethshgments. We label
the largest segment with index “0”, and its daughter segewith index “1”, their
successive daughters “2”, and so on down the structure fangelto small branch
segments. We assume that there/régenerations”, i.e. the initial segment has un-
dergonel subdivisions. Figure 1.6 shows only generations 0, 1, ar(d\ically,
for human lungs there can be up to 25-30 generations of birzggh

e At each generation, every segment is approximated as adeylof radiusr,, and
length?,,.
6The surface area of the bronchial tubes does not actuallyrlamsuch oxygen, in humans. However, as an

example of summation, we will compute this area and compaveitgrows to the growth of the volume from
one branching layer to the next.
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radius of first segment ro | 0.5cm
length of first segment ly | 5.6cm
ratio of daughter to parent length « 0.9
ratio of daughter to parent radius I} 0.86
number of branch generations M 30
average number daughters per pargnb 1.7

Table 1.1.Typical structure of branched airway passages in lungs.

e The number of branches grows along the “tree”. On averagdy parent branch
produces$ daughter branches. In Figure 1.6, we have illustrated digia forb = 2.
A branched structure in which each branch produces two daughanches is de-
scribed as &ifurcating tree structure (wheredsfurcating impliesb = 3). In real
lungs, the branching is slightly irregular. Not every legéthe structure bifurcates,
but in general, averaging over the many branches in thetatelicis smaller than 2.
In fact, the rule that links the number of branches in gein@mnat, here denoted,
with the number (of smaller branches) in the next generatign; is

Tpa1 = bry,. (1.6)

We will assume, for simplicity, thai is a constant. Since the number of branches
is growing down the length of the structure, it must be trua bh> 1. For human
lungs, on averagd, < b < 2. Here we will takeb to be constant, i.eb = 1.7. In
actual fact, this simplification cannot be precise, becawséave just one segment
initially (zo = 1), and at level 1, the number of brancheasshould be some small
integer, not a number like “1.7”. However, as in many mathematicatiels, some
accuracy is sacrificed to get intuition. Later on, detailst ttwere missed and are
considered important can be corrected and refined.

e The ratios of radii and lengths of daughters to parents apeoapnated by “pro-
portional scaling”. This means that the relationship of theii and lengths satisfy
simple rules: The lengths are related by

én—&-l = aé’n) (17)

and the radii are related by
Tn+1 = Bron, (18)

with e and 8 positive constants. For example, it could be the case tleattthius of
daughter branches is 1/2 or 2/3 that of the parent brancke$ire branches decrease
in size (while their number grows), we expectthat o < 1 and0 < 5 < 1.

Rules such as those given by equations (1.7) and (1.8) axe cétledself-similar growth
laws. Such concepts are closely linked to the idea of fractad. theoretical structures
produced by iterating such growth laws indefinitely. In al t@alogical structure, the
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number of generations is finite. (However, in some casesijta fieometric series is well-
approximated by an infinite sum.)

Actual lungs are not fully symmetric branching structuriest the above approxi-
mations are used here for simplicity. According to physjital measurements, the scale
factors for sizes of daughter to parent size are in the range < «,5 < 0.9. (K. G.
Horsfield, G. Dart, D. E. Olson, and G. Cumming, (1971) J. Ap#lys. 31, 207217.) For
the purposes of this example, we will use the values of catstgven in Table 1.1.

1.8.2 A simple geometric rule

The three equations that govern the rules for successivelirzg, i.e. equations (1.6), (1.7),
and (1.8), are examples of a very generic “geometric pregyasrecipe. Before returning
to the problem at hand, let us examine the implications & tbcursive rule, when it is
applied to generating the whole structure. Essentiallywillesee that the rule linking two
generations implies an exponential growth. To see thisidetrite out a few first terms in
the progression of the sequenfes, }:

initial value:xg
first iteration:z1= bxg
second iterationzo= bx; = b(bxg) = b?x
third iteration:zs= bxo = b(b%zo) = bz

By the same pattern, at theth generation, the number of segments will be

n'thiteration: xz,, = bx,,—1 = b(bxy—2) = b(b(brp—3)) =...=(b-b---b)xog = b"x0.
———
n factors

We have arrived at a simple, but important result, namely:

The rule linking two generations,
Ty = bxy_1 (1.9

implies that the:'th generation will have grown by a factéf, i.e.,

Ty = b"xg. (1.10)

This connection between the rule linking two generatiortstae resulting number of
members at each generation is useful in other circumstabogsation (1.9) is sometimes
called arecursion relation and its solution is given by equation (1.10). We will use the
same idea to find the connection between the volumes, andcsuaireas of successive
segments in the branching structure.
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1.8.3 Total number of segments

We used the result of Section 1.8.2 and the fact that theneesegment in the 0’th gener-
ation, i.e.zq = 1, to conclude that at the’th generation, the number of segments is

Tp = 20b" =1-0" =b".

For example, ifb = 2, the number of segments grows by powers of 2, so that the tree
bifurcates with the pattern 1, 2, 4, 8, etc.

To determine how many branch segments there are in totaldd:@@over all gen-
erations, 1,... M. This is a geometric series, whose sum we can compute. Uging e

tion (1.4), we find
N 1_b]v1+1
N = Zb ( — >

Givenb and M, we can then predict the exact number of segments in thetsteucThe
calculation is summarized further on for values of the bhamg parameter), and the
number of branch generation,, given in Table 1.1.

1.8.4 Total volume of airways in the lung

Since each lung segment is assumed to be cylindrical, itsweis
Vp = T2l

Here we mean just a single segment in#fth generation of branches. (There afesuch
identical segments in the'th generation, and we will refer to the volume of all of them
together ad/, below.)

The length and radius of segments also follow a geometrigression. In fact, the
same idea developed above can be used to relate the lengtadins of a segment in the
n'th, generation segment to the length and radius of the maid)’'th generation segment,
namely,

En = Oégn_l = gn = an€07

and
Ty = Prn_1= 1, =0"r0.

Thus the volume of one segment in generation n is
vy =l = 1(8"0) (@ o) = (af?)" (wrlo) -
(Y
0

This is just a product of the initial segment volumeg= 713/, with then’th power of a
certain factorg, 3). (That factor takes into account that both the radius ardghgth are
being scaled down at every successive generation of braggflihus

T (aﬁz)"vo
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The total volume of all{{") segments in the'th layer is

Vo = b0, = b"(af?)"vo = (ba?)" vo
~———

Here we have grouped terms together to reveal the simpletgteuof the relationship:
one part of the expression is just the initial segment voluwigle the other is now a
“scale factor” that includes not only changes in length awius, but also in the number of
branches. Letting the constanstand for that scale factar,= (ba/3?) leads to the result
that the volume of all segments in th&h layer is

V,, = a™vg.

The total volume of the structure is obtained by summing thlemes obtained at
each layer. Since this is a geometric series, we can use thenation formula. i.e.,
Equation (1.4). Accordingly, total airways volume is

V= ZV —UOZCL —v0<11a_]\2+1).

The similarity of treatment with the previous calculatidmamber of branches is appar-
ent. We compute the value of the constarin Table 1.2, and find the total volume in
Section 1.8.6.

1.8.5 Total surface area of the lung branches

The surface area of a single segment at generatitased on its cylindrical shape, is

Spn = 21l = 270(B" o) (o) = (afB)™ (27roly),
———

S0

wheres is the surface area of the initial segment. Since therg"abeanches at generation
n, the total surface area of all théh generation branches is thus

Sp=0"(af)"sp = (baﬁ) 'S0,

c

where we have let stand for the scale facter= (ba3). Thus,
S, = c"sg.

This reveals the similar nature of the problem. To find theltetirface area of the airways,

we sum up,
1— M+
—Sozc _80< I—¢ >

We compute the values af) andc in Table 1.2, and summarize final calculations of the
total airways surface area in section 1.8.6.
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volume of first segment vo =mraly | 4.4cn?
surface area of first segment s = 2mroly | 17.6 cn?
ratio of daughter to parent segment volume (afp?) 0.66564
ratio of daughter to parent segment surface are (af3) 0.774
ratio of net volumes in successive generations | a = ba/3? 1.131588
ratio of net surface areas in successive generationg = baj3 1.3158

Table 1.2. Volume, surface area, scale factors, and other derived tities: Be-
causea and c are bases that will be raised to large powers, it is importemthat their
values are fairly accurate, so we keep more significant figiure

1.8.6 Summary of predictions for specific parameter values

By setting up the model in the above way, we have revealecttwdt quantity in the struc-
ture obeys a simple geometric series, but with distinct ésas, « andc and coefficients
1,v9, and sg. This approach has shown that the formula for geometriesexpplies in
each case. Now it remains to merely “plug in” the appropriptantities. In this section,
we collect our results, use the sample values for a model dmilomg” given in Table 1.1,
or the resulting derived scale factors and quantities ineTal? to finish the task at hand.

Total number of segments

1—pM+H1 1— (1.7)3
N=Sp=(— )= ——2—) =1.9898-10" ~2-10".
7;) ( 1—b ) ( 1-1.7 )

According to this calculation, there are a total of about 2llion branch segments overall
(including all layers, form top to bottom) in the entire sttwre!

Total volume of airways

Using the values for andv, computed in Table 1.2, we find that the total volume of all
segments in the'th generation is

30 y
1—aMt! (1 —1.13158831) f
— "=y [ —m— — ) =44———" " —1510.3cn?.
V=w) o ”0< l—a ) (1= 1.131588) 109

n=0

Recall that 1 litre = 1000 cf Then we have found that the lung airways contain about 1.5
litres.



1.8. Application of geometric series to the branching structure of the lungs 23

Total surface area of airways

Using the values 0§, andc in Table 1.2, the total surface area of the tubes that make up
the airways is

M
1— M+ 1—1.31583%! .
¢ ):17.6( 31587) _ 9 76 10° e,
— C

SZSO;}‘:':SO( 1 (1— 1.3158)

There are 100 cm per meter, afth0)? = 10* cm? per n¥. Thus, the area we have
computed is equivalent to about 28 square meters!

1.8.7 Exploring the problem numerically

Up to now, all calculations were done using the formulae tigpex for geometric series.
However, sometimes it is more convenient to devise a complgerithm to implement
“rules” and perform repetitive calculations in a problenclsas discussed here. The ad-
vantage of that approach is that it eliminates tedious taticns by hand, and, in cases
where summation formulae are not know to us, reduces the foeehalytical computa-
tions. It can also provide a shortcut to visual summary ofrésellts. The disadvantage is
that it can be less obvious how each of the values of paramagsigned to the problem
affects the final answers.

A spreadsheet is an ideal tool for exploring iterated rulehsas those given in the
lung branching problefn In Figure 1.7 we show the volumes and surface areas associat
with the lung airways for parameter values discussed ali®wth layer by layer values and
cumulative sums leading to total volume and surface arealawn in each of (a) and (c).
In (b) and (d), we compare these results to similar graphsicase that one parameter, the
branching numbep is adjusted from 1.7 (original value) to 2. The contrast lestwthe
graphs shows how such a small change in this parameter g@ficsigtly affect the results.

1.8.8 For further independent study
The following problems can be used for further independeplogation of these ideas.

1. In our model, we have assumed that, on average, a parerdhbhas only “1.7”
daughter branches, i.e. thiat= 1.7. Suppose we had assumed that 2. What
would the total volumé/ be in that case, keeping all other parameters the same?
Explain why this is biologically impossible in the cad¢ = 30 generations. For
what value ofM wouldb = 2 lead to a reasonable result?

2. Suppose that the first 5 generations of branching proddeeighters each, but then
from generation 6 on, the branching numbeb is 1.7. How would you set up this
variant of the model? How would this affect the calculatebliome?

3. Inthe problem we explored, the net volume and surfacelaea growing by larger
and larger increments at each “generation” of branchingwaéfeld describe this as
“unbounded growth”. Explain why this is the case, payingipatar attention to the
scale factors andc.

“See Lab 1 for a similar problem that is also investigatedgiaispreadsheet.
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Cumulative volume tp layer n Cumulative volume to layer

Vn = Volume of layer n

(@) (b)

T
ICumulative surface| area to n'th layer
Cumulative surface area tp n'th layer

surface area ¢f n'th layer

(c) (d)

Figure 1.7. (a) V,,, the volume of layer n (red bars), and the cumulative volume
down to layer n (yellow bars) are shown for parameters giverable 1.1. (b) Same as (a)
but assuming that parent segments always produce two daxigtanches (i.eb = 2). The
graphs in (a) and (b) are shown on the same scale to accentoateuch more dramatic
growth in (b). (c) and (d): same idea showing the surface area’th layer (green) and
the cumulative surface area to layer n (blue) for originat@aeters (in c), as well as for
the valueb = 2 (in d).

4. Suppose we want a set of tubes with a large surface arearalit total volume.
Whichsinglefactor or parameter should we change (and how should we eligrig
correct this feature of the model, i.e. to predict that thalteolume of the branching
tubes remains roughly constant while the surface areaasegeas branching layers
are added.

5. Determine how the branching properties of real humanduifjers from our as-
sumed model, and use similar ideas to refine and correct ¢iotagss. You may
want to investigate what is known about the actual branchargmeteb, the num-
ber of generations of branchel,, and the ratios of lengths and radii that we have
assumed. Alternately, you may wish to find parameters foeratpecies and do a
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comparative study of lungs in a variety of animal sizes.

6. Branching structures are ubiquitous in biology. Manycsge of plants are based
on a regular geometric sequence of branching. Consideeahed trifurcates (i.e.
produces 3 new daughter branches per parent braneh,3). Explain (a) What
biological problem is to be solved in creating such a stmgciip) What sorts of
constraints must be satisfied by the branching parametkaddo a viable structure.
This is an open-ended problem.

1.9 Summary

In this chapter, we collected useful formulae for areas aidmes of simple 2D and 3D
shapes. A summary of the most important ones is given belableTl.3 lists the areas of
simple shapes, Table 1.4 the volumes and Table 1.5 the suafaas of 3D shapes.

We used areas of triangles to compute areas of more congalishpes, including
regular polygons. We used a polygon withsides to approximate the area of a circle, and
then, by lettingNV go to infinity, we were able to prove that the area of a circleagliusr
is A = 7r2. This idea, and others related to it, will form a deep undegytheme in the
next two chapters and later on in this course.

We introduced some notation for series and collected usafioiulae for summation
of such series. These are summarized in Table 1.6. We wilthese extensively in our
next chapter.

Finally, we investigated geometric series and studied lagical application, namely
the branching structure of lungs.

Object dimensions area,A

triangle | baseb, heighth | ;bh

rectangle| baseb, heighth | bh

circle radiusr w2

Table 1.3. Areas of planar regions
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Object dimensions volume,V
box baseb, heighth, width w hwb
circular cylinder | radiusr, heighth 7r2h
sphere radiusr amrd
cylindrical shell* | radiusr, heighth, thicknessr | 2nrhr
spherical shell* | radiusr, thickness dmr3T

Table 1.4. Volumes of 3D shapes Assumes a thin shell, i.e. smatll

Object dimensions surface area§
box baseb, heighth, widthw | 2(bh + bw + hw)
circular cylinder| radiusr, heighth 2mrh
sphere radiusr dr?
Table 1.5. Surface areas of 3D shapes
Sum Notation Formula Comment
1+243+...+N Sk M Gauss’ formula
12422432 4.+ N2 | Yo k2 | NHEDENED | gym of squares
PB4 433 4 N3 | SR (W)Q Sum of cubes
T4r+r2 43N | SN ok Lt Geometric sum

Table 1.6. Useful summation formulae.



Chapter 2
Areas

2.1 Areas in the plane

A long-standing problem of integral calculus is how to contepthe area of a region in
the plane. This type of geometric problem formed part of thgitwal motivation for the
development of calculus techniques, and we will discugsrbany contexts in this course.
We have already seen examples of the computation of areapefially simple geometric
shapes in Chapter 1. For triangles, rectangles, polygodssiecles, no advanced methods
(beyond simple geometry) are needed. However, beyond #lesgentary shapes, such
methods fail, and a new idea is needed. We will discuss siwedsidh this chapter, and in
Chapter 3.

y
y=f(x) .

A

a b X

Figure 2.1. We consider the problem of determining areas of regions such
bounded by the x axis, the lines= a andz = b and the graph of some function= f(x).

We now consider the problem of determining the area of a regidhe plane that
has the following special properties: The region is formgdtoaight lines on three sides,
and by a smooth curve on one of its edges, as shown in FigureYail might imagine
that the shaded portion of this figure is a plot of land bourtdefitnces on three sides, and
by a river on the fourth side. A farmer wishing to purchass tahd would want to know
exactly how large an area is being acquired. Here we set ugalbalation of that area.

27
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More specifically, we use a cartesian coordinate system gorile the region: we
require that it falls between the-axis, the linest = « andz = b, and the graph of a
functiony = f(x). This is required for the process described below to fovke will first
restrict attention to the case thatz) > 0 for all points in the intervab < = < b as we
concentrate on “real areas”. Later, we generalize ourteand lift this restriction.

We will approximate the area of the region shown in Figuret®.Hissecting it into
smaller regions (rectangular strips) whose areas are eastérmine. We will refer to this
type of procedure as Riemann sum In Figure 2.2, we illustrate the basic idea using a
region bounded by the function= f(z) = 2?2 on0 < 2 < 1. It can be seen that the

1 y=to=x2 | y=f0=x~2

N=10 rectangles N=20 rectangles

| y=i0=x"2 | y=f(x)=xr2

N=40 rectangles N -> infinity

True area of region

Figure 2.2. The functiony = 22 for 0 < x < 1 is shown, with rectangles that
approximate the area under its curve. As we increase the rupflyectangular strips, the
total area of the strips becomes a better and better appration of the desired “true”
area. Shown are the intermediate stégs= 10, N = 20, N = 40 and the true area for
N —

approximation is fairly coarse when the number of rectamglesmall. However, if the
number of rectangles is increased, (as shown in subseqaeealsof this same figure), we

8Not all planar areas have this property. Later examplesateihow to deal with some that do not.
9That is, the area of the rectangles is very different fromeitea of the region of interest.
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obtain a better and better approximation of the true arethddimit as/N, the number of
rectangles, approaches infinity, the area of the desiredmrég obtained. This idea will
form the core of this chapter. The reader will note a sintyasiith the idea we already en-
countered in obtaining the area of a circle, though in thatext, we had used a dissection
of the circle into approximating triangles.

With this idea in mind, in Section 2.2, we compute the aredefregion shown in
Figure 2.2 in two ways. First, we use a simple spreadsheed thelcomputations for us.
This is meant to illustrate the “numerical approach”.

Then, as the alternate analytic approach , we set up the Rieswan corresponding
to the function shown in Figure 2.2. We will find that carefudletting up the calculation
of areas of the approximating rectangles will be importaviaking a cameo appearance
in this calculation will be the formula for the sums of squargers developed in the
previous chapter. A new feature will be the lim\t — oo that introduces the final step of
arriving at the smooth region shown in the final panel of Fegu2.

2.2 Computing the area under a curve by rectangular
strips

2.2.1 First approach: Numerical integration using a
spreadsheet

The same tool that produces Figure 2.2 can be used to caldhkaareas of the steps for
each of the panels in the figure. To do this, welixor a given panel, (e.g\V = 10, 20,
or 40), find the corresponding value @z, and set up a calculation which adds up the
areas of steps, i.&. 2Ax in a given panel. The ideas are analogous to those described i
Section 2.2.2, but a spreadsheet does the number cruncining.f

Using a spreadsheet, for example, we find the following tesatleach stage: For
N = 10 strips, the area is 0.3850 urfitfor N = 20 strips it is 0.3588, forV = 40 strips,
the area is 0.3459. If we increadé greatly, e.g. setvV = 1000 strips, which begins to
approximate the limit ofV — oo, then the area obtained is 0.3338 utlits

This example illustrates that areas can be computed “nealbfi - indeed many of
the laboratory exercises that accompany this course wiidsed on precisely this idea.
The advantage of this approach is that it requires only etéang “programming” - i.e.
the assembly of a simpkdgorithm, i.e. a set of instructions. Once assembled, we can use
essentially the same algorithm to explore various funstiortervals, number of rectangles,
etc. Lab 2 in this course will motivate the student to explitis numerical integration
approach, and later labs will expand and generalize thet@daaariety of settings.

In our second approach, we set up the problem analyticakywi find that results
are similar. However, we will get deeper insight by underdtag what happens in the limit
as the number of strip¥’ gets very large.

10Note that all these values are approximations, correct tecithal places. Compare with the exact calcula-
tions in Section 2.2.2
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2.2.2 Second approach: Analytic computation using Riemann
sums

In this section we consider the detailed steps involved alyitally computing the area of
the region bounded by the function

y:f(x):xQ, 0<zx<l1.

By this we mean that we use “pen-and-paper” calculationlsgrahan computational aids
to determine that area.

We set up the rectangles (as shown in Figure 2.2, with ddtdgkeling in Fig-
ures 2.3), determine the heights and areas of these reetasigh their total area, and
then determine how this value behaves as the rectanglesogetmamerous (and thinner).

y y A
y=f(x)=2
y=f(x)
Tx0)
f(x) i
fx )
0 Ax~ 1 Xo Xy Xeog Xy oo Xy

Figure 2.3. The region under the graph of = f(x) for0 < = < 1 will be
approximated by a set oV rectangles. A rectangle (shaded) has base wifith and
heightf(x). Sinced < z < 1, and the all rectangles have the same base width, it follows
that Az = 1/N. In the panel on the right, the coordinates of base cornestaro typical
heights of the rectangles have been labeled. Hgre- 0, 2y = 1 andz, = kEAx.

The interval of interest in this problem @< x < 1. Let us subdivide this interval
into N equal subintervals. Then each has witltfv. (We will refer to this width as\z, as
shown in Figure 2.3, as it forms a difference of successigeordinates.) The coordinates
of the endpoints of these subintervals will be labelgdx, ..., zk,...,zx, Where the
valuexy, = 0 andx = 1 are the endpoints of the original interval. Since the poames
equally spaced, starting at, = 0, the coordinate;, is just k steps of sizel /N along
the z axis, i.e. ;, = k(1/N) = k/N. In the right panel of Figure 2.3, some of these
coordinates have been labeled. For clarity, we show onlitsiefew points, together with
a representative pair, 1 andzxy inside the region.

Let us look more carefully at one of the rectangles. Suppaskek at the rectangle
labeledk. Such a representative k-th rectangle is shown shaded imds@.3. The height
of this rectangle is determined by the value of the functsimge one corner of the rectangle
is “glued” to the curve. The choice shown in Figure 2.3 is fixahe right corner of each
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rectangle ) | rightx coord (x) | heightf(xy) areaay,
1 (1/N) (1/N)? (1/N)?Ax
2 (2/N) (2/N)? (2/N)?Ax
3 (3/N) (3/N)? (3/N)?Ax
k (k/N) /N2 | (k/N)2A0
N (NN) =1 | (NN2=1| ()Az

Table 2.1. The label, position, height, and ares, of each rectangular strip is
shown above. Each rectangle has the same base widih+= 1/N. We approximate the
area under the curvg = f(x) = 2?2 by the sum of the values in the last column, i.e. the
total area of the rectangles.

rectangle on the curve. This implies that the height ofitith rectangle is obtained from
substitutingz;, into the function, i.e. height #(z;). The base of every rectangle is the
same, i.e. base Az = 1/N. This means that the area of theh rectangle, shown shaded,
is

a, = heightx base= f(xzx)Ax
We now use three facts:

1 k
fxg) zx%, Ax = N =N

Then the area of the'th rectangle is

. A
ai, = heightx base= f(z)Az = (—) (—) .

N N
—— ——
f(zk) Ax

A list of rectangles, and their properties are shown in T&ble This may help the
reader to see the pattern that emerges in the summatiorerggra this table is not needed
in our work, and it is presented for this example only, to hdkualize how heights of
rectangles behave.) The total area of all rectangularssfagum of the values in the right
column of Table 2.1) is

AN strips= zN:ak = éf(xk)Ax = iv: (%)2 (%) : (2.1)

k=1 k=1

The expressions shown in Egn. (2.1) is a Riemann sum. A iiegutiieme underlying
integral calculus is the relationship between Riemann samdglefinite integrals, a concept
introduced later on in this chapter.
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We now rewrite this sum in a more convenient form so that sutiomdormulae
developed in Chapter 1 can be used. In this sum, only the iiydnthanges from term to
term. All other quantities are common factors, so that

N
1
AN strips— (m) Zk2~
k=1

The formula (1.2) for the sum of square integers can be apfdithe summation, resulting
in

1 )N(N+1)(2N+1) (N +1)(2N +1)

AN strips — (m 6 = N2 . (2.2)

In the box below, we use Eqgn. (2.2) to compute that approxmaata for values oV
shown in the first three panels of Fig 2.2. Note that these @mgarable to the values we
obtained “numerically” in Section 2.2.1. (We plug in thewalof NV into (2.2) and use a
calculator to obtain the results below.)

If N = 10 strips (Figure 2.2a), the width of each strip is 0.1 unit. Accordingequa
tion 2.2, the area of the 10 strips (shown in red) is

(10+1)(2-1041)
A10 strips™ 6- 102 = 0.385.

If N = 20 strips (Figure 2.2b)Az = 1/20 = 0.05, and

(20+1)(2-20+1)
A20 strips= 6 - 202 = 0.35875.

If N = 40 strips (Figure 2.2¢c)Az = 1/40 = 0.025 and

(40 +1)(2- 40 + 1)
A strips= W = 0.3459375.

We will definethe true areaunder the graph of the functian= f(x) over the given
interval to be:

A= ngnoo AN strips
This means that the true area is obtained by letting the nuoflsectangular stripsy, get
very large, (while the width of each on&;: = 1/N gets very small.)
In the example discussed in this section, the true area rgdlfoy taking the limit as
N gets large in equation (2.2), i.e.,
< 1 ) (N+DEN+1) 1 lim (N+1)(2N +1)

A= Jim 6 _GNHOO N2

N —o0

N2

To evaluate this limit, note that wheN gets very large, we can use the approximations,
(N +1)~ Nand(2N + 1) = 2N so that (simplifying and cancelling common factors)
(N+1)(2N +1) (N) (2N)

TN AN N
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The result is: 1 1
A==-(2)===0. . 2.3
6( ) 3 0.333 (2.3)

Thus, the true area of the region (Figure 2.2d) is is 1/3 &nits

2.2.3 Comments

Many student who have had calculus before in highschool,\&kly do we bother with
such tedious calculations, when we could just use integrali Indeed, our development
of Riemann sums foreshadows and anticipates the idea oftdefitegral, and in short
order, some powerful techniques will help to shortcut swehhical calculations. There
are two reasons why we linger on Riemann sums. First, in dodenderstand integration
adequately, we must understand the underlying “technélagyg concepts; this proves
vital in understanding how to use the methods, and whengstgag go wrong. It also helps
to understand what integrals represent in applicationsdbeur later on. Second, even
though we will shortly have better tools for analytical edétions, the ideas of setting up
area approximations using rectangular strips is very aind the way that the spreadsheet
computations are designed. (However, the summation islédm=ditomatically using the
spreadsheet, and no “formulae” are needed.) In Sectioh,2v2. gave only few details of
the steps involved. The student will find that understanttiegdeas of Section 2.2.2 will
go hand-in-hand with understanding the numerical appro&8ection 2.2.1.

The ideas outlined above can be applied to more complic#tgations. In the next
section we consider a practical problem in which a simildcwdation is carried out.

2.3 The area of a leaf

Leaves act as solar energy collectors for plants. Hence,dhdace area is an important
property. In this section we use our techniques to deterithieearea of a rhododendron
leaf, shown in Figure 2.4. For simplicity of treatment, welwirst consider a function
designed to mimic the shape of the leaf in a simple systemits:ume will scale distances
by the length of the leaf, so that its profile is contained mititervald < = < 1. We later
ask how to modify this treatment to describe similarly careaves of arbitrary length and
width, and leaves that are less symmetric. As shown in Figutea simple parabola, of
the form

y=flz) =2(1-2),

provides a convenient approximation to the top edge of thk [€o check that this is the
case, we observe thatat= 0 andx = 1, the curve intersects the x axis. At< =z < 1,
the curve is above the axis. Thus, the area between this ant/éhe x axis, is one half of
the leaf area.

We set up the computation of approximating rectangulapstais before, by sub-
dividing the interval of interest intdV rectangular strips. We can set up the calculation
systematically, as follows:

length of interva=1—-0=1
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y
y=f(x)=x(1-x)
X
y
k'th .
rectangle Yie =f0%
(enlarged)
( X
XaA= -
O X % *« % =1 Ax

Figure 2.4.In this figure we show how the area of a leaf can be approximiayed
rectangular strips.

number of segmenté&/

. . 1
width of rectangular strlpsxx =

k

N N
height ofk’th rectangular stripf (zx) = xr (1 — xx)

thek’'th z value zp = k

The representativi'th rectangle is shown shaded in Figure 2.4: Its area is

: 1 k k
a, = basex height= Az - f(zy) = (N) . (N(l - N)) )
Ax f(zg)

The total area of these rectangular strips is:

ANstnps—Zak—ZAff f(xk) =§:< > < —%)).

k=1 k=1 k=1
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Simplifying the result (so we can use summation formulaagl$to:

Using the summation formulae (1.1) and(1.2) from Chaptesilts in:

AN strips= <%) (N(]\;'f' 1)) B <%) <(2N+1)éV(N+1))'

Simplifying, and regrouping terms, we get

AN strips= % <(N; 1)> _é <(2N+]1\2§N+1)) :

This is the area for a finite numbeX], of rectangular strips. As before, threie areais
obtained as the limit a4 goes to infinity, i.e.A = limy .o Ay strips We obtain:

A— fim 1<(N+1)> i 1((2N+1)(N+1)>

N—oo 2 N N—oo 6 N2

1 1
Z 2=
6 6

1
2

Taking the limit leads to

Thus the area of the entire leaf (twice this area) is 1/3.

Remark:

The function in this example can be writtengas= = — 2. For part of this expression,
we have seen a similar calculation in Section 2.2. This exanlipstrates an important
property of sums, hamely the fact that we can rearrange thesteto simpler expressions
that can be summed individually.

In the homework problems accompanying this chapter, westiyate how to de-
scribe leaves with arbitrary lengths and widths, as welkeasés with shapes that are ta-
pered, broad, or less symmetric than the current example.

2.4 Area under an exponential curve

In the precious examples, we considered areas under cuegseslokd by a simple quadratic
functions. Each of these led to calculations in which summtafgers or square integers
appeared. Here we demonstrate an example in which a geomstniwill be used. Recall
that we derived Eqn. (1.4) in Chapter 1, for a finite geomestnim.

We will find the area under the graph of the functipn= f(z) = e** over the
interval betweenr = 0 andz = 2. In evaluating a limit in this example, we will also use
the fact that the exponential function has a linear appraion as follows:

ef~1l+z2
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(See Linear Approximations in an earlier calculus course.)
As before, we subdivide the interval into N pieces, each aftim2/N. Proceeding
systematically as before, we write

length of interval=2 — 0 = 2

number of segments N

, . 2
width of rectangular strips\z = N

; 2 2k
thek’th x value x), = kﬁ =N

height ofk’th rectangular stripf (z;) = e™* = ¢2(F/N) = 4k/N

We observe that the length of the interval (here 2) has aftettte details of the calculation.
As before, the area of the K'th rectangle is

ar, = basex height= Az x f(x}) = (%) etk /N

and the total area of all the rectangles is
2\ o 2\ o 2\ (&
___2:4k/N__§:k__ E:k_o
AN sinps ™ <N> k—16 N <N) k—lr N <N) <k—0r ' ) ’

wherer = ¢*/V, This is a finite geometric series. Because the series stirs: = 1 and
not with £ = 0, the sumis

v (3) [

After some simplification and using= ¢*/V, we find that

2\ gy 1—¢t 1—et
AN strips= (N) et/ =

1—e4/N  “N(e=4/N 1)
We need to determine what happens whégets very large. We can use the linear approx-
imation

e N ~1-4/N
to evaluate the limit of the term in the denominator, and we firat
1—¢t 1—¢? et

1
A= lim 2-—— % — fim 2 —2 ~ 26.799.
Nooe “N(e=#/N 1)~ NS —N(1+4/N —1) 4

2.5 Extensions and other examples
More general interval

To calculate the area under the cuive= f(z) = 22 over the interval < = < 5 using
N rectangles, the width of each one wouldhe = (5 — 2)/N = 3/N, (i.e., length of
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interval divided by N). Since the interval startsigt= 2, and increments in units ¢8 /),
the k'th coordinate isty, = 2 + k(3/N) = 2+ (3k/N). The area of thé'th rectangle is
thenAx = f(zx) x Az = [(2 + (3k/N))?](3/N), and this is to be summed over A
similar algebraic simplification, summation formulae, dindit is needed to calculate the
true area.

Other examples

In the Appendix 11.2 we discuss a number of other examplds seiteral modifications:
First, in Appendix 11.2.1, we show how to set up a Riemann suma imore complicated
guadratic function on a general interval< = < b.

Second, we show how Riemann sums can be set up for left, th#reright endpoint
approximations. The results are entirely analogous.

2.6 The definite integral

We now introduce a central concept that will form an impotrtaeme in this course, that
of the definite integral. We begin by defining a new piece oatioh relevant to the topic
in this chapter, namely the area associated with the graalffusfction. For a functiop =

y
y=f(x) —

A

a b X

Figure 2.5. The shaded area corresponds to the definite integralbof the func-
tion f(z) over the intervak < = < b.

f(x) > 0 that is bounded and continuddi®n an intervala, b] (also writtena < z < b),
we define thalefinite integral

b
I:/ f(z) dz (2.4)

to be the areal of the region under the graph of the function between the eindg and
b. See Figure 2.5.

2.6.1 Remarks

1. The definite integral is a number.

11 function is said to be bounded if its graph stays betweenespair of horizontal lines. It is continuous if
there are no “breaks” in its graph.
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2. The value of the definite integral depends on the functiad,on the two end points
of the interval.

3. From previous remarks, we have a procedure to calculatedhue of the definite
integral by dissecting the region into rectangular strgognming up the total area of
the strips, and taking a limit a&', the number of strips gets large. (The calculation
may be non-trivial, and might involve sums that we have nstased in our simple
examples so far, but in principle the procedure is well-asfih

Y (a) (b)
0 1 0 1 X

T )
2 4 0 2 X

Figure 2.6. Examples (1-4) relate areas shown aboveédinite integrals

2.6.2 Examples

We have calculated the areas of regions bounded by parlicdianple functions. To
practice notation, we write down the corresponding defimtegral in each case. Note
that in many of the examples below, we need no elaborate laéitmus, but merely use
previously known or recently derived results, to familzarthe reader with the new notation
just defined.

Example (1)

The area under the function = f(x) = x over the interval < z < 1 is triangular,
with base and height 1. The area of this triangle is tHus- (1/2)base< height= 0.5

(Figure 2.6a). Hence,
1
/ xdx = 0.5.
0
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Example (2)
In Section 2.2, we also computed the area under the fungtiery (z) = 22 on the interval
0 <z < 1andfound its area to be 1/3 (See Eqgn. (2.3) and Fig. 2.6(b)sT

1
/ 2 dr =1/3 ~ 0.333.
0

Example (3)

A constant function of the formp = 1 over an interva® lex < 4 would produce a rectan-
gular region in the plane, with base (4-2)=2 and height 1(f®.6(c)). Thus

4
/ ldx = 2.
2

The functiony = f(x) = 1 — x/2 (Figure 2.6(d)) forms a triangular region with base 2
and height 1, thus

Example (4)

2
/ (1—2/2)de =1.
0

2.7 The area as a function

In Chapter 3, we will elaborate on the idea of the definitegraéand arrive at some very
important connection between differential and integréduas. Before doing so, we have
to extend the idea of the definite integral somewhat, ancethedefine a new function,
A(z).

y
y=f(x)

A(X)

a X b

Figure 2.7. We define a new functioA(x) to be the area associated with the
graph of some functiop = f(x) from the fixed endpoint up to the endpoint, where
a<x<b.

We will investigate how the area under the graph of a funatizenges as one of the
endpoints of the interval moves. We can think of this as ationdhat gradually changes
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(i.e. the area accumulates) as we sweep across the infervgl from left to right in
Figure 2.1. The functionl(z) represents the area of the region shown in Figure 2.7.

Extending our definition of the definite integral, we might teenpted to use the
notation

A@ﬂ:ilifwﬁdx

However, there is a slight problem with this notation: thenbpl x is used in slightly
confusing ways, both as the argument of the function andesdhable endpoint of the
interval. To avoid possible confusion, we will prefer theat@n

Aw) = [ 165 as.

(or some symbol other thanused as a placeholder insteadrof
An analogue already seen is the sum

N
>
k=1

where N denotes the “end” of the sum, akdkeeps track of where we are in the process
of summation. The symbal, sometimes called a “dummy variable” is analogous to the
summation symbat.

In the upcoming Chapter 3, we will investigate propertiethaf new “area function”
A(x) defined above. This will lead us to tikeindamental Theorem of Calculusnd will
provide new and powerful tools to replace the dreary sunonatihat we had to perform
in much of Chapter 2. Indeed, we are about to discover the imgaannection between a
function, the areal(x) under its curve, and the derivative dfx).

2.8 Summary

In this chapter, we showed how to calculate the area of amegithe plane that is bounded
by the x axis, two lines of the forma = a andx = b, and the graph of a positive function
y = f(z). We also introduced the terminology “definite integral” ¢8en 2.6) and the
notation (2.4) to represent that area.

One of our main efforts here focused on how to actually compliat area by the
following set of steps:

e Subdivide the intervdk, b] into smaller intervals (widtt\z).

e Construct rectangles whose heights approximate the heigie function above the
given interval.

e Add up the areas of these approximating rectangles. (Herdter used summation
formulae from Chapter 1.) The resulting expression, sudkogs (2.1), for example,
was denoted a Riemann sum.

e Find out what happens to this total area in the limit when tidtwAz goes to zero
(or, in other words, when the number of rectanglegoes to infinity).
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We showed both the analytic approach, using Riemann sumstenohation formu-
lae to find areas, as well as numerical approximations ussgyeadsheet tool to arrive at
similar results. We then used a variety of examples to ilfistthe concepts and arrive at
computed areas.

As a final important point, we noted that the area “under tlaglyiof a function” can
itself be considered a function. This idea will emerge afi@aarly important and will lead
us to the key concept linking the geometric concept of aratis tive analytic properties
of antiderivatives. We shall see this link in the Fundamikemteeorem of Calculus, in
Chapter 3.
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Chapter 3

The Fundamental
Theorem of Calculus

In this chapter we will formulate one of the most importarsiiés of calculus, the Funda-
mental Theorem. This result will link together the notiorfio integral and a derivative.
Using this result will allow us to replace the technical cédtions of Chapter 2 by much
simpler procedures involving antiderivatives of a funotio

3.1 The definite integral

In Chapter 2, we defined the definite integfalof a functionf (x) > 0 on an intervala, b]
as the area under the graph of the function over the givervalte < = < b. We used the

notation I
D

I= 1 f(z)dzx

to represent that quantity. We also set up a technique fopating areas: the procedure
for calculating the value of is to write down a sum of areas of rectangular strips and to
compute a limit as the number of strips increases:

b N
I:/a f(x)dx:]\}iinm;f(xk)Ax, (3.1)

whereNN is the number of strips used to approximate the regiais,an index associated
with the k’'th strip, andAz = x4 — zy, is the width of the rectangle. As the number of
strips increases\ — o0), and their width decreaseA{ — 0), the sum becomes a better
and better approximation of the true area, and hence, ofdfiei@ integral,/. Example
of such calculations (tedious as they were) formed the ni@me of Chapter 2 .

We can generalize the definite integral to include functitwas are not strictly pos-
itive, as shown in Figure 3.1. To do so, note what happens aseeeporate strips cor-
responding to regions of the graph below thexis: These are associated with negative
values of the function, so that the quantjtyz; ) Ax in the above sum would be negative
for each rectangle in the “negative” portions of the funeti®his means that regions of the
graph below the: axis will contribute negatively to the net value bf

43



44 Chapter 3. The Fundamental Theorem of Calculus

If we refer toA; as the area corresponding to regions of the grapf{:of above the
x axis, andA, as the total area of regions of the graph undentleis, then we will find
that the value of the definite integrakhown above will be

I:Al_AQ.

Thus the notion of “area under the graph of a function” mushberpreted a little carefully
when the function dips below the axis.

! y=f(x) Y y=f(x)

(@) (b)

y=f(x) y=f(x)

a a b C
(©) (d)

Figure 3.1.(a) If f(x) is negative in some regions, there are terms in the sum (3.1)
that carry negative signs: this happens for all rectanglegarts of the graph that dip
below ther axis. (b) This means that the definite integfa: ff f (x)dx will correspond
to the difference of two aread, — A; whereA; is the total area (dark) of positive regions
minus the total area (light) of negative portions of the dgra@Properties of the definite
integral: (c) illustrates Property 1. (d) illustrates Prepty 2.

3.2 Properties of the definite integral

The following properties of a definite integral stem frondeginition, and the procedure for
calculating it discussed so far. For example, the fact timatsation satisfies the distributive
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property means that an integral will satisfy the same theegamoperty. We illustrate some
of these in Fig 3.1.

1. /:f(x)da::o,

2. [ swa- [  flayar + [ i

3 /ab Cf(x)dz = C/abf(a:)da:,

o [ o= [ 1@+ [ g,

b a
5. fla)dx = —/b f(x)dx.

Property 1 states that the “area” of a region with no widtheigoz Property 2 shows
how a region can be broken up into two pieces whose total ar@assi the sum of the
individual areas. Properties 3 and 4 reflect the fact thaintegyral is actually just a sum,
and so satisfies properties of simple addition. Property &bisined by noting that if
we perform the summation “in the opposite direction”, thesmmust replace the previous
“rectangle width” given byAx = x1 — x, by the new “width” which is of opposite sign:
xr — rpe1. This accounts for the sign change shown in Property 5.

3.3 The area as a function

In Chapter 2, we investigated how the area under the graplfusiction changes as one of
the endpoints of the interval moves. We defined a functiohréyresents the area under
the graph of a functiorf, from some fixed starting point,to an endpoink:.

Alz) = / " r) dt.

This endpoint is considered as a varidBlé.e. we will be interested in the way that this
area changes as the endpoint varies (Figure 3.2(a)). Waavillinvestigate the interesting
connection betweeA(x) and the original functionf ().

We would like to study howA(x) changes as is increased ever so slightly. Let
Az = h represent some (very small) incrementzin (Caution: do not confusé with
height here. It is actually a step size along thaxis) Then, according to our definition,

Alw+h) = / ) de

12Recall that the “dummy variable! inside the integral is just a “place holder”, and is used mich¢onfusion
with the endpoint of the integrak(in this case). Also note that the value 4{z) does not depend in any way on
t, so any letter or symbol in its place would do just as well.
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y y

y=f(x) y=f(x)

a X a X x+h
(@) (b)
y y
/\/yﬂ(X) y=f(x)
- Ah)-A) (x)
a X X+h a T
(c) (d)

Figure 3.2. When the right endpoint of the interval moves by a distaéntiee area
of the region increases from(x) to A(x + h). This leads to the important Fundamental
Theorem of Calculus, given in Eqn. (3.2).

In Figure 3.2(a)(b), we illustrate the areas represented by and by A(xz + h), respec-
tively. The difference between the two areas is a thin slfgapown in Figure 3.2(c)) that
looks much like a rectangular strip (Figure 3.2(d)). (Indlgéh is small, then the approx-
imation of this sliver by a rectangle will be good.) The haighthis sliver is specified
by the functionf evaluated at the point, i.e. by f(x), so that the area of the sliver is
approximatelyf(x) - h. Thus,

A(x +h) — A(x) = f(z)h

o A h)—A
R N )

As h gets small, i.eh — 0, we get a better and better approximation, so that, in thig, lim

Az +h) — A(z)
)

lim
h—0

The ratio above should be recognizable. It is simply thevdéixie of the area function, i.e.

(@) dA lim A(x + h) — A(x) (3.2)

T dr h—o h
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We have just given a simple argument in support of an imporesult, called the
Fundamental Theorem of Calculusghich is restated below..

3.4 The Fundamental Theorem of Calculus
3.4.1 Fundamental theorem of calculus: Part |

Let f(z) be a bounded and continuous function on an intelvdi]. Let

A(z) = / ") .

Then fora < = < b,

dA
dr = f(x).

In other words, this result says thd{z) is an “antiderivative” of the original function,

fa)®.

Proof

See above argument. and Figure 3.2.

3.4.2 Example: an antiderivative

Recall the connection between functions and their devigatiConsider the following two
functions:

{L‘2 x2

— = — 41

2 , 92 9 +

Clearly, both functions have the same derivative:

qi(z) =

We would say that:?/2 is an “antiderivative” ofzr and that(x?/2) + 1 is also an “an-
tiderivative” of z. In fact,anyfunction of the form

2
g(x) = L+ C whereC'is any constant

2
is also an “antiderivative” of.

This example illustrates that adding a constant to a givection will not affect
the value of its derivative, or, stated another way, anitidéives of a given function are
defined only up to some constant. We will use this fact shoiftlyi(x) and F'(x) are both
antiderivatives of some functiof{x), thenA(z) = F(x) + C.

13we often write “antiderivative”, with no hyphen.
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3.4.3 Fundamental theorem of calculus: Part Il

Let f(z) be a continuous function da, b]. SupposeF'(z) is any antiderivative off (z).
Then fora < x <'b,

Alz) = / F(t) dt = F(z) — F(a).

Proof

From comments above, we know that a functfdm) could have many different antideriva-
tives that differ from one another by some additive constalvé are told tha#'(x) is an
antiderivative off (x). But from Part | of the Fundamental Theorem, we know thét) is
also an antiderivative of (). It follows that

Ax) = / f(t)dt = F(x) + C, whereC is some constant. (3.3)
However, by property 1 of definite integrals,

Ala) = /af(t) — Fla)+C =0.
Thus,
C = —F(a).

ReplacingC by —F'(a) in equation 3.3 leads to the desired result. Thus

Alz) = / F(t) dt = F(z) — F(a).

Remark 1: Implications

This theorem has tremendous implications, because it allesvto use a powerful new
tool in determining areas under curves. Instead of the dimydgf summations in order to
compute areas, we will be able to use a shortcut: find an aiviédige, evaluate it at the

two endpoints, b of the interval of interest, and subtract the results to lgetarea. In the

case of elementary functions, this will be very easy and eniant.

Remark 2: Notation

We wiill often use the notation

to denote the difference in the values of a function at twopeinds.



3.5. Review of derivatives (and antiderivatives) 49

3.5 Review of derivatives (and antiderivatives)

By remarks above, we see that integration is related to-ifférentiation”. This moti-
vates a review of derivatives of common functions. Tableli8t& functionsf (z) and their
derivativesf’(x) (in the first two columns) and function§z) and their antiderivatives
F(z) in the subsequent two columns. These will prove very helipfolur calculations of
basic integrals.

function | derivative function | antiderivative
f(x) f'(x) f(x) F(x)
Cx C C Cx
n n—1 m zm
xr nr xr m+1
sin(ax) a cos(ax) cos(bx) (1/b) sin(bzx)
cos(ax) | —asin(ax) sin(bx) | —(1/b)cos(bx)
tan(ax) | asec?(ar) sec?(bx) | (1/b)tan(bx)
ek:r kekw ekw ekm/k
1 1
In(z - - 1
n(z) . . n(z)
tan(e) | : tan()
arctan(z T2 T2 arctan(z
in(e) | —— 1 in(z)
arcsin(x — arcsin(x
Vi—e | | VI

Table 3.1.Common functions and their derivatives (on the left two wlg) also
result in corresponding relationships between functiomd their antiderivatives (right two
columns). In this table, we assume thatZ —1,b # 0, k # 0. Also, when usingn(z) as
antiderivative forl /x, we assume that > 0.

As an example, consider the polynomial
p(z) = ap + a1z + asz? + azx® + . ..

This polynomial could have many other terms (or even an ifinumber of such terms,
as we discuss much later, in Chapter 10). Its antiderivatiwrebe found easily using the
“power rule” together with the properties of addition ofites. Indeed, the antiderivative is
a2 3 A3 4

F(x)=C+a0x+%x2+§m RVICEEEE
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This can be checked easily by differentiatiin

3.6 Examples: Computing areas with the
Fundamental Theorem of Calculus

3.6.1 Example 1. The area under a polynomial

Consider the polynomial
p(r) =1+x+22 +2°

(Here we have taken the first few terms from the example ofakedection with coeffi-
cients all setto 1.) Then, computing

Iz/olp(x)dx

leads to

! 1 1 1
=1+4+=+-+-~2083.

1
1 1 1

I:/ (A+z+a?+2%)de=(z+ 2 + -2 + =2?)

0 0 2 3 4

2 3 4

3.6.2 Example 2: Simple areas

Determine the values of the following definite integrals lnglfing antiderivatives and using
the Fundamental Theorem of Calculus:

1
1.1:/ 22 dz,
0

1
2. I:/ (1 — 2?) da,
-1

1
3. I:/ e 2 d,
-1
T ) T
4. I—/O sin (5) dz,

Solutions
1. An antiderivative off (z) = z? is F((z) = (23/3), thus
1

= (1/3)(=?)

0

1

1
I:/ r2dr = F(z)
0

14In fact, it is very good practice to perform such checks.
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2. An antiderivative off (z) = (1 — 22) is F(z) = x — (23/3), thus

1 1

=(1-0%/3)=((-1) = ((-1)%/3)) = 4/3

—1

I= /1 (1—2?) dz = F(x)

-1

= (z = (2%/3))

-1
See comment below for a simpler way to compute this integral.

3. An antiderivative ot=2% is F(z) = (—1/2)e~2%. Thus,

1 1

= (=1/2)(e™* = &%),

—1

1
I= / e % dx = F(z)

-1

= (-1/2)(e™)

-1

4. An antiderivative okin(z/2) is F'(z) = — cos(x/2)/(1/2) = —2 cos(x/2). Thus

1= /OW sin (g) dx = —2cos(x/2)

s

. —2(cos(m/2) — cos(0)) = —2(0—1) = 2.

Comment: The evaluation of Integral 2. in the examples above is trimkly in that signs
can easily get garbled when we plug in the endpoint at -1. Weweve can simplify our
work by noting the symmetry of the functiof{z) = 1 — 22 on the given interval. As
shown in Fig 3.3, the areas to the right and to the left ef 0 are the same for the interval
—1 < z < 1. This stems directly from the fact that the function consédeis even'®.
Thus, we can immediately write

I:i/ul—x%dmz?A%l—x%dmz?@r—@W@)1:2(L—OW$):4B

1 0
Note that this calculation is simpler since the endpoint at 0 is trivial to plug in.

y=1-x2

-1 0 1
Figure 3.3. We can exploit the symmetry of the functiffx) = 1 — 22 in the
second integral of Examples 3.6.2. We can integrate 0ver: < 1 and double the result.

We state the general result we have obtained, which holdganany function with
even symmetry integrated on a symmetric interval abost0:

If f(x) is anevenfunction, then

’ flx)de =2 ’ f(z) dz (3.4)

15Recall that a functiory (x) is evenif f(z) = f(—x) for all 2. A function isodd if f(z) = —f(—x).
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3.6.3 Example 3: The area between two curves

The definite integral is an area of a somewhat special typegibn, i.e., an axis, two
vertical lines ¢ = a andx = b) and the graph of a function. However, using additive
(or subtractive) properties of areas, we can generalizergpating areas of other regions,
including those bounded by the graphs of two functions.

(a) Find the area enclosed between the graphs of the fusgtiensz® andy = z'/3
in the first quadrant.

(b) Find the area enclosed between the graphs of the fusatienz? andy = z in
the first quadrant.

(c) What is the relationship of these two areas? What is tladi@aship of the func-
tionsy = 2® andy = z'/3 that leads to this relationship between the two areas?

—yx1/3
1.0 - y=
0.8 "
061
/

0.4 //N/ /

1 A
0.2 e e

X

07702 04 06 08 1 12 14 16 18 2

Figure 3.4.In Example 3, we compute the areds and A, shown above.

Solution

(@) The two curvesy = z° andy = z'/3, intersect at: = 0 and atz = 1 in the first
quadrant. Thus the interval that we will be concerned with is = < 1. On this
interval,z'/% > 23, so that the area we want to find can be expressed as:

A = /1 (x1/3 —x3) dx.
0

1

Thus,

1
A3

173

3 1 1

4
A= -2 =2 :
! 4, 4 4 2

0

(b) The two curveg; = z3 andy = z also intersect at = 0 and atr = 1 in the
first quadrant, and on the intervl< = < 1 we havexr > 2®. The area can be
represented as

1
As :/ (;L'—x3) dx.
0
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2
€T
AQZ?

o 4

(c) The area calculated in (a) is twice the area calculat@a)inThe reason for this is that
z'/3 is the inverse of the function®, which means geometrically that the graph of
z'/3 is the mirror image of the graph af reflected about the ling = z. Therefore,
the aread, betweeny = z!/3 andy = 23 is twice as large as the arela between
y = x andy = 23 calculated in part (b)A; = 2A, (see Figure 3.4).

3.6.4 Example 4: Area of land

Find the exact area of the piece of land which is bounded by tvds on the west, the
axis in the south, the lake described by the functjos f(z) = 100 + (x/100)? in the
north and the line: = 1000 in the east.

Solution

The areais

1000 2 1000
€T 1
A= 1004 (— ) ) dz. = 100 4+ [ —— | 22 ) dz.
/0 ( +(100) ) v /0 ( +(10000)x) v

Note that the multiplicative constant (1/10000) is not etiéel by integration. The result is

1000 3 11000 1 B %105
0 10000/ 37

+_

A =100x
0 3

3.7 Qualitative ideas

In some cases, we are given a sketch of the graph of a fungtiah, from which we would
like to construct a sketch of the associated functidm). This sketching skill is illustrated
in the figures shown in this section.

Suppose we are given a function as shown in the top left handl jpd Figure 3.5.
We would like to assemble a sketch of

Alz) = / " ftyat

which corresponds to the area associated with the graphediutiction f. As x moves
from left to right, we show how the “area” accumulated aldmggraph gradually changes.
(SeeA(x) in bottom panels of Figure 3.5): We start with no area, at thiatpr = «a
(since, by definitiond(a) = 0) and gradually build up to some net positive amount, but
then we encounter a portion of the graphfobelow thex axis, and this subtracts from
the amount accrued. (Hence the graphddf) has a little peak that corresponds to the
point at whichf = 0.) Every time the functiorf(z) crosses the: axis, we see thatl(x)

has either a maximum or minimum value. This fits well with odea of A(x) as the
antiderivative off (x): Places wherel(x) has a critical point coincide with places where
dA/dz = f(x) = 0.
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f(x) f(x)
X X
A(X) A(X)
X X
(a) (b)
f(x) f(x)
i D | ‘
X : X
A(X) A(X)
| —
X X
(©) (d)

Figure 3.5.Given a functionf (z), we here show how to sketch the corresponding
“area function” A(z). (The relationship is thaf (x) is the derivative ofd(x)

Sketching the functionl(z) is thus analogous to sketching a functiger) when we
are given a sketch of its derivatiy&x). Recall that this was one of the skills we built up in
learning the connection between functions and their déviesin a first semester calculus
course.

Remarks

The following remarks may be helpful in gaining confidencéhwsketching the “area”
functionA(z) = [ f(t) dt, from the original functiory (z):

1. The endpoint of the intervad, on the x axis indicates the place at whidk:) = 0.
This follows from Property 1 of the definite integral, i.eorin the fact thatd(a) =

[ f(t) dt = 0.

2. Wheneverf(z) is positive,A(x) is an increasing function - this follows from the fact
that the area continues to accumulate as we “sweep acrosisivpoegions off ().



3.7. Qualitative ideas 55

fix)

Figure 3.6. Given a functionf(z) (top, solid line), we assemble a plot of the
corresponding functio(z) = [ f(t)dt (bottom, solid line).g(z) is an antiderivative
of f(x). Whetherf(x) is positive (+) or negative (-) in portions of its graph, deténes
whetherg(z) is increasing or decreasing over the given intervals. Ptaederef(x)
changes sign correspond to maxima and minima of the fungfieh(Two such places are
indicated by dotted vertical lines). The box in the middlthefsketch shows configurations
of tangent lines tg;(x) based on the sign of(x). Wheref(z) = 0, those tangent lines
are horizontal. The functiog(x) is drawn as a smooth curve whose direction is parallel to
the tangent lines shown in the box. While the funcjign) has many antiderivatives (e.g.,
dashed curve parallel tg(z)), only one of these satisfigéa) = 0 as required by Property
1 of the definite integral. (See dashed vertical line at ). This determines the height of
the desired functiop(z).

3. Whereverf(z), changes sign, the functiofi(x) has a local minimum or maximum.
This means that either the area stops increasing (if theitiam is from positive to
negative values of), or else the area starts to increasef(drosses from negative to
positive values).

4. SincedA/dx = f(z) by the Fundamental Theorem of Calculus, it follows that{tak
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ing a derivative of both sides}j?A/dx? = f’(z). Thus, whenf(x) has a local
maximum or minimum, (i.ef’(x) = 0), it follows thatA” (x) = 0. This means that
at such points, the functioA(x) would have an inflection point.

Given a functionf (z), Figure 3.6 shows in detail how to sketch the correspondingtfon
olo) = [ Fieyae

3.7.1 Example: sketching A(z)

Consider thef (z) whose graph is shown in the top part of Figure 3.7. Sketch theec
sponding functiony(z) = [ f(x)dx.

a(x)

Figure 3.7. The original functions,f(z) is shown above. The corresponding
functionsg(x) is drawn below.

Solution

See Figure 3.7

3.8 Some fine print

The Fundamental Theorem has a number of restrictions that beusatisfied before its
results can be applied. In this section we look at some exasriplwhich care must be
used.
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3.8.1 Function unbounded |
Consider the definite integral
[
— dx.
0 x

The functionf(z) = 1 is undefined at = 0, and unbounded on any interval that contains
the pointz = 0. Hence, we cannot evaluate this integral using the Fundeainttieorem,
and indeed, we say thattiis integral does not exist
3.8.2 Function unbounded Il
Consider the definite integral
1
1
1

This function is also undefined (and hence not continuous) &t 0. The Fundamental
Theorem of Calculus cannot be applied. Technically, algfioone can “go through the
motions” of computing an antiderivative, evaluating it &t endpoints, and getting a
numerical answer, the result so obtained would be simplyngrdVe say that his integral
does not exist.

3.8.3 Example: Function discontinuous or with distinct par ts

Suppose we are given the integral

2
I:/ || da.
-1

This function is actually made up of two distinct parts, ngme

f(a:):{x if x>0

—x ifx<O.

The integrall must therefore be split up into two parts, namely

2 0 2
I:/ || d:vz/ (—;L')dx—i—/ x dx.
—1 —1 0

2
T 1 4
2 0__[0_5]4{5_0]_2'5

We find that

3.8.4 Function undefined

Now let us examine the integral

1
/ 22 da.
1
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y y= ||

-1 0 2

Figure 3.8.In this example, to compute the integral over the interval< = < 2,
we must split up the region into two distinct parts.

We see that there is a problem here. Recall tHat = /z. Hence, the function is not
defined forx < 0 and the interval of integration is inappropriate. Hences ittegral does
not make sense.

3.8.5 Infinite domain (“improper integral”)

Consider the integral

b
1= / e " dx, wherer > 0,andb > 0 are constants.
0

Simple integration using the antiderivative in Table 3dr ¢ = —r) leads to the result

—rz b

e

— _% (efrb _ 60) —
0

I =

==

— (1 — efrb) .

This is the area under the exponential curve between) andx = b. Now consider what
happens when, the upper endpoint of the integral increases, solihat co. Then the
value of the integral becomes

b

1
I = lim e " dr = lim — (1 - efrb) =
b—oo 0 b—oco T

La—g=1

r r

(We used the fact that " — 0 asb — c0.) We have, in essence, found that

o 1
1= / e "dr = —. (3.5)
0 T

An integral of the form (3.5) is called amproper integral. Even though the domain
of integration of this integral is infinite(0, o), observe that the value we computed is
finite, so long as* # 0. Not all such integrals have a bounded finite value. Leartong
distinguish between those that do and those that do not avith fan important theme in
Chapter 10.
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Regions that need special treatment

So far, we have learned how to compute areas of regions inléme phat are bounded
by one or more curves. In all our examples so far, the basithése calculations rests on
imagining rectangles whose heights are specified by oneathanfunction. Up to now, all
the rectangular strips we considered had bases (of widthon thex axis. In Figure 3.9
we observe an example in which it would not be possible to bisetéchnique. We are

y y
x=g(y)

==

Ay

Figure 3.9. The area in the region shown here is best computed by iniegrat
in they direction. If we do so, we can use the curved boundary as desfngction that
defines the region. (Note that the curve cannot be expreagte form of a function in the
usual sensey = f(x), butit can be expressed in the form of a functioa: f(y).)

asked to find the area between the cuf¥e- y + = = 0 and they axis. However, one and
the same curve;®> — y + = = 0 forms the boundary from both the top and the bottom of
the region. We are unable to set up a series of rectangledbagds along the axis whose
heights are described by this curve. This means that ouriteiirtegral (which is really
just a convenient way of carrying out the process of area coatipn) has to be handled
with care.

Let us consider this problem from a “new angle”, i.e. withteegles based on the
axis, we can achieve the desired result. To do so, let us sxprg curve in the form

z=gy) =y -y

Then, placing our rectangles along the intetvat y < 1 on the y axis (each having base
of width Ay) leads to the integral

I=/019(y)dy=/ol(y—y2)dy= (y;—%g)

3.9 Summary

In this chapter we first recapped the definition of the definiiegral in Section 3.1, recalled
its connection to an area in the plane under the graph of sonotién f («), and examined
its basic properties.

If one of the endpointsy of the integral is allowed to vary, the area it represents,
A(x), becomes a function af. Our construction in Figure 3.2 showed that there is a con-
nection between the derivativ€ (z) of the area and the functiof{z). Indeed, we showed
thatA’(z) = f(z) and argued that this make§x) an antiderivative of the functiofi(z).

! 1

1
3

1
0 2
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This important connection between integrals and antidévigs is the crux of In-
tegral Calculus, forming the Fundamental Theorem of Cakullts significance is that
finding areas need not be as tedious and labored as the ¢@miow&Riemann sums that
formed the bulk of Chapter 2. Rather, we can take a shortéog @tidifferentiation.

Motivated by this very important result, we reviewed somepwn functions and
derivatives, and used this to relate functions and theiidarivatives in Table 3.1. We
used these antiderivatives to calculate areas in seveasighes. Finally, we extended the
treatment to include qualitative sketches of functionstedt antiderivatives.

As we will see in upcoming chapters, the ideas presentedhere a much wider
range of applicability than simple area calculations. bwleve will shortly show that the
same concepts can be used to calculate net changes in @lytivarying processes, to
compute volumes of various shapes, to determine displateinoen velocity, mass from
densities, as well as a host of other quantities that inalecess of accumulation. These
ideas will be investigated in Chapters 4, and 5.



Chapter 4

Applications of the
definite integral to
velocities and rates

4.1 Introduction

In this chapter, we encounter a number of applications ofitfanite integral to practical
problems. We will discuss the connection between accé&beratelocity and displacement
of a moving object, a topic we visited in an earlier, DiffetiahCalculus Course. Here
we will show that the notion of antiderivatives and integrallows us to deduce details of
the motion of an object from underlying Laws of Motion. We v@ibnsider both uniform
and accelerated motion, and recall how air resistance caeseibed, and what effect it
induces.

An important connection is made in this chapter betweeneagbthange (e.g. rate
of growth) and the total change (i.e. the net change regpitom all the accumulation and
loss over a time span). We show that such examples also ettodvconcept of integration,
which, fundamentally, is a cumulative summation of infisiteal changes. This allows us
to extend the utility of the mathematical tools to a varietyovel situations. We will see
examples of this type in Sections 4.3 and 4.4.

Several other important ideas are introduced in this chapie encounter for the
first time the idea of spatial density, and see that integmaten also be used to “add up”
the total amount of material distributed over space. IniBe@&.2.2, this idea is applied to
the density of cars along a highway. We also consider masshditsons and the notion of
a center of mass.

Finally, we also show that the definite integral is usefuldetermining the average
value of a function, as discussed in Section 4.6. In all tlexsenples, the important step
is to properly set up the definite integral that correspondkée desired net change. Com-
putations at this stage are relatively straightforwardnpkasize the process of setting up
the appropriate integrals and understanding what thegsept.

61
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4.2 Displacement, velocity and acceleration

Recall from our study of derivatives that foft) the position of some particle at tinte
v(t) its velocity, anda(t) the acceleration, the following relationships hold:

dx dv
E =, % = a.
(Velocity is the derivative of position analccelerationis the derivative of velocity.) This
means that position is an anti-derivative of velocity antbeity is an anti-derivative of
acceleration.
Since positiong(t), is an anti-derivative of velocity(¢), by the Fundamental The-
orem of Calculus, it follows that over the time interidal < ¢t < T5,

T
T

T
/ o(t) dt = (1)

T

The quantity on the right hand side of Eqn. (4.1) idisplacement, i.e., the difference
between the position at tin#§ and the position attimé,. Inthe case that, = 0,7, =T,
we have

T
/0 v(t) dt = 2(T) — x(0),

as the displacement over the time intervat ¢ < 7.
Similarly, since velocity is an anti-derivative of accelton, the Fundamental Theo-
rem of Calculus says that

T2 T2
/ a(t) dt = v(t)| = o(Ty) — o(TY). 4.2)
Tl T1
as above, we also have that
T T
/ a(t) dt = v(t)| = o(T) — v(0)
0 0

is the net change in velocity between time 0 and tifjgthough this quantity does not
have a special name).

4.2.1 Geometric interpretations

Suppose we are given a graph of the veloeity), as shown on the left of Figure 4.1. Then
by the definition of the definite integral, we can interpfx;Tlt’ v(t) dt as the “area” associ-
ated with the curve (counting positive and negative coutidms) between the endpoints
Ty andT5». Then according to the above observations, this area remiethe displacement
of the particle between the two timé$ and7s.

Similarly, by previous remarks, the area under the cuvgis a geometric quantity
that represents the net change in the velocity, as showneomgiit of Figure 4.1.

Next, we consider two examples where either the acceleratithe velocity is con-
stant. We use the results above to compute the displacemesdsh case.
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\Y a

This area represents

displacement This area represent

net velocity change

Tq Ty T T,

Figure 4.1. The total area under the velocity graph represents net disghent,
and the total area under the graph of acceleration represehé net change in velocity
over the intervall} <t < T5.

4.2.2 Displacement for uniform motion

We first examine the simplest case that the velocity is cotste. v(¢) = v = constant.
Then clearly, the acceleration is zero since- dv/dt = 0 whenw is constant. Thus, by
direct antidifferentiation,

=vu(T —0)=0T.

T
/ vdt = vt
0 0

However, applying result (4.1) over the time inter@ak ¢ < 7T also leads to

T

T
/ vdt =x(T) — z(0).
0
Therefore, it must be true that the two expressions obtaabesle must be equal, i.e.
x(T) — x(0) = vT.

Thus, for uniform motion, the displacement is proporticioathe velocity and to the time
elapsed. The final position is

2(T) = x(0) + vT.
This is true for all timel’, so we can rewrite the results in terms of the more famil@w@r
case) notation for time, i.e.

z(t) = 2(0) + vt. (4.3)

4.2.3 Uniformly accelerated motion

In this case, the acceleratieris a constant. Thus, by direct antidifferentiation,
T T

/ adt=at| =a(T—0)=aT.
0 0
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However, using Equation (4.2) for< ¢ < T leads to

T
/ a dt =v(T) — v(0).
0
Since these two results must matetil") — v(0) = aT so that
v(T) =v(0) + aT.

Let us refer to the initial velocity’ (0) asv. The above connection between velocity and
acceleration holds for any final tinig, i.e., it is true for allt that:

v(t) = vy + at. (4.4)

This just means that velocity at timés the initial velocity incremented by an increase (over
the given time interval) due to the acceleration. From théscan find the displacement and
position of the particle as follows: Let us call the initiadgitionz(0) = xy. Then

T
/0 v(t) dt = 2(T) — xp. (4.5)

T T t2
I= / o(t) dt = / (vo + at) dt = (vot + a—)
0 0 2

So, setting Equations (4.5) and (4.6) equal means that

But

T
= (UOT—l—aT;) . (4.6)

0

T2
2(T) — xo = voT + a.

But this is true forall final times,T’, i.e. this holds for any timé so that

t2
x(t) = xo + vot + asg- (4.7)
This expression represents the position of a particle & tigiven that it experienced a
constant acceleration. The initial velocity, initial positionzy and acceleration allowed
us to predict the position of the objectt) at any later timet. That is the meaning of
Eqn. (4.755.

4.2.4 Non-constant acceleration and terminal velocity

In general, the acceleration of a falling body is not actuatiform, because frictional
forces impede that motion. A better approximation to the @t change of velocity is
given by thedifferential equation

— =g — kv. (4.8)

160f course, Eqn. (4.7) only holds so long as the object is acatihg. Once the a falling object hits the ground,
for example, this equation no longer holds.
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We will assume that initially the velocity is zero, i(0) = 0.

This equation is a mathematical statement that relatesgeisan velocityv(t) to the
constant acceleration due to gravigyand drag forces due to friction with the atmosphere.
A good approximation for such drag forces is the térm proportional to the velocity,
with %, a positive constant, representing a frictional coeffici@ecause (¢) appears both
in the derivative and in the expressién, we cannot apply the methods developed in the
previous section directly. That is, we do not have an exjpaskat depends on time whose
antiderivative we would calculate. The derivativeuwdt) (on the left) is connected to the
unknownu(t) on the right.

Finding the velocity and then the displacement for this tyfr@otion requires special
techniques. In Chapter 9, we will develop a systematic aggrpcalled Separation of
Variables to find analytic solutions to equations such &&)(4.

Here, we use a special procedure that allows us to deterimnestocity in this case.
We first recall the following result from first term calculustarial:

The differential equation and initial condition
dy
AR = 4.
7= kv y(0)=wo (4.9)
has a solution
y(t) = yoe M. (4.10)

Equation (4.8) implies that
a(t) =9- kv(t)a

wherea(t) is the acceleration at time Taking a derivative of both sides of this equation

leads to J J

a v
We observe that this equation has the same form as equat@n(¢4th a replacingy),
which implies (according to 4.10) thatt) is given by

a(t) = Ce ™M =aqpe "

Initially, at time¢ = 0, the acceleration is(0) = ¢ (sincea(t) = g — kwv(t), andv(0) = 0).
Therefore,

a(t) = ge *.
Since we now have an explicit formula for acceleration vetinve can apply direct inte-
gration as we did in the examples in Sections 4.2.2 and 4Ta&result is:

T T T okt
/ a(t) dt = / ge Ftdt=g / e Mdt=yg { }
0 0 0 —k

In the calculation, we have used the fact that the antidevevaf e=** is e =** /k. (This can
be verified by simple differentiation.)

R e VO
0_g —k a

(1 — e_"’T) .

ENS
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velocity v(t)

Figure 4.2. Terminal velocity (m/s) for acceleration due to gravity9.8 m/&,
andk = 0.2/s. The velocity reaches a near constant 49 m/s by about 20 s.

As before, based on equation (4.2) this integral of the acagbn ovel) < ¢t < T
must equab(7") — v(0). Butv(0) = 0 by assumption, and the result is true &oyfinal
time T', so, in particular, settin@’ = ¢, and combining both results leads to an expression
for the velocity at any time:

vty =9 (1. (4.11)

We will study the differential equation (4.8) again in SentB.3.2, in the context of a more
detailed discussion of differential equations

From our result here, we can also determine how the velo@habes in the long
term: observe that far— oo, the exponential terra~** — 0, so that

v(t) — %(1 — very small quantity ~ %.

Thus, when drag forces are in effect, the falling object doescontinue to accelerate
indefinitely: it eventually attains germinal velocity. We have seen that this limiting
velocity isv = g/k. The object continues to fall at this (approximately conttapeed as
shown in Figure 4.2. The terminal velocity is also a steadyestalue of Eqn. (4.8), i.e. a
value of the velocity at which no further change occurs.

4.3 From rates of change to total change

In this section, we examine several examples in which tleeafathange of some process is
specified. We use this information to obtain the total chahtjet occurs over some time
period.

17we will use the terminology “total change” and “net changaterchangeably in this section.
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Changing temperature

We must carefully distinguish between information abowet time dependence of some
function, from information about the rate of change of som&fion. Here is an example
of these two different cases, and how we would handle them

(@)

(b)

The temperature of a cup of juice is observed to be
T(t) = 25(1 — e~ %'*)°Celcius

wheret is time in minutes. Find the change in the temperature ofulue jbetween
the timest = 1 andt = 5.

Therate of changeof temperature of a cup of coffee is observed to be
f(t) = 8e~%2*°Celcius per minute

wheret is time in minutes. What is thtal changein the temperature between
t = 1 andt = 5 minutes ?

Solutions

(a) Inthis case, we are given the temperature as a functibmef To determine what

(b)

net changeoccurred between times= 1 andt = 5, we find the temperatures at
each time point and subtract: That is, the change in temyerbetween times= 1
andt = 5 is simply

T(5)—T(1) =25(1—e %) —25(1 —e ') = 25(0.94 — 0.606) = 7.47°Celcius

Here, we do not know the temperature at any time, but wegaen information
aboutthe rate of change (Carefully note the subtle difference in the wording.)
To get the total change, we would sum up all the small chanfig$A¢ (over N
subintervals of duratiol\t = (5 — 1)/N = 4/N) for ¢ starting at 1 and ending

at 5 min. We obtain a sum of the forln, f(¢x) At wherety, is the k'th time point.
Finally, we take a limit as the number of subintervals inse=a(N'= — o). By now,

we recognize that this amounts to a process of integrati@se® on this variation

of the same concept we can take the usual shortcut of integttaie rate of change,
f@), fromt = 1tot = 5. To do so, we apply the Fundamental Theorem as before,
reducing the amount of computation to finding antiderivegivVe compute:

5 5 5

I= / f(t) dt = / 8e 0% dt = —40e~"%| = —40e~! 4 40e7 72,
1 1 1

I

= 40(e7 %2 — 1) = 40(0.8187 — 0.3678) = 18.

Only in the second case did we need to use a definite integfialta net change, since we
were given the way that thate of changaelepended on time. Recognizing the subtleties
of the wording in such examples will be an important skilltttree reader should gain.
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Growth
rate

0 1 2 3 4 yea

Figure 4.3. Growth rates of two trees over a four year period. Tree 1 atliyihas
a higher growth rate, but tree 2 catches up and grows fastier gear 3.

4.3.1 Tree growth rates

The rate of growth in height for two species of trees (in festyear) is shown in Figure 4.3.
If the trees start at the same height, which tree is tallerdfyyear? After 4 years?

Solution

In this problem we are provided with a sketch, rather tharra e for the growth rate of
the trees. Our solution will thus lmpualitative (i.e. descriptive), rather thaguantitative
(This means we do not have to calculate anything; rather,ave to make some important
observations about the behaviour shown in Fig 4.3.)

We recognize that the net change in height of each tree isedbtim

wherei = 1 for tree 1,i = 2 for tree 2,¢;(¢) is the growth rate as a function of time
(shown for each tree in Figure 4.3) afl(t) is the height of treei” at time ¢. But, by the
Fundamental Theorem of Calculus, this definite integralesponds to the area under the
curveg;(t) fromt = 0tot = 7. Thus we must interpret the net change in height for each
tree as the area under its growth curve. We see from Figurindtatt = 1 year, the area
under the curve for tree 1 is greater, so it has grown more. -At4 years the area under
the second curve is greatest so tree 2 has grown the mosttiintea

4.3.2 Radius of a tree trunk

The trunk of a tree, assumed to have the shape of a cylindevsgncrementally, so that its
cross-section consists of “rings”. In years of plentifuhrand adequate nutrients, the tree
grows faster than in years of drought or poor soil conditiddgppose the rainfall pattern
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time, t
Figure 4.4. Rate of change of radiug|(¢) for a growing tree over a period of 14 years.

has been cyclic, so that, over a period of 14 years, the graat¢hof the radius of the tree
trunk (in cm/year) is given by the function

F(t) = 1.5 4 sin(wt/5),

as shown in Figure 4.4. Let the height of the tree trunk be@pprately constant over this
ten year period, and assume that the density of the trunkpiajmately 1 gm/cr.

(a) If the radius was initiallyy at timet = 0, what will the radius of the trunk be at
timet later?

(b) What is the ratio of the mass of the tree trunk at 10 years and = 0 years?
(i.e. find the ratio mass(10)/mass(0).)

Solution

(a) LetR(t) denote the trunk’s radius at time t. The rate of change ofdtdeus of the tree
is given by the functiory(¢), and we are told that @t= 0, R(0) = ro. A graph of this
growth rate over the first fifteen years is shown in Figure #l#e net change in the radius
is

t
0

R(t) — R(0) = /0 f(s)ds = / (1.5 4 sin(ws/5)) ds.

Integrating the above, we get

R(t) - R(0) = (m . %)

t

0
Here we have used the fact that the antiderivativéwofaz) is —(cos(ax)/a).

Thus, using the initial valueR(0) = ro (which is a constant), and evaluating the
integral, leads to

5cos(t/5) 5
R(t) = ro + 1.5¢ — beos(nt/5) | 5.
s
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(The constant at the end of the expression stems from théHaizios(0) = 1.) A graph
of the radius of the tree over time (using = 1) is shown in Figure 4.5. This function
is equivalent to the area associated with the function shiowFigure 4.4. Notice that
Figure 4.5 confirms that the radius keeps growing over thiesgpériod, but that its growth
rate (slope of the curve) alternates between higher and lealees.

R(t)

time, t

Figure 4.5. The radius of the treek(t), as a function of time, obtained by inte-
grating the rate of change of radius shown in Fig. 4.4.

After ten years we have
5 5
R(10) =19 + 15 — — cos(2m) + —.
™ 71'

But cos(27) = 1, so
R(10) = ro + 15.
(b) The mass of the tree is density times volume, and sincaghsity in this example

is constant, 1 gm/ci we need only obtain the volume#at= 10. Taking the trunk to be
cylindrical means that the volume at any given time is

V(t) = [R(£)]2h.

The ratio we want is then

vo)y  awrgh 13

V(10)  7[R(10)?h  [RA0)> (7o +15)°

= " .
In this problem we used simple anti-differentiation to cartgpthe desired total change.
We also related the graph of the radial growth rate in Figtd #hat of the resulting radius
attimet, in Fig. 4.5.
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4.3.3 Birth rates and total births

After World War Il, the birth rate in western countries inased dramatically. Suppose that
the number of babies born (in millions per year) was given by

b(t)=5+2t, 0<t<10,
wheret is time in years after the end of the war.

(a) How many babies in total were born during this time pe(iain the first 10 years
after the war)?

(b) Find the timeT}, such that the total number of babies born from the end of thre wa
up to the timel, was precisely 14 million.

Solution

(a) To find the number of births, we would integrate the bigterb(¢) over the given
time period. Thenet changén the population due to births (neglecting deaths) is

10 10
P(10)—P(0) = b(t)dt = / (5-+2t) dt = (5t+t?)|3° = 504100 = 150[million babies]
0 0

(b) Denote byl the time at which the total number of babies born was 14 millithen,
[in units of million]
T T
I:/ b(t) dt = 14:/ (5+2t) dt = 5T + T*>
0 0
equatingl = 14 leads to the quadratic equatidh? + 57 — 14 = 0, which can be
written in the factored form(T" — 2)(T + 7) = 0. This has two solutions, but we

rejectl’ = —7 since we are looking for time after the War. Thus we find that 2
years, i.e it took two years for 14 million babies to have bieem.

While this problem involves simple integration, we had ttvedor a quantity {") based
on information about behaviour of that integral. Many peshk in real application involve
such slight twists on the ideas of integration.

4.4 Production and removal

The process of integration can be used to convert rates diptimn and removal into net
amounts present at a given time. The example in this sectiofthis type. We investigate
a process in which a substance accumulates as it is beingggdgdbut disappears through
some removal process. We would like to determine when thetgyaf material increases,
and when it decreases.
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Circadean rhythm in hormone levels

Consider a hormone whose level in the blood at timell be denoted byH (¢). We will
assume that the level of hormone is regulated by two seppratesses: one might be
the secretion rate of specialized cells that produce themboe. (The production rate of
hormone might depend on the time of day, in some cyclic patteat repeats every 24
hours or so.) This type of cyclic pattern is calleiccadeanrhythm. A competing process
might be the removal of hormone (or its deactivation by someymes secreted by other
cells.) In this example, we will assume that both the produatate,p(t), and the removal
rate,r(t), of the hormone are time-dependent, periodic functionk sdtmewnhat different
phases.

hormone production/removal rates

p(t)

r(t)

0 3 6 9 12 3 6 9 O
(noon) hour

Figure 4.6. The rate of hormone productigrit) and the rate of removel(¢) are
shown here. We want to use these graphs to deduce when thefleeemone is highest
and lowest.

A typical example of two such functions are shown in Figui@ Zhis figure shows
the production and removal rates over a period of 24 howasgjrsg at midnight. Our first
task will be to use properties of the graph in Figure 4.6 tanamghe following questions:

1. When is the production ratg(t), maximal?

2. When is the removal raiét) minimal?

3. At what time is the hormone level in the blood highest?

4. Atwhat time is the hormone level in the blood lowest?

5. Find the maximal level of hormone in the blood over the gaishown, assuming

that its basal (lowest) level i = 0.

Solutions

1. We see directly from Fig. 4.6 that production rate is matiat about 9:00 am.
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2. Similarly, removal rate is minimal at noon.

3. To answer this question we note that the total amount ahbae produced over a
time perioda <t < bis

b

The total amount removed over time interuak t < b is

b
Rtotalz/ T(t)dt.

This means that the net change in hormone level over the gimerinterval (amount
produced minus amount removed) is

b
H(b) — H(CL) = Ptotal — Rtotal = /a (p(t) — T(t))dt

We interpret this integral as therea between the curvest) andr(¢). But we
must use caution here: For any time interval over whi¢h) > r(t), this integral
will be positive, and the hormone level will have increas€therwise, ifr(t) <
p(t), the integral yields a negative result, so that the hormewel lhas decreased.
This makes simple intuitive sense: If production is gre#étan removal, the level
of the substance is accumulating, whereas in the oppositgtisin, the substance is
decreasing. With these remarks, we find that the hormoneiletiee blood will be
greatestat 3:00 pm, when the greatest (positive) area between thetwes has
been obtained.

4. Similarly, the least hormone level occurs after a penodhich the removal rate has
been larger than production for the longest stretch. Thisiecat 3:00 am, just as
the curves cross each other.

5. Here we will practice integration by actually fitting soragclic functions to the
graphs shown in Figure 4.6. Our first observation is thatef ldngth of the cycle
(also called theperiod) is 24 hours, then th&equencyof the oscillation isw =
(2m)/24 = w/12. We further observe that the functions shown in the Figure 4.
have the form

p(t) = A(1 +sin(wt)), r(t) = A(1 + cos(wt)).
Intersection points occur when
p(t) = r(t)
A(1 + sin(wt)) = A(1 + cos(wt)),
sin(wt) = cos(wt)),
= tan(wt) = 1.

This last equality leads tot = 7 /4, 57 /4. But then, the fact that = 7 /12 implies
thatt = 3,15. Thus, over the time perio8l < ¢ < 15 hrs, the hormone level is
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Figure 4.7. The functions shown above are trigonometric approximatiwnthe
rates of hormone production and removal from Figure 4.6

increasing. For simplicity, we will take the amplitudie= 1. (In general, this would
just be a multiplicative constant in whatever solution wenpaoite.) Then the net
increase in hormone over this period is calculated fromrkegiral

15

15
Hiotal = \ [p(t) —r(t)] dt = /3 [(1 4+ sin(wt)) — (1 + cos(wt))] dt

In the problem set, the reader is asked to compute this @tegd to show that the
amount of hormone that accumulated over the time inte&valt < 15, i.e. between
3:00 am and 3:00 pm &41/2/.

4.5 Present value of a continuous income stream

Here we discuss the value of an annuity, which is a kind ofrggzaccount that guarantees
a continuous stream of income. You would like to gaglollars to purchase an annuity that
will pay you an incomef (¢) every year from now on, for > 0. In some cases, we might
want a constant income every year, in which cAgg would be constant. More generally,
we can consider the case that at each future #eme ask for incomg (¢) that could vary
from year to year. If the bank interest rate-jshow much should you pay now?

Solution

If we invest P dollars (the “principal” i.e., the amount deposited) in thenk with interest
r (compounded continually) then the amoutit) in the account at time (in years), will
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grow as follows:
r\nt
A(t)—P<1+ﬁ) ,
wherer is the yearly interest rate (e.g. 5%) ands the number of times per year that

interest is compound (e.gn = 2 means interest compounded twice per year= 12
means monthly compounded interest, etc.) Define

r r
h=—. Then n=—
n " h

Then at time, we have that
A(t) = P(1+h)*"
_p [(1 n h)%yt
~ Pe™  forlargen or smallh.

Here we have used the fact that whieis small (i.e. frequent intervals of compounding)
the expression in square brackets above can be approxilmatedhe base of the natural
logarithms. Recall that

e = lim [(1 + h)ﬂ .
h—0
(This result was obtained in a first semester calculus cdyrselecting the base of expo-

nentials such that the derivativedfis juste” itself.) Thus, we have found that the amount
in the bank at time will grow as

A(t) = Pe™, (assuming continually compounded interest) (4.12)

Having established the exponential growth of an investmeet return to the question
of how to set up an annuity for a continuous stream of incomiénfuture. Rewriting
Eqn. (4.12), the principle amount that we should invest heotto haveA(t) to spend at
timet is

P=A(t)e .
Suppose we want to hav&t) spending money for each year We refer to thepresent

valueof yeart as the quantity
P=f(t)e .

(i.e. We must pay” now, in the present, to géi¢) in a future yeat.) Summing over all
the years, we find that the present value of the continuowusrecstream is

L L
P swer L~ [ s
t=1 CAL 0

wherelL is the expected number of years left in the lifespan of théviddal to whom this
annuity will be paid, and where we have approximated a sunagiments by an integral
(of a continuous income stream). One problem is that we d&amm# in advance how long
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the lifespanl will be. As a crude approximation, we could assume that tidsiine stream
continues forever, i.e. thdt ~ oco. In such an approximation, we have to compute the
integral:

P = /OOO Ft)e "t dt. (4.13)

The integral in Egn. (4.13) is amproper integral (i.e. integral over an unbounded do-
main), as we have already encountered in Section 3.8.5. Wkhsive more to say about
the properties of such integrals, and about their techuliehition, existence, and proper-
ties in Chapter 10. We refer to the quantity

P = / f(t)e " dt, (4.14)
0
as thepresent value of a continuous income streg().

Example: Setting up an annuity

Suppose we want an annuity that provides us with an annuah@atyof10, 000 from the
bank, i.e. in this casg¢(t) = $10, 000 is a function that has a constant value for every year.
Then from Eqn (4.14),

P z/ 10000e~"" dt = 10000/ e "t dt.
0 0
By a previous calculation in Section 3.8.5, we find that
1
P =10000- —,
,

e.g. if interest rate is 5% (and assumed constant over fygaks), then

10000
P=—+=§2 .
0.05 $200, 000

Therefore, we need to pay $200,000 today tolged00 annually for every future year.

4.6 Average value of a function

In this final example, we apply the definite integral to conmpyithe average height of
a function over some interval. First, we define what is megna\erage value in this
context*®

Given a function

y= f(z)
over some interval < x < b, we will define average value of the function as follows:

18In Chapters 5 and 8, we will encounter a different type of ager(also called mean) that will represent an
average horizontal position or center of mass. It is imprta avoid confusing these distinct notions.
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Definition

The average value gf(z) over the intervab < x < bis

b
f= bia/a f(@)de.

Example 1

Find the average value of the functign= f(x) = 22 over the interval < z < 4.

Solution

A 123" 1
= de = =2 z
=13 ), " "=5%3|, %

_ (43_23) _

Example 2: Day length over the year

Suppose we want to know the average length of the day durimgn&w and spring. We
will assume that day length follows a simple periodic bebay;iwith a cycle length of 1
year (365 days). Let us measure timia days, witht = 0 at the spring equinox, i.e. the
date in spring when night and day lengths are equal, eacly d€imrs. We will refer to
the number of daylight hours on dayby the functionf(¢). (We will also call f(¢) the
day-length on day.

A simple function that would describe the cyclic changes ay tength over the
seasons is

365

This is a periodic function with period 365 days as shown guFé 4.8. Its maximal value
is 16h and its minimal value i8h. The average day length over spring and summer, i.e.
over the first (365/2) 182 days is:

f(t) =12+ 4sin <E) .

1 182

F=rs [ s
= 1—;2 0182 (12+4sin(1ﬂ—8t2)> dt
= 1—;2 (12t 4 ';82 cos(%)) ;82
- 1_;2 (12 182 - 4182 [cos(m) — cos(O)])

=12+ 8 ~ 14.546 hours (4.15)
71'
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summer winter

Figure 4.8. We show the variations in day length (cyclic curve) as welthes
average day length (height of rectangle) in this figure.

Thus, on average, the day is 14.546 hrs long during the spridgsummer.

In Figure 4.8, we show the entire day length cycle over one.y#as left as an
exercise for the reader to show that the average valyeayer the entire year is 12 hrs.
(This makes intuitive sense, since overall, the short daysnter will average out with the
longer days in summer.)

Figure 4.8 also shows geometrically what the average vdidleeofunction repre-
sents. Suppose we determine the area associated with titeafr&(x) over the interval of
interest. (This area is painted red (dark) in Figure 4.8,reltlee interval i) < ¢ < 365,
i.e. the whole year.) Now let us draw in a rectangle over timeesiterval ( < ¢ < 365)
having the same total area. (See the big rectangle in Fig8rea#hd note that its area
matches with the darker, red region.) The height of the rggéarepresents the average
value of f(t) over the interval of interest.

4.7 Summary

In this chapter, we arrived at a number of practical appbcestof the definite integral.
1. In Section 4.2, we found that for motion at constant acaétn a, the displace-
ment of a moving object can be obtained by integrating twibe: definite integral

of acceleration is the velocity(t), and the definite integral of the velocity is the
displacement.

v(t) = vo + /01 ads. x(t) = x(0) —|—/0 v(s) ds.

(Here we use the “dummy variablg”inside the integral, but the meaning is, of
course, the same as in the previous presentation of the faemWe showed that at
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any timet, the position of an object initially at, with velocity v is

2
x(t) = xo + vot + ag.

2. We extended our analysis of a moving object to the caserotoostant acceleration
(Section 4.2.4), when air resistance tends to produce afdregto slow the motion
of a falling object. We found that in that case, the accelenagradually decreases,
a(t) = ge~**. (The decaying exponential means that: 0 ast increases.) Again,
using the definite integral, we could compute a velocity,

u(t) :/0 als) ds = %(1 — ek,

3. We illustrated the connection between rates of changer fowe) and total change
(between on time point and another). In general, we sawfthét)irepresents a rate
of change of some process, then

b
/ r(s) ds = Total change over the time intenal< ¢ < b.

This idea was discussed in Section 4.3.

4. In the concluding Section 4.6, we discussed the average wd a functionf(x)
over some interval < z < b,

b
F= bia/a f(@)de.

In the next few chapters we encounters a vast assortmenttbefuexamples and
practical applications of the definite integral, to suchideas mass, volumes, length,
etc. In some of these we will be called on to “dissect” a geoimshape into pieces
that are not simple rectangles. The essential idea of agradtas a sum of many
(infinitesimally) small pieces will, nevertheless be thensa
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Chapter 5

Applications of the
definite integral to
calculating volume,
mass, and length

5.1 Introduction

In this chapter, we consider applications of the definitegnal to calculating geometric
guantities such as volumes of geometric solids, massesgrsenf mass, and lengths of
curves.

The idea behind the procedure described in this chaptenselyl related to those we
have become familiar with in the context of computing ar@dsat is, we first imagine an
approximation using a finite number of pieces to represeasaed result. Then, a limiting
process of refinement leads to the desired result. The témiynof the definite integral,
developed in Chapters 2 and 3 applies directly. This meaaisvie need not re-derive
the link between Riemann Sums and the definite integral, weusa these as we did in
Chapter 4.

In the first parts of this chapter, we will calculate the tatass of a continuous
density distribution. In this context, we will also defineetboncept of a center of mass.
We will first motivate this concept for a discrete distritmutimade up of a number of finite
masses. Then we show how the same concept can be applieddontieuous case. The
connection between the discrete and continuous repreamdll form an important link
with our study of analogous concepts in probability, in Cleap7 and 8.

In the second part of this chapter, we will consider how teeli$ certain three dimen-
sional solids into a set of simpler parts whose volumes asg tacompute. We will use
familiar formulae for the volumes of disks and cylindricaledls, and carefully construct
a summation to represent the desired volume. The volumeeoétiire object will then
be obtained by summing up volumes of a stack of disks or a setnbiedded shells, and
considering the limit as the thickness of the dissection gats thinner. There are some im-
portant differences between material in this chapter amtéwious chapters. Calculating
volumes will stretch our imagination, requiring us to visza 3-dimensional (3D) objects,
and how they can be subdivided into shells or slices. Mostofedfort will be aimed at
understanding how to set up the needed integral. We providerder of examples of this
procedure, but first we review the basics of elementary velithat will play the dominant
role in our calculations.

81
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5.2 Mass distributions in one dimension

We start our discussion with a number of example of masshligéd along a single dimen-
sion. First, we consider a discrete collection of massedlamgeneralize to a continuous
density. We will be interested in computing the total magsglommation or integration)
as well as other properties of the distribution.

In considering the example of mass distributions, it becoareeasy step to develop
the analogous concepts for continuous distributions. @lhdsvs us to recapitulate the link
between finite sums and definite integrals that we develapedilier chapters. Examples
in this chapter also further reinforce the idea of densitytie context of mass density).
Later, we will find that these ideas are equally useful in thietext of probability, explored
in Chapters 7 and 8.

5.2.1 A discrete distribution: total mass of beads on a wire

m, m My m, mg
XX X3 X4 X5

Figure 5.1. A discrete distribution of masses along a (one dimensiomiad).

In Figure 5.1 we see a number of beads distributed along antingn We will label
each bead with an index,= 1...n (there are five beads so that= 5). Each bead has a
certain position (that we will think of as the value of) and a mass that we will cath;.
We will think of this arrangement asdiscrete mass distributiorboth the masses of the
beads, and their positions are of interest to us. We wouidtbkdescribe some properties
of this distribution.

The total mass of the bead¥, is just the sum of the individual masses, so that

M= mi. (5.1)
=1
5.2.2 A continuous distribution: mass density and total mas S

We now consider a continuous mass distribution where the peisunit length (“density”)
changes gradually from one point to another. For exampkeptr in Figure 5.2 has a
density that varies along its length.

The portion at the left is made of lighter material, or haswadodensity than the
portions further to the right. We will denote that density &fy:) and this carries units of
mass per unit length. (The density of the material along¢hgth of the bar is shown in
the graph.) How would we find the total mass?

Suppose the bar has lengthand letz (0 < x < L) denote position along that bar.
Let us imagine dividing up the bar into small pieces of lenfjthas shown in Figure 5.2.
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mass distribution

p(x)

m, m my,
CcCoHCOCH Haaaas>s
X X Xn

Figure 5.2. Top: A continuous mass distribution along a one dimensidaa|
discussed in Example 5.3.3. The density of the bar (massrpielength),p(z) is shown
on the graph. Bottom: the discretized approximation of #ame distribution. Here we
have subdivided the bar inte smaller pieces, each of lengtkiz. The mass of each piece
is approximatelyn, = p(zr)Axz wherez,, = kAxz. The total mass of the bar (“sum of
all the pieces”) will be represented by an integral (5.2) ashat the sizeAx, of the pieces
become infinitesimal.

The coordinates of the endpoints of those pieces are then
x0=0,...,0p, =kAz, ..., xzny=1L
and the corresponding masses of each of the pieces are apptely
my = p(xp)Ax.
(Observe that units are correct, that is magmass/lengthjength. Note thaf\z has units

of length.) The total mass is then a sum of masses of all tleepj@and, as we have seen in
an earlier chapter, this sum will approach the integral

M = /L p(x)dx (5.2)
0

as we make the size of the pieces smaller.
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We can also define @umulative function for the mass distribution as
T
M(x) = / p(s)ds. (5.3)
0

Then M (z) is the total mass in the part of the interval between the left @ssumed at
0) and the position:. The idea of a cumulative function becomes useful in disonssof
probability in Chapter 8.

5.2.3 Example: Actin density inside a cell

Biologists often describe the density of protein, receptor other molecules in cells. One
example is shown in Fig. 5.3. Here we show a keratocyte, wisiehcell from the scale
of a fish. A band of actin filaments (protein responsible foncure and motion of the

actin cortex

Figure 5.3. A cell (keratocyte) shown in (a) has a dense distribution aifra
in a band called the actin cortex. In (b) we show a schematétcskof the actin cortex
(shaded). In (c) that band of actin is scaled and straightkoet so that it occupies a
length corresponding to the intervall < x < 1. We are interested in the distribution
of actin filaments across that band. That distribution iswhan (d). Note that actin is
densest in the middle of the band. (a) Credit to Alex Mogilner

cell) are found at the edge of the cell in a band calledattten cortex. It has been found
experimentally that the density of actin is greatest in tiddhe of the band, i.e. the position
corresponding to the midpoint of the edge of the cell showRig 5.3a. According to
Alex Mogilner'®, the density of actin across the cortex in filaments per edgds well
approximated by a distribution of the form

plx) =a(l —2?) —1<z<1,
wherez is the fraction of distan@8 from midpoint to the end of the band (Fig. 5.3c and d).
Herep(x) is an actin filament density in units of filaments p@n. That is,p is the number

19Alex Mogilner is a professor of mathematics who specialinesell biology and the actin cytoskeleton
2ONote that 1um (read “ 1 micro-meter” or “micron”) is 10°meters, and is appropriate for measuring lengths
of small objects such as cells.
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of actin fibers per unit length.
We can find the total number of actin filament§,n the band by integration, i.e.

N:/_lla(l—xz)da::a/_ll(l—mQ)dx.

The integral above has already been computed (Integrai hepiExamples 3.6.2 of Chap-
ter 3 and was found to be 4/3. Thus, we have that theréVare 4c/3 actin filaments in
the band.

5.3 Mass distribution and the center of mass

It is useful to describe several other properties of madsilalisions. We first define the
“center of mass”z which is akin to an averagecoordinate.

5.3.1 Center of mass of a discrete distribution

The center of mass of a mass distribution is given by:

5.3.2 Center of mass of a continuous distribution

We can generalize the concept of the center of mass for ancmnts mass density. Our
usual approach of subdividing the interdak » < L and computing a Riemann sum leads
to

- 1 n
T=7 ;sz(l‘z)A]‘

As Az — dx, this becomes an integral. Based on this, it makes sensdite dleecenter
of masof the continuous mass distribution as follows:

1 L
= M/o zp(x)dx .

We can also write this in the form

fOL xp(x)dx.
fOL p(x)dx

T =
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5.3.3 Example: Center of mass vs average mass density

Here we distinguish between two (potentially confusingamfities in the context of an
example.

A long thin bar of lengthl is made of material whose density varies along the length
of the bar. Letr be distance from one end of the bar. Suppose that the mast/dsgs/en

by
p(r) =ax, 0<x<L.

This type of mass density is shown in a panel in Fig. 5.2.
(a) Find the total mass of the bar.
(b) Find the average mass density along the bar.
(c) Find the center of mass of the bar.

(d) Where along the length of the bar should you cut to get tiwogs of equal mass?

Solution

(&) From our previous discussion, the total mass of the bar is

L 2L
Mz/ axd;v:&
0 2 o

al?
5

(b) The average mass density along the bar is computed justeawould compute the
average value of a function: integrate the function oveméerval and divide by the
length of the interval. An example of this type appeared ictiSa 4.6. Thus

1 [ 1 [al? alL
S = Ndr == [ =/ ) ==
=1 [ rar=1 () =%

A bar having a uniform density = a L /2 would have the same total mass as the bar
in this example. (This is the physical interpretation ofrage mass density.)

(c) The center of mass of the bar is

- fOL zp(z)de 1 /L 5 a 23| 22 L3 2
r=—"— = — ax” dr = — =
M M J

= — =L

ar
M3|, al?3 3

Observe that the center of mass is an “average x coordinatéch is not the same
as the average mass density.

(d) We can use the cumulative function defined in Eqn. (5.3iguare out where half of
the mass is concentrated. Suppose we cut the bar at somiepaesi s. Then the
mass of this part of the bar is

s 2
M1:/ p(z) de = —,
0
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We ask for what values of is it true that)M; is exactly half the total mass? Using
the result of part (a), we find that for this to be true, we masteh

M as®  lal?
M = — :> - = —
DN 2 22
Solving fors leads to
1 2
oo Lpov2p
V2 2

Thus, cutting the bar at a distaneg2/2) L from = = 0 results in two equal masses.

Remark: the position that subdivides the mass into two epjeaks is analogous to
the idea of a median. This concept will appear again in theestf probability in
Chapter 8.

5.3.4 Physical interpretation of the center of mass

The center of mass has a physical interpretation: it is thet @ which the mass would
“balance”. In the Appendix 11.3 we discuss this in detail.

5.4 Miscellaneous examples and related problems

The idea of mass density can be extended to related problewasious kinds. We give
some examples in this section.

Up to now, we have seen examples of mass distributed in onerdiion: beads on a
wire, actin density along the edge of a cell, (in Chapter #g bar of varying density. For
the continuous distributions, we determined the total nbgsisitegration. Underlying the
integral we computed was the idea that the interval coulddigsécted” into small parts
(of width Az), and a sum of pieces transformed into an integral. In thé eemples, we
consider similar ideas, but instead of dissecting the regitw 1-dimensional intervals, we
have slightly more interesting geometries.

5.4.1 Example: A glucose density gradient

A cylindrical test-tube of radius, and height:, contains a solution of glucose which has
been prepared so that the concentration of glucose is gtestthe bottom and decreases
gradually towards the top of the tube. (This is calledkeasity gradierjt Suppose that the
concentratiort as a function of the depthis c(z) = 0.1 + 0.5z grams per centimetér

(z = 0 at the top of the tube, and= h at the bottom of the tube.) In Figure 5.4 we show a
schematic version of what this gradient might look like. rglity, the transition between
high and low concentration would be smoother than shownigfipure.) Determine the
total amount of glucose in the tube (in gm). Neglect the “ibeo’ lower portion of the
tube: i.e. assume that it is a simple cylinder.
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x=0

x=h

Figure 5.4. A test-tube of radius containing a gradient of glucose. A disk-shaped
slice of the tube with small thicknegst has approximately constant density.

Solution

We assume a simple cylindrical tube and consider imaginslige’s” of this tube along
its vertical axis, here labeled as the’“axis. Suppose that the thickness of a slicé\is.
Then the volume of each of these (disk shaped) slices3dz. The amount of glucose in
the slice is approximately equal to the concentratiar) multiplied by the volume of the
slice, i.e. the small slice contains an amotirt Azc(x) of glucose. In order to sum up the
total amount over all slices, we use a definite integral. (&®te, we imagine\z — dx

becoming “infinitesimal” as the number of slices incredséke integral we want is

h
G = 777“2/ c(x) dx.
0

Even though the geometry of the test-tube, at first glan@mnsemore complicated than
the one-dimensional highway described in Chapter 4, wergbdeere that the integral
that computes the total amount is still a sum over a singléapariable,z. (Note the
resemblance between the integrals

L h
I= / C(x)de and G = 7rr2/ c(x) de,
0 0

here and in the previous example.) We have neglected thelwatign of the rounded bot-
tom portion of the test-tube, so that integration over itgté (which is actually summation
of disks shown in Figure 5.4) is a one-dimensional problem.
In this case the total amount of glucose in the tube is
h 2\ |h 2
0.5 0.5h
G= 7Tr2/ (0.1 4+ 0.5z)dx = 7r? (O.lx—i— ; ) = 7r? <0.1h—|— 5 ) .
0 0

Suppose that the height of the test-tubé is= 10 cm and its radius is = 1 cm.
Then the total mass of glucose is

0.5(100)

G=n (0.1(10) + =

):77(1+25):267rgm.
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In the next example, we consider a circular geometry, buttheeept of dissecting
and summing is the same. Our task is to determine how to sdtaiprbblem in terms
of an integral, and, again, we must imagine which type of &isidn would lead to the
summation (integration) needed to compute total amount.

5.4.2 Example: A circular colony of bacteria

A circular colony of bacteria has radius dfem. At distancer from the center of the
colony, the density of the bacteria, in units of one millicells per square centimeter, is
observed to bé(r) = 1 —r? (Note:r is distance from the center in cm, so that r < 1).
What is the total number of bacteria in the colony?

b(r)

b(r):l—r2 Ar

Side view Top-down view
(one ring)

Figure 5.5. A colony of bacteria with circular symmetry. A ring of smailckness
Ar has roughly constant density. The superimposed curve defthethe bacterial density
b(r) as a function of the radius.

Solution

Figure 5.5 shows a rough sketch of a flat surface with a coldmacteria growing on it.
We assume that this distribution is radially symmetric. @kasity as a function of distance
from the center is given by(r), as shown in Figure 5.5. Note that the function describing
density,b(r) is smooth, but to accentuate the strategy of dissectingeiem, we have
shown a top-down view of a ring of nearly constant densitylenright in Figure 5.5. We
see that this ring occupies the region between two circlgs between a circle of radius
and a slightly bigger circle of radius+ Ar. The area of that “ring®* would then be the
area of the larger circle minus that of the smaller circlenaky

Aring =7(r 4+ Ar)? — 1r? = 7(2rAr + (Ar)?).

However, if we make the thickness of that ring really small-(— 0), then the quadratic
term is very very small so that
Aring ~ 2wrAr.

2Istudents commonly make the error of writimqing = 7m(r + Ar —r)2 = 7(Ar)2. This trap should be
avoided! It is clear that the correct expression has addititerms, since we really are computing a difference of
two circular areas.
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Consider all the bacteria that are found inside a “ring” afiua» and thicknesg\r
(see Figure 5.5.) The total number within such a ring is thelpct of the density(r) and
the area of the ring, i.e.

b(r) - (2nrAr) = 27r(1 — r?)Ar.

To get the total number in the colony we sum up over all thegiingmr = 0tor = 1
and let the thickness\r — dr become very small. But, as with other examples, this is
equivalent to calculating a definite integral, namely:

1 1

— ) rdr = 2w r—1r2)dr.
(1 - r2)rd 2/()( )

BtotaI:/Ol(l—T)(?W‘) d7“=27r/

0

We calculate the result as follows:

702 704
Biotal = 27 (3_1)

Thus the total number of bacteria in the entire colony/ig million which is approximately
1.57 million cells.

1 1
T4

= (mr? — 71'?)

™ ™
=T — — = —.
2 2

0 0

5.5 Volumes of solids of revolution

We now turn to the problem of calculating volumes of 3D salidsre we restrict attention
to symmetric objects denotemblids of revolution The outer surface of these objects is
generated by revolving some curve around a coordinate &xiSigure 5.7 we show one
such curve, and the surface it forms when it is revolved atieyj axis.

5.5.1 Volumes of cylinders and shells

Before starting the calculation, let us recall the volumiesame of the geometric shapes
that are to be used as elementary pieces into which our shdlére carved. See Fig-
ure 5.6.

1. Thevolume of a cylinder of heighth having circular base of radius is
Veylinder = w72 h.

2. Thevolume of a circular disk of thicknessr, and radiug- (shown on the left in
Figure 5.6), is a special case of the above,

Vdisk = i,

3. Thevolume of a cylindrical shell of height s, with circular radiusr and small
thicknessr (shown on the right in Figure 5.6) is

Vshell = 2nrhr.

(This approximation holds for << r.)
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| I
| 1
o
g h
T
disk shell

Figure 5.6. The volumes of these simple 3D shapes are given by simplaléem
We use them as basic elements in computing more complicateches. Here we will
present examples based on disks. In Appendix 11.4 we giveaampée based on shells.

y

Y

y
]

Figure 5.7. A solid of revolution is formed by revolving a region in theptgine
about the y-axis. We show how the region is approximated thamgles of some given
width, and how these form a set of approximating disks foBtbe&olid of revolution.

5.5.2 Computing the Volumes

Consider the curve in Figure 5.7 and the surface it forms whéenrevolved about the
y axis. In the same figure, we also show how a set of approxignatiatangular strips
associated with the planar region (grey rectangles) leaddet of stacked disks (orange
shapes) that approximate the volume of the solid (greerbgrbin Fig. 5.7). The total
volume of the disks is not the same as the volume of the objgdf\Wwe make the thickness
of these disks very small, the approximation of the true waus good. In the limit, as
the thickness of the disks becomes infinitesimal, we artieeatrue volume of the solid
of revolution. The reader should recognize a familiar the¥ile used the same concept in
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computing areas using Riemann sums based on rectangigaristChapter 2.

Fig. 5.8 similarly shows a volume of revolution obtained byalving the graph of
the functiony = f(x) about the x axis. We note that if this surface is cut into slitke
radius of the cross-sections depend on the position of thelat us imagine a stack of
disks approximating this volume. One such disk has beerg@uallt and labeled for our
inspection. We note that its radius (in the y direction) igegi by the height of the graph
of the function, so that = f(x). The thickness of the disk (in the x direction)Asc. The
volume of this single disk is them = =[f(x)]? Az. Considering this disk to be based at
the k’th coordinate point in the stack, i.e.zgf, means that its volume is

v, = [ f (zx)]* A

Summing up the volumes of all such disks in the stack leadsaodtal volume of disks

Vgisks= Y _ 7l.f (zx)]* Az
k

When we increase the number of disks, making each one thgm#ratAz — 0, we

y . Y=f(x)

URTHE

disk radius: r=f(x)

disk thickness:
AX

Figure 5.8.Here the solid of revolution is formed by revolving the cupve f(z)
about the y axis. A typical disk used to approximate the velisshown. The radius of the
disk (parallel to the y axis) is = y = f(x). The thickness of the disk (parallel to the x
axis) isAx. The volume of this disk is hence= 7[f(z)]?Ax

arrive at a definite integral,
b
V= / lf(@)]2da.

In most of the examples discussed in this chapter, the kpyste make careful observation
of the way that the radius of a given disk depends on the fon¢tiatgenerateshe surface.
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(By this we mean the function that specifies the curve thaméathe surface of revolution.)
We also pay attention to the dimension that forms the distkttéss Ax.

Some of our examples will involve surfaces revolved aboatittaxis, and others
will be revolved about thg axis. In setting up these examples, a diagram is usuallg quit
helpful.

Example 1: Volume of a sphere

y
f(xk)

)

AX

Figure 5.9. When the semicircle (on the left) is rotated about the x akigen-
erates a sphere. On the right, we show one disk generatecdelrgvolution of the shaded
rectangle.

We can think of a sphere of radiug as a solid whose outer surface is formed by
rotating a semi-circle about its long axis. A function thasdribe a semi-circle (i.e. the
top half of the circley? + 2> = R?) is

y= () = VIE 2.

In Figure 5.9, we show the sphere dissected into a set of disk$ of widthAz. The disks
are lined up along the axis with coordinatesy,, where—R < x;, < R. These are just
integer multiples of the slice thicknegse, so for example,

ro=—-R, x1=—-R+Az, ..., xz,=-—-R+kAx.

The radius of the disk depends on its positforindeed, the radius of a disk through the
axis at a pointy, is specified by the function, = f(x). The volume of thé:'th disk is

Vi = mri Az
By the above remarks, using the fact that the funcfién) determines the radius, we have

Vi = [ f (zr)* Az,

22Note that the radius is oriented along the y axis, so sometinmeemay write this as;, = y, = f(xx)
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2
Vi=m {\/RQ — x%} Az = 7(R* — 23)Ax.

The total volume o#ll the diskss
V= ZVk—Z (k) A;L—WZ —xk

asAzxz — 0, this sum becomes a definite integral, and represents thedtume. We start
the summation at = —R and end at ;y = R since the semi-circle extends fram= —R
tox = R. Thus

R R
Vsphere: /R 7l f(xp)])? do = 7T/ (R% — 2?) dx.

We compute this integral using the Fundamental Theoremlotilues, obtaining

R

2 z?
Vsphere= 7 (R = g)
Observe that this is twice the volume obtained for the il = < R,
3\ | 3
_ 2, T _ 3 R
Vsphere— 21 <R x 3 > . =27 (R 3 > .

We often use such symmetry properties to simplify compoaoiteti After simplification, we
arrive at the familiar formula

—R

4
Vsphere: g”R3~

Example 2: Volume of a paraboloid

Consider the curve
y=flz)=1-2"
If we rotate this curve about theaxis, we will get a paraboloid, as shown in Figure 5.10.

In this section we show how to compute the volume by dissgdtito disks stacked up
along they axis.

Solution

The object has the y axis as its axis of symmetry. Hence diskstacked up along the
y axis to approximate this volume. This means that the widteazh disk isAy. This
accounts for they in the integral below. The volume of each disk is

Vdisk = 71'7‘2Ay,

where the radius; is now in the direction parallel to the axis. Thus we must express
radius as

r=x=["'(y),
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y y
y=f(x)=1-x2

— | =
— |

Figure 5.10. The curve that generates the shape of a paraboloid (left) taed
shape of the paraboloid (right).

i.e, we invert the relationship to obtainas a function of;. Fromy = 1 — 22 we have
22 =1—ysox = /T —y. The radius of a disk at heightis thereforer = = = /T — 3.
The shape extends from a smallest valug ef 0 up toy = 1. Thus the volume is

ver P dy=n / WIS dy.

It is helpful to note that once we have identified the thiclnekthe disks Ay), we are
guided to write an integral in terms of the variabjei.e. to reformulate the equation
describing the curve. We compute
1
1
=T (1 - —) = :
0 2) 2

V:W/Ol(l—y)dyzﬂ(y—y—;)

The above example was set up using disks. However, theretlage aptions. In
Appendix 11.4 we show yet another method, comprisedytindrical shellsto compute
the volume of a cone. In some cases, one method is prefemablether, but here either
method works equally well.

Example 3

Find the volume of the surface formed by rotating the curve

y=flx)=vz, 0<z<1

(a) about ther axis. (b) about the axis.

Solution

(a) If we rotate this curve about the axis, we obtain a bowl shape; dissecting this
surface leads to disks stacked alongtheis, with thicknesf\x — dx, with radii
in they direction, i.e.r = y = f(z), and withz in the ranged < = < 1. The
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volume will thus be

211

ver [ U@ a=r [ iR w=r [ raw=rd

0

(b) When the curve is rotated about thexis, it forms a surface with a sharp point at the
origin. The disks are stacked along thexis, with thicknes&\y — dy, and radii in
thex direction. We must rewrite the function in the form

=gy =y
We now use the interval along theaxis, i.e.0 < y < 1 The volume is then

1

1 1 1 5
VZ?T/O [f(y)]zdy=7f/0 [yz}2dy:77/0 y4dy=7ryg

0 5 .

5.6 Length of a curve: Arc length

Analytic geometry provides a simple way to compute the Ierdia straight line segment,
based on the distance forméiaRecall that, given point®;, = (1, y1) andP, = (2, y2),
the length of the line joining those points is

d=/(x2 —21)> + (g2 — 11)*

Things are more complicated for “curves” that are not striliges, but in many cases, we
are interested in calculating the length of such curveshigigection we describe how this
can be done using the definite integral “technology”.

The idea of dissection also applies to the problem of deténgithe length of a
curve. In Figure 5.11, we see the general idea of subdividimgrve into many small
“arcs”. Before we look in detail at this construction, we siater a simple example, shown
in Figure 5.12. In the triangle shown, by the Pythagoreaoréa we have the length of
the sloped side related as follows to the side lengthisAy:

AP = Az? + Ay?,

2 2
Ax? Ax
We now consider a curve given by some function
y=f(z) a<ax<b,

as shown in Figure 5.11(a). We will approximate this curveatset of line segments, as
shown in Figure 5.11(b). To obtain these, we have selecter Step size\x along the

x axis, and placed points on the curve at each of thegalues. We connect the points
with straight line segments, and determine the lengthsaddlsegments. (The total length

23The reader should recall that this formula is a simple appita of Pythagorean theorem.
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y y
//\_\/Yﬂ(X) y=F(x)
X X
y
| V=109
X

Figure 5.11. Top: Given the graph of a function, = f(x) (at left), we draw
secant lines connecting points on its graph at values thfat are multiples ofAz (right).
Bottom: a small part of this graph is shown, and then enlargedlustrate the relationship
between the arc length and the length of the secant line sggme

X

Figure 5.12. The basic idea of arclength is to add up lengthé of small line
segments that approximate the curve.

of the segments is only an approximation of the length of thee;, but as the subdivision
gets finer and finer, we will arrive at the true total lengthha turve.)

We show one such segment enlarged in the circular inset ir&ig.11. Its slope,
shown at right is given byAy/Az. According to our remarks, above, the length of this
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Ay 2
Al=4|1+ <A_x) Azx.
As the step size is made smaller and smaller— dz, Ay — dy and
2
Al — 1+ (@> dx.
\/ dx

We recognize the ratio inside the square root as as the tieeivdy /dx. If our curve is
given by a functiory = f(z) then we can rewrite this as

At =1+ (f'(x))* da.

Thus, the length of the entire curve is obtained from sumn(ileg adding up) these small

pieces, i.e.
b
L:/ V14 (f(2)? da. (5.4)

segment is given by

Example 1

Find the length of a line whose slopei2 given that the line extends from= 1toz = 5.

Solution

We could find the equation of the line and use the distancedtarnBut for the purpose of
this example, we apply the method of Equation (5.4): we arergthat the slopg’(x) is
-2. The integral in question is

L:/lswdx:/lsmdx:[ﬁdx.

We get

L:\/E/de:\/& VA5 - 1] = 4v5.
1

5
1

Example 2

Find an integral that represents the length of the curveftinats the graph of the function

y=f(z)=2% 1<z<2.

Solution

We find that
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Thus, the integral is

2 2
L:/ V14 (322)2 dx:/ V14924 da.
1 1

At this point, we will not attempt to find the actual length,vas must first develop tech-
niques for finding the anti-derivative for functions suchas+ 9z4.

Using the spreadsheet to calculate arclength

Most integrals for arclength contain square roots and fanstthat are not easy to integrate,
simply because their antiderivatives are difficult to deti@e. However, now that we know
the idea behind determining the length of a curve, we carnyapplideas developed have
to approximate the length of a curve “numerically”. The spigheet is a simple tool for
doing the necessary summations.

As an example, we show here how to calculate the length ofitheec

y=flz)=1—-2®>for0<z<1

using a simple numerical procedure implemented on the dphest.

Let us choose a step size Afc = 0.1 along ther axis, for the interval) < x < 1.
We calculate the function, the slopes of the little segméaitange in y divided by change
in X), and from this, compute the length of each segment

Al =+/1+ (Ay/Az)? Ax

and the accumulated length along the curve from left to yighivhich is just a sum of
such values. The Table 5.6 shows steps in the calculatiomeofatioAy/ Az, the value
of A/, the cumulative sum, and, finally the total lendth The final value of. = 1.4782
represents the total length of the curve over the entirevaté < = < 1.

In Figure 5.13(a) we show the actual cuye= 1 — z2. with points placed on it
at each multiple ofAz. In Figure 5.13(b), we show (in blue) how the lengths of thieli
straight-line segments connecting these points changessathe interval. (The segments
on the left along the original curve are nearly flat, so themgth is very close tdz. The
segments on the right part of the curve are much more slopettheir lengths are thus
bigger.) We also show (in red) how the total accumulatedtleagdepends on the position
x across the interval. This function represents the totalergth of the curvey = 1 — 2,
fromz = 0 up to a given x value. At = 1 this function returns the valug= L, as it has
added up the full length of the curve for< z < 1.

5.6.1 How the alligator gets its smile

The American alligatorAlligator mississippiensibas a set of teeth best viewed at some
distance. The regular arrangement of these teeth, i.et ghating along the jaw is im-
portant in giving the reptile its famous bite. We will coneerurselves here with how that
pattern of teeth is formed as the alligator develops froneiitdryonic stage to that of an



100Chapter 5. Applications of the definite integral to calculating volume, mass, and length

y =f(x) =1-x"2

ArcLength

cumulative length L,

y =f(x) =1-x"2

length increment

Figure 5.13. The spreadsheet can be used to compute approximate values of
integrals, and hence to calculate arclength. Shown herbasgraph of the functiop =
f(x) = 1—2%for 0 < o < 1, together with the length increment and the cumulative
arclength along that curve.
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x  y=flz) Ay/Ax Al L= AL
0.0 1.0000 -0.1 0.1005 0.0000
0.1  0.9900 -0.3 0.1044 0.1005
0.2  0.9600 -0.5 0.1118 0.2049
0.3 0.9100 -0.7 0.1221 0.3167
0.4 0.8400 -0.9 0.1345 0.4388
0.5 0.7500 -11 0.1487 0.5733
0.6 0.6400 -1.3 0.1640 0.7220
0.7  0.5100 -15 0.1803 0.8860
0.8  0.3600 -1.7 0.1972 1.0663
0.9 0.1900 -1.9 0.2147 1.2635
1.0 0.0000 -2.1 0.2326 1.4782

Table 5.1.For the functiony = f(z) = 1 — 22, and0 < z < 1, we show how to
calculate an approximation to the arc-length using the agsheet.

adult. As is the case in humans, the teeth on an alligator tfono or sprout simultane-
ously. In the development of the baby alligator, there isqueace of initiation of teeth,
one after the other, at well-defined positions along the jaw.

Paul Kulesa, a former student of James D Muray, set out torgtadel the pattern of
development of these teeth, based on data in the literabanet avhat happens at distinct
stages of embryonic growth. Of interest in his research weveral questions, including
what determines the positions and timing of initiation afiindual teeth, and what mecha-
nisms lead to this pattern of initiation. One theory progisgthis group was that chemical
signals that diffuse along the jaw at an early stage of dgveént give rise to instructions
that are interpreted by jaw cells: where the signal is at & hegel, a tooth will start to
initiate.

While we will not address the details of the mechanism of tgraent here, we
will find a simple application of the ideas of arclength in thevelopmental sequence of
teething. Shown in Figure 5.14 is a smiling baby alligatas ¢foubt thinking of some
future tasty meal). A close up of its smile (at an earlier stafjdevelopment) reveals the
shape of the jaw, together with the sites at which teeth arernang evident. (One of these
sites, called primordia, is shown enlarged in an inset is filgure.)

Paul Kulesa found that the shape of the alligator’s jaw caddseribed remarkably
well by a parabola. A proper choice of coordinate system smmie experimentation leads
to the equation of the best fit parabola

y=f(x) = —az® +b

wherea = 0.256, andb = 7.28 (in units not specified).

We show this curve in Figure 5.15(a). Also shown in this cusva set of points at
which teeth are found, labelled by order of appearance.duorgi5.15(b) we see the same
curve, but we have here superimposed the fundtior) given by the arc length along the
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curve from the front of the jaw (i.e. the top of the parabal&),

L(z) = /0 VIF IR ds.

This curve measures distance along the jaw, from front té.bale distances of the teeth
from one another, or along the curve of the jaw can be deteniising this curve if we
know thex coordinates of their positions.

The table below gives the original data, courtesy of Dr. Kaleshowing the order
of the teeth, theifz, y) coordinates, and the value éf(z) obtained from the arclength
formula. We see from this table that the teeth do not appeatoraly, nor do they fill in
the jaw in one sweep. Rather, they appear in several stages.

In Figure 5.15(c), we show the pattern of appearance: Ripttie distance along the
jaw of successive teeth reveals that the teeth appear irsvediveearly equally-spaced sites.
(By equally spaced, we refer to distance along the parafaoig The first wave (teeth 1, 2,
3) are followed by a second wave (4, 5, 6, 7), and so on. Eack Yaamns a linear pattern
of distance from the front, and each successive wave filleengaps in a similar, equally
spaced pattern.

The true situation is a bit more complicated: the jaw growshasteeth appear as
shown in 5.15(c). This has not been taken into account inioysle treatment here, where
we illustrate only the essential idea of arc length applicat

Tooth number| position distance along jaw
x Yy L(x)
1 195 6.35 2.1486
2 3.45 4.40 4.7000
3 4.54 2.05 7.1189
4 135 6.95 1.4000
5 2.60 550 3.2052
6 3.80 340 5.4884
7 5.00 1.00 8.4241
8 3.15 4.80 4.1500
9 425 220 6.3923
10 4.60 1.65 7.3705
11 0.60 7.15 0.6072
12 3.45 4.05 4.6572
13 530 045 9.2644

Table 5.2. Data for the appearance of teeth, in the order in which thepegy
as the alligator develops. We can use arc-length computatio determine the distances
between successive teeth.
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Figure 5.14. Alligator mississippiensiand its teeth
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AIIigator teeth arc length |L(x) along ja
s

/1 il

@) (b)

Distance along jaw 13

Initiation of teeth (in days)
=

[} 5 0 w® ®n & E

teeth in order of appearance " LEI'Igth Df 5[I11I..I|E!Bd ]EW
(©) (d)

Figure 5.15. (a) The parabolic shape of the jaw, showing positions ofhtestd
numerical order of emergence. (b) Arc length along the jamnffront to back. (c) Distance
of successive teeth along the jaw. (d) Growth of the jaw.
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Summary

Here are the main points of the chapter:

1.

We introduced the idea of a spatially distributed massitep(z) in Section 5.2.2.
Here the definite integral represents

b
/ p(x) dz = Total mass in the interval < z < b.

. In this chapter, we defined the center of mass of a (digaletibution ofn masses

by
X=— Z T my. (5.5)
We developed the analogue of this for a continuous masshdistn (distributed in

the intervald < x < L). We defined the center of mass of a continuous distribution
by the definite integral

L
= %/0 xp(x)dx . (5.6)

Importantly, the quantitiesn; in the sum (5.5) carry units of mass, whereas the
analogous quantities in (5.6) apér)dx. [Recall thatp(x) is @ mass per unit length
in the case of mass distributed along a bar or straight line.]

. We defined a cumulative function. In the discrete cass,lais defined as In the

continuous case, it is

M(z) = /OI p(s)ds.

. The mean is an averagecoordinate, whereas the median is theoordinate that

splits the distribution into two equal masses (Geometictie median subdivides
the graph of the distribution into two regions of equal ayedbe mean and median
are the same only in symmetric distributions. They differday distribution that is
asymmetric. The mean (but not the median) is influenced ntavagy by distant
portions of the distribution.



106Chapter 5. Applications of the definite integral to calculating volume, mass, and length

5. In the later parts of this chapter, we showed how to compaklemes of various
objects that have radial symmetry (“solids of revolutiont)/e showed that if the
surface is generated by rotating the graph of a funcgiea f(z) about ther axis
(for a < x < b), then its volume can be described by an integral of the form

b
V=/ 7[f(2)]?dx.

We used this idea to show that the volume of a sphere of ralliis V,,nere =

(4/3)mR3

In the Chapters 7 and 8, we find applications of the ideas ofitleand center of
mass to the context of a probability distribution and its mea



Chapter 6

Technigues of
Integration

In this chapter, we expand our repertoire for antiderivegtibeyond the “elementary” func-
tions discussed so far. A review of the table of elementatigarivatives (found in Chap-
ter 3) will be useful. Here we will discuss a number of methfaddinding antiderivatives.
We refer to these collected “tricks” as methods of integratiAs will be shown, in some
cases, these methods are systematic (i.e. with clear steipsjeas in other cases, guess-
work and trial and error is an important part of the process.

A primary method of integration to be describegigbstitution. A close relationship
exists between the chain rule of differential calculus dedsubstitution method. A second
very important method igtegration by parts. Aside from its usefulness in integration
per se, this method has numerous applications in physidbemeatics, and other sciences.
Many other techniques of integration used to form a core dhous taught in such courses
in integral calculus. Many of these are quite technical. Bdays, with sophisticated
mathematical software packages (including Maple and Mattiea), integration can be
carried our automatically via computation called “symbatianipulation”, reducing our
need to dwell on these technical methods.

6.1 Differential notation

We begin by familiarizing the reader with notation that ageefrequently in substitution
integrals, i.e. differential notation. Consider a strailgie

y=mx + b.
Recall that the slope of the lings, is

_ changeiny %
~ changeinc Az’

This relationship can also be written in the form
Ay = mAx.

107
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e

A X

Figure 6.1. The slope of the line shown herenis= Ay/Az. This means that the
small quantitiesAy and Az are related byAy = mAzx.

If we take a very small step along this line in thelirection, call itdx (to remind us of an
“infinitesimally small” quantity), then the resulting chgain they direction, (call itdy) is
related by

dy = mdzx.

Now suppose that we have a curve defined by some arbitraryidong = f(z)
which need not be a straight line.For a given pginty) on this curve, a stefx in the x
direction is associated with a stéyy in the y direction. The relationship between the step

y+Ay
y+dy

Figure 6.2. On this figure, the graph of some function is used to illustridte
connection between differentialy anddz. Note that these are related via the slope of a
tangent line;n; to the curve, in contrast with the relationship &fy and Az which stems
from the slope of the secant lime; on the same curve.

sizes is:
Ay = mgAux,

where nowm is the slope of a secant line (shown connecting two pointsercurve in
Figure 6.2). If the sizes of the steps are smé#l anddy), then this relationship is well
approximated by the slope of the tangent ling,as shown in Figure 6.2 i.e.

dy = mydx = f'(x)dz.
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The quantitieglz anddy are calleddifferentials. In general, they link a small step on the
x axis with the resulting small change in height along the ¢éami¢jne to the curve (shown
in Figure 6.2). We might observe that the ratio of the diffeias, i.e.

dy_/
E_f(x)v

appears to link our result to the definition of the derivatie remember, though, that the
derivative is actually defined as a limit:

Ay

! . . - J

Flay= Jim, X

When the step sizAx is quite small, it is approximately true that
Ay %

Azr ~ dx’
This notation will be useful in substitution integrals.

Examples

We give some examples of functions, their derivatives, &eddifferential notation that
goes with them.

1. The functiorny = f(z) = 2® has derivativef’(z) = 322. Thus
dy = 32? du.

2. The functiony = f(z) = tan(x) has derivativef’(x) = sec?(x). Therefore

dy = sec?(z) dz.

3. The functiony = f(z) = In(z) has derivativef’(z) = % so

1
dy = — dx.
x
With some practice, we can omit the intermediate step ofingritlown a derivative
and go directly from function to differential notation. @iva functiory = f(z) we will
often write of
d, =—d
f(x) = S-da
and occasionally, we use just the symlpkto mean the same thing. The following exam-
ples illustrate this idea with specific functions.

1

B

d(sin(x)) = cos(z) dz, d(z") =naz""'dz, d(arctan(z))

Moreover, some of the basic rules of differentiation tratesidirectly into rules for
handling and manipulating differentials. We give a list ofre of these elementary rules
below.
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Rules for derivatives and differentials

1. iC’ =0, dC = 0.
dx
d du dv

2. %(u(x) +v(x)) = T + o d(u +v) = du+ dv.
d dv du

3. Eu(x)v(x) =uo + v d(uv) = udv + v du.
d du

4. E(Cu(z)) = C%’ d(Cu) =C du

6.2 Antidifferentiation and indefinite integrals

In Chapters 2 and 3, we defined the concept ofdéfnite integral, which represents a
number. It will be useful here to consider the idea ofiratefinite integral, which is a
function, namely an antiderivative.

If two functions,F'(x) andG(x), have the same derivative, siy), then they differ
at most by a constant, that#§(x) = G(z) + C, whereC' is some constant.

Proof

SinceF (x) andG(x) have the same derivative, we have

d d
EF(l) = EG(l),
d d
d
—(F(z) — =0.
—(F(a) = G(a)) = 0
This means that the functidf(x) — G(z) should be a constant, since its derivative is zero.
Thus
F(z) — G(z) = C,
o)

F(z) = G(x) + C,

as required.F(x) and G(z) are called antiderivatives of(x), and this confirms, once
more, that any two antiderivatives differ at most by a comista

In another terminology, which means the same thing, we algt®stF'(z) (or G(x))
is the integral of the functiori(x), and we refer tgf (z) as theintegrand We write this as
follows:

F(x) = /f(x) dx.

This notation is sometimes called “andefinite integrdl because it does not denote a
specific numerical value, nor is an interval specified forititegration range. An indefinite
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integral is a function with an arbitrary constant. (Contridés with the definite integral
studied in our last chapters: in the case of the definite iatege specified an interval, and
interpreted the result, a number, in terms of areas assdoth curves.) We also write

/f(x) dx = F(z) + C,

if we want to indicate the form of all possible functions taa¢ antiderivatives of (z). C
is referred to as aonstant of integration

6.2.1 Integrals of derivatives

Suppose we are given an integral of the form

df
/@dﬂ?,

or alternately, the same thing written using differentiatiation,

/ df.

How do we handle this? We reason as follows. Wfigdx (a quantity that is, itself, a
function) is the derivative of the functiofiz). That means that(x) is the antiderivative
of df /dx. Then, according to the Fundamental Theorem of Calculus,

df

We can write this same result using the differentiafpés follows:

/df = f(z)+ C.
The following examples illustrate the idea with severaheatary functions.
Examples
1. [d(cosz) = cosz + C.
2. [dv=v+C.

3. [d(z®) = 2%+ C.

6.3 Simple substitution

In this section, we observe that the forms of some integiaisoe simplified by making a
judicious substitution, and using our familiarity with dextives (and the chain rule). The
idea rests on the fact that in some cases, we can spot a “lieipion”

u= f(z),
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such that the quantity
du = f'(z)dz

appears in the integrand. In that case, the substitutiddeaidl to eliminatinge entirely in
favour of the new quantity, and simplification may occur.

6.3.1 Example: Simple substitution

Suppose we are given the function
f@) = (z + 1)

Then its antiderivative (indefinite integral) is

F(a:):/f(a:) dx:/(a:—i—l)w da.

We could find an antiderivative by expanding the integrénd- 1) into a degree 10
polynomial and using methods already known to us; but thisldvbe laborious. Let us
observe, however, that if we define

u=(z+1),

then

_d(x+1)  (dr  d(1)
du = dr = (dw .

AN de =1 — da.
T + )da: (14 0)dz = dx

Now replacing(z + 1) by v anddz by the equivalendu we get:

F(zx) = /ulodu.
An antiderivative to this can be easily found, namely,

ull .’L’+111

In the last step, we converted the result back to the origiaghble, and included the
arbitrary integration constant. A very important point &ember is that we can always
check our results by differentiation:

Check

DifferentiateF'() to obtain

dF

T =+ DY) = (z+1)".
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6.3.2 How to handle endpoints

We consider how substitution type integrals can be caledlathen we have endpoints, i.e.
in evaluating definite integrals. Consider the example:

2
1
I:/ dx .
1 z+1

This integration can be done by making the substitutiea = + 1 for whichdu = dz. We
can handle the endpoints in one of two ways:

Method 1: Change the endpoints

We can change the integral over entirely to a definite inlegrine variableu as follows:
Sinceu = z + 1, the endpointt = 1 corresponds taz = 2, and the endpoint = 2
corresponds ta = 3, so changing the endpoints to reflect the change of vari¢ddels to

°1
I:/ —du = In |u|
2 u

In the last steps we have plugged in the new endpoints (agptepou).

3
3
=mn3—-In2=In-.
n n ny

2

Method 2: Change back to x before evaluating at endpoints

Alternately, we could rewrite the antiderivative in ternfsio
1
—du =In|u| =In|z + 1]
(7

and then evaluate this function at the original endpoints.

2

2
1 3
/ de=In|z+1|| =In=

1 fL+1 1 2

Here we plugged in the original endpoints (as appropriategwariabler).

6.3.3 Examples: Substitution type integrals

Find a simple substitution and determine the antiderieatiindefinite or definite integrals)
of the following functions:

1.1:/ 2 dx.
T+ 2

1 .
2. I:/ z2e”” dz
0

1
3.I=[ —— dr
/(x—|—1)2+1 ‘
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4. I:/(x—|—3)\/x2+6x+10da:.

5.1 :/ cos®(x) sin(x) de.
0

6.I=/ ! dx
ar+b

1
7.1= [ ——d
/b—|—aa:2 v

Solutions

1. 1= /i dz.Letu = x + 2. Thendu = dx and we get
T+ 2

2 1
Iz/—du:2/—du=2ln|u|:21n|x+2|+0.
u u

1
2.1 = / 22" dz. Letu = 23. Thendu = 3z2 dz. Here we use method 2 for

du 1u 1303
/63—56—56 +C

handli%g endpoints.

Then

1 1
1 1
I= / 22 dz = =" | = =(e—1).
0 3|, 3

(We converted the antiderivative to the original variablepefore plugging in the
original endpoints.)

1
3. 1= /7 dz. Letu = z + 1, thendu = dz so we have
(x+1)2+1
1
= /u2—+1 du = arctan(u) = arctan(z + 1) + C.

4. I = / r+3)V 22 + 6z + 10 dz. Letu = 22 + 62+ 10. Thendu = (22 +6) dz =
2(z + 3) dz. With this substitution we get
1ud/2 1
I= == /2 4 3/2 _ 10)3/2
/\/— / u = 332 = qu S(x + 6z 4+ 10)°/= + C.
5 1= / cos®(z) sin(z) dz. Letu = cos(z). Thendu = — sin(z) dz. Here we use

0
method 1 for handling endpoints. For= 0,4 = cos0 = 1 and forz = 7, u =
cosm = —1, so changing the integral and endpoints to u leads to
—1 4
u
1= 3(—du) = ——
| =4

—1

=——((-D*-1Y =0.

1
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Here we plugged in the new endpoints that are relevant todtiahlew.

1 .
6. /ﬁ dz. Letu = ax + b. Thendu = adz, sOdr = du/a. Substitute the
ax

above equations into the first equation and simplify to get

1d 1 1 1
I:/__u:—/—duz—ln|u|+0.
U a a) u a

Substituten = ax + b back to arrive at the solution

1 1
I—/ax+bdx—aln|ax+b| (6.1)

7.1 = /M—ﬁ dr = %/m dx. This can be brought to the form of

an arctan type integral as follows: Let = (a/b)z?, sou = \/a/bxz anddu =
v/a/bdx. Now substituting these, we get

1/1—}—1u2\/__\/_ /1+ 2

1 1
I = —— arctan(u) du = —— arctan(+/a/bx) + C.
T (u) T (Va/bx)

6.3.4 When simple substitution fails

Not every integral can be handled by simple substitution.usesee what could go wrong:

Example: Substitution that does not work

Consider the case
:/\/1—|—x2 da:z/(1+x2)1/2 dz.
A “reasonable” guess for substitution might be

= (1+27).

Then
du = 2z dz,

anddz = du/2x. Attempting to convert the integral to the form containingvould lead

to .
I:/\/ﬂz—“

We have not succeeded in eliminatimgentirely, so the expression obtained contains a
mixture of two variables. We can proceed no further. Thistitugion did not simplify the
integral and we must try some other technique.
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6.3.5 Checking your answer

Finding an antiderivative can be tricky. (To a large extemtthods described in this chap-
ter are a “collection of tricks”.) However, it is always pdde (and wise) to check for
correctness, by differentiating the result. This can helpaver errors.

For example, suppose that (in the previous example) we ltadrectly guessed that
the antiderivative of

/(1 + 2212 4y
might be
_1 213/2
Fgues$r) = 3/2(1 + %)

The following check demonstrates the incorrectness ofghéss: Differentiatégues$z)
to obtain

Fguesér) = 3—}2(3/2)(1 +22)BD7 L 2p = (1+2%)V2 . 22

The result is clearly not the same @s+ 22)!'/2, since an “extra” factor oz appears
from application of the chain rule: this means that the ftiaktion Fgues$r) was not the
correct antiderivative. (We can similarly check to confiromrectness of any antiderivative
found by following steps of methods here described. Thislegp to uncover sign errors
and other algebraic mistakes.)

6.4 More substitutions

In some cases, rearrangement is needed before the form ofegmal becomes apparent.
We give some examples in this section. The idea is to redutde @ae to the form of an
elementary integral, whose antiderivative is known.

Standard integral forms

1
1.I:/Edu:ln|u|—|—C’.

n+1
2.I:/u”du:u .
n+1

1
3. 1= /1—!——u2 du = arctan(u) + C.

However, finding which of these forms is appropriate in a gicase will take some in-
genuity and algebra skills. Integration tends to be morenadra than differentiation, and
recognition of patterns plays an important role here.

6.4.1 Example: perfect square in denominator

Find the antiderivative for

1
I = — dx.
/m2—6m+9dx
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Solution

We observe that the denominator of the integrand is a pesfgetre, i.e. that?> — 6z +9 =
(r — 3)2. Replacing this in the integral, we obtain

1 1
=) —— o= — dn
/x2—6x+9 ‘ /(x—3)2 *

Now making the substitution = (x — 3), anddu = dx leads to a power type integral

1 1
I = — = —2 :—71:—‘ .
/uzdu /u du U (w_3)+0

6.4.2 Example: completing the square

A small change in the denominator will change the charadtéreintegral, as shown by

this example:
1
I=| ——d
/ 2 — 67+ 10 v

Solution

Here we use “completing the square” to express the denoarimathe formz? —6z+10 =
(r — 3)? 4 1. Then the integral takes the form

1
I= | ——— dx.
/1—|—(x—3)2 v

Now a substitution: = (z — 3) anddu = dx will result in

1
I= / T2 du = arctan(u) = arctan(x — 3) + C.

Remark: in cases where completing the square gives risedostant other than 1 in the
denominator, we use the technique illustrated in Exam@eaqgn. (6.1) to simplify the
problem.

6.4.3 Example: factoring the denominator

A change in one sign can also lead to a drastic change in titeauative. Consider

1

In this case, we can factor the denominator to obtain

1
1= | e
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We will show shortly that the integrand can be simplified te sum of two fractions, i.e.

that . A B
I:/(l—x)(l—i—x) dx:/u—xﬁ 1+2) dz,

whereA, B are constants. The algebraic technique for finding thesgtants, and hence of
forming the simpler expressions, calledrtial fractions will be discussed in an upcoming
section. Once these constants are found, each of the ngsintegrals can be handled by
substitution.

6.5 Trigonometric substitutions

Trigonometric functions provide a rich set of interconmectunctions that show up in
many problems. It is useful to remember three very impotiggnometric identities that
help to simplify many integrals. These are:

Essential trigonometric identities
1. sin®*(z) + cos®(z) =1
2. sin(A + B) = sin(A) cos(B) + sin(B) cos(A)
3. cos(A + B) = cos(A) cos(B) — sin(A) sin(B).

In the special case that = B = x, the last two identities above lead to:

Double angle trigopnometric identities

1. sin(2z) = 2sin(x) cos(x).

2. cos(2x) = cos?(z) — sin’(x).

From these, we can generate a variety of other identitiepexsa cases. We list the most
useful below. The first two are obtained by combining the dex@mgle formula for cosines
with the identitysin®(z) + cos?(x) = 1.

Useful trigonometric identities

1+ cos(2
1. cos?(z) = H0322).
2
1 — cos(2
2. sin?(x) = w.

3. tan*(x) 4+ 1 = sec?(z).

6.5.1 Example: simple trigonometric substitution

Find the antiderivative of

= / sin(z) cos?(z) da.
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Solution
This integral can be computed by a simple substitution lainte Example 5 of Section 6.3.
We letu = cos(x) anddu = — sin(x)dx to get the integral into the form
3 3
o _ 2 gy = —W _ oS (x) o
/u U 3 3 +

We need none of the trigopnometric identities in this casmp® substitution is always the
easiest method to use. It should be the first method attenmpgsth case.

6.5.2 Example: using trigonometric identities (1)

Find the antiderivative of

I= /cosz(x) dx.

Solution

This is an example in which the “Useful trigonometric idéyitil leads to a simpler inte-
gral. We write

= /COSQ(x) do = /”#5(2”3) do = % /(1 + cos(22)) dx.

Then clearly,

1 sin(2x)
I= 5 <x+ > > +C.

6.5.3 Example: using trigonometric identities (2)

Find the antiderivative of

I= /sing(x) dx.

Solution

We can rewrite this integral in the form
I= /sinQ(x) sin(z) dx.
Now using the trigonometric identityin®(z) + cos?(x) = 1, leads to

I= /(1 — cos?(x)) sin(z) d.

This can be split up into

= / sin(z) da — / sin(z) cos?(z) dz.
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The first part is elementary, and the second was shown in dopieexample. Therefore

we end up with

cos®(x)
3

Note that it is customary to combine all constants obtainetié calculation into a single

constant(' at the end.

Aside from integrals that, themselves, contain trigongiméinctions, there are other
cases in which use of trigonometric identities, though at 8eemingly unrelated, is cru-
cial. Many expressions involving the forgil + 2 or the related form/a & b22 will be
simplified eventually by conversion to trigopnometric exgmiens!

I = —cos(x) + +C.

6.5.4 Example: converting to trigonometric functions

Find the antiderivative of

I:/\/l—xde.

Solution

The simple substitutiom = 1 — 22 will not work, (as shown by a similar example in
Section 6.3). However, converting to trigonometric expi@ss will do the trick. Let

x =sin(u), then dz = cos(u)du.

(In Figure 6.3, we show this relationship on a triangle. Tdiagram is useful in reversing
the substitutions after the integration step.) Thenz? = 1 — sin?(u) = cos?(u), so the

1-x2

Figure 6.3. This triangle helps to convert the (trigonometric) funotofu to the
original variablex in Example 6.5.4.
substitutions lead to

= / /o052 (w) cos(u) du = / cos?(u) du.

From a previous example, we already know how to handle thegmal. We find that

I= % (u + sin(22u)> = % (u + sin(u) cos(u)) + C.
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(In the last step, we have used the double angle trigonodgntity. We will shortly see
why this simplification is relevant.)

We now desire to convert the result back to a function of thigimel variable,x.
We note thatr = sin(u) impliesu = arcsin(z). To convert the termeos(u) back to an
expression depending anwe can use the relationship— sin?(u) = cos?(u), to deduce

that
cos(u) = /1 —sin?(u) = /1 — 2.

It is sometimes helpful to use a Pythagorean triangle, as/isho Figure 6.3, to
rewrite the antiderivative in terms of the variable The idea is this: We construct the
triangle in such a way that its side lengths are related td'dhgle” « according to the
substitution rule. In this example,= sin(u) so the sides labeledand1 were chosen so
that their ratio (“opposite over hypotenuse” coincidedwiiie sine of the indicated angle,
u, thereby satisfyinge = sin(u). We can then determine the length of the third leg of
the triangle (using the Pythagorean formula) and thus &kmotrigonometric functions
of u. For example, we note that the ratio of “adjacent over hypage” iscos(u) =
V1 —2a2?2/1 =+/1— 22 Finally, with these reverse substitutions, we find that,

I:/\/l — 22 dx = % (arcsin(x) +zy1 —x2) +C.

Remark: In computing a definite integral of the same type, we can aingent the
need for the conversion back to an expression involyithg using the appropriate method
for handling endpoints. For example, the integral

1
I:/ V1—2a2dx
0

can be transformed to
w/2
I= / v/ cos?(u) cos(u) du,
0

by observing that = sin(u) implies thatu = 0 whenz = 0 andu = 7/2 whenz = 1.
Then this means that the integral can be evaluated diresitihqut changing back to the
variablex) as follows:

I=/0”/2¢Wcos<u>du=%(u+ M)

/2 1<7r sin(w)) 7
5 R -

o 2\2 " 2 4

where we have used the fact tBat(7) = 0.

Some subtle points about the domains of definition of inveirgenometric functions
will not be discussed here in detail. (See material on thesetions in a first term calculus
course.) Suffice it to say that some integrals of this typélélundefined if this endpoint
conversion cannot be carried out (e.g. if the interval oégmnation had beet < = < 2,
we would encounter an impossible relat®r= sin(u). Since no value of. satisfies this
relation, such a definite integral has no meaning, i.e. “ca¢gxist”.)
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6.5.5 Example: The centroid of a two dimensional shape

We extend the concept of centroid (center of mass) for a netiiat has uniform density
in 2D, but where we consider the distribution of mass alorpttfor i) axis. Consider
the semicircle shape of uniform thickness, shown in Figude &d suppose it is balanced
along its horizontal edge. Find the x coordinat® which the shape balances.

y
y=/9 - x2

X
A
Figure 6.4. A semicircular shape.

Solution

The semicircle is one quarter of a circle of radius 3. Its ddgkescribed by the equation

y=F) =922

We will assume that the density per unit area is uniform. Hexghe mass per unit
length along the: axis is not uniform, due to the shape of the object. We appydba of
integration: If we cut the shape at increments\af along thex axis, we get a collection
of pieces whose mass is each proportiondl(te) Az. Summing up such contributions and
letting the widthsAz — dx get small, we arrive at the integral for mass. The total méss o

the shape is thus
3 3
Mz/ f(x) da::/ V9 — 22 dx.
0 0

Furthermore, if we compute the integral

I:/Ogmf(x) d$=/03$\/9—372 dx,

we obtain ther coordinate of the center of mass,

I
xr = ]u,
It is evident that the mass is proportional to the area of argetgr of a circle of radius 3:

1 9
M = ZTF(3)2 = ZTF.
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(We could also see this by performing a trigonometric stitstin integral.) The second
integral can be done by simple substitution. Consider

Iz/ogxf(x) dx:/()gx\/9—x2 dx.

Letu = 9 — z2. Thendu = —2x dz. The endpoints are converted as follows= 0 =
u=9-0%2=9andr =3 = u =9 — 3% = 0 so that we get the integral

0 1
1 :/ Vu —du.
9 _2
We can reverse the endpoints if we switch the sign, and tagsléo
1 9 1 u3/2
I=- V2gu=(2)(="—o
)= (3) (5)

Since9?/? = (91/2)3 = 33, we getl = (3%)/3 = 32 = 9. Thus ther coordinate of the
center of mass is

9

0

1 9 4

rI=— = — =

M~ (947 7

We can similarly find the; coordinate of the center of mass: To do so, we would express
the boundary of the shape in the form= f(y) and integrate to find

3
y= / yf(y) dy.
0
For the semicircley® + 22 = 9, sox = f(y) = /9 — 2. Thus

3
17=/ yv9 —y> dy.
0

This integral looks identical to the one we wrote downZoiThus, based on this similarity
(or based on the symmetry of the problem) we will find that

4

y=—.

™

6.5.6 Example: tan and sec substitution

Find the antiderivative of

I:/\/1+w2dw.

Solution

We aim for simplification by the identity + tan®(u) = sec?(u), SO we set

r = tan(u), dr = sec?(u)du.
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Then the substitution leads to

= / 1+ tan?(u) sec(u) du = / /5o () sec?(u) du = / sec’(u) du.

This integral will require further work, and will be parthalculated byintegration by Parts
in Appendix 11.5. In this example, the triangle shown in Fe&y6.5 shows the relationship
between: andu and will help to convert other trigonometric functionswfo functions of

V1+x2

1

Figure 6.5. As in Figure 6.3 but for example 6.5.6.

6.6 Partial fractions

In this section, we show a simple algebraic trick that hetpsimplify an integrand when
it is in the form of someational functionsuch as

1

f) = (az +b)(cx +d)

The idea is to break this up into simpler rational expressioyn finding constantsl, B

such that
1 A B

(az + b)(cx +d) - (az +b) * (cx +d)

Each part can then be handled by a simple substitution, agsihd&xample 6.3.3, Eqgn. (6.1).
We give several examples below.

6.6.1 Example: partial fractions (1)

1
I = .
/xQ—l

Factoring the denominator? — 1 = (z — 1)(x + 1), suggests breaking up the integrand
into the form

Find the antiderivative of

L _ A B
2—1 (z4+1) (z—1)
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The two sides are equal provided:

1 Alx—1)+ Bz +1)
2 -1 22 —1

This means that
1=A(x—-1)+B(x+1)

must be true for alk values. We now ask what values.4fand B make this equation hold
for anyx. Choosing two “easy” values, namety= 1 andz = —1 leads to isolating one
or the other unknown constants, B, with the results:

1=-24, 1=2B.

ThusB = 1/2, A = —1/2, so the integral can be written in the simpler form

1 -1 1
I=-|( [ —— — .
(e[ e)
(A common factor of(1/2) has been taken out.) Now a simple substitution will work for

each component. (Let = = + 1 for the first, and. = = — 1 for the second integral.) The
resultis

1 1
I:/xQ—l 25(—ln|x—|—1|+ln|x—1|)+C.

6.6.2 Example: partial fractions (2)

I:/ﬁdaz.

This example is similar to the previous one. We set

Find the antiderivative of

1 A B

-2 =z =2

Then
1=A(1—=z)+ Bz.

This must hold for allz values. In particular, convenient valuesaofor determining the
constants are = 0, 1. We find that

A=1, B=1.

1 1 1
I= | ——do= [ - — dux.
/x(l—x)dx /xdx+/1—xdx

Simple substitution now gives

Thus

I'=ln|z|—In|l—2z|+C.
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6.6.3 Example: partial fractions (3)

T
I = —_
/;L'2+;L'—2

The rational expression above factors into+ = — 2 = (z — 1)(z + 2), leading to the
expression

Find the antiderivative of

x A . B
2+r—2 (x—1) (z+2)
Consequently, it follows that
A(x+2)+ Bz — 1) ==.

Substituting the values = 1, —2 into this leads tad = 1/3 and B = 2/3. The usual
procedure then results in

T 1 2
=)L  —Che—1+Zlnfz+2+C.
/$2+x—2 glnlr =i+ g2y

Another example of the technique of partial fractions isyed in Appendix 11.5.2.

6.7 Integration by parts

The method described in this section is important as an iaddittool for integration. It
also has independent theoretical stature in many applitath mathematics and physics.
The essential idea is that in some cases, we can exchangeskhef integrating a function
with the job of differentiating it.
The idea rests on the product rule for derivatives. Suppuese{z) andv(z) are

two differentiable functions. Then we know that the delixabf their product is

dw) _ du | do

de dr " Vdw

or, in the differential notation:

d(uv) = v du + u dv,

Integrating both sides, we obtain

/d(uv):/vdu+/udv
uv:/vdu—i—/udv.

We write this result in the more suggestive form

/udvzuv—/vdu.

The idea here is that if we have difficulty evaluating an inééguch asf « dv, we may be
able to “exchange it” for a simpler integral in the forfrv du. This is best illustrated by
the examples below.
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Example: Integration by parts (1)

I= /12 In(z) dx.

Compute

Solution

Letu = In(z) anddv = dz. Thendu = (1/z) dx andv = z.

/ln(x) dx = zln(z) — /x(l/x) de = zln(z) — / dz = zln(z) — x.

We now evaluate this result at the endpoints to obtain

T (2In(2) — 2) — (11n(1) — 1) = 2In(2) — 1.

I= /1 In(x) de = (z1n(z) — z)

(Where we used the fact thiat(1) = 0.)

Example: Integration by parts (2)
1
I:/ ze” dx.
0

At first, it may be hard to decide how to assign rolesd@nddv. Suppose we try, = e
anddv = xdx. Thendu = e* dr andv = 2 /2. This means that we would get the integral

in the form ) )
I= %ew —/%em dx.

This is certainlynota simplification, because the integral we obtain has a higberer of
x, and is consequently harder, not easier to integrate. Tigigests that our first attempt
was not a helpful one. (Note that integration often requiresand error.)

Letu = z anddv = e* dx. This is a wiser choice because when we differentiate
we reduce the power of (from 1 to 0), and get a simpler expression. Indegd—= dx,
v = e” so that

Compute

Solution

/xe“’dmzxem—/e’”dx:xe”—e’”—i—C’.

To find a definite integral of this kind on some interval ($ay = < 1), we compute

1
= (et —eh) = (0" —e") =04+ =" =1.

1
I= / xe® dr = (ze® — e”)
0 0

Note that all parts of the expression are evaluated at thehspoints.
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Example: Integration by parts (2b)

I, = /x”em dx.

Compute

Solution
We can calculate this integral by repeated application ®fdlea in the previous example.
Lettingu = x™ anddv = e dx leads todu = na"~! andv = e®. Then

I, =a"e” — /na:"_le’” dr = z"e® — n/x”’_le‘” dz.

Each application of integration by parts, reduces the poivéire termz™ inside an integral
by one. The calculation is repeated until the very last irsteas been simplified, with
no remaining powers af. This illustrates that in some problems, integration bytpar
needed more than once.

Example: Integration by parts (3)

Compute

I= /arctan(a:) dx.

Solution

Letu = arctan(z) anddv = dx. Thendu = (1/(1 + z?)) dx andv = x so that

1

1+x2xdx.

I = zarctan(z) — /
The last integral can be done with the simple substitutioa (1 + x2?) anddw = 2z dx,
giving
I = xarctan(z) — (1/2) /(1/w)dw
We obtain, as a result

1
I = zarctan(z) — 5 In(1 4 2?).

Example: Integration by parts (3b)

Compute

= / tan(z) da.
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Solution

We might try to fit this into a similar pattern, i.e. let = tan(xz) anddv = dz. Then
du = sec?(z) dr andv = =, SO we obtain

I = atan(z) — / sec?(z) dz.

This is not really a simplification, and we see that integratly parts will not necessarily
work, even on a seemingly related example. However, we niigitad try to rewrite the

integral in the form
B [ sin(z)
I= /tan(az) de = / cos() dx

Now we find that a simple substitution will do the trick, i.dnatw = cos(z) anddw =
— sin(z) dx will convert the integral into the form

I= /% (—dw) = —In|w| = —In| cos(x)|.

This example illustrates that we should always try suhisoity first, before attempting
other methods.
Example: Integration by parts (4)
Compute
I = /e‘” sin(z) dx.
We refer to this integral a§ because arelated second integral, that we’ll allill appear
in the calculation.
Solution

Letu = e” anddv = sin(x) dz. Thendu = e* dx andv = — cos(z) dz. Therefore
I = —e” cos(z) — /(— cos(z))e” de = —e” cos(x) + /cos(x)e‘” dx.

We now have another integral of a similar form to tackle. Tégéems hopeless, as we
have not simplified the result, but let us not give up! In trase, another application of
integration by parts will do the trick. Call, the integral

I, = /cos(x)e”” dx,

so that
I, = —€” cos(z) + L.

Repeat the same procedure for the new intefirale. Letu = e* anddv = cos(z) dzx.
Thendu = e* dx andv = sin(z) dz. Thus

I, = e”sin(x) — /sin(x)em dx = e®sin(z) — I.
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This appears to be a circular argument, but in fact, it hasrpgae. We have determined
that the following relationships are satisfied by the aboxeintegrals:

I = —e” cos(z) + I
Iy = e®sin(z) — L.
We can eliminatd,, obtaining
I = —e” cos(x) + Is = —e” cos(z) + €” sin(x) — 1.

that is,
I, = —e” cos(z) + e” sin(z) — .
Rearranging (takind; to the left hand side) leads to

2, = —e” cos(z) + €” sin(x),

and thus, the desired integral has been found to be
L = /em sin(z) dx = % (—e” cos(z) + e”sin(z)) = %em(sin(x) —cos(z)) + C.

(At this last step, we have included the constant of intégmat Moreover, we have also
found thatls is related, i.e. using, = e® sin(z) — I; we now know that

I, = /cos(x)em dx = %em (sin(x) + cos(x)) + C.

6.8 Summary

In this chapter, we explored a number of techniques for caimgantiderivatives. We here
summarize the most important results:

1. Substitution is the first method to consider. This methodk& provided the change
of variable results in elimination of the original variafaled leads to a simpler, more
elementary integral.

2. When using substitution on a definite integral, endpoiats be converted to the
new variable (Method 1) or the resulting antiderivative banconverted back to its
original variable before plugging in the (original) endpisi (Method 2).

3. The integration by parts formula for functioaér), v(x) is

/udvzuv—/vdu.

Integration by parts is useful wheiis easy to differentiate (but not easy to integrate).
It is also helpful when the integral contains a product ofredatary functions such
aszx™ and a trigopnometric or an exponential function. Sometimesenthan one
application of this method is needed. Other times, this pukis combined with
substitution or other simplifications.
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. Using integration by parts on a definite integral meanstibth parts of the formula

are to be evaluated at the endpoints.

. Integrals involvingy/1 & 22 can be simplified by making a trigonometric substitu-

tion.

. Integrals with products or powers of trigopnometric fuocs can sometimes be sim-

plified by application of trigonometric identities or sine@ubstitution.

. Algebraic tricks, and many associated manipulation®&sn applied to twist and

turn a complicated integral into a set of simpler expresstbat can each be handled
more easily.

. Even with all these techniques, the problem of finding ardarivative can be very

complicated. In some cases, we resort to handbooks of alegrse symbolic ma-
nipulation software packages, or, if none of these workgudate a given definite
integral numerically using a spreadsheet.

Table of elementary antiderivatives

1
1. /—du:ln|u|+C’.
u

un,+1
2. /u” du = +C
n+1

1
3./1+u2—arctan(u)+C
4/ . in(u) + C
. | ———= = arcsin(u
V1—2a?

5. /sin(u) du = —cos(u) + C
6. / cos(u) du = sin(u) + C
7. /sec2 (u) du = tan(u) + C

Additional useful antiderivatives

1. /tan(u) du = In|sec(u)| + C.

2. /cot(u) du = In|sin(u)| + C

3. /sec(u) = In|sec(u) + tan(u)| + C
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Chapter 7

Discrete probability and
the laws of chance

7.1 Introduction

In this chapter we lay the groundwork for calculations arlds@governing simple discrete
probabilitie$*. Such skills are essential in understanding problemsaelat random pro-
cesses of all sorts. In biology, there are many examplesdaf ptocesses, including the
inheritance of genes and genetic diseases, the randommudtiells, the fluctuations in
the number of RNA molecules in a cell, and a vast array of gthenomena.

To gain experience with probability, it is important to sémple examples. In this
chapter, we discuss experiments that can be easily repeddund tested by the reader.

7.2 Dealing with data

Scientists studying phenomena in the real world, colleta déall kinds, some resulting
from experimental measurement or field observations. Betacein be large and complex.
If an experiment is repeated, and comparisons are to be nededn multiple data sets,
it is unrealistic to compare each and every numerical valb@ne shortcuts allow us to
summarize trends or descriptions of data sets in simpleegaduch as averages (means),
medians, and similar quantities. In doing so we lose thellddtaformation that the data
set contains, in favor of simplicity of one or several “siphumerical descriptors such
as themean and themedian of a distribution. We have seen related ideas in Chapter 5
in the context of mass distributions. The idea of a centeragsris closely related to that
of the mean of a distribution. Here we revisit such ideas endbntext of probability. An
additional example of real data is described in Appendi¥1There, we show how grade
distributions on a test can be analyzed by similar methods.

241 am grateful to Robert Israel for comments regarding thewization of this chapter
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7.3 Simple experiments
7.3.1 Experiment

We will consider “experiments” such as tossing a coin, nglla die, dealing cards, applying
treatment to sick patients, and recording how many are culearder for the ideas of
probability to apply, we should be able to repeat the expemiras many times as desired
under exactly the same conditions. The number of repesitiah often be denotedv.

7.3.2 Qutcome

Whenever we perform the experiment, exactly one outcomedrap In this chapter we
will deal with discrete probability, where there is a finitgt lof possible outcomes.

Consider the following experiment: We toss a coin and seeihtamds. Here there
are only two possible results: “heads” (H) or “tails” (T). Aiff coin is one for which these
results are equally likely. This means that if we repeat éixigeriment many many times,
we expect that on average, we get H roughly 50% of the time ar@ughly 50% of the
time. This will lead us to define a probability of 1/2 for eaalt@me.

Similarly, consider the experiment of rolling a dice: A siided die can land on any
of its six faces, so that a “single experiment” has six pdesiotcomes. For a fair die, we
anticipate getting each of the results with an equal prdipghie. if we were to repeat
the same experiment many many times, we would expect thalyenage, the six possible
events would occur with similar frequencies, each 1/6 oftitines. We say that the events
are random and unbiased for “fair” dice.

We will often be interested in more complex experiments. é&x@mple, if we toss a
coin five times, an outcome corresponds to a five-letter sezpief “Heads” (H) and “Tails”
(T), such as THTHH. We are interested in understanding hogutmtify the probability
of each such outcome in fair (as well as unfair) coins. If wgsta coin ten times, how
probable is it that we get eight out of ten heads? For dice, auddcask how likely are
we to roll a 5anda 6 in successive experiments? Aba 6? For such experiments we
are interested in quantifying how likely it is that a certawent is obtained. Our goal in
this chapter is to make more precise our notion of probgb#ihd to examine ways of
guantifying and computing probabilities. To motivate thigestigation, we first look at
results of a real experiment performed in class by students.

7.3.3 Empirical probability

We can arrive at a notion of probability by actually repegitinreal experimen¥ times,
and counting how many times each outcome happens. Let ubeisetation:; to refer to
the number of times that outcomevas obtained. An example of this sort is illustrated in
Section 7.4.1. We define tlenpirical probability p; of outcomei to be

Pi :Qﬁi/N,

i.e p; is the fraction of times that the restilis obtained out of all the experiments. We ex-
pect that if we repeated the experiment many more timesethjsrical probability would
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approach, as a limit, the actual probability of the outco®e.if in a coin-tossing experi-
ment, repeated 1000 times, the outcome HHTHH is obtainedr#sst then we would say
that the empirical probabilitygprum is 25/1000.

7.3.4 Theoretical Probability

For theoretical probability, we make some reasonable lzasiemptions on which we base

a calculation of the probabilities. For example, in the azfse“fair coin”, we can argue by
symmetry that every sequencermheads and tails has the same probability as any other.
We then use two fundamental rules of probability to calauthe probability as illustrated
below.

Rules of probability

1. In discrete probability) < p; < 1 for each outcome

2. For discrete probability ", p; = 1, where the sum is over all possible outcomes

About Rule 1:p;, = 0 implies that the given outcome never happens, whepgas 1
implies that this outcome is the only possibility (and alwdappens). Any value inside
the range (0,1) means that the outcome occurs some of the Rule 2 makes intuitive
sense: it means that we have accounted for all possibjliteeshe fractions corresponding
to all of the outcomes add up to 100% of the results.

In a case where there aité possible outcomes, all with equal probability, it follows
thatp, = 1/M for everyi.

7.3.5 Random variables and probability distributions

A random variable is a numerical quantitX’ that depends on the outcome of an exper-
iment. For example, suppose we toss a ooitimes, and letX be the number of heads
that appear. If, say, we toss the cein= 4 times, then the number of heads,could take

on any of the value$z; } = {0,1,2,3,4} (i.e., no heads, one head, ... four heads). In the
case of discrete probability there are a discrete numbeosdiple values for the random
variable to take on.

We will be interested in the probability distribution &f. In general if the possible
valuesz; are listed in increasing order for= 0, ..., n, we would like to characterize their
probabilitiesp(x;), wherep(z;) =Prob( X = x;)%.

Even thoughp(z;) is a discrete quantity taking on one of a discrete set of &lue
we should still think of this mathematical object as a fuoeti it associates a number
(the probability)p with each allowable value of the random variablefor i = 0,..., n.

In what follows, we will be interested in characterizing danction, termed probability
distributions and their properties.

25Read:p(:ci) is the probability that the random variahlé takes on the value;
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7.3.6 The cumulative distribution

Given a probability distribution, we can also definetamulative function as follows:

The cumulative function corresponding to the probabilistributionp(z;) is defined as
F(z;) = Prob(X < ;).

For a given numerical outcoms, the value off'(x;) is hence

Fla) = pla).
§=0

The functionF merely sums up all the probabilities of outcomes up to antlidiog x;,
hence is called “cumulative”. This implies that(z,) = 1 wherex,, is the largest value
attainable by the random variable. For example, in theroltif a die, if we list the possible
outcomes in ascending orderfds 2, ..., 6}, thenF'(6) stands for the probability of rolling
a 6 or any lower value, which is clearly equal to 1 for a sixesidlie.

7.4 Examples of experimental data
7.4.1 Examplel: Tossing a coin

We illustrate ideas with an example of real data obtaineddmgating an “experiment”
many times. The experiment, actually carried out by each24f gtudents in this calcu-
lus course, consisted of tossing a cain= 10 times and recording the number;, of
“Heads” that came up. Each student recorded one of elevesigp@utcomesy; =
{0,1,2,...,10} (i.e. no heads, one, two, etc, up to ten heads out of the tsedpsBy
pooling together such data, we implicitly assume that alh€@nd all tossers are more
or less identical and unbiased, so the “experiment” Nas: 121 replicates (one for each
student). Table 7.1 shows the result of this experimenteldgis the number of students
who gotz; heads. We refer to this as tfrequency of the given result. Also, so;/N is
the fraction of experiments that led to the given result, @wedlefine the empirical proba-
bility assigned tar; as this fraction, that ig(z;) = n;/N. In column (3) we display the
cumulative number of students who got any number up to arddimg z; heads, and then
in column (5) we compute the cumulative (empirical) prokigbiF'(z;).

In Figure 7.1 we show what this distribution looks like on a @aph. The horizontal
axis isx;, the number of heads obtained, and the vertical axig:s). Because in this
example, only discrete integer values (0, 1, 2, etc) can heirgdd in the experiment,
it makes sense to represent the data as discrete pointsowa sim the bottom panel in
Fig. 7.1. We also show the cumulative functiélix;), superimposed as an xy-plot on a
graph ofp(x;). Observe thaf" starts with the value 0 and climbs up to value 1, since the
probabilities of any of the events (0, 1, 2, etc heads) mudtgcdo 1.
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Number frequency cumulative empirical cumulative
of heads| (number of students) number probability function
i n > ony | (@) =ni/N | Fz;) = pl))
0 0
0 0 0 0.00 0.00
1 1 1 0.0083 0.0083
2 2 3 0.0165 0.0248
3 10 13 0.0826 0.1074
4 27 40 0.2231 0.3306
5 26 66 0.2149 0.5455
6 34 100 0.2810 0.8264
7 14 114 0.1157 0.9421
8 7 121 0.0579 1.00
9 0 121 0.00 1.00
10 0 121 0.00 1.00

Table 7.1. Results of a real coin-tossing experiment carried out by dt2tients
in this mathematics course. Each student tossed a coin HXtitWe recorded the “fre-
guency”, i.e. the number of studenis who each gotr; = 0,1,2,...,10 heads. The
fraction of the class that got each outcomg/N, is identified with the (empirical) prob-
ability of that outcomep(z;). We also compute the cumulative functiBf;) in the last
column. See Figure 7.1 for the same data presented gragical

7.4.2 Example 2: grade distributions

Another example of real data is provided in Appendix 11.6erghwe discuss distributions
of grades on a test. Many of the ideas described here appheisdme way. For space
constraints, that example is provided in an Appendix, raiten here.

7.5 Mean and variance of a probability distribution

We next discuss some very important quantities relatedetogthdom variable. Such quan-
tities provide numerical descriptions of the average valihe random variable and the
fluctuations about that average. We define each of theselaw$ol

Themean (or average oexpected valug, z of a probability distribution is

T = Z zip(;) -
i=0

The expected value is a kind of “average value of X", whereesbfr are weighted
by their frequency of occurrence. This idea is related todbwecept of center of mass
defined in Section 5.3.1z(positions weighted by masses associated with those pasjtio
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empirical probability of i heads in 10 tosses Cumulative function

number of heads (i) number of heads (i)

Figure 7.1. The data from Table 7.1 is shown plotted on this graph. A total
N = 121 people were asked to toss a coin= 10 times. In the bar graph (left), the
horizontal axis reflects, the number, of heads (H) that came up during those 10 coin
tosses. The vertical axis reflects the fractigm; ) of the class that achieved that particular
number of heads. In the lower graph, the same data is showhebgliscrete points. We
also show the cumulative function that sums up the values liedt to right. Note that the
cumulative function is a “step function” .

The mean is a point on the axis, representing the “average” outcome of an experiment.
(Recall that in the distributions we are describing, thesjimle outcomes of some observa-
tion or measurement process are depicted on:theis of the graph.) The meann®tthe
same as the average value of a function, discussed in Sdc@ofin that case, the average
is an average y coordinate, or average height of the fungtfon

We also define quantities that represents the width of thallifon. We define the
varianceV and standard deviation,as follows:

Thevariance, V, of a distribution is

wherez is the mean. Thetandard deviation, o is
oc=VV.

The variance is related to the square of the quantity reptedeon thexr axis, and since
the standard deviation its square raotzarries the same units as For this reason, it is

26Note to the instructor: students often mix these two distineanings of the word average, and they should
be helped to overcome this difficulty with terminology.
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common to associate the valueafwith a typical “width” of the distribution. Having a
low value ofc means that most of the experimental results are close to ¢ammvhereas
a largeo signifies that there is a large scatter of experimental &édib®ut the mean.

In the problem sets, we show that the variance can also bessgxt in the form

V=M, —7°

wherel/; is thesecond momenbf the distribution. Moments of a distribution are defined
as the values obtained by summing up products of the pratyabiéighted by powers of
Z.

Thej'th moment, M; of a distribution is

n

M; =Y () p(xs).

=0

Example 7.1 (Rolling a die) Suppose you toss a die, and let the random variabl€ be
the number obtained on the die, i.e. (1 to 6). If this die is thien it is equally likely to get
any of the six possible outcomes, so each has probabilityithis case

v, =1, i=1,2...6 p(z;)=1/6.

We calculate the various quantities as follows: The mean is

6
_ Z 1 1 [6-7 7

The second momend/s is

6
1 1 (6-7-13\ 91
My=) 2. - == ==,
=2 g 6( 6 ) 6

We can now obtain the variance,
po (1Y%
6 2) 12’

o = /35/12 ~ 1.7078.

and the standard deviation,

Example 7.2 (Expected number of heads (empirical)}-or the empirical probability dis-
tribution shown in Figure 7.1, the mean (expected valuealsutated from results in Ta-
ble 7.1 as follows:

10
z = ap(x;) = 0(0)+1(0.0083)+2(0.0165)+. . .+8(0.0579)+9(0)+10(0) = 5.2149
k=0
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Thus, the mean number of heads in this set of experimentwist &2. This is close to
what we would expect intuitively in a fair coin, namely that average, 5 out of 10 tosses
(i.e. 50%) would result in heads. To compute the varianceonm the sum

10 10
V= Z(xk —7)%p(xr) = Z(k‘ — 5.2149)2p(k).
k=0 k=0

Here we have used the mean calculated above and the fact.thak. We obtain

V = (0 — 5.2149)%(0) + (1 — 5.2149)%(0.0083) + ... + (7 — 5.2149)%*(0.1157)
+ (8 — 5.2149)2(0.0579) + (9 — 5.2149)%(0) + (10 — 5.2149)2(0) = 2.053

(Because there was no replicate of the experiment that l€ddo 10 heads out of 10
tosses, these values do not contribute to the calculatidhe) standard deviation is then
o=V =1.4328.

7.6 Bernoulli trials

A Bernoulli trial is an experiment in which there are two possible outcomesypical
example, motivated previously, is tossing a coin (the autebeing H or T). Traditionally,
we refer to one of the outcomes of a Bernoulli trial as "sust&sand the other "failure?”,
F.

Let p be the probability of success agd= 1 — p the probability of failure in a
Bernoulli trial. We now consider how to calculate the prabgbof some number of
“successes” in a set of repetitions of a Bernoulli trial. hod, we are interested in the
probability of tossing some number of Headsiigoin tosses.

7.6.1 The Binomial distribution

Suppose we repeat a Bernoulli triatimes; we will assume that each trial is identical and
independent of the others. This implies that the probghilibf success andg of failure

is the same in each trial. Lef be the number of successes. Th€ris said to have a
Binomial distribution with parameters andp.

Let us consider how to calculate the probability distribntof X, i.e. the probability
that X = k wherek is some number of successes between nére () and all ¢ = n).
Recall that the notation for this probability is P{db = k) for k = 0,1, ..., n. Also note
that

X = k means that in the trials there aré: successes and— k failures. Consider
the following example for the case of= 3, where we list all possible outcomes and their
probabilities:

In constructing Table 7.2, we usenaultiplication principle applied to computing
the probability of a compound experiment. We state thisetiogr with a usefuhddition
principle below.

27For example “Heads you win, Tails you lose”.
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Result | probability | number of heads
SSS p° X =3

SSF p2q X =2

SFS p2q X =2

SFF pg? X=1

FSS p2q X =2

FSF pg> X=1

FFS pg> X=1

FFF @ X=0

Table 7.2.A list of all possible results of three repetitions & 3) of a Bernoulli
trial. S="success” and F="failure. (Substituting H for S, and T for F gives the same
results for a coin tossing experiment repeated 3 times).

Multiplication principle : if eq, ..., e; are independent events, then

Prokle; andes and. . . e) = Prol(e;)Prokes) . .. Proley,)

Addition principle : if eq, ..., e;, are mutually exclusive events, then

Prole; oresor ... ex) = Prole;) + Prokles) + ... + Prokleg).

Based on the results in Table 7.2 and on the two principldseutbove, we can compute
the probability of obtaining 0, 1, 2, or 3 successes out oféstr The results are shown
in Table 7.3. In constructing Table 7.3, we have considefeth@ ways of obtaining 0

Probability of X heads

Prob( X = 2) = 3p?q

Pro X =0) = ¢*
Prob( X = 3) = p?

)
Prob X = 1) = 3pq?

)

)

Table 7.3. The probability of obtainingX successes out of 3 Bernoulli trials,
based on results in Table 7.2 and the addition principle obability.

successes (there is only one such way, namely SSS, and litslglity is p?), all the ways
of obtaining only one success (here we must allow for SFF, F&ES, each having the
same probabilityg?) etc. Since these results are mutually exclusive (only ol sesult
is possible for any given replicate of the 3-trial experit)ethe addition principle is used
to compute the probability Prob(SFF or FSF or FFS).



142 Chapter 7. Discrete probability and the laws of chance

In general, for each replicate of an experiment consisting Bernoulli trials, the
probability of an outcome that h&ssuccesses and— £ failures (in some specific order)
is pFq(»=*). To get the total probability ok = k, we need to count how many possible
outcomes consist df successes and — k failures. As illustrated by the above example,
there are, in general, many such ways, since the order innv&iand F appear can differ
from one outcome to another. In mathematical terminoldugte can be mangermuta-
tions (i.e. arrangements of the order) of S and F that have the saméear of successes
in total. (See Section 11.8 for a review.) In fact, the numdferays thatn trials can lead
to k successes i6'(n, k), thebinomial coefficient, which is, by definition, the number of
ways of choosing: objects out of a collection of objects. That binomial coefficient is

n'
(n — k)&
(See Section 11.7 for the definition of factorial notatiohused here.) We have arrived at
the following result fom Bernoulli trials:

C(n, k) = (n choose k)=

The probability ofk: successes in Bernoulli trials is

Prot( X = k) = C(n, k)p*q"*.

In the above example, with = 3, we find that
Prob( X = 2) = C(3,2)p’q = 3p’q.

7.6.2 The Binomial theorem

The naméinomial coefficientcomes from théinomial theorem: which accounts for the
expression obtained by expanding a binomial.

(a+b)" Zan akfpnk,

Let us consider a few examples. A fam|l|ar example is
(a4+b)?=(a+b)-(a+b)=a®+ab+ba+b*> = a’®+ 2ab+ b>.
The coefficients”'(2,2) = 1, C(2,1) = 2, andC(2,0) = 1 appear in front of the three
terms, representing, respectively, the number of ways@bsimg 2a’s, 1 a, and nou’s out
of then factors of(a + b). [Respectively, these account for the termisab andb? in the
resulting expansion.] Similarly, the product of three teiis
(a+0)*=(a+0b)-(a+b)-(a+b)=(a+b)?=a®+3ab+ 3ab®+b*
whereby coefficients are of the for@\(3, k) for £k = 3,2, 1,0. More generally, an expan-
sion ofn terms leads to
(a+b)" =a"+C(n,1)a" b+ C(n,2)a" 26> + ... + C(n, k)a*b"=*
+...+C(n,n—2)a*b" %+ C(n,n—L)ab" ' +b"

n

_ ZC kbnfk

=0
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1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Table 7.4. Pascal’s triangle contains the binomial coefficients of &g, k).
Each term in Pascal’s triangle is obtained by adding the twagdnally above it. The top
of the triangle represent§'(0,0). The next row represents(1,0) andC'(1,1). For row
numbern, terms along the row are the binomial coefficiet&, k), starting withk = 0
at the beginning of the row and and goingitoe= n at the end of the row.

The binomial coefficients are symmetric, so thdt, k) = C(n,n — k). They are entries
that occur inPascal’s triangle shown in Table 7.4.

7.6.3 The binomial distribution

The binomial distribution The binomial distribution

p=1/2 g=1/2 p=1/4 q=3/4

Figure 7.2. The binomial distribution is shown here far= 10. We have plotted
Prob(X = k) versusk for k = 0, 1, ...10. This distribution is the same as the probability
of getting X heads out of 10 coin tosses for a fair coin. In the first parted, probability
of success and failure are the same, pe= ¢ = 0.5. The distribution is then symmetric.
In the second panel, the probability of success is 1/4, soq = 3/4 and the resulting
distribution is skewed.

What does the binomial theorem say about the binomial Higion? First, since
there are only two possible outcomes in each Bernoulli titiébllows that

p+q=1, andhence (p+q)" =1.
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Using the binomial theorem, we can expand the latter to nbtai

(p+aq" Zanz kgnk Xn:Prot(X:k:)zl.

k=0

That is, the sum of these terms represents the sum of pralebdf obtainingk =
0,1,...,n successes. (And since this accounts for all possibilitiésilows that the sum
addsupto 1.)

We can compute the mean and variance of the binomial disisibusing the follow-
ing tricks. We will write out an expansion for a product of fieem (px + ¢)™. Herex will
be an abstract quantity introduced for convenience (be miaking the trick work):

(pz+q)" Zanp;Lk"k Zank”kk
k=0

Taking the derivative of the above with respecttteads to:

n
n(pr+q)" ' p= ZC k)ptgnF kak 1,
k=0

which, (plugging inz = 1) implies that

np—Zk C(n, k)pFq"=F Zk Prol X = k) = X. (7.1)
k=0

Thus, we have found that

The mean of the binomial distribution % = np wheren is the number of trials ang is
the probability of success in one trial.

We continue to compute other quantities of interest. Miyltipth sides of Egn. 7.1
by x to obtain

nx(pr +q)" 'p = Zan kgn=FEak.,
k=0

Take the derivative again. The resultis

n
n(p$+q)"_1p+n(n—1)x(px—|—q n— 2 2 ZC k n—kaxk:—1.
k=0

Plug inz = 1 to get

np +n(n—1)p? = Z E2C(n, k)p*q"=* = Ms.
k=0

Thereby we have calculated the second moment of the digtihuhe variance, and the
standard deviation. In summary, we found the following Hssu
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The second momedit/,, the Variancd” and the standard deviatienof a binomial distri-
bution are
My = np + n’p® — np?,

V =M, — X?=np—np* =np(l —p) =npq,

o =./npq.

7.6.4 The normalized binomial distribution

We can “normalize” (i.e. rescale) the binomial random Jalgaso that it has a convenient
mean and width. To do so, define the new random varible be: X = X — X. ThenX
has mean 0 and standard deviatiorNow define

(X -X)

Z:

ThenZ has mean 0 and standard deviation 1. In the limit as oo, we can approximate
Z with a continuous distribution, called the standard nordistribution.

The Normal di

Figure 7.3. The Normal (or Gaussian) distribution is given by equatiér2f and
has the distribution shown in this figure.

As the number of Bernoulli trials grows, i.e. as we toss owadimary coin in longer
and longer setsn{ — oc), a remarkable thing happens to the binomial distributign:
becomes smoother and smoother, until it grows to resembda@ncous distribution that
looks like a “Bell curve”. That curve is known as tlaussianor Normal distribution . If
we scale this curve vertically and horizontally (stretchtieally and compress horizontally
by the factory/N /2) and shift its peak ta: = 0, then we find a distribution that describes
the deviation from the expected value of 50% heads. Thetnegdlnction is of the form

p(x) = Le“”g/2 (7.2)
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We will study properties of this (and other) such continudistributions in a later
section. We show a typical example of the Normal distributioFigure 7.3. Its cumulative
distribution is then shown (without and with the originakulibution superimposed) in
Figure 7.4.

The gqumulative distribution //' The cumulative dist_w

Figure 7.4. The Normal probability density with its corresponding cuative function.

7.7 Hardy-Weinberg genetics

In this section, we investigate how the ideas developedisdhapter apply to genetics.
We find that many of the simple concepts presented here wilisieéul in calculating the
probability of inheriting genes from one generation to tle&tn

Each of us has two entire sets of chromosomes: one set isteth&om our mother,
and one set comes from our father. These chromosomes careg,gée unit of genetic
material that “codes” for proteins and ultimately, througdmplicated biochemistry and
molecular biology, determines all of our physical traits.

We will investigate how a single gene (with two “flavors”, leal alleleg is passed
from one generation to the next. We will consider a partidulsimple situation, when the
single gene determines some physical trait (such as eyge) colwe trait (say blue or green
eyes) will be denoted theghenotypeand the actual pair of genes (one on each parentally
derived chromosome) will be called tgenotype

Suppose that the gene for eye color comes in two forms thabwiteferred to as
A anda. For exampleA might be an allele for blue eyes, whereasould be an allele
for brown eyes. Consider the following “experiment”: se¢lacandom individual from the
population of interest, and examine the region in one ofrtbleiomosomes determining
eye colour. Then there are two possible mutually exclusitea@nesA or a; according to
our previous definition, the experiment just described i€mBulli trial.

The actual eye color phenotype will depend on both inheatkdles, and hence, we
are interested in a “repeated Bernoulli trial” with= 2. In principle, each chromosome
will come with one or the other allele, so each individual Weblubave one of the following
pairs of combination8A, Aa, aA, oraa. The order Aa or aA is synonymous, so only the
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Genotype: | aA | AA | aa | Aa
Probability: | pg | p* | ¢* | pq

Genotype: | aAorAa | AA | aa
Probability: 2pq p? | ¢°

Table 7.5.1f the probability of finding alleléA is p and the probability of finding
allele A is ¢, then the eye color gene probabilities are as shown in thedbfe. However,
because genotypka is equivalent to genotypeA, we have combined these outcomes in
the revised second table.

number of alleles of typeA (or equivalently of type) is important.

Suppose we know that the fraction of all genes for eye coldyé A in the popu-
lation isp, and the fraction of all genes for eye color of types ¢, wherep + ¢ = 1. (We
have used the fact that there amy two possibilities for the gene type, of course.) Then
we can interprep andq as probabilities that a gene selected at random from thel atiqu
will turn out to be typea (respectivelyh), i.e., ProbA) = p, Probg)=4.

Now suppose we draw at random two alleles out of the (larggyladion. If the
population size isV, then, on average we would expéép? individuals of typeAA, N¢?
of typeaaand2N pq individuals of the mixed type. Note that the sum of the prolités
of all the genotypes is

PP +29+¢ = (p+q° =1

(We have seen this before in the discussion of Bernoullistriand in the definition of
properties of probability.)

7.7.1 Random non-assortative mating

We now examine what happens if mates are chosen randomlyféspiing arise from
such parents. The father and mother each pass down one beanopy of their alleles to
the progeny. We investigate how the proportion of genes vbua types is arranged, and
whether it changes in the next generation. In Table 7.6, wevshe possible genotypes of
the mother and father, and calculate the probability thatngaf such individuals would
occur under the assumption that choice of mate is random, -dio@s not depend at all
on “eye color”. We assume that the allele donated by the fgt®aried in his sperm) is
independent of the allele found in the mother’s egg?@ellhis means that we can use the
multiplicative property of probability to determine theopability of a given combination
of parental alleles. (i.e. Prob(x and y)=ProbBapb(y)).

For example, the probability that a couple chosen at randdincawnsist of a woman
of genotypeaA and a man of genotypais a product of the fraction of females that are of
typeaA and the fraction of males that are of typa But that is just2pq)(p?), or simply
2p3q. Now let us examine the distribution of possible offsprifigarious parents.

28Recall that the sperm and the egg each have one single setashasomes, and their union produces the
zygote that carries the doubled set of chromosomes.
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In Table 7.6, we note, for example, that if the couple are bbthipeaA, each parent
can “donate” eithea or A to the progeny, so we expect to see children of tygesaA, AA
in the ratio 1:2:1 (regardless of the valuegaindy).

We can now group together and summarize all the progeny efemgjenotype, with
the probabilities that they are produced by one or anothgr andom mating. Using this
table, we can then determine the probability of each of theetlgenotypes in the next
generation.

Mother: AA aA aa
p? 2pq q
Father:

AA AA laA LAA Aa
p? p* 2pqp® P
aA 1aA 1AA  laalaAlAA laaiAa
2pq 2pqp® 4p*q? 2pqq®
aa Aa 1aA laa aa
¢ P’q’ 2pqq? q*

Table 7.6.The frequency of progeny of various types in Hardy-Weinberggtics
can be calculated as shown in this “mating table”. The gepetpf the mother is shown
across the top and the father’'s genotype is shown on thedaftrm. The various progeny
resulting from mating are shown as entries in bold face. Tiobgbilities of the given
progeny are directly under those entries. (We did not sifypplie expressions - this is to
emphasize that they are products of the original parentabpbilities.)

Example 7.3 (Probability of AA progeny) Find the probability that a random (Hardy Wein-
berg) mating will give rise to a progeny of tyge\.

Solution 1

Using Table 7.6, we see that there are only four ways thatld ohitype AA can result
from a mating: either both parents a&#,, or one or the other parentAs, or both parents
areAa. Thus, for children of typ&A the probability is

Prob(child of typeAA) = p* + %(qupQ) + %(2pqp2) + £(4p2q2).
Simplifying leads to

Prokichild of typeAA)=p*(p®+2qp+¢*) = p*(p+ q)* = p*.
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In the problem set, we also find that the probability of a clufdtype aA is 2¢p, the
probability of the child being typaais ¢. We thus observe that the frequency of genotypes
of the progeny is exactly the same as that of the parents. tfjpésof genetic makeup is
termed Hardy-Weinberg genetics.

Alternate solution

child
AA
father mother
2pq// \pz ZP? \pz
Aa AA Aa AA
1/2 1 1/2

(Pg+p2)- (pa+ B )

Figure 7.5. A tree diagram to aid the calculation of the probability thethild
with genotype\A results from random assortative (Hardy Weinberg) mating.

In Figure 7.5, we show an alternate solution to the same prohising a tree dia-
gram. Reading from the top down, we examine all the poskésilat each branch point.
A child AA cannot have any parent of genotype aa, so both father ancensogienotype
could only have been one &fA or Aa. Each arrow indicating the given case is accom-
panied by the probability of that event. (For example, a candhdividual has probability
2pq of having genotypda, as shown on the arrows from the father and mother to these
genotypes.) Continuing down the branches, we ask with wittddgbility the given parent
would have contributed an allele of tygeto the child. For a parent of typ&A, this is
certainly true, so the given branch carries probabilitydr. &parent of typéa, the proba-
bility that A is passed down to the child is only 1/2. T¢mmbinedorobability is computed
as follows: we determine the probability of gettingAarirom father (of typeAA OR Aa):
This is Prob@ from father)<1/2)2pq + 1 - p?) = (pq + p?) and multiply it by a similar
probability of gettingA from the mother (of typ@®A OR Aa). (We must multiply, since
we needA from the father ANDA from the mother for the genoty@eA.) Thus,

Prob(child of typeAA) =(pq + p*)(pq + p*) = p*(¢ + p)*> = p* - 1 = p*.

It is of interest to investigate what happens when one of $semptions we made is
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relaxed, for example, when the genotype of the individualdraimpact on survival or on
the ability to reproduce. While this is beyond our scope hieferms an important theme
in the area of genetics.

7.8 Random walker

In this section we discuss an application of the binomiatrittistion to the process of a
random walk. A shown in Figure 7.6(a), we consider a straigjldimensional) path and an
erratic walker who takes steps randomly to the left or rigtk. will assume that the walker
never stops. With probability, she takes a step towards the right, and with probabjlity
she takes a step towards the left. (Since these are the omlgtteices, it must be true that
p—+q = 1.) In Figure 7.6(b) we show the walker’s positianplotted versus the number of
steps ) she has taken. (We may as well assume that the steps oceguérmintervals of
time, so that the horizontal axis of this plot can be thoudlatsoa time axis.)

(@)

(b)

Figure 7.6. A random walker in 1 dimension takes a step to the right witibpr
bility p and a step to the left with probability

The process described here is classic, and often attribotedrunken wanderer. In
our case, we could consider this motion as a 1D simplificatfdthe random tumbles and
swims of a bacterium in its turbulent environment. it is Usuthe case that a goal of this
swim is a search for some nutrient source, or possibly angiel@f poor environmental
conditions. We shall see that if the probabilities of leftlaight motion are unequal (i.e.
the motion is biased in one direction or another) this swimteeds to drift along towards
a preferred direction.

In this problem, each step has only two outcomes (analogoaigrtal in a Bernoulli
experiment). We could imagine the walker tossing a coin tert@ne whether to move
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right or left. We wish to characterize the probability of tlvalker being at a certain posi-
tion at a given time, and to find her expected position aftsteps. Our familiarity with
Bernoulli trials and the binomial distribution will proveseful in this context.

Example

(a) What is the probability of a run of steps as follows: RLRFRLLL

(b) Find the probability that the walker movksteps to the right out of a total run of
consecutive steps.

(c) Supposethat = ¢ = 1/2. What is the probability that a walker starting at the origin
returns to the origin on her 10’'th step?

Solution

(a) The probability of the run RLRRRLRLLL is the prodygfpppgpqqq = p°q°. Note
the similarity to the question “What is the probability ofging HTHHHTHTTT?”

(b) This problem is identical to the problemheads im tosses of a coin. The proba-
bility of such an event is given by a term in the binomial disition:
P(k out of n» moves to right)€'(n, k)pFq™".

(c) The walker returns to the origin after 10 steps only if Bhe taken 5 steps to the left
(total) and 5 steps to the right (total). The order of the Stépes not matter. Thus

this problem reduces to the problem (b) with 5 steps out o&kér to the right. The
probability is thus

P(back at 0 after 10 steps) = P(5 out of 10 steps to right)

5 s N /1oy 1

Mean position

We now ask how to determine the expected position of the walkern steps, i.e. how
the mean value af depends on the number of steps and the probabilities assoeidth
each step. After 1 step, with probabilipythe position ist = +1 and with probabilityg,
the position ist = —1. The expected (mean) position after 1 move is thus

1 =p(+1) +q(-1)=p—gq
But the process follows a binomial distribution, and thuesitiean aftern steps is

Tn =n(p —q).
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7.9 Summary

In this chapter, we introduced the notion of discrete prditalof elementary events. We
learned that a probability is always a number between 0 amahd that the sum of (dis-
crete) probabilities of all possible (discrete) outcomged.i We then described how to
combine probabilities of elementary events to calculatébabilities of compound inde-
pendent events in a variety of simple experiments. We detinechotion of a Bernoulli
trial, such as tossing of a coin, and studied this in detalil.

We investigated a number of ways of describing results okgrpents, whether in
tabular or graphical form, and we used the distribution sfites to define simple numerical
descriptors. Theneanis a number that, more or less, describes the location ofcieter”
of the distribution (analogous to center of mass), definddlasvs:

The meanéxpected valug z of a probability distribution is

n
z= Z xip(a;).
=0

The standard deviation is, roughly speaking, the “widthttef distribution.

Thestandard deviation, o is

whereV is thevariance,

While the chapter was motivated by results of a real expearipee then investigated
theoretical distributions, including the binomial. We falthat the distribution of events in
a repetition of a Bernoulli trial (e.g. coin tossedimes) was a binomial distribution, and
we computed the mean of that distribution.

Suppose that the probability of one of the events, say eveintaBernoulli trial isp (and
hence the probability of the other eventisq = 1 — p), then

P(k occurrences of given event out of n tripls i 'pk’q"—k,

n!
(n—k)
This is called thebinomial distribution. The mean of the binomial distribution, i.det

mean number of events & n repeated Bernoulli trials is

T = np.




Chapter 8

Continuous probability
distributions

8.1 Introduction

In Chapter 7, we explored the concepts of probability in ardie setting, where outcomes
of an experiment can take on only one of a finite set of valuesrehve extend these
ideas to continuous probability. In doing so, we will seet tnzantities such as mean and
variance that were previously defined by sums will now becdefite integrals. Here
again, we will see the concepts of integral calculus in theext of practical examples and
applications.

We begin by extending the idea of a discrete random varialifeet continuous case.
We callxz a continuous random variable in< = < b if = can take on any value in this
interval. An example of a random variable is the height of espe, say an adult male,
selected randomly from a population. (This height typic#dikes on values in the range
0.5 < x < 3 meters, say, so = 0.5 andb = 3.)

If we select a male subject at random from a large populatiod measure his height,
we might expect to get a result in the proximity of 1.7-1.8 enetmost often - thus, such
heights will be associated with a larger value of probapifitan heights in some other
interval of equal length, e.g. heights in the rarlye < = < 2.8 meters, say. Unlike
the case of discrete probability, however, the measureghhean take on any real number
within the interval of interest. This leads us to redefineidaa of a continuous probability,
using a continuous function in place of the discrete bapigiseen in Chapter 7.

8.2 Basic definitions and properties

Here we extend previous definitions from Chapter 7 to the oasentinuous probability.
One of the most important differences is that we now consigeobabilitydensity, rather
than a value of the probability per®e First and foremost, we observe that npy:)

will no longer be a probability, but rather “ a probabiliper unitz”. This idea is analo-

29This leap from discrete values that are the probability obattome (as seen in Chapter 7) to a probability

density is challenging for many students. Reinforcing thalegy with discrete masses versus distributed mass
density (discussed in Chapter 5) may be helpful.

153
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gous to the connection between the mass of discrete beads@mlinuous mass density,
encountered previously in Chapter 5.

Definition
A functionp(z) is a probability density provided it satisfies the followipgperties:

1. p(z) >0 for all z.

2. f:p(x) dz = 1 where the possible range of valueswob a < x < b.

The probability that a random variabletakes on values in the interved < z < as

is defined as
/ ' p(z) d.

The transition to probability density means that the qugptiz) does not carry the same
meaning as our previous notation for probability of an ootea:;, namelyp(z;) in the
discrete case. In fach(x)dx, or its approximatiorp(z)Ax is now associated with the
probability of an outcome whose values is “closerto

Unlike our previous discrete probability, we will not askHet is the probability that
x takes on some exact value?” Rather, we ask for the probathikit = is within some
range of values, and this is computed by performing an iat&r

Having generalized the idea of probability, we will now firitht many of the asso-
ciated concepts have a natural and straight-forward gkretian as well. We first define
the cumulative function, and then show how the mean, mediath variance of a contin-
uous probability density can be computed. Here we will héneedpportunity to practice
integration skills, as integrals replace the sums in sutdutzions.

Definition

For experiments whose outcome takes on values on somedhterv = < b, we define a
cumulative functionf'(x), as follows:

P = [ " p(s) ds.

ThenF'(z) represents the probability that the random variable takes\@lue in the range
(a, ) 3% The cumulative function is simply the area under the praibatensity (between
the left endpoint of the intervad, and the point:).

The above definition has several implications:

b
30Remark: the probability that is exactly equal td is the integral/ p(x) dz. But this integral has a value
b

zero, by properties of the definite integral.
31By now, the reader should be comfortable with the usesb&s the “dummy variable” in this formula, where
z plays the role of right endpoint of the interval of integoati
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Properties of continuous probability
1. Sincep(z) > 0, the cumulative function is aimcreasingfunction.

2. The connection between the probability density and itawdative function can be
written (using the Fundamental Theorem of Calculus) as

pl) = F'(a).

3. F(a) = 0. This follows from the fact that

F(a) = / p(s) ds.
By a property of the definite integral, this is zero.

4. F(b) = 1. This follows from the fact that

b
F(b)z/ p(s)ds =1

by Property 2 of the definition of the probability densjtyz).
5. The probability that takes on a value in the interva] < = < as is the same as
F(as) — F(aq).

This follows from the additive property of integrals and thendamental Theorem
of Calculus:

/:2 p(s) ds — /a“1 p(s) ds = /(:2 p(s) ds = /(:2 F'(s) ds = F(as) — F(ay)

Finding the normalization constant

Not every real-valued function can represent a probaliktysity. For one thing, the func-
tion must be positive everywhere. Further, the total aredeuits graph should be 1, by
Property 2 of a probability density. Given an arbitrary jpgsifunction, f(z) > 0, on
some intervak < x < b such that

b
/ flx)de = A >0,
we can always define a corresponding probability density) as
pa) = 3 /@), a<z<b

It is easy to check thai(z) > 0 and thatfabp(a:)da: = 1. Thus we have converted the
original function to a probability density. This processalednormalization, and the
constantC' = 1/A is called the normalization constdft

32The reader should recognize that we have essentially egstta original function by dividing it by the “area”
A. This is really what normalization is all about.
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8.2.1 Example: probability density and the cumulative
function

Consider the functiorf (z) = sin (7x/6) for 0 < z < 6.
(a) Normalize the function so that it describes a probahilénsity.

(b) Find the cumulative distribution functiof;(x).

Solution

The function is positive in the interval < x < 6, so we can define the desired probability
density. Let

p(x) = C'sin (%x) .

(a) We must find the normalization constafi,such that Property 2 of continuous prob-
ability is satisfied, i.e. such that

| :/06p(x) da.

Carrying out this computation leads to

/6 C'sin (zx) dr = C’E (— cos (Ex)) i
0 6 T 6

0

™

(1 —cos(m)) = 01?2

(We have used the fact thats(0) = 1 in a step here.) But by Property 2, fofx)
to be a probability density, it must be true tlfaf12/7) = 1. Solving forC leads to
the desired normalization constant,

™
C=—.
12

Note that this calculation is identical to finding the area

6
A= / sin (Ex) dx,
0 6
and setting the normalization constantic= 1/A.
Once we rescale our function by this constant, we get thegtibty density,
™. m
p(z) = T3 Sin (El) .

This density has the property that the total area under @plgover the interval
0 <2 < 6is 1. Agraph of this probability density function is shownthe black
curve in Figure 8.1.
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(b) We now compute the cumulative function,

F(l’):/omp(s)dS:%/OISin(%s) ds

Carrying out the calculatic leads to
| s
=3 (1 — cos (Ex)) .

rr - -2 (o3|

This cumulative function is shown as a red curve in Figure 8.1

F(X

LT P(x)
wi Wi

Figure 8.1. The probability density(x) (black), and the cumulative function
F(z) (red) for Example 8.2.1. Note that the area under the blaakeis 1 (by normal-
ization), and thus the value @f(x), which is the cumulative area function is 1 at the right
endpoint of the interval.

8.3 Mean and median

When we are given a distribution, we often want to describaitith simpler numerical
values that characterize its “center”: the mean and the aneloloth give this type of in-
formation. We also want to describe whether the distrilbut®narrow or fat - i.e. how
clustered it is about its “center”. The variance and highenmants will provide that type
of information.

Recall that in Chapter 5 for mass density), we defined &enter of mass

b
zp(x) dx
- {;b pp((w))dw ' o

33Notice that the integration involved in finding(z) is the same as the one done to find the normalization
constant. The only difference is the ultimate step of evalgathe integral at the variable endpointather than
the fixed endpoinb = 6.

I
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The mean of a probability density is defined similarly, bt tiefinition simplifies by virtue

of the fact thatf;p(x) dx = 1. Since probability distributions are normalized, the deno
inator in Eqn. (8.1) is simply 1.Consequently, theanof a probability density is given as
follows:

Definition

For a random variable ia < = < b and a probability density(x) defined on this interval,
themeanor averagevalue ofx (also called thexpected valug, denotedr is given by

b
z z/ xp(x) dx.

To avoid confusion note the distinction between the meamassarage value of versus
the average value of the functigrover the given interval. Reviewing Example 5.3.3 may
help to dispel such confusion.

The idea of median encountered previously in grade didtdbs also has a parallel
here. Simply put, the median is the valuexothat splits the probability distribution into
two portions whose areas are identical.

Definition

Themedian z,,.4 Of a probability distribution is a value af in the intervalke < z,,.q < b
such that

Tmed b 1
/ p(x) de = / p(x) de = 3

med

It follows from this definition that the median is the valueaofor which the cumulative
function satisfies

1
F(x'med) = 5

8.3.1 Example: Mean and median
Find the mean and the median of the probability density fdoriekample 8.2.1.

Solution

To find themeanwe compute
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Integration by parts is required héteLetu = z, dv = sin (§z) da.
Thendu = dz,v = — & cos (Zx). The calculation is then as follows:

z—i— g/j cos (%x) dx)

1 s 6 6 . /m 6
= 5 <—x CcOs (Ex) . + ; Sin (Ex) 0)
= % <—6 cos(m) + gsin(w) . gsin(0)> = g =3. (8.2)

(We have usedos(w) = —1,sin(0) = sin(7) = 0 in the above.)
To find themedian, x,,,.q, we look for the value of for which

1
F(J:med) = 5

Using the form of the cumulative function from Example 8,2vé& find that

F(X

0.5

Xmed

Figure 8.2. The cumulative functiod’(z) (red) for Example 8.2.1 in relation
to the median, as computed in Example 8.3.1. The median is the value aif which

F(z) = 0.5, as shown in green.

/mmd i (W ) d L = 1 (1 cos (Wx )) L
sin(—=s) ds= = —(1- —Tme ==
0 6 2 2 6 med 2

34Recall from Chapter 6 thaf udv = vu — f vdu. Calculations of the mean in continuous probability often
involve Integration by Parts (IBP), since the integrandsists of an expressionp(z)dz. The idea of IBP is
to reduce the integration to something involving oplyt)dx, which is done essentially by “differentiating” the
termu = x, as we show here.
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Here we must solve for the unknown valuewgf.,.
1 — cos (Ea:med) =1, = cos (zxmed) =0.
6 6
The angles whose cosine is zero are/2, £37/2 etc. We select the angle so that the

resulting value oft,,,.q will be inside the relevant interval (< = < 6 for this example),
i.e. /2. This leads to

m m

6Ty
so the median is

Tmed = 3.

In other words, we have found that the paint.,; subdivides the intervdl < x < 6 into
two subintervals whose probability is the same. The refatiip of the median and the
cumulative functiorn¥'(z) is illustrated in Fig 8.2.

Remark

A glance at the original probability distribution shouldneince us that it is symmetric
about the value: = 3. Thus we should have anticipated that the mean and mediduisof t
distribution would both occur at the same place, i.e. at tidpoint of the interval. This
will be true in general for symmetric probability distrilions, just as it was for symmetric
mass or grade distributions.

8.3.2 How is the mean different from the median?

p(x) p(x)

A X Yy X

Figure 8.3.1n a symmetric probability distribution (left) the mean amédian are
the same. If the distribution is changed slightly so thad imd longer symmetric (as shown
on the right) then the median may still be the same, which #erwill have shifted to the
new “center of mass” of the probability density.

We have seen in Example 8.3.1 that for symmetric distrimstishe mean and the
median are the same. Is this always the case? When are théffievertt, and how can we
understand the distinction?

Recall that themeanis closely associated with the idea of a center of mass, eeganc
from physics that describes the location of a pivot point hiclv the entire “mass” would
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exactly balance. It is worth remembering that
mean of p(x) = expected value of x = average value of x.

This concept is not to be confused with the average vaflagfunction which is an average
value of they coordinate, i.e., the average height of the function on therginterval.

Themediansimply indicates a place at which the “total mass” is sultidiinto two
equal portions. (In the case of probability density, eaclthoke portions represents an
equal aread; = A, = 1/2 since the total area under the graph is 1 by definition.)

Figure 8.3 shows how the two conceptsmédian(indicated by vertical line) and
mean(indicated by triangular “pivot point”) differ. At the leffor a symmetric probability
density, the mean and the median coincide, just as they didtample 8.3.1. To the right,
a small portion of the distribution was moved off to the faghti. This change did not affect
the location of the median, since the total areas to the agMtto the left of the vertical
line are still equal. However, the fact that part of the madaither away to the right leads
to a shift in the mean of the distribution, to compensatetierdhange.

Simply put, the mean contains more information about the taythe distribution
is arranged spatially. This stems from the fact that the noé#éime distribution is a “sum” -
i.e. integral - of terms of the formp(z) Az. Thus the location along theaxis, z, not just
the “mass”p(x)Ax, affects the contribution of parts of the distribution te trelue of the
mean

8.3.3 Example: a nonsymmetric distribution
We slightly modify the function used in Example 8.2.1 to tleewrexpression
f(z) = zsin (rz/6) for 0<z <6.

This results in a nonsymmetric probability density, showbliack in Figure 8.4. Steps in
obtainingp(z) would be simila?®, but we have to carry out an integration by parts to find
the normalization constant and/or to calculate the cunveldtinction, F'(x). Further, to
compute the mean of the distribution we have to integratedsisgwice.

Alternatively, we can carry out all such computations (apgpmately) using the
spreadsheet, as shown in Figure 8.4. We can filo} using sufficiently fine increments
Ax along the x axis and compute the approximation for its irgkgy adding up the quanti-
ties f(x)Az. The area under the curvk and hence the normalization constafit-€ 1/A)
will be thereby determined (at the point corresponding ®ehd of the intervaly = 6).

It is then an easy matter to replot the revised functi¢n)/A, which corresponds to the
normalized probability density. This is the curve shownlech in Figure 8.4. In the prob-
lem sets, we leave as an exercise for the reader how to deth@ median and the mean
using the same spreadsheet tool for a related (simpler) @eam

8.4 Applications of continuous probability

In the next few sections, we explore applications of the sdéeveloped in this chapter
to a variety of problems. We treat the decay of radioactieenat consider distribution of

35This is good practice, and the reader is encouraged to dodtuslation.
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0.5

o 2
i

Xmed

Figure 8.4. As in Figures 8.1 and 8.2, but for the probability dengity) =
(m/36)x sin(wz/6). This function is not symmetric, so the mean and median aréheo
same. From this figure, we see that the median is approxignatgl; = 3.6. We do not
show the mean (which is close but not identical). We can ctaripath the mean and the
median for this distribution using numerical integratioiitvthe spreadsheet. We find that
the mean i = 3.5679. Note that the “most probable value”, i.e. the point at whjax)
is maximal is atc = 3.9, which is again different from both the mean and the median.

heights in a population, and explore how the distributioradii is related to the distribution
of volumes in raindrop drop sizes. The interpretation of phebability density and the
cumulative function, as well as the means and medians ire tbases will form the main
focus of our discussion.

8.4.1 Radioactive decay

Radioactive decay is a probabilistic phenomenon: an atantapeously emits a particle
and changes into a new form. We cannot predict exactly whewem gtom will undergo
this event, but we can study a large collection of atoms aad dome interesting conclu-
sions.

We can define a probability density function that represtragrobability per unit
time that an atom would decay at tinae It turns out that a good candidate for such a
function is

p(t) = Ce™™,

wherek is a constant that represents the rate of decay (in unitstiofiel) of the specific
radioactive material. In principle, this function is defihever the interval < t < oo;
that is, it is possible that we would have to wait a “very loimge” to haveall of the atoms
decay. This means that these integrals have to be evaluatedfihity”, leading to an
improper integral . Using this probability density for atom decay, we can chemdze the
mean and median decay time for the material.
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Normalization

We first find the constant of normalization, i.e. find the canst’ such that

/ p(t) dt:/ Ce *dt=1.
0 0

Recall that an integral of this sort, in which one of the endisois at infinity is called an
improper integraf®. Some care is needed in understanding how to handle sugjrafge
and in particular when they “exist” (in the sense of prodgdnfinite value, despite the
infinitely long domain of integration). We will delay full eussion to Chapter 10, and
state here the definition:

e’} T
I:/iC?“ﬁz#mh~WM@]@z/(%*Wt
0 o0 0

The idea is to compute an integral over a finite intefval ¢ < 7" and then take a limit as
the upper endpoinf; goes to infinity " — o). We compute:

T

T efkt 1
IT:C/ e Fdt =C { } = —O(1 —e7*T,
0 —k k
Now we take the limit:
_ 1 o L ey L g
1= TlgnooIT —Tlgrclx) kC(l e ") = kC(l Tlgrclx)e ). (8.3)

To compute this limit, recall that fat > 0,7 > 0, the exponential term in Eqn. 8.3 decays
to zero agl’ increases, so that

lim e *T = 0.
T—o00

Thus, the second term in braces in the intedria Eqn. 8.3 will vanish a§” — oo so that
the value of the improper integral will be

. 1
I = lim Iy = EC.

T—o0

. o _ o1 .
To find the constant of normalizatiar we require thaf = 1, i.e. EC = 1, which means

that
C=k.

Thus the (normalized) probability density for the decay is
p(t) = ke ™.

This means that the fraction of atoms that decay betweenttirardt, is

ta
k/ ekt dt.
t1

36We have already encountered such integrals in Sectior#h8.4.5. See also, Chapter 10 for a more detailed
discussion of improper integrals.
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Cumulative decays

The fraction of the atoms that decay between time 0 and tifhe. “any time up to time
t” or “by time ¢ - note subtle wording”) is

F@y3é}@yu=kél4*@.

We can simplify this expression by integrating:

t
= _ [eikt — 60] =1—ekt
0

F(t) =k {e_:]

Thus, the probability of the atoms decaying by tim@vhich means anytime up to ting
is
F(t)=1—e".

We note thaf’(0) = 0 andF'(c0) = 1, as expected for the cumulative function.

Median decay time

As before, to determine the median decay timg,(the time at which half of the atoms
have decayed), we sét(t,,) = 1/2. Then

1
= = F(ty) =1—e Ftm,
S = Fltn) =1-e
so we get
1 In2
e*kt’”zi, = eMm=2 = ktp,=mh2 = tm:—r;c.

Thus half of the atoms have decayed by this time. (Remarkighgasily recognized as the
half life of the radioactive process from previous familiarity witkpenentially decaying
functions.)

Mean decay time

The mean time of decayis given by

t= /OOO tp(t) di.

We compute this integral again as an improper integral bintp limit as the top endpoint
increases to infinity, i.e. we first find

T
hzftmwm
0

3"Note that the precise English wording is subtle, but verydrgmt here. “By timet” means that the event
could have happened at any time right up to time
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and then set

LTZ lim IT.

—00

To computel we use integration by parts:

T T
Ir = / the ™™ dt = k/ te Ft dt.
0 0

Letu = t,dv = e~ dt. Thendu = dt,v = e~ /(—Fk), so that

ekt T
— |:—t6_kt o T:|

Now asT — oo, we havee %7 — () so that

T

= {—tekt—l—/ekt dt]
0

—kT 1
B B
[ e A + k]

T

0

0

_ . 1
t= lim IT:E'

T—o0

Thus the mean or expected decay time is

Bl
|
I

8.4.2 Discrete versus continuous probability

In Chapter 5.3, we compared the treatment of two types of mi&ssbutions. We first
explored a set of discrete masses strung along a “thin wirater, we considered a single
“bar” with a continuous distribution of density along itsigh. In the first case, there was
an unambiguous meaning to the concept of “mass at a pointhelsecond case, we could
assign a mass to somsectionof the bar between, say= a andx = b. (To do so we had
to integrate the mass density on the intewvat = < b.) In the first case, we talked about
the mass of the objects, whereas in the latter case, we weresied in the idea of density
(mass per unit distance: Note that the units of mass dengtyat the same as the units of
mass.)

As we have seen so far in this chapter, the same dichotomtsérishe topic of
probability. In Chapter 7, we were concerned with the prdiigiof discrete events whose
outcome belongs to some finite set of possibilities (e.g.dH@dlail for a coin toss, allele
A or ain genetics).

The example below provides some further insight to the cotimebetween contin-
uous and discrete probability. In particular, we will seattbne can arrive at the idea of
probability density by refining a set of measurements andimgake appropriate scaling.
We explore this connection in more detail below.
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8.4.3 Example: Student heights

Suppose we measure the heights of all UBC students. Thisdwmokduce about 30,000
data value¥. We could make a graph and show how these heights are disuibiFor
example, we could subdivide the student body into thoseestishetween 0 and 1.5m, and
those between 1.5 and 3 meters. Our bar graph would contaibdws, with the number
of students in each height category represented by the tseijlihe bars, as shown in
Figure 8.5(a).

p(h) p(h) p(h)

h
h - h

Ah Ah

Figure 8.5. Refining a histogram by increasing the number of bins leadsn(-
ally) to the idea of a continuous probability density.

Suppose we want to record this distribution in more detaile &@uld divide the
population into smaller groups by shrinking the size of thiefival or “bin” into which
height is subdivided. (An example is shown in Figure 8.5(bgre, by a “bin” we mean a
little interval of width Ah whereh is height, i.e. a height interval. For example, we could
keep track of the heights in increments of 50 cm. If we werdabthe numberof students
in each height category, then as the size of the bins getdespsal would the height of the
bar: there would be fewer students in each category if weass the number of categories.

To keep the bar height from shrinking, we might reorganieedéta slightly. Instead
of plotting thenumberof students in each bin, we might plot

number of students in the bin
Ah '

If we do this, then both numerator and denominator decreaeessize of the bins is made
smaller, so that the shape of the distribution is preserivedi{ does not get flatter).

We observe that in this case, the number of students in a diggit category is
represented by therea of the baicorresponding to that category:

number of stAu:ents in the bT: number of students in the bin

Area of bin= Ah (

The important point to consider is that the height of eachibdhe plot represents the
number of students per unit height

38 am grateful to David Austin for developing this example.
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This type of plot is precisely what leads us to the idea of asifemlistribution. As
Ah shrinks, we get a continuous graph. If we “normalize”, i.évide by the total area
under the graph, we get a probability densjty) for the height of the population. As
noted,p(h) represents the fraction of students per unit héfylthose height i%. Itis thus
adensity and has the appropriate units. In this cagé,) Ah represents the fraction of
individuals whose height is in the range< height< h + Ah.

8.4.4 Example: Age dependent mortality

In this example, we consider an age distribution and in&rfire meanings of the proba-
bility density and of the cumulative function. Understarglthe connection between the
verbal description and the symbols we use to represent toesepts requires practice and
experience. Related problems are presented in the homework

Letp(a) be a probability density for the probability of mortality@female Canadian
non-smoker at age, where0 < a < 120. (We have chosen an upper endpoint of age
120 since practically no Canadian female lives past thissageesent.) LeF'(a) be the
cumulative distribution corresponding to this probabitiensity. We would like to answer
the following questions:

(a) What is the probability of dying by age
(b) What is the probability of surviving to age

(c) Suppose that we are told th&(75) = 0.8 and thatF'(80) differs from F'(75) by
0.11. Interpret this information in plain English. Whath®tprobability of surviving
to age 80? Which is largeF,(75) or F/(80)?

(d) Use the information in part (c) to estimate the probabdf dying between the ages
of 75 and 80 years old. Further, estimaf80) from this information.

Solution

(a) The probability of dyindy agea is the same as the probability of dyiagy time
up to agea. Restated, this is the probability that the age of death theninterval
0 < age of death< a. The appropriate quantity is the cumulative function, fast
probability density

Remark: note that, as customary,is playing the role of a “dummy variable”. We
are integrating over all ages between 0 ando we do not want to confuse the
notation for variable of integration; and endpoint of the interval. Hence the
symbolz rather tharw inside the integral.

39Note in particular the units oh—! attached to this probability density, and contrast thishveitdiscrete
probability that is a pure number carrying no such units.
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(b) The probability of surviving to age is the same as the probability abt dying
before age:. By the elementary properties of probability discussechagrevious
chapter, this is

1— F(a).

(c) F(75) = 0.8 means that the probability of dying some time up to age 758s 0.
(This also means that the probability of surviving past #ge would be 1-0.8=0.2.)
From the properties of probability, we know that the cumu&adistribution is an
increasingfunction, and thus it must be true thB{80) > F(75). ThenF'(80) =
F(75) +0.11 = 0.8 + 0.11 = 0.91. Thus the probability of surviving to age 80
is 1-0.91=0.09. This means that 9% of the population will enékto their 80'th
birthday.

(d) The probability of dying between the ages of 75 and 80y ekt is exactly

80
/ p(x) de.
75

However, we can also state this in terms of the cumulativetfan, since

80 80 75
/7 p(x) de = /0 p(z) doe — /0 p(z) de = F(80) — F(75) = 0.11

5
Thus the probability of death between the ages of 75 and 8Q1s 0

To estimatep(80), we use the connection between the probability density had t
cumulative distributioff:
p(z) = F'(z). (8.4)

Then it is approximately true that
F(x + Az) — F(x)

Az '
(Recall the definition of the derivative, and note that wesgmeroximating the deriva-
tive by the slope of a secant line.) Here we have informattcagas 75 and 80, so
Az = 80 — 75 = 5, and the approximation is rather crude, leading to
F80) = F(75) _ 011 _ ) 199 per year

) )

Several important points merit attention in the above eXantirst, information contained
in the cumulative function is useful. Differences in valeéd” betweenr = a andx = b
are, after all, equivalent to an integral of the funct@f’np(x)dx, and are the probability
of a result in the given intervaly < = < b. Secondp(z) is the derivative off'(x). In
the expression (8.5), we approximated that derivative byalldinite difference. Here we
see at play many of the themes that have appeared in studbltgws: the connection be-
tween derivatives and integrals, the Fundamental Theof&ualoulus, and the relationship
between tangent and secant lines.

p(x) ~ (8.5)

p(80) ~

40In Eqn. (8.4) there is no longer confusion between a variabl@tegration and an endpoint, so we could
revert to the notatiom(a) = F’(a), helping us to identify the independent variable as age. é¥ew we have
avoided doing so simply so that the formula in Egn. (8.5) wdug very recognizable as an approximation for a
derivative.
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8.4.5 Example: Raindrop size distribution

In this example, we find a rather non-intuitive result, limdsithe distribution of raindrops
of various radii with the distribution of their volumes. Bhieinforces the caution needed
in interpreting and handling probabilities.

During a Vancouver rainstorm, the distribution of raindragdii is uniform for radii
0 <r < 4 (wherer is measured in mm) and zero for largerBy auniform distribution
we mean a function that has a constant value in the givervaiterhus, we are saying that
the distribution looks likef (r) = C for 0 < r < 4.

(a) Determine what is the probability density for raindreulii, p(r)? Interpret the
meaning of that function.

(b) What is the associated cumulative functiBfy) for this probability density? Inter-
pret the meaning of that function.

(c) Interms of the volume, what is the cumulative distribatF'(17)?
(d) Interms of the volume, what is the probability dengity”)?

(e) What is the average volume of a raindrop?

Solution

This problem is challenging because one may be temptedth tiat the uniform distribu-
tion of drop radii should give a uniform distribution of drgplumes. This is not the case,
as the following argument shows! The sequence of stepsigritited in Figure 8.6.

p(r) @ F0) o

Figure 8.6. Probability densities for raindrop radius and raindrop wohe (left
panels) and for the cumulative distributions (right) of dor Example 8.4.5.
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(a) The probability density function ig(r) = 1/4 for 0 < r < 4. This means that

(b)

(©

(d)

the probabilityper unit radiusof finding a drop of size is the same for all radii in
0 < r < 4, as shown in Fig. 8.6(a). Some of these drops will corresporsinall
volumes, and others to very large volumes. We will see treptiobabilityper unit
volumeof finding a drop of given volume will be quite different.

The cumulative function is
"1 r
F(r)z/—dSZ—, 0<r<4. (8.6)
o 4 4

A sketch of this function is shown in Fig. 8.6(b).

The cumulative functiod’(r) is proportional to the radius of the drop. We use the
connection between radii and volume of spheres to rewrgeftinction in terms of
the volume of the drop: Since

8.7)

we have

Substituting this expression into the formula (8.6), we get

1 3 1/3
F(V):Z<E> Vs,

We find the range of values d&f by substitutingr = 0, 4 into Eqn. (8.7) to get
V =0, 3743, Therefore the intervalis < V < 374% or0 < V < (256/3)r. The
function F'(V) is sketched in panel (d) of Fig. 8.6.

We now use the connection between the probability dgasid the cumulative distri-
bution, namely thap is the derivative of". Now that the variable has been converted
to volume, that derivative is a little more “interesting”:

Therefore,

1/3\"%1__,
= — B — - /3
pV) =7 (47r> 5V

Thus the probabilityper unit volumef finding a drop of volumé in0 < V' < §7r43
is not at all uniform. This probability density is shown ingFi8.6(c) This results
from the fact that the differential quantity behaves very differently frondl”, and
reinforces the fact that we are dealing with density, nohwiprobability per se. We
note that this distribution has smaller values at largenesbfl/.



8.5. Moments of a probability density 171

(e) The range of values dof is

ogvgég,

and therefore the mean volume is

B 2567 /3 1 3 1/3  2567/3 23
V= %4 dV = — | — V.vV==d
/0 (V) 12 <47r> /0 Vv

1/3 567 1/3
_1(3 //26/3V1/3dvzi 3Y 3
12 \ 4r 0 12 \ 47 4

S (B2
T 16 \4n E '

2567 /3

0

3

8.5 Moments of a probability density

We are now familiar with some of the properties of probapitiistributions. On this page
we will introduce a set of numbers that describe various @riigs of such distributions.
Some of these have already been encountered in our previgmussion, but now we will
see that these fit into a pattern of quantities catfemmentsof the distribution.

8.5.1 Definition of moments

Let f(x) be any function which is defined and positive on an intefwgl]. We might refer
to the function as a distribution, whether or not we consitr be a probability density.
Then we will define the followingnomentsof this function:

b
zero’'th momentM, = / f(x) dx

b
first momentM; = / z f(z) dx

b
second momenf\/, = / 22 f(x) dz

b
n'th moment M,, = / 2" f(z) dx.

Observe that moments of any order are defined by integrdimglistributionf (x)
with a suitable power of: over the intervala, b]. However, in practice we will see that
usually moments up to the second are usefully employed writlescommon attributes of
a distribution.
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8.5.2 Relationship of moments to mean and variance of a
probability density

In the particular case that the distribution is a probabiiensity,p(x), defined on the
intervala < x < b, we have already established the following :

b
My = / p(z) de = 1.

(This follows from the basic property of a probability dag9i ThusThe zero’'th moment
of any probability density is.1Further

b
M, = / x p(z) de =T = p.

That is, The first moment of a probability density is the same as thenriea expected
value) of that probability densityso far, we have used the symholo represent the mean
or average value of but often the symbql is also used to denote the mean.

The second moment, of a probability density also has a usgtrpretation. From
above definitions, the second momenp@f) over the intervab < 2 < bis

b
My = / 22 p(z) d.

We will shortly see that the second moment helps describevihethat density is dis-
tributed about the mean. For this purpose, we must desdnb@&adtion ofvarianceor
standard deviation

Variance and standard deviation

Two children of approximately the same size can balance eetait-totter by sitting very
close to the point at which the beam pivots. They can alse@geld balance by sitting at the
very ends of the beam, equally far away. In both cases, therceimass of the distribution
is at the same place: precisely at the pivot point. Howewer,nhass is distributed very
differently in these two cases. In the first case, the maskiggered close to the center,
whereas in the second, it is distributed further away. We wat to be able to describe
this distinction, and we could do so by considering highemaots of the mass distribution.

Similarly, if we want to describe how a probability densiigtdbution is distributed
about its mean, we consider moments higher than the first. S&/¢he idea of theariance
to describe whether the distribution is clustered closé&stmiean, or spread out over a great
distance from the mean.

Variance

The varianceis defined as the average value of the quartitistance from mean)?,
where the average is taken over the whole distribution. {®ason for the square is that
we would not like values to the left and right of the mean tocedrout.) Fordiscrete
probability with mean . we define variance by
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V= Z (i — 1)*pi-

For acontinuous probability density, with meam, we define the variance by

b
V= / (x — p)? p(x) da.

The standard deviation

The standard deviatiois defined as

o=V.

Let us see what this implies about the connection betweenathance and the moments
of the distribution.

Relationship of variance to second moment

From the equation for variance we calculate that

b b
= / (z — 1)? pla) de = / (a2 — 2z + 12) pla) d.

Expanding the integral leads to:

b b b
V= / 22 p(x)de — / 2ux p(z) dx + / p? p(z) da
ab " T
= / 22 p(z)de — 2p / z p(x) do + p? / p(z) d.

We recognize the integrals in the above expression, sirggedte simply moments of the
probability distribution. Using the definitions, we arriae

V= My —2ppu+ .

Thus

V:MQ—MQ.

Observe that the variance is related to the second moméngnd to the meary, of the
distribution.
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Relationship of variance to second moment

Using the above definitions, the standard deviattooan be expressed as

g = \/V: \/Mg—/J,Q.

8.5.3 Example: computing moments

Consider a probability density such thet:) = C'is constant for values af in the interval
[a,b] and zero for values outside this intetfalThe area under the graph of this function
fora <oz <bisAd=C-(b—a) =1 (enforced by the usual property of a probability
density), so itis easy to see that the value of the conétatitould be”' = 1/(b—a). Thus

p— < < .
p(x) o a<z<b

We compute some of the moments of this probability density

b 1 b
M():/a p(x)dx:b_a/a ldx =1.

(This was already known, since we have determined that tfetlzenoment of any proba-
bility density is 1.) We also find that

b b 2
1 1 =z
M, = = —
1 /a x p(x) dx b—a/a x dx P

This last expression can be simplified by factoring, leading

(b—a)b+a) b+a
2(b—a) 2

M:Mlz

The valug(b+a)/2 is a midpoint of the intervgk, b]. Thus we have found that the mean
is in the center of the interval, as expected for a symmeisicidution. The median would
be at the same place by a simple symmetry argument: half dgeisuto the left and half
the area is to the right of this point.

To find the variance we calculate the second moment,

b b 3b 3 3
1 1 T b —a

Mo — 2 . _ 2 g —
2_~/a :Lp(l)dx_b_a/a ‘ dl_<b_a) 3 a

3(b—a)
Factoring simplifies this to

b—a)(b® +ab+a®) b+ ab+ a?
3(b—a) B 3 '

My =

“1As noted before, this is a uniform distribution. It has theys of a rectangular band of heighitand base
(b—a).
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The variance is then
s b*+ab+a® (b+a)? bV —2ab+a® (b—a)’

:M — =
V=M =g 3 1 12 12

The standard deviation is
(b—a)

23

g =

8.6 Summary

In this chapter, we extended the discrete probability entared in Chapter 7 to the case of
continuous probability density. We learned that this fiorcis a probability per unit value
(of the variable of interest), so that

b
/ p(x)dxz = probability that x takes a value in the intervél, b).
We also defined and studied the cumulative function
F(x) = /Hp(s)ds = probability of a value in the intervala, z).

We noted that by the Fundamental Theorem of Calcufis,) is an antiderivative op(x)
(or synonymouslyy’(z) = F(x).)

The mean and median are two descriptors for some featuresloélpility densities.
For p(x) defined on an interval < z < b and zero outside, the meau, ©r sometimes
calledy) is

b
= / ap(x)dx
a
whereas the medianm,,,.4 IS the value for which

1

Both mean and median correspond to the “center” of a symen@istribution. If the dis-
tribution is non-symmetric, a long tail in one direction Mshift the mean toward that
direction more strongly than the median. The variance obaability density is

b
V= [ @ et o
and the standard deviation is
oc=V.

This quantity describes the “width” of the distributiore.i. how spread out (large) or
clumped (smalb) it is.
We defined the n'th moment of a probability density as

b
an/ x"p(z)dz,
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and showed that the first few moments are related to mean ai@hwa of the probability.

Most of these concepts are directly linked to the analogdeas in discrete probability,
but in this chapter, we used integration in place of summatmwdeal with the continuous,
rather than the discrete case.



Chapter 9
Differential Equations

9.1 Introduction

A differential equation is a relationship between some (uwn) function and one of its
derivatives. Examples of differential equations were emtered in an earlier calculus
course in the context of population growth, temperaturead@ing object, and speed of a
moving object subjected to friction. In Section 4.2.4, weiewied an example of a differ-
ential equation for velocity, (4.8), and discussed its 8oty but here, we present a more
systematic approach to solving such equations using aitpednalledseparation of vari-
ables In this chapter, we apply the tools of integration to findgajutions to differential
equations. The importance and wide applicability of thdaannot be overstated.

In this course, since we are concerned only with functioas tkepend on a single
variable, we discusgrdinary differential equations (ODE's), whereas later, after a mul-
tivariate calculus course where partial derivatives at®duced, a wider class, partial
differential equations (PDE’s) can be studied. Such equations are encounterecip ana
eas of science, and in any quantitative analysis of systemesewates of change are linked
to the state of the system. Most laws of physics are of thisifdor example, applying
the familiar Newton’s law F' = ma, links the position of a pendulum’s mass to its accel-
eration (second derivative of positiotf) Many biological processes are also described by
differential equations. The rate of growth of a populatiti¥i/dt depends on the size of
that population at the given tim¥ (¢).

Constructing the differential equation that adequatglyesents a system of interest
is an art that takes some thought and experience. In thigpspwhich we call “modeling”,
many simplifications are made so that the essential pr@seofia given system are cap-
tured, leaving out many complicating details. For examfpletion might be neglected in
“modeling” a perfect pendulum. The details of age distiidntnight be neglected in mod-
eling a growing population. Now that we have techniquesritegration, we can devise a
new approach to computing solutions of differential equradi

Given a differential equation and a starting value, the go&b make a prediction

42Newton’s law states that force is proportional to accelenatFor a pendulum, the force is due to gravity, and
the acceleration is a second derivative of the x or y cootdinathe bob on the pendulum.

177
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about the future behaviour of the system. This is equivadteittentifying the function that
satisfies the given differential equation and initial vé)e We refer to such a function as
the solution to theinitial value problem (IVP). In differential calculus, our exploration
of differential equations was limited to those whose soluttould be guessed, or whose
solution was supplied in advance. We also explored somesdBstinating geometric and
qualitative properties of such equations and their praatist

Now that we have techniques of integration, we can find théytioaolution to a
variety of simple first-order differential equations (itose involving the first derivative
of the unknown function). We will describe the techniqueeparation of variables This
technique works for examples that are simple enough thatameisolate the dependent
variable (e.gy) on one side of the equation, and the independent varialget{met) on
the other side.

9.2 Unlimited population growth

We start with a simple example that was treated thoroughithéndifferential calculus
semester of this course. We consider a population with patechirth and mortality rates
that are constant, irrespective of age, disease, envimotainghanges, or other effects. We
ask how a population in such ideal circumstances would ohawgr time. We build up
a simple model (i.e. a differential equation) to descrilis itteal case, and then proceed
to find its solution. Solving the differential equation iscamplished by a new technique
introduced here, namely separation of variables. Thisaeslthe problem to integration
and algebraic manipulation, allowing us to compute the fadjmn size at any time. By
going through this process, we essentially convert infaéionabout the rate of change and
starting level of the population to a detailed predictiothef population at later time's.

9.2.1 A simple model for population growth

Lety(t) represent the size of a population at tim&\Ve will assume that at time= 0, the
population level is specified, i.e;(0) = yo is some given constant. We want to find the
population at later times, given information about birtld amortality rates, (both of which
are here assumed to be constant over time).

The population changes through births and mortality. Sepgbath > 0 is the per
capita average birth rate, and > 0 the per capita average mortality rate. The assumption
thatb, m are both constants is a simplification that neglects manipgical effects, but
will be used for simplicity in this first example.

The statement that the population increases through l@rttislecreases due to mor-
tality, can be restated as

rate of change ofy = rate of births— rate of mortality

where the rate of births is given by the product of the perteagierage birth rateand the
population sizey. Similarly, the rate of mortality is given byy. Translating the rate of

430f course, we must keep in mind that such predictions aredbassimplifying assumptions, and are to be
taken as an approximation of any real population growth.
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change into the corresponding derivativeydéads to

Let us define the new constant,
k=b—m.

Thenk is thenet per capita growth ratef the population. We can distinguish two possible
cases:b > m means that there are more births then deaths, so we expgobpldation

to grow. b < m means that there are more deaths than births, so that théagiopwill
eventually go extinct. There is also a marginal caseltkratn, for whichk = 0, where the
population does not change at all. To summarize, this siialdel of unlimited growth
leads to the differential equation and initial condition:

dy

dt
Recall that a differential equation together with an initiandition is called an initial value
problem. To find a solution to such a problem, we look for thectiony(¢) that describes
the population size at any future timegiven its initial size at time = 0.

ky,  y(0) = yo. (9.1)

9.2.2 Separation of variables and integration

We here introduce the techniqusgparation of variables that will be used in all the
examples described in this chapter. Since the differeatjahtion (9.1) is relatively simple,
this first example will be relatively straightforward. We wid like to determiney(t) given

the differential equation
dy
— = ky.
at ~ Y
Rather than integrating this equation &% isve use an alternate approach, consid-
ering dt anddy as “differentials” in the sense defined in Section 6.1. Weresme and

rewrite the above equation in the form
1
" dy = k dt, (9.2)

This step of putting expressions involving the independaniablet on one side and ex-
pressions involving the dependent variaplen the opposite side gives rise to the name
“separation of variables”.

Now, the LHS of Eqn. (9.2) depends only on the variapland the RHS only onh.
The constank will not interfere with any integration step. Moreover,ggtating each side
of Eqgn. (9.2) can be carried out independently.

To determine the appropriate intervals for integration, aleserve that when time
sweeps over some intenidl < ¢ < T (from initial to final time), the value ofy(t) will

44\We may be tempted to integrate both sides of this equation reipect to the independent variabjee.g.
writing f i—i’ dt = f ky dt + C, (whereC' is some constant), but this is not very useful, since theyiateon
the right hand side (RHS) can only be carried out if we knowftiretion y = y(¢), which we are trying to

determine.
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change over a corresponding interygl< y < y(7T'). Hereyy is the given starting value
of y (prescribed by the initial condition in (9.1)). We do not \ebw y(T'), but our goal
is to find that value, i.e to predict the future behaviouyofntegrating leads to

y(T)l T T
/ —dy:/ k:dt:k/ dt,
Yo Y 0 0

y(T) T

In|y| =kt

3

0

Yo

o [y(T)| = In|y(0)| = k(T - 0),

T
In ‘M‘ — kT,
Yo
y(T) = T
Yo
y(T) = yoekT-

But this result holds for any arbitrary final tim#&, In other words, since this is true for any
time we chose, we can sét= ¢, arriving at the desired solution

y(t) = yoe. (9.3)

The above formula relates the predicted valug at any timet to its initial value, and to
all the parameters of the problem. Observe that pluggirtg=m, we gety(0) = yoe*t =
yoe® = o, SO that the solution (9.3) satisfies the initial conditivve leave as an exercise
for the readéf to validate that the function in(9.3) also satisfies thesd#htial equation in
(9.1).

By solving the initial value problem (9.1), we have deteredrthat, under ideal con-
ditions, when the net per capita growth rates constant, a population will grow expo-
nentially with time. Recall that this validates resultstthe had encountered in our first
calculus course.

9.3 Terminal velocity and steady states

Here we revisit the equation for velocity of a falling objétat we first encountered in Sec-
tion 4.2.4. We wish to derive the appropriate different@lation governing that velocity,
and find the solution(¢) as a function of time. We will first reconsider the simplesteaf
uniformly accelerated motion (i.e. where friction is nexyél), as in Section 4.2.3. We then
include friction, as in Section 4.2.4 and use the new teakaaf separation of variables to
shortcut the method of solution.

45This kind of check is good practice and helps to spot errdraply differentiate Eqn. (9.3) and show that the
result is the same dstimes the original function, as required by the equatiof)(9.
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9.3.1 Ignoring friction: the uniformly accelerated case

Let v(t) anda(t) be the velocity and the acceleration, respectively of arahfalling

under the force of gravity at time We take the positive direction to be downwards, for
convenience. Suppose that at time 0, the object starts from rest, i.e. the initial velocity
of the object is known to be(0) = 0. When friction is neglected, the object will accelerate,

at) =g,
which is equivalent to the statement that the velocity inses at a constant rate,
dv
— =g. 9.4
=Y (9.4)
Becausg is constantye do not need to use separation of variables we can integrate
each side of this equation directfy Writing

o [garony [ ave

whereC is an integration constant, we arrive at
v(t) = gt + C. (9.5)

Here we have used (on the LHS) thas the antiderivative oflv/dt. (equivalently, we can
simplify the integralf 2% dt = [ dv = v). Plugging inv(0) = 0 into Eqgn. (9.5) leads to
0=g-0+ C = C, so the constant we need@s= 0 and the velocity satisfies

v(t) = gt.

We have just arrived at a result that parallels Eqn. (4.4)katiSn 4.2.3 (in slightly different
notation).

9.3.2 Including friction: the case of terminal velocity

When a falling object experiences the force of friction,ahoot accelerate indefinitely. In
fact, a frictional force retards the downwards motion. Tmadjapproximation, that force
is proportional to the velocity.

A force balance for the falling object leads to

ma(t) = mg —yu(t),

wherev is the frictional coefficient. For an object of constant mags can divide through
by m, so

alt) =g — %v(t).

48t is important to note the distinction between this simptaraple and other cases where separation of vari-
ables is required. It would not berongto use separation of variables to find the solution for Eqrt)(ut it
would just be “overkill”, since simple integration of theakeside of the equation “as is” does the job.
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Let k = v/m. Then, the velocity at any time satisfies the differentialaén and initial

condition

— =g — kv,

dt

v(0) = 0. (9.6)

We can find the solution to this differential equation anddmthe velocity at any time

using separation of variables.

velocity v

terminal velocity

time t

Figure 9.1. The velocity(t) as a function of time given by Eqgn. (9.7) as found in
Section 9.3.2. Note that as time increases, the velocityoaghes some constant terminal
velocity. The parameters used wgre- 9.8 m/$ andk = 0.5.

Consider a time intervdl < ¢t < T, and suppose that, during this time interval, the
velocity changes from an initial value of0) = 0 to the final valuey(T') at the final time,
T'. Then using separation of variables and integration, we get

dv
& ik
dt g v,
dv
=dt
g — kv ’
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Substituteu = g — kv for the integral on the left hand side. Thén = —kdv, dv =
(—1/k)du, so we get an integral of the form
1 1 1

% adu:—kln|u|.
After replacingu by g — kv, we arrive at

v(T)
=1

1
—Eln|g— kvl

0 0

We use the fact that(0) = 0 to write this as

1
— (g — ko(T)| = In|gl) = T,

o) -

g — ko(T)
g

We are finished with the integration step, but the functioraweetrying to findp(7")
is still tangled up inside an expression involving the naltlwgarithm. Extricating it will
involve some subtle reasoning about signs because thereabsmlute value to contend
with. As a first step, we exponentiate both sides to removéterithm.

‘g - kU(T)’ — kT
g

In

=i

= |g—kv(T)| = ge .

Because the constaptis positive, we could remove absolute values signs from @. T
simplify further, we have to consider the sign of the termdeshe absolute value in the
numerator. In the case we are considering h&i@), = 0. This will mean that the quantity
g — kv(T) is always be non-negative (i.e — kv(T") > 0). We will verify this fact shortly.
For the moment, supposing this is true, we can write

lg — ko(T)| = g — ko(T) = ge ™7,
and finally solve forn(T") to obtain our final result,

o(T) = (1 — 7).
k
Here we note that(7) can never be larger thayy k since the ternfl — e=*7) is always
< 1. Hence, we were correct in assuming that kv(T") > 0.
As before, the above formula relating velocity to time hdidisany choice of the
final timeT", so we can write, in general,

o(t) = L1 — ek, (9.7)
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This is the solution to the initial value problem (9.6). lItegicts the velocity of the
falling object through time. Note that we have arrived onazrenat the result obtained
in Eqgn. (4.11), but using the technique of separation ofames’.

We graph the expression given in (9.7) in Figure 9.1. Not¢ &isa increases, the
terme—"* decreases rapidly, so that the velocity approaches a cangt@se value is

9

We call this theterminal velocity®.

9.3.3 Steady state

We might observe that the terminal velocity can also be foguite simply and directly
from thedifferential equation itseifit is the steady stateof the differential equation, i.e.
the value for which no further change takes place. The ststdy can be found by setting
the derivative in the differential equation, to zero, i.g.létting

dv _
dt
When this is done, we arrive at
g
— kv = =2,
g—kv=0 = v A

Thus, at steady state, the velocity of the falling objechideled the same as the terminal
velocity that we have just discovered.

9.4 Related problems and examples

The example discussed in Section 9.3.2 belongs to a clasbfegms that share many
common features. Generally, this class is representedegiidifferential equations of the
form

— =a — by, (9.8)

with given initial conditiony(0) = yo. Properties of this equation were studied in the
context of differential calculus in a previous semesterwNwith the same method as we
applied to the problem of terminal velocity, we can integrtiis equation by separation of
variables, writing

dy
=dt
a—by
and proceeding as in the previous example. We arrive atlittico,
_a AN e
y(®) =2+ (- 7)™ (9.9)

47It often happens that a differential equation can be sohgiuigiseveral different methods.

48A similar plot of the solution of the differential equatio.@) could be assembled using Euler's method, as
studied in differential calculus. That is the numerical hoet alternative to the analytic technique discussed in this
chapter. The student may wish to review results obtainegiewous semester to appreciate the correspondence.
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The steps are left as an exercise for the reader.
We observe that the steady state of the above equation imettay setting

%za—byzo, ie. y:%.
Indeed the solution given in the formula (9.9) has the priypirat ast increases, the
exponential terme =" — 0 so that the term in large brackets will vanish apd- a/b.
This means that from any initial valug will approach its steady state level.
This equation has a number of important applications thsg &m a variety of context.
A few of these are mentioned below.

9.4.1 Blood alcohol

Let y(t) be the level of alcohol in the blood of an individual duringarty. Suppose that
the average rate of drinking is gradual and constant (i.allssips are continually taken,
so that the rate of input of alcohol is approximately congtdrurther, assume that alcohol
is detoxified in the liver at a rate proportional to its bloeddl. Then an equation of the
form (9.8) would describe the blood level over the period vhking. y(0) = 0 would
signify the absence of alcohol in the body at the beginnintpefevening. The constaat
would reflect the rate of intake per unit volume of the indivadis blood: larger people take
longer to “get drunk” for a given amount consuriédrhe constani represents the rate of
decay of alcohol per unit time due to degradation by the Jimesumed consta¥t young
healthy drinkers have a higher valuebahan those who can no longer metabolize alcohol
as efficiently.

The solution (9.9) has several features of note: it illussahe fact that alcohol
would increase from the initial level, but only up to a maximof a/b, where the intake
and degradation balance. Indeed, the leyvek /b represents a steady state level (as
long as drinking continues). Of course, this level could d»dd to the drinker, and the
assumptions of the model may break down in that region! Inpih@se of “recovery”,
after drinking stops, the above differential equation naogler describes the level of blood
alcohol. Instead, the process of recovery is represented by

dy

il y(0) = vo- (9.10)

The level of blood alcohol then decays exponentially witle tefrom its level at the mo-
ment that drinking ends. We show this typical pattern in Fég®i2.

9.4.2 Chemical kinetics

The same ideas apply to any chemical substance that is foatreedonstant rate (or sup-
plied at a constant rate) and then breaks down with rate proportional to its conegioin.
We then call the constahtthe “decay rate constant”.

490f course, we are here assuming a constant intake rate, aghthbe alcohol is being continually sipped
all evening at a uniform rate. Most people do not drink thigwastead quaffing a few large drinks over some
hour(s). Itis possible to describe this, but we will not darsthis chapter.

50This is also a simplifying assumption, as the rate of metaboktan depend on other factors, such as food
intake.
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Blood Alcohol level

Figure 9.2. The level of alcohol in the blood is described by Eqn. (9.BiHe first
two hours of drinking. At = 2h, the drinking stopped (so = 0 from then on). The level
of alcohol in the blood then decays back to zero, following.£§.10).

The variabley(t) represents the concentration of chemical at timand the same
differential equation describes this chemical processatsve, given any initial level of
the substancey(t) = yo, the level ofy will eventually approach the steady stajer a/b.

9.5 Emptying a container

In this section we investigate a new problem in which theedéhtial equation that de-
scribes a process will be derived from basic physical ppiesit. We will look at the flow
of fluid leaking out of a container, and use mass balance twedardifferential equation
model. When this is done, we will also use separation of éemto predict how long it
takes for the container to be emptied.

We will assume that the container has a small hole at its Bdserate of emptying
of the container will depend on the height of fluid in the caméa above the hofé. We
can derive a simple differential equation that describeg#te that the height of the fluid
changes using the following physical argument.

9.5.1 Conservation of mass

Suppose that the container is a cylinder, with a constargscsectional ared > 0, as
shown in Fig. 9.3. Suppose that the area of the hale ®he rate that fluid leaves through
the hole must balance with the rate that fluid decreases indh&iner. This principle is
calledmass balance We will here assume that the density of water is constarthatowe
can talk about the net changes in volume (rather than mass).

51This example is particularly instructive. First, it showsgisely how physical laws can be combined to
formulate a model, then it shows how the problem can be rexsast single ODE in one dependent variable.
Finally, it illustrates a slightly different integral.

52As we have assumed that the hole ihat 0, we henceforth consider the height of the fluid surfade) to
be the same as "the height of fluid above the hole”.



9.5. Emptying a container 187

VATt

S 5

Figure 9.3. We investigate the time it takes to empty a container fulludd fby
deriving a differential equation model and solving it usihg methods developed in this
chapter. A is the cross-sectional area of the cylindrical takis the cross-sectional area
of the hole through which fluid drains(t) is the velocity of the fluid, antl(¢) is the time
dependent height of fluid remaining in the tank (indicatedhgydashed line). The volume
of fluid leaking out in a time spaft is avAt - see small cylindrical volume indicated on
the right.

We refer toV (¢) as the volume of fluid in the container at timeNote that for the
cylindrical containerV (t) = Ah(t) where A is the cross-sectional area ah) is the
height of the fluid at time. The rate of change df is

C;—‘t/ = —(rate volume lost as fluid flows out
(The minus sign indicates that the volume is decreasing).

At every second, some amount of fluid leaves through the hSlgppose we are
told that the velocity of the water molecules leaving theehislpreciselyv(t) in units of
cm/sec. (We will find out how to determine this velocity shojt Then in one second,
those particles have moved a distamogm/sec 1 sec= v cm. In fact, all the particles in
a little cylinder of lengthv behind these molecules have also left the hole. Indeed, if we
know the area of the hole, we can determine precisely whanwelof water exits through
the hole each second, namely

rate volume lost as fluid flows ost va.

(The small inset in Fig. 9.3 shows a little “cylindrical uhdf fluid that flows out of the
hole per second. The areadsand the length of that little volume is Thus the volume
leaving per second isa.)

So far we have a relationship between the volume of fluid indh& and the velocity
of the water exiting the hole:

ﬂ——av
dt '

Now we need to determine the velocityof the flow to complete the formulation of the
problem.
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9.5.2 Conservation of energy

The fluid “picks up speed” because it has “dropped” by a heighom the top of the fluid
surface to the hole. In doing so, a small mass of water hadserphanged some potential
energy (due to its relative height above the hole) for kmetiergy (expressed by how fast
it is moving). Potential energy of a small mass of water) @t heighth will be mgh,
whereas when the water flows out of the hole, its kinetic enegiven by (1/2)muv?
whereuw is velocity. Thus, for these to balance (so that total energpnserved) we have

1 2

MY = mgh.

(Herev = v(t) is the instantaneous velocity of the fluid leaving the hole &anr= h(¢) is
the height of the water column.) This allows us to relate telaity of the fluid leaving
the hole to the height of the water in the tank, i.e.

v =2gh = v=+/2gh. (9.11)

In fact, both the height of fluid and its exit velocity are ctargly changing as the fluid
drains, so we might writév(¢)]? = 2gh(t) or v(t) = /2gh(t). We have arrived at this
result using arenergy balanceargument.

9.5.3 Putting it together

We now combine the various pieces of information to arrivéhatmodel, a differential
equation for a single (unknown) function of time. There &reé time-dependent variables
that were discussed above, the voluvg), the height.(¢), of the velocityv(¢). It proves
convenient to express everything in terms of the height démia the tank/(¢), though
this choice is to some extent arbitrary. Keeping units inguregion consistent is essential.
Checking for unit consistency can help to uncover errorsgjua¢ions, including differential
equations.

Recall that the volume of the water in the tafkt) is related to the height of fluid
h(t) by

V(t) = Ah(t),

whereA > 0 is a constant, the cross-sectional area of the tank. We cgoiifsi as follows:

av. _ d(Ah(t)) _ ,d(h(?))
a — dt dt
But by previous steps and Eqgn. (9.11)

av
i —av = —ar/2gh.

Thus

A0 _

dh a
= = _Z.\/2qh = — . 12
yr T V20h kvVh (9.12)

or simply put,
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wherek is a constant that depends on the size and shape of the aydindédts hole:

If the area of the hole is very small relative to the crosgiseal area of the tank, then
k will be very small, so that the tank will drain very slowly€i. the rate of change ih
per unit time will not be large). On a planet with a very higlgtational force, the same
tank will drain more quickly. A taller column of water draifesster. Once its height has
been reduced, its rate of draining also slows down. We corhthahEquation (9.12) has
a minus sign, signifying that the height of the fluid decrsase

Using simple principles such as conservation of mass andecaeation of energy,
we have shown that the heightt) of water in the tank at time satisfies the differential
equation (9.12). Putting this together with the initial daion (height of fluidhg at time
t = 0), we arrive at initial value problem to solve:

dh

== —kvVh,  h(0) = hy. (9.13)
Clearly, this equation is valid only for non-negative. We also remark that Egn. (9.13) is
nonlinear>® as it involves the variablg in a nonlinear termy/h. Next, we use separation

of variables to find the height as a function of time.

9.5.4 Solution by separation of variables

The equation (9.13) shows how height of fluid is related tgdte of change, but we are
interested in an explicit formula for fluid heightversus time. To obtain that relationship,
we must determine the solution to this differential equatie do this using separation of
variables. (We will also use the initial conditidi0) = ho that accompanies Eqgn. (9.13).)
As usual, rewrite the equation in the separated form,

dh
22— kdt,

Vh

We integrate fromt = 0 to ¢ = 7', during which the height of fluid that started Ag
becomes some new heightl’) to be determined.

hT) 4 T

— dh=—k / dt.
ho \/E 0
Now integrate both sides and simplify:

h(T)

h1/2
= —kT

(1/2) 1,
2 (VAD) - Vi) = 4T

53In many cases, nonlinear differential equations are moaieziging than linear ones. However, examples
chosen in this chapter are simple enough that we will notrapee the true challenges of such nonlinearities.
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W) = —k% +vho

h(T) = (\/h_—/g%)Q.

Since this is true for any tim& we can also write the form of the solution as

h(t) = (\/h_—k%)Q. (9.14)

Eqn. (9.14) predicts fluid height remaining in the tank versmet. In Fig. 9.4 we show
some of the “solution curve®* i.e. functions of the form Eqn. (9.14) for a variety of iaiti
fluid height values;. We can also use our results to predict the emptying timehaws
in the next section.

<= initial height of fluid
h(t

Emptying a fluid-filled container

emptying time
\ time t

Figure 9.4. Solution curves obtained by plotting Eqn. (9.14) for thréf#edent
initial heights of fluid in the containey = 2.5, 5, 10. The parametekt = 0.4 in
each case. The “V” points to the time it takes the tank to ersfayting from a height of
h(t) = 10.

54As before, this figure was produced by plotting the analyticition (9.14). A numerical method alternative
would use Euler’s Method and the spreadsheet to obtain gpEdgimate) solution directly from the initial value
problem (9.13).
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9.5.5 How long will it take the tank to empty?

The tank will be empty when the height of fluid is zero. Settirfg) = 0 in Eqn. 9.14

<\/h_—k3>2 = 0.

Solving this equation for the emptying tinng we get

te 2vh
k; =V ho = te = \2—0

The time it takes to empty the tank depends on the initialtitedfwater in the tank. Three
examples are shown in Figure 9.4 for initial heightdgt= 2.5, 5, 10. The emptying time
depends on the square-root of the initial height. This mgangstance, that doubling the
height of fluid initially in the tank only increases the tintéakes by a factor of/2 ~ 1.41.
Making the hole smaller has a more direct “proportionaléeff since we have found that

k = (a/A)\/29.

9.6 Density dependent growth

The simple model discussed in Section 9.2 for populatiowtirdnas an unrealistic feature
of unlimited explosive exponential growth. To correct foistunrealistic feature, acommon
assumption is that the rate of growth is “density dependeitt’this section, we consider

a revised differential equation that describes such groavtt use the new tools to analyze
its predictions. In place of our previous notation we willinase N to represent the size

of a population.

9.6.1 The logistic equation

The logistic equation is the simplest density dependenttirequation, and we study its
behaviour below.

Let N(¢) be the size of a population at time Clearly, we expeciV(¢) > 0 for all
timet, since a population cannot be negative. We will assume ligaihitial population is
known, N (0) = Ny. The logistic differential equation states that the ratelainge of the

population is given by
dN K—-N

Herer > 0 is called thantrinsic growth rate andK > 0 is called thecarrying capacity.
K reflects that size of the population that can be sustainetidgit’en environment. We
can understand this equation as a modified growth law in wthiet'density dependent”
term,r(K — N)/K, replaces the previous constant net growth kate
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9.6.2 Scaling the equation

The form of the equation can be simplified if we measure thaufadijon in units of the
carrying capacity, instead of “numbers of individuals&. iif we define a new quantity

This procedure is calledcaling To see this, consider dividing each side of the logistic
equation (9.15) by the constafit Then
1 dN TN<K_N>.

Kdt K

K

We now group terms conveniently, forming

) _ (MY (- (N
a ' \K K))
Replacing(N/K) by y in each case, we obtain the scaled equation and initial dondi
given by
dy

F ry(1—y), y(0)=yo. (9.16)

Now the variabley(t) measures population size in “units” of the carrying capaend
yo = No/K is the scaled initial population level. Here again is aniahialue problem,
like Eqn. (9.13), but unlike Eqgn. (9.1), the logistic diféatial equation is nonlinear. That
is, the variable; appears in a nonlinear expression (in fact a quadratic)aretjuation.

9.6.3 Separation of variables

Here we will solve Eqn. (9.16) by separation of variablese idea is essentially the same
as our previous examples, but is somewhat more involvedhd@w sin alternative method

of handling the integration, we will treat both sides as fivdte integrals. Separating the
variables leads to

dy =rdt
y(1—y)

/ﬁdy:/rdt—i-l(.

The integral on the right will lead tet + K whereK is some constant of integration that
we need to incorporate since we do not have endpoints on grails. But we must work
harder to evaluate the integral on the left. We can do so byapéractions, the technique
described in Section 6.6. Details are given in Section 9.6.4

9.6.4 Application of partial fractions

1
= [

Let
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Then for some constants, B we can write
A B
I=/—+—dy=Aln|y|—Bln|1—y|.
y l-y
(The minus sign in front o3 stems from the fact that letting = 1 — y would lead to

du = —dy.) We can findA, B from the fact that

é+ B 1
y 1-y y(l-y)’

so that
A(l-y)+By=1.

This must be true for all, and in particular, substituting ipn = 0 andy = 1 leads to
A =1,B =1so that

I=In|y|—In|l—y|=1In

y
11—yl
9.6.5 The solution of the logistic equation

We now have to extract the quantifyfrom the equation

(1

That is, we wany as a function of. After exponentiating both sides we need to remove
the absolute value. We will now assume tpas initially smaller than 1, and show that it
remains so. In that case, everything inside the absolute\valpositive, and we can write

y
1—y

D =rt+ K.

(1 g(;)(t)) _ ertJrK _ eKert _ Cert.

In the above step, we have simply renamed the const&nby the new namé' for sim-
plicity. C' > 0 is now also an arbitrary constant whose value will be deteechifrom the
initial conditions. Indeed, if we substitute= 0 into the most recent equation, we find that

y(0) 0
R R
so that
Yo
(I —yo)
We will use this fact shortly. What remains now is some algdiorisolate the desired
functiony(¢)

y(t) = (1 - y(B)Ce™.

y(t) (1+Ce™) = Ce'™.
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Cert 1
y(t) = rt = —rt .
(I+Cet)  (1/C)e Tt +1
The desired function is now expressed in terms of the tinand the constants C. We
can also express it in terms of the initial valueyofi.e. yo, by using what we know to be
true about the constant, i.e. C = yo /(1 — yo). When we do so, we arrive at

1 Yo
t) = = . 9.17
y() %e—” +1  (yo+ (1 —yo)e™) (®.17)

Some typical solution curves of the logistic equation a@shin Fig. 9.5.

y@® / /

Solutions to Logistic equation

time't

Figure 9.5. Solution curves foy(t) in the scaled form of the logistic equation
based on (9.18). We show the predicted behavioyftfas given by Eqn. (9.17) for three
different initial conditionsy, = 0.1,0.25,0.5. Note that all solutions approach the value

y = 1.

9.6.6 What this solution tells us

We have arrived at the function that describes the scaledlptipn as a function of time
as predicted by the scaled logistic equation, (9.16). The lef population (in units of the
carrying capacityk’) follows the time-dependent function

_ Yo
ult) = (yo+ (1 —yo)e™"t)’ (9.18)
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We can convert this result to an equivalent expression touatiscaled total populatia¥i(t)
by recalling thaty(¢) = N(¢)/K. Substituting this for(t), and noting thay, = No/K
leads to
No

(No + (K — Np)e—"t)’
Itis left as an exercise for the reader to check this claim.

Now recall that- > 0. This means that—"! is a decreasing function of time. There-
fore, (9.18) implies that, after a long time, the tegm™® in the denominator will be negli-
gibly small, and so

N(t) =

(9.19)

Yo
t) — —
y(t) Yo

so thaty will approach the value 1. This means that

=1

3

(N/JK)—1 orsimply N(t)— K.

The population will thus settle into a constant level, ieesteady state at which no further
change will occur.

As an aside, we observe that this too, could have been peedititectly from the
differential equation. By settindy/dt = 0, we find that

0=ry(l—1y),

which suggests that = 1 is a steady state. (This is also true for the less interestisg

of no population, i.ey = 0 is also a steady state.) Similarly, this could have beendoun
by setting the derivative to zero in Egn. (9.15), the originascaled logistic differential
equation. Doing so leads to

dN K- N

If » > 0, the only values ofV satisfying this steady state equation &e= 0 or N =
K. This implies that eithe’NV = 0 or N = K are steady states. The former is not too
interesting. It states the obvious fact that if there is npydation, then there can be no
population growth. The latter reflects thsit= K, the carrying capacity, is the population
size that will be sustained by the environment.

In summary, we have shown that the behaviour of the logisfi@gon for population
growth is more realistic than the simpler exponential growe studied earlier. We saw
in Figure 9.5, that a small population will grow, but only uppgome constant level (the
carrying capacity). Integration, and in particular the aépartial fractions allowed us to
make a full prediction of the behaviour of the populatioreleas a function of time, given
by Egn. (9.19).

9.7 Extensions and other population models: the
“Law of Mortality”

There are many variants of the logistic model that are usedvistigate the growth or
mortality of a population. Here we extend tools to anothemegle, the gradual decline of
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a group of individuals born at the same time. Such a grouplliscta “cohort”>®. In 1825,
Gompertz suggested that the rate of mortafitywould depend on the age of the individu-
als. Because we consider a group of people who were born atithe time, we can trade
"age” for "time”. Essentially, Gompertz assumed that mlitstas not constant: it is low

at first, and increase as individuals age. Gompertz arguadibrtality increases expo-
nentially. This turns out to be equivalent to the assumptiat the logarithm of mortality
increases linearly with time It is easy to see that these two statements are equivalent:
Suppose we assume that for some constdnts0, i > 0,

In(m(t)) = A+ pt. (9.20)
Then Eqgn. (9.20) means that

log mortality
In(m)

age, t

Figure 9.6. In the Gompertz Law of Mortality, it is assumed that the lognoifr-
tality increases linearly with time, as depicted by Eqn.0%2d by the solid curve in this
diagram. Here the slope dfi(m) versus time (or age) ig. For real populations, the
mortality looks more like the dashed curve.

m(t) _ 6A+p,t _ eAep,t

SinceA is constant, so is”. For simplicity we define Let us defingy = e?. (mo = m(0)
is the so-called “birth mortality” i.e. value af: at age 0.) Thus, the time-dependent
mortality is

m = m(t) = moet. (9.21)

9.7.1 Aging and Survival curves for a cohort:

We now study a population model having Gompertz mortalitgether with the following
additional assumptions.

55This section was formulated with help from Lu Fan

56In actual fact, this is likely true for some range of agesamfmortality is generally higher than mortality
for young children, whereas mortality levels off or evenréeses slightly for those oldest old who have survived
past the average lifespan.
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1. Allindividuals are assumed to be identical.

2. Thereis “natural” mortality, but no other type of remavahis means we ignore the
mortality caused by epidemics, by violence and by wars.

3. We consider a single cohort, and assume that no new indilsére introduced (e.g.
by immigration§’.

We will now study the size of a “cohort”, i.e. a group of peopleo were born in the same
year. We will denote byV (¢) the number of people in this group who are alive at time
wheret is time since birth, i.e. age. Lé{(0) = Ny be the initial number of individuals in
the cohort.

9.7.2 Gompertz Model

All the people in the cohort were born at time (age)} 0, and there weréV, of them at
that time. That number changes with time due to mortalitgteld,

The rate of change of cohort size —[number of deaths per unit time]
= —[mortality raté - [cohort sizé

Translating to mathematical notation, we arrive at theeddhtial equation

dN(t)
- —m(t)N(t),

and using information about the size of the cohort at birdd$eto the initial condition,
N(0) = Ny. Together, this leads to the initial value problem

dN(t
% =-—m(t)N(t), N(0)= No.
Note similarity to Eqn. (9.1), but now mortality is time-cepent.

In the Problem set, we apply separation of variables andjiiate over the time in-
terval [0, T']: to show that the remaining population at @ge

N(t) = Nge~ ("' =1,

9.8 Summary

In this chapter, we used integration methods to find the &isalysolutions to a variety of
differential equations where initial values were presedb
We investigated a number pbpulation growth models:

1. Exponential growth, given b)Z“—g = ky, with initial population levely(0) = yo
was investigated (Eqn. (9.1)). This model had an unrealistiture that growth is
unlimited.

57Note that new births would contribute to other cohorts.
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2. The Logistic equatiody = rN (£22) was analyzed (Eqn. (9.15)), showing that
density-dependent growth can correct for the above umsteaieature.

3. The Gompertz equatioﬁfvd—lft) = —m(t)N(t), was solved to understand how age-

dependent mortality affects a cohort of individuals.

In each of these cases, we used separation of variablestégfate” the differential
equation, and predict the population as a function of time.

We also investigated several othgnysical modelsin this chapter, including the
velocity of a falling object subject to drag force. This lezlto study a differential equation
of the form% = a — by. By slight reinterpretation of terms in this equation, wa cse
results to understand chemical kinetics and blood alc@well$, as well as a host of other
scientific applications.

Section 9.5, the “centerpiece” of this chapter, illustddtes detailed steps that go into
the formulation of a differential equation model for flow @fuid out of a container. Here
we saw how conservation statements and simplifying assangpéare interpreted together,
to arrive at a differential equation model. Such ideas ogturany scientific problems, in
chemistry, physics, and biology.



Chapter 10

Infinite series, Improper
Integrals, and Taylor
series

10.1 Introduction

This chapter has several important and challenging godte fifst of these is to under-
stand how concepts that were discussed for finite series@grals can be meaningfully
extended to infinite series and improper integrals - i.eegrdls of functions over an infi-
nite domain. In this part of the discussion, we will find thag hotion ofconvergenceand
divergencewill be important.

A second theme will be that of approximation of functionseémis of power series,
also calledTaylor series Such series can be described informally as infinite polyiatsm
(i.e. polynomials containing infinitely many terms). Unstanding when these objects are
meaningful is also related to the issue of convergence, ass@¢he background assembled
in the first part of the chapter to address such conceptaagiiisithe second part.

y

X

Figure 10.1.The functiony = f(x) (solid heavy curve) is shown together with its
linear approximation (LA, dashed line) at the paint and a better “higher order” approx-
imation (HOA, thin solid curve). Notice that this better agximation stays closer to the
graph of the function neat,. In this chapter, we discuss how such better approximations
can be obtained.

The theme of approximation has appeared often in our ca@durse. In a previous

199
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semester, we discussetireear approximation to a function. The idea was to approximate
the value of the function close to a point on its graph usinyaght line (the tangent line).
We noted in doing so that the approximation was good onlyecloghe point of tangency.
Further away, the graph of the functions curves away frordtraight line. This leads
naturally to the question: can we do better in making thisraximation if we include
other terms to describe this “curving away”? Here we extarthdinear approximation
methods. Our goal is to increase the accuracy of the lingawoapmation by including
higher order terms (quadratic, cubic, etc), i.e. to find a/pomial that approximates the
given function. This idea forms an important goal in thisutes

We first review the idea of series introduced in Chapter 1.

10.2 Convergence and divergence of series

Recall the geometric series discussed in Section 1.6.

The sum of dinite geometric series

n ) 1— n+1
Sn:1+r+r2+...+r”:Zrk, is Sn:liir' (10.2)

k=0

We also review definitions discussed in Section 1.7

Definition: Convergence of infinite series

An infinite series that has a finite sum is said tacbavergent Otherwise it isdivergent.

Definition: Partial sums and convergence

Suppose tha$' is an (infinite) series whose terms arg Then thepartial sums, S,,, of
this series are
Sn = Z ag.
k=0

We say that the sum of the infinite seriesSisand write

§=) ar providedthat 5= lim S, = lim » as.
k=0

n—oo
k=0

That is, we consider the infinite series as the limit of padians.S,, as the number of
termsn is increased. If this limit exists, we say that the infiniteieeconverges® to S.
This leads to the following conclusion:

58]f the limit does not exist, we say that the series diverges.
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The sum of annfinite geometric series
> 1 .
S=ldr+ri+. +rf4. . =>"rF=—— providedr|<1.  (10.2)
P 1—r

If this inequality is not satisfied, then we say that this swaginot exist (meaning that it|is
not finite).

It is important to remember that an infinite series, i.e. a suth infinitely many
terms added up, can exhibit either one of these two veryrdiftebehaviours. It may
converge in some cases, as the first example showdiyerge (fail to converge) in other
cases. We will see examples of each of these trends again.efisential to be able to
distinguish the two. Divergent series (or series that djigamder certain conditions) must
be handled with particular care, for otherwise, we may findti@wictions or “seemingly
reasonable” calculations that have meaningless results.

We can think of convergence or divergence of series usingmggic analogy. If we
start on the number line at the origin and take a sequencepsd&io, a1, as, ..., ak,. ..},
we can think ofS = ZZO:O ay, as the total distance we have travellédconverges if that
distance remains finite and if we approach some fixed number.

"convergence"

(Y Y Y v

"divergence"”

LN N N N

Figure 10.2. An informal schematic illustrating the concept of convelcgeand
divergence of infinite series. Here we show only a few termbBeofnfinite series: from
left to right, each step is a term in the series. In the top gdanthe sum of the steps gets
closer and closer to some (finite) value. In the bottom exanpk steps lead to an ever
increasing total sum.

In order for the sum of ‘infinitely many things’ to add up to aifetnnumber, the
terms have to get smaller. But just getting smaller is noitself, enough to guarantee
convergence. (We will show this later on by considering theronic series.) There are
rigorous mathematical tests which help determine whetlsmri@s converges or not. We
discuss some of these tests in Appendix 11.9.
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10.3 Improper integrals

We will see that there is a close connection between centdiinite series and improper
integrals, i.e. integrals over an infinite domain. We haveay encountered an example of
an improper integral in Section 3.8.5 and in the context dicactive decay in Section 8.4.
Recall the following definition:

Definition

An improper integral is an integral performed over an infinite domaig, e.

/:O f(x) da.

The value of such an integral is understood to be a limit,\&sgin the following definition:

0o b
/ f(z) dx = blim f(x) da.

i.e. we evaluate an improper integral by first computing anitefiintegral over a finite
domaina < z < b, and then taking a limit as the endpotnoves off to larger and larger
values. The definite integral can be interpreted as an armer time graph of the function.
The essential question being addressed here is whethar#aatemains bounded when we
include the “infinite tail” of the function (i.e. as the endptb moves to larger values.) For
some functions (whose values get small enough fast enohgl@rswer is “yes”.

Definition

When the limit shown above exists, we say that the impropeginalconverges Other
wise we say that the improper integdiverges

With this in mind, we compute a number of classic integrals:

10.3.1 Example: A decaying exponential: convergent
improper integral

Here we recall that the improper integral of a decaying exptial converges. (We have
seen this earlier, in Section 3.8.5, and again in applinatio Sections 4.5 and 8.4.1. Here
we recap this important result in the context of our disaussif improper integrals.) Sup-

pose that > 0 and let

oo b
I = / e " dt = lim e "t dt.
0

b—oo Jo

Then note thak > 0 so that
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We have used the fact thhtn,_, .. e~"* = 0 since (forr, b > 0) the exponential function
is decreasing with increasirig Thusthe limit exists (is finiteand the integratonverges
In fact it converges to the value= 1/r.

Figure 10.3. In Sections 10.3.2 and 10.3.3, we consider two functionsseho
values decrease along theaxis, f(r) = 1/x and f(x) = 1/22. We show that one, but not
the other encloses a finite (bounded) area over the intervalo). To do so, we compute
an improper integral for each one. The heavy arrow is meanetoind us that we are
considering areas over an unbounded domain.

10.3.2 Example: The improper integral of  1/x diverges

We now consider a classic and counter-intuitive result,caredof the most important results
in this chapter Consider the function

1

= xTr) = —.

y=fla)=~
Examining the graph of this function for positive e.g. for the interva(l, oo), we know

that values decrease to zerozamicrease®. The function is not only itself bounded, but
also falls to arbitrarily small values asincreases. Nevertheless, thisnst enoughto
guarantee that the enclosed area remains finite! We showntthie following calculation.

00 b b
I :/ 1 dx = lim 1 dz = lim In(z)| = lim (In(b) —In(1))
1

€T b—oo [, T b—o0 1 b—o0

I= blirgo In(b) = oo
The fact that we get an infinite value for this integral folkoévom the observation that
In(b) increases without bound &sncreases, that ithe limit does not exist (is not finite)
Thus the area under the curfiér) = 1/x over the interval < a < oo is infinite. We say
that the improper integral df /2 diverges(or does not converge). We will use this result
again in Section 10.4.1.

5%We do not chose the intervél, co) because this function is undefinedrat= 0. We want here to emphasize
the behaviour at infinity, not the blow up that occurs close te 0.
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10.3.3 Example: The improper integral of  1/z? converges

Now consider the related function

y=f(x)= L and the corresponding integral = / % dx
.o

z2’
b
1
= — lim (——1)21.
1 b—oo \ b

Thus,the limit existsand, in fact/ = 1, so, in contrast to the Example 10.3.2, this integral
converges

We observe that the behaviours of the improper integrals®fiinctionsl /= and
1/2? are very different. The former diverges, while the lattemeerges. The only differ-
ence between these functions is the power.dks shown in Figure 10.3, that power affects
how rapidly the graph “falls off” to zero asincreases. The functiolyz? decreases much
faster thanl /x. (Consequentlyt /z? has a sufficiently “slim” infinite “tail”, that the area
under its graph does not become infinite - not an easy conzejmést!) This observations
leads us to wonder what powgris needed to make the improper integral of a function
1/xP converge. We answer this question below.

Then

b
I = lim r™%dx. = lim (—z71)

b—oo Jq b—oo

10.3.4 When does the integral of 1/zF converge?

Here we consider an arbitrary power, that can be any real number. We ask when the
corresponding improper integral converges or diverges. Le

1
Iz/ — dx.
1 2P

Forp = 1 we have already established that this integral divergegi(®e10.3.2), and for
p = 2 we have seen that it is convergent (Section 10.3.3). By dasiwalculation, we find
that

d1—p b 1
I=lim ——| = lim (—) (b'P—1).
b—o0 (1—p) 1 b—oo 1—p
Thus this integral converges provided that the tétr? does not “blow up” a$ increases.
For this to be true, we require that the expon@nt p) should be negative, i.d.—p < 0
orp > 1. In this case, we have

To summarize our result,

<1 . . .
/ — dx convergesip > 1, divergesifp < 1.
1 X
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Examples: [ 1/z? that do or do not converge

1. Theintegral

<1
— dz, diverges
/1 Vi ?

We see this from the following argumenyz = z2, sop = 1 < 1. Thus, by the
general result, this integral diverges.

2. The integral

oo
/ 1% dz,  converges
1

Herep = 1.01 > 1, so the result implies convergence of the integral.

10.3.5 Integral comparison tests

The integrals discussed above can be used to make compatistirhelp us to identify

when other improper integrals converge or divéfg&he following important result estab-
lishes how these comparisons work:

Suppose we are given two functiongxz) and g(x), both continuous on some infinite

interval[a, o). Suppose, moreover, that, at all points on this interval fitst function ig
smaller than the second, i.e.

0< f(z) <g(=).
Then the following conclusiofsan be made:

1. / flx)de < / g(z) dz. (This means that the area undér) is smaller than
the area undey(z).)
2. If g(z) dx converges, the7/ f(x) dx converges. (If the larger area is finite,
so'is the smaller one) ¢

o0

3. If/ f(x) dzx diverges,ther/ g(z) dx diverges. (If the smaller area is infinite,
so'is the larger one.) ¢

aThese statements have to be carefully noted. What is assamdedathat is concluded works “one way”. That
is the order “if..then” is important. Reversing that ordeads to a common error.

60The reader should notice the similarity of these ideas toctiaparisons made for infinite series in the
Appendix 11.9.2. This similarity stems from the fact tharthis a close connection between series and integrals,
arecurring theme in this course.
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Example: comparison of improper integrals

We can determine that the integral

=t
—— ax converges
1 1423 g

by noting that for allz > 0
0<

T <x 1
1_’_333*_3 2°

* x *1
dr < — dx.
/1 1+ 23 1‘_/1 2 *

Since the larger integral on the right is known to convergaj@es the smaller integral on
the left.

xr
Thus

10.4 Comparing integrals and series

The convergence of infinite series was discussed earli&eation 1.7 and here again in
Section 10.2. Many tests for convergence are provided il\pgpeendix 11.9, and will not
be discussed in detail due to time and space constraintseoyan interesting connection
exists between convergence of series and integrals. Ttiie i®pic we examine here.

Convergence of series and convergence of integrals isckld/e can use the con-
vergence/divergence of an integral/series to determméd&haviour of the other. Here we
give an example of this type by establishing a connectiowden the harmonic series and
a divergent improper integral.

10.4.1 The harmonic series

The harmonic series is a sum of terms of the fdrs wherek = 1,2,.... At first ap-
pearance, this series might seem to have the desired gealita convergent series, simply
because the successive terms being added are gettingrsamallemaller, but this appear-
ance is deceptive and actually wréhg

The harmonic series

+ ... diverges

El e

3 4

Z%_1++++ A+

We establish that the harmonic series diverges by compdriaghe improper integral of
the related functiof?.

6l\e have already noticed a similar surprise in connectiot wie improper integral of /z. These two
“surprises” are closely related, as we show here using a adegn of the series and the integral.

62This function is “related” since for integer values of the function takes on values that are the same as
successive terms in the series, i.ex i k is an integer, therf(z) = f(k) = 1/k
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1.0

== the function y=1/x

The harmonic series

Figure 10.4.The harmonic series is a sum that corresponds to the arearuhde
staircase shown above. Note that we have purposely shoveateting arranged so that they
are higher than the function. This is essential in drawing ¢lonclusion that the sum of the
series is infinite: It idargerthan an area undet /x that we already know to be infinite, by
Section 10.3.2.

In Figure 10.4 we show on one graph a comparison of the areeruhi$ curve, and a
staircase area representing the first few terms in the hacsenes. For the area of the
staircase, we note that the width of each step is 1, and tightseiorm the sequence

11
7§717"'}

N | =

{1,

Thus the area of (infinitely many) of these steps can be egpdess the (infinite) harmonic
series,

A=1-1+41-—+1-—+1-

x| =

1 1 1 >
+...—1+§+§+Z+...—;

N =
Wl =
A~ =

On the other hand, the area under the graph of the fungtiery (z) = 1/zfor0 < z < co
is given by the improper integral
I
— dx.
1 x
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We have seen previously in Section 10.3.2 thét integral divergels
From Figure 10.4 we see that the areas under the functipand under the staircase,
A, satisfy
0<Ar < As.

Thus, since the smaller of the two (the improper integralipfite, so is the larger (the
sum of the harmonic series). We have established, usingéhiparison, that the the sum
of the harmonic series cannot be finite, so that this seliiesges

Other comparisons: The “p” series

More generally, we can compare series of the form

=1 . < ]
> — totheintegral — dx
Pt kp 1 xP

in precisely the same way. This leads to the conclusion that

The “p” series,

=1 . . .
> =5 convergesip > 1, divergesifp < 1.
k=1

For example, the series

f: Loyl by
K2 49 16 7

k=1
converges, since = 2 > 1. Notice, however, that the comparison does not give us avalu
to which the sum converges. It merely indicates that theeseloes converge.

10.5 From geometric series to Taylor polynomials

In studying calculus, we explored a variety of functions. &g the most basic are poly-
nomials, i.e. functions such as

p(z) = 2° + 22 + 3z + 2.

Our introduction to differential calculus started with Buftinctions for a reason: these
functions are convenient and simple to handle. We found &magthat it is easy to compute
derivatives of polynominals. The same can be said for ilmilegOne of our first examples,
in Section 3.6.1 was the integral of a polynomial. We needdg ose a power rule to
integrate each term. An additional convenience of polymdsnis that “evaluating” the
function, (i.e. plugging in an: value and determining the correspondingalue) can be
done by simple multiplications and additions, i.e. by bagerations easily handled by
an ordinary calculator. This is not the case for, say, trggoatric functions, exponential
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functions, or for that matter, most other functions we cdestd®. For this reason, being
able toapproximatea function by a polynomial is an attractive proposition. Sfurms our
main concern in the sections that follow.

We can arrive at connections between several functiongeiddolynomial approx-
imations by exploiting our familiarity with thgeometric series We use both the results
for convergence of the geometric series (from Section Iahd)the formula for the sum of
that series to derive a number of interesting, (somewhatdzgrd) resulfs.

Recall from Sections 1.7.1 and 10.2 tkfa¢ sum of an infinite geometric series is

1 .
S=ldr+r’+.  +rf4+. =) rF=—— provided |r[<1. (10.3)
T

To connect this result to a statement about a function, wd aéeariable”. Let us consider
the behaviour of this series when we vary the quantitfo emphasize that nowis our
variable, it will be helpful to change notation by substitgtr = = into the above equation,
while remembering that the formula in Eqn (10.3) hold onlg\pded|r| = |x| < 1.

10.5.1 Example 1: A simple expansion

Substitute the variable = r into the series (10.3). Then formally, rewriting the aboveaw
this substitution, leads to the conclusion that

1
—— =1l4+z+z’+... (10.4)
1—=x

We can think of this result as follows: Let

f(x) = (10.5)

Then for everyr in —1 < x < 1, it is true thatf(x) can be approximated by terms in the
polynomial
px)=1+z+22+... (10.6)

In other words, by (10.3), fdrz| < 1 the two expressions “are the same”, in the sense that
the polynomial converges to the value of the function. Werred thisp(z) as an (infinite)
Taylor polynomiaf® or simply aTaylor seriesfor the functionf (z). The usefulness of this
kind of result can be illustrated by a simple example.

Example 10.1 (Using the Taylor Series (10.6) to approximatie function (10.5)) Compute
the value of the functiorf (x) given by Eqn. (10.5) for: = 0.1 without using a calculator.

63For example, to find the decimal value ifi(2.5) we would need a scientific calculator. These days the
distinction is blurred, since powerful hand-held calcoitatare ubiquitous. Before such devices were available,
the ease of evaluating polynomials made them even more temgor

64We say “haphazard” here because we are not yet at the poinsy$tamatic procedure for computing a
Taylor Series. That will be done in Section 10.6. Here weétalhat we can get” using simple manipulations of
a geometric series.

65A Taylor polynomial contains finitely many terms, whereas a Taylor series has— co.
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Solution: Plugging in the value: = 0.1 into the function directly leads to/(1 — 0.1) =
1/0.9, whose evaluation with no calculator requires long divi&fo Using the polynomial
representation, we have a simpler method:

p(0.1)=1+014+01%>+...=14+01+0.01+...=1.11...

We provide a few other examples based on substitutions @wssorts using the geomet-
ric series as a starting point.

10.5.2 Example 2: Another substitution

We make the substitution = —t¢, then|r| < 1 means that — ¢{| = |t| < 1, so that the
formula (10.3) for the sum of a geometric series implies:that

1
—— =14 () + (=) + (—t)* +...
T + (=) + (=) + (=1)° +
1 .
—— =1-t+*—t*+t*+... provided|t| < 1
1+4+1¢

This means we have produced a series expansion for thedarigt{1 + ¢). We can go
farther with this example by a new manipulation, wherebymtegrate both sides to arrive
at a new function and its expansion, shown next.

10.5.3 Example 3: An expansion for the logarithm

We will use the results of Example 10.5.2, but we follow oubstitution by integration.
On the left, we integrate the functiof(t) = 1/(1 + ¢) (to arrive at a logarithm type
integral) and on the right we integrate the power terms oettgansion. We are permitted
to integrate the power series term by tepmovided that the series convergethis is an
important restriction that we emphasiz®tanipulation of infinite series by integration,
differentiation, addition, multiplication, or any othetérm by term” computation makes
sense only so long as the original series converges.
Provided|t| < 1, we have that

—dt= 1—t+2 -+t — .. ) dt
| =)« )
LL’2 LL’B LL’4
In(l+z)=2— —+ "= — = 4+ ...
n(l+z)=ua 2—|—3 4—1—

This procedure has allowed us to find a series represenfatiemew functionu(1 + ).
2 3 4 &

T T T z*
mi+a)=o— 2+ 2 L 4 S (L 10.7
n(l+z) =2z 2+3 4+ k.:l( ) k aon

66This example is slightly “trivial”, in the sense that evaing the function itself is not very difficult. However,
in other cases, we will find that the polynomial expansiorméonly way to find the desired value.
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The formula appended on the right is just a compact notatiathrepresents the pattern of
the terms. Recall that in Chapter 1, we have gotten thorgughtiliar with such summa-
tion notatior§”.

Example 10.2 (Evaluating the logarithm forz = 0.25) An expansion for the logarithm
is definitely useful, in the sense that (without a scientifitcalator or log tables) it is not
possible to easily calculate the value of this function avargpoint. For example, far =
0.25, we cannot findn(1 + 0.25) = In(1.25) using simple operations, whereas the value
of the first few terms of the series are computable by simpl#ipfigation, division, and
addition (.25 — % + % ~ 0.2239). (A scientific calculator givek (1.25) ~ 0.2231,

so the approximation produced by the series is relativetydgo

When is the series fdn(1 + z) in (10.7) expected to converge? Retracing our steps
from the beginning of Example 10.5.2 we note that the valuei®hot permitted to leave
the intervallt| < 1 so we need alsx| < 1 in the integration stef§. We certainly cannot
expect the series fdn(1 + z) to converge wheffz| > 1. Indeed, forr = —1, we have
In(1 + z) = In(0) which is undefined. Also note that far= —1 the right hand side of

(10.7) becomes
1 1 1
—(1+—+—+—+...).

2 3 4
This is the recognizable harmonic series (multiplied by -But we already know from
Section 10.4.1 that the harmonic series diverges. Thus, us& avoidz = —1, since

the expansion will not converge there, and neither is thetfan defined. This example
illustrates that outside the interval of convergence, thdes and the function become
“meaningless”.

Example 10.3 (An expansion foln(2)) Strictly speaking, our analysis does not predict
what happens if we substitute = 1 into the expansion of the function found in Sec-
tion 10.5.3, because this value:ofs outside of the permitted rangel < = < 1 in which
the Taylor series can be guaranteed to converge. It takes deaper mathematics (Abel’s
theorem) to prove that the result of this substitution dbtuaakes sense, and converges,

i.e. that
ln(2)—1—l—|—1—1+
- 2 3 4 7

We state without proof here that th#ernating harmonic series convergedi@?2).

10.5.4 Example 4: An expansion for arctan

Suppose we make the substitution= —¢2 into the geometric series formula, and recall
that we needlr| < 1 for convergence. Then

1

67The summation notation is not crucial and should certaiolybe memorized. We are usually interested only
in the first few terms of such a series in any approximationratfical value.

68strictly speaking, we should have ensured that we are inisisiinterval of convergence before we computed
the last example.

=14 (=) + (=2 + (=t + ...
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1 oo
=12+t — 16 +¢8 :§ —1)"*n
1+¢2 + T kMJ )

This series will converge providdd| < 1. Now integrate both sides, and recall that the
antiderivative of the function/(1 + ¢?) is arctan(t). Then

xT 1 T
— _dt = 11—+t =5+ 4. ) dt
/O e /0( + +°4+..)

3

(2k—1)
2 ot1 T
arctan(z) = x 3 + T + ,}Zl( ) k= 1) (10.8)

7 (oo}

t

Example 10.4 (An expansion forr) For a particular application of this expansion, con-
sider plugging inc = 1 into Equation (10.8). Then

tan(1) = 1 1—|—1 1—|—
rctan(l) =1— -4+ - — -+ ...
arcta 3T:s 7

But arctan(1) = 7/4. Thus we have found a way of computing the irrational number

namely
111 ZOO 11

k=1

While it is true that this series converges, the convergens®w. (This can be seen by
adding up the first 100 or 1000 terms of this series with a gjsfeeet.) This means that it
is not practical to use such a series as an approximation. foFhere are other series that
converge tar very rapidly that are used in any practical application.)

10.6 Taylor Series: a systematic approach

In Section 10.5, we found a variety of Taylor series exparsitirectly from the formula
for a geometric series. Here we ask how such Taylor seriebeawnstructed more sys-
tematically, if we are given a function that we want to apmuate®®.

Suppose we have a function which we want to represent by arzmries,

oo
f(x) = Go+a1$+a2x2+a3x3 +...= Zaka:k.
k=0

Here we will use the function to directly determine the codfitsa,. To determine,
let z = 0 and note that

£(0) = ap + a10 + a20® + a30® + ... = ay.

We conclude that

ap = f(0).

69The development of this section was motivated by onlinesibjeDavid Austin.
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By differentiating both sides we find the following:

f'(x) = ai+2asx +3azx®+ ...+ kapaeh 1 4. ..
() = 2a2+2-3azzx+...+ (k- Dkapz* 2+ ...
f"x) = 2-3as+...+ (k—2)(k— Dkaga* 3 + ...
FO(z) = 1.2:3-4. kap+...

Here we have used the notatigf) (x) to denote thé:’'th derivative of the function. Now
evaluate each of the above derivatives at 0. Then

f’(O):ah = a1 = f’( )
17(0) = 2as, =y = f”2(0)
f7(0) =2 3as, = a5 =10
f®0) = Ma, = ap =50

This gives us a recipe for calculating all coefficiesats This means that if we can compute
all the derivatives of the functiofi(x), then we know the coefficients of the Taylor series
as well. Because we have evaluated all the coefficients bguhstitutionz = 0, we say
that the resulting power series is thaylor series of the function about= 0

10.6.1 Taylor series for the exponential function, e’

Consider the functiorf (x) = e®. All the derivatives of this function are equal &¢5. In
particular,

fPay=e = fO0)=1

So that the coefficients of the Taylor series are

fPo) 1
ap = = —.
k! k!
Therefore the Taylor series fef aboutr = 0 is
X .%'2 .%'3 {L‘4
aotarr+asri+azx® +. . dapzF+. . = 1+a+— R TREE + + Z o

This is a very interesting series. We state here withoutfgiad this series converges for
all values ofx. Further, the function defined by the series is in fact equat that is,
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The implication is that the functioa® is completely determined (for alt values)
by its behaviour (i.e. derivatives of all orders)aat= 0. In other words, the value of the
function atz = 1,000, 000 is determined by the behaviour of the function aroung 0.
This means that” is a very special function with superior “predictable feagi. If a
function f(x) agrees with its Taylor polynomial on a regiéna, a), as was the case here,
we say thatf is analytic on this region. It is known that” is analytic for allx.

We can use the results of this example to establish the fatttik exponential func-
tion grows “faster” than any power functiar?. That is the same as saying that the ratio of
e” to z™ (for any powem) increases withx. We leave this as an exercise for the reader.

We can also easily obtain a Taylor series expansion for fomstelated t@®, with-
out assembling the derivatives. We start with the resutt tha

2

e“—1+u+u—+u—3+ —iu—k
B 2 6 7 &=k

Then, for example, the substitutian= z2 leads to

e‘”z:l—i-xz—i-

(x2)2 (x2)3 _ e (xQ)k
5ot T D

k=0

10.6.2 Taylor series of trigonometric functions

In this example we determine the Taylor series for the sinetfan. The function and its
derivatives are

f(x) =sinz, f'(z) = cosz, f"(x) = —sinz, " (x) = — cosz, f P (x) = sinz, ...
After this, the cycle repeats. This means that
f(0)=0,7(0)=1,f"(0)=0,f"(0)=—1,...

and so on in a cyclic fashion. In other words,

1 1
a0=0,a1:1,a2:0,a3:—§,a420,a5: I
Thus,
] {1,'3 {1,'5 x? e N x2n+1

We state here without proof that the functieim(z) is analytic, so that the expansion
converges to the function for atl.

It is instructive to demonstrate how successive terms inydofaeries expansion
lead to approximations that improv@oing this kind of thing will be the subject of the last
computer laboratory exercise in this course.
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T1

T3

sin(x)

T4

Figure 10.5. An approximation of the functiop = sin(x) by successive Taylor
polynomials;I1, 15, 15, T,. The higher Taylor polynomials do a better job of approximat
ing the function on a larger interval about= 0.

Here we demonstrate this idea with the expansion for thetifumsin(x) that we just
obtained. To see this, consider the sequence of polynomials

T (z) = x,
Tg(w):x—%j,
Tg(x):x—§+%j,
T4(w):x—l3‘—j+§—%7.

Then these polynomials provide a better and better apptiomto the functiorsin(z)
close tox = 0. The first of these is just a linear (or tangent line) appration that we
had studied long ago. The second improves this with a quadyaproximation, etc. Fig-
ure 10.5 illustrates how the first few Taylor polynomials epgmate the functiomsin(x)
nearz = 0. Observe that as we keep more termsn the polynomiall’, (z), the approx-
imating curve “hugs” the graph efn(z) over a longer and longer range. The student will
be asked to use the spreadsheet, together with some calnalas done in this section, to
produce a composite graph similar to Fig. 10.5 for some dtirestion.
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Example 10.5 (The error in successive approximationsjor a given value of close to
the base point (at = 0), theerror in the approximation between the polynomials and
the function is the vertical distance between the graphkepblynomial and the function
sin(x) (shown in black). For example, at = 2 radianssin(2) = 0.9093 (as found on

a scientific calculator). The approximations afg:(2) = 2, which is very inaccurate,
T»(2) = 2 — 23/3! ~ 0.667 which is too small73(2) ~ 0.9333 that is much closer and
T,(2) =~ .9079 that s closer still. In general, we can approximate the sfzbe error using
the next term that would occur in the polynomial if we kept ght@r order expansion. The
details of estimating such errors is omitted from our dists.

We also note that all polynomials that approximsitg«) contain only odd powers
of x. This stems from the fact thain(z) is an odd function, i.e. its graph is symmetric to
rotation about the origin, a concept we discussed in anezdeim.

The Taylor series focos(x) could be found by a similar sequence of steps. But in
this case, this is unnecessary: We already know the expafwsisin(z), so we can find the
Taylor series foros(x) by simple differentiation term by term. (Sinsi(x) is analytic,
this is permitted for alk:.) We leave as an exercise for the reader to show that

n=0

Sincecos(z) has symmetry properties of an even function, we find thatatdor series is
composed of even powers @fonly.

10.7 Application of Taylor series

In this section we illustrate some of the applications ofl@ageries to problems that may
be difficult to solve using other conventional methods. Sdumetions do not have an
antiderivative that can be expressed in terms of other sirfysictions. Integrating these
functions can be a problem, as we cannot use the Fundamdérmaidm of Calculus spec-
ifies. In some cases, we can approximate the value of the ®eiimiégral using a Taylor
series. We show this in Section 10.7.1.

Another application of Taylor series is to compute an apnaxe solution to a dif-
ferential equation. We provide one example of that sort ictiSe 10.7.2 and another in
Appendix 11.11.

10.7.1 Example 1: using a Taylor series to evaluate an integr  al

1
/ sin(x?) dz.
0

A simple substitution (e.gu = z2) will not work here, and we cannot find an antideriva-
tive. Here is how we might approach the problem using Taydoies: We know that the

Evaluate the definite integral
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series expansion fein(t) is

_ VA 1
Substituting: = 22, we have
6 10 14
. 2y .2 IL_ xX X
sin(z®) =z 30 + T

In spite of the fact that we cannot antidifferentiate thection, we can antidifferentiate the
Taylor series, just as we would a polynomial:

.’L'3 IL'7 fl;ll xlf)
:<§_7-3!+11-5!_15-7!+“'>

1 1 1 1

3T T T 1em

0

This is an alternating series so we know that it convergeseladd up the first four terms,
the pattern becomes clear: the series convergest026.

10.7.2 Example 2: Series solution of a differential equatio n

We are already familiar with the differential equation andial condition that describes
unlimited exponential growth.

dy _
d.]? _ya
y(0) =1.

Indeed, from previous work, we know that the solution of thifferential equation and ini-
tial condition isy(z) = e”, but we will pretend that we do not know this fact in illustregf
the usefulness of Taylor series. In some cases, where sepasfivariables does not work,
this option would have great practical value.

Let us express the “unknown” solution to the differentialiation as

y:a0+a1x+a2x2+a3x3+a4x4+...

Our task is to determine values for the coefficiants
Since this function satisfies the conditigf0) = 1, we must have(0) = ag = 1.
Differentiating this power series leads to

d
d_y =a —|—2a2x+3a3x2 + dagz® + ...
T
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But according to the differential equatio% = y. Thus, it must be true that the two Taylor
series match, i.e.

ap + a1z + asz? +CL3]}3 taut+.. . =a —|—2a2x+3a3x2 + dagz® + ...

This equality hold for all values af. This can only happen if the coefficients of like terms
are the same, i.e. if the constant terms on either side offhat®n are equal, if the terms of
the formCz? on either side are equal, and so on for all powers.dEquating coefficients,
we obtain:

apg=a1 =1, =a =1,
] 1
a1 = 2as, :>CL2:%:§,
] 1
az = 3as, = a3 =% = 53,
] 1
az = day, = a4 =G = 537,
Apn — 1 1
an—1 = Nanp, = ap = nl ~123.n _ nl"
This means that
2 3 n
X €T T x
y=1l4+2+—+—+...+—+...=¢",
2! 3! n!

which, as we have seen, is the expansion for the exponemtietibn. This agrees with the
solution we have been expecting. In the example here shoermauld hardly need to use
series to arrive at the right conclusion, but in the next eplanwe would not find it as easy
to discover the solution by other techniques discussedqusly.

We provide an example of a more complicated differentiala¢ignm and its series
solution in Appendix 11.11.

10.8 Summary

The main points of this chapter can be summarized as follows:

1. We reviewed the definition of an improper integral
o) b
/ flx) de = blim f(x) du.

2. We computed some examples of improper integrals andsieditheir convergence
or divergence. We recalled (from earlier chapters) that

I:/ e~ "t dt converges
0

whereas
<1 .
I:/ — dx diverges
1 fL'
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More generally, we showed that

o0

1 . . .

/ — dx convergesip > 1, divergesifp < 1.
1 x

Using a comparison between integrals and series we shibagtthe harmonic series,

+... diverges

?rl»—‘

1
-=1
dor=1+3 + 2 4l 1T
k=1
More generally, our results led to the conclusion thattfieeries,

=1 . . .
> =5 converges i > 1, divergesifp < 1.
k=1

. We studied Taylor series and showed that some can be faing the formula for

convergent geometric series. Two examples of Taylor sén@swere obtained in
this way are

2 a3 gl
n(l+z)=2——+———+4... for 1
n(l+z)==z 5 T 3 Tt x| <

and . . -

¥ 2 w

t =Tr— — —_— = = ... for <1
arctan(z) = x 3 + 5 7 + ||

. In discussing Taylor series, we considered some of thewolg questions: (a) For

what range of values of can we expect the series to converges? (b) Suppose we
approximate the function on the right by a finite number ofrtgion the left. How
good is that approximation? Another interesting questor{d) If we include more

and more such terms, does that approximation get better ettet® (i.e., does the
series converge to the function?) (d) Is the convergeneeragid? Some of these
guestions occupy the attention of career mathematiciantsaee beyond the scope

of this introductory calculus course.

. More generally, we showed that the Taylor series for atfan@boutr = 0,

f(x) = ap + a1x + aga® + azx® + ... = Zakl‘k~

can be found by computing the coefficients

M0
!

ap =

. We discussed some of the applications of Taylor series.u¥gel Taylor series to

approximate a function, to find an approximation for a dediimtegral of a function,
and to solve a differential equation.
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Chapter 11

Appendix

11.1 How to prove the formulae for sums of squares
and cubes

Mathematicians are concerned with rigorously establgfonmulae such as sums of squared
(or cubed) integers. While it is not hard to see that thesmditaie “work” for a few cases,
determining that they work in general requires more work.eHee provide a taste of how
such careful arguments works. We give two examples. The fiested ormathematical
inductionprovides a general method that could be used in many simitaiskof proofs.
The second argument, also for purposes of illustration as&gck”. Devising such tricks

is not as straightforward, and depends to some degree ondggitg or experience with
numbers.

Proof by induction (optional)

Here, we prove the formula for the sum of square integers,

)

N, N(N+1)(2N +1)

using a technique calleiliduction The idea of the method is to check that the formula
works for one or two simple cases (e.g. the “sum” of just ongust two terms of the
series), and then show that whenever it works for one casenfsog up toN), it has to
also work for the next case (summing upXo+ 1).

First, we verify that this formula works for a few test cases:

N = 1: If there is only one term, then clearly, by inspection,

1

Zk2:12=1.

k=1

221
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The formula indicates that we should get

1(1+1)(2-1+1)  1(2)(3)
S = = =1,
6 6
so this case agrees with the prediction.

N =2:

2

Y =1"+22=1+4=5

k=1
The formula would then predict that
22+ 1)(2-24+1)  2(3)(5)

6 6
So far, elementary computation matches with the resultigiesdi by the formula.

Now we show that if this formula holds for any one case, e.g.thie sum of the firstvV

squares, then it is also true for the next case, i.e. for the@uV + 1 squares. So we will
assumehat someone has checked that for some particular valdéibfs true that

N
e N(N+1é(2N+1).

=5.

S:

Now the sum of the firslV + 1 squares will be just a bit bigger: it will have one more term

added to it:
N+1

Sni1 = ZkQ ZkQ +(N+1)

Thus N(N+1)(2N +1
SN1 = W+ DEN + )+(N+1)2.
Combining terms, we get
N(@2N +1
Sny1=(N+1) [7( 6+ )+(N+1)},
2N2+ N +6N +6 2N2 + 7N +6
Snp1 = (N 1) 6* * =(N+1)%.
Simplifying and factoring the last term leads to
2N +3)(N +2
SN+1=(N+1)( é( ).

We want to check that this still agrees with what the formukdcts. To make the notation
simpler, we will letM stand forN + 1. Then, expressing the result in terms of the quantity
M = N + 1 we get

SM_ZkQ (N +1) R(N+1)+1][(N+1)+1] :M[2M+1HM+1].

6 6
This is the same formula as we started with, only written imteof M instead ofV. Thus
we have verified that the formula works. Blathematical Inductiomve find that the result
has been proved.
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Another method using a trick  7°

There is another method for determining the simsk* or » ~ k*. Write
k=1 k=1

(k+1)% — (k—1)® = 6k* + 2,

n n

S ((k+1)° = (k—1)%) =) (6k% +2).

k=1 k=0
But looking more carefully at the left hand side (LHS), we Hes

D (41— (k=1)*) =22 -0°4+8° -1 +4° -2 4 5° 3%+ (n+1)° - (n—1)°.
k=1
most of the terms cancel, leaving onhi + n? + (n + 1)3, so this means that

1+t + (1P =6 K+ 2
k=1 k=1

Zk? =(=1+n°+(n+1)°>—=2n)/6 = (2n® 4+ 3n? +n)/6.
k=1

Similarly, the formula forz k3, can be obtained by starting with
k=1

(k4+1)* — (k — 1)* = 4k> + 4k.

11.2 Riemann Sums: Extensions and other examples

We take up some issues here that were not yet considereddoiiext of our examples of
Riemann sums in Chapter 2 . First, we consider an arbitraeyvala < z < b. Then we
comment on other ways of constructing the rectangular apjoximation (that eventually
lead to the same limit when the true area is computed.)

11.2.1 Ageneralinterval: a <z <b

Example 2: (Lu Fan)

Find the area under the graph of the function
y=fx)=2"+22+1 a<z<h

70l want to thank Robert Israel for contributing this material
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Here the interval iz < x < b. Let us leave the values af b general for a moment, and
consider how the calculation is set up in this case. Then we ha

length of interval= b — a

number of segments N
b—a

width of rectangular strips- Ax =

(b—a)
N
height of&’th rectangular strip= f(x1) = =7 + 2 + 1

thek'th z value=z, =a+ k

Combining the last two steps, the height of rectarigie

flay) = (a+ k(b]\_f CL))QJFZ (a+ k(b]\;a)> +1

and its area is

ar = fon) % Az = f(a) x (b]_va) .

We use the last two equations to expregsn terms ofk (and the quantities, b, V), then
sum overk as before 4 = Y A;). Some algebra is needed to simplify the sums so that
summation formulae can be applied. The details are left axarcise for the reader (see
homework problems). Evaluating the limit — oo, we finally obtain

(b—a)’
T

N
A= lim Zak =(a+1)2*0b—a)+(a+1)(b—a)®+
k=1

N—o0

as the area under the functigw) = 2% + 2z + 1, over the intervak < = < b. Observe
that the solution depends en andb. (The endpoints of the interval influence the total
area under the curve.) For example, if the given intervapkap to b& < x < 4. then,
substitutinge = 2, b = 4 into the above result fod, leads to

4—-2 2 32
A= (2+1)2(4—2)+(2+1)(4—2)2+T =184124 2= —
In the next chapter, we will show that the tools of integnatiall lead to the same conclu-

sion.

11.2.2 Using left (rather than right) endpoints

So far, we used the right endpoint of each rectangular strgssign its height using the
given function (see Figs. 2.2, 2.3, 2.4). Restated, we ‘@jldlee top right corner of the
rectangle to the graph of the function. This is the so calight endpoint approxima-
tion. We can just as well use the left corners of the rectanglesdig@a their heightdéft
endpoint approximation). A comparison of these for the function= f(z) = 2% is
shown in Figs. 11.1 and 11.2. In the case of the left endp@iptaimation, we evaluate
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y
y=f(x)

X
a=Xg X1 X X Xp\=b a=Xg Xp X X¢ XN=b

Figure 11.1.The area under the curye= f(x) over anintervak < x < b could
be computed by using either a left or right endpoint appration. That is, the heights of
the rectangles are adjusted to match the function of intesiker on the right or on their
left corner. Here we compare the two approaches. Usually bedd to the same result
once a limit is computer to arrive at the “true " area.

the heights of the rectangles startingrat(instead ofx;, and ending at y_; (instead of
xy). There are stillV rectangles. To compare, sum of areas of the rectangles iefthe
versus the right endpoint approximation is

N

Right endpoints: A strips= > flan) Az,
k=1
N—-1

Left endpoints: A syrips= ) f(zi)Az.
k=0

Details of one such computation is given in the box.

X
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Example of left endpoint calculation

We here look again at a simple example, using the quadratatifan,
flz)=2% 0<z<I1,

We now compare the right and left endpoint approximatioresehare shown in panels|of

Figure 11.2. Note that

szi

N’ T =

L
N’
The area of thé’th rectangle is
ap = f(xx) x Az = (k/N)* (1/N),

but now the sum starts &t= 0 so

N-—-1 N—-1 k 2 1 1 N—-1
. — . _ _ 2
AN strips= Z flxp)Ar = Z (ﬁ) <N> - (ﬁ) Z k.
k=0 k=0 k=0
The first rectangle corresponds#o= 0 in the left endpoint approximation (rather than
k = 1in the right endpoint approximation). But tihe= 0 rectangle makes no contributipn
(asits area is zero in this example) and we have one less\gdetat the right endpoint ¢
the interval, since the N'th rectangleis= N — 1. Then the sumis

=

1 ) 2(N = 1)+ 1)(N —1)(N) (2N —1)(N —1)
6 6N2

AN strips — <ﬁ
The area, obtained by taking a limit fof — oo is

L . eN-DWN-1) 2 1
A—]\,IEHOOANstrlps— lim 62 6 3

N—o00

We see that, after computing the limit, the result for theiétarea” under the curve |is
exactly the same as we found earlier in this chapter usinggheendpoint approximation.

11.3 Physical interpretation of the center of mass

We defined the idea of a center of mass in Chapter 5. The cehieass has a physical
interpretation for a real mass distribution. Loosely spegkit is the position at which the
mass “balances” without rotating to the left or right. In glog, we say that there is no net
torque. The analogy with children sitting on a teeter-taeelevant: many children may
sit along the length of the frame of a teeter totter, but if/tistribute themselves in a way
that the center of mass is at the fulcrum of the teeter tattes; will remain precariously
balanced (until one of them fidgets or gets off!). Notice thath the mass and the position
of each child is important - a light child sitting on the vergge of the teeter totter can
balance a heavier child sitting closer to the fulcrum (m&)dIThe center of mass need
not be the same as the median position. As we have see, theamisdh position that
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Right endpoint approximation Left endpoint approximation

Comparison of

Right| Left
approximations

Figure 11.2. Rectangles with left or right corners on the graphyof= 22 are
compared in this picture. The approximation shown in pinkmsssing” the largest rect-
angle shown in green. However, in the limit as the numberaifrggles N — oo, the true
area obtained is the same.

subdivides the distribution into two equal masses (or, myereerally, produces equal sized
areas under the graph of the density function.) The centerask assigns a greater weight
to parts of the distribution that are “far away” in the samesse (However, for symmetric
distributions, the median and the mean are the same.)

In physics, we speak of the “moment of mass” of a distribuibout a point. This
quantity is related to the tendency of the mass to contributerque, i.e. to make the
object rotate. Suppose we are interested in a particulat pbreferencer. In a discrete
mass distribution, for example, the moment of mass of eatheobeads relative to point
x is given by the product of the mass and its distance away flapbint - as with the
teeter totter, beads farther away will contribute more werthan beads closer to point
and heavier beads (i.e. greater mass) will contribute nague than lighter beads. For
example, mass 1 contributes an amountx — x1) to the total moment of mass of the
distribution about the point. Altogether the moment of mass of the distribution about the
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pointz is defined as
Mi(x) = Zmi (x — ;).
=1

The center of mass is a special painsuch that the moment of mass about that point is
zero. (Loosely speaking the tendency to rotate to the Idfi@right are the same: thus the
distribution would be balanced if it “rested on that point”.

my ms M3
X, X5 X3

X

Figure 11.3. A discrete set of masses,, mo, mg is distributed at positions
x1,x9,23. The center of mass of the distribution is the position atcivhihe given mass
distribution would balance, here represented by the whigagle.

Thus, we identify the center of mass as the point at which
M (z) =0,

or "
=1

Now expanding the sum, we rewrite the above as

() (Ee)

=1 1=1

But we already know that the first summation above is justdked mass, so that

M — <§n:ml$l> =0,
=1

so, taking the second term to the other side and dividing/bleads to

¢
r = — m;x;.
w2

We have recovered precisely the definition of the center afsoa “average coordinate”.
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11.4 The shell method for computing volumes

In Chapter 5, we used dissection into small disks to comhaeolume of solids of revo-
lution. Here we show use an alternative dissection intdshel

11.4.1 Example: Volume of a cone using the shell method

y y

y=f(x)=1-x —

Figure 11.4. Top: The curve that generates the cone (left) and the shapeeof
cone (right). Bottom: the cone showing one of the series efiskhat are used in this
example to calculate its volume.

We use the shell methétto find the volume of the cone formed by rotating the curve
y=1—=x

about they axis.

Solution

We show the cone and its generating curve in Figure 11.4thege&vith a representative
shell used in the calculation of total volume. The volume ofkndrical shell of radiug:,
heighth and thickness is

Vshell = 27rhT.

We will place these shells one inside the other so that tlaglii are parallel to the: axis
(sor = x). The heights of the shells are determined by theialue (le.h=y=1—2 =

"INote to the instructor: This material may be skipped in therist of time. It presents an alternative to the
disk method, but there may not be enough time to cover thigtaild
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1 —r). For the tallest shelt = 0, and for the flattest shetl = 1. The thickness of the shell
is Ar. Therefore, the volume of one shell is

VsheII: 2mr(1 —r) Ar.

The volume of the object is obtained by summing up these siodlimes. In the limit,
asAr — dr gets infinitesimally small, we recognize this as a procesatefjration. We
integrate ovef < r < 1, to obtain:

1 1
V:27r/ r(l—r)dr=27r/ (r —r?) dr.
0 0

r2 3\ | 1 1 s
Vveor ()| zon(2-2) =T,
7T(Q 3)0 7T(2 3) 3

11.5 More techniques of integration

We find that

11.5.1 Secants and other “hard integrals”

In a previous section, we encountered the integral

I= /secg(x) dx.
This integral can be simplified to some extent by integralipmparts as follows: Let, =
sec(z), dv = sec?(z) dz. Thendu = sec(z) tan(z)dz while v = [ sec?(z) dx = tan(z).
The integral can be transformed to

I = sec(x) tan(x) — /sec(x) tan?(x) d.
The latter can be rewritten:
L = /sec(x) tan?(z) do = /sec(x)(sec2(x) —1).
where we have use a trigonometric identity fan?(z). Then
I = sec(z) tan(z) — /sec3 (z) dx + /sec(x) dx = sec(z) tan(z) — I + /sec(x) dx
so (taking both/’s to the left hand side, and dividing by 2)
1= % (sec(x) tan(z) + /sec(az) dx) .

We are now in need of an antiderivative feaic(z). No “obvious substitution” or further
integration by parts helps here, but it can be checked bgrdifftiation that

/sec(x) dx =In|sec(x) + tan(x)| + C
Then the final result is

I= % (sec(z) tan(z) + In | sec(x) + tan(x)|) + C
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11.5.2 A special case of integration by partial fractions

/2 Tr+4
—dx
1 622+ Tz +2

This integral involves a rational function (that is, a radfdwo polynomials). The denom-
inator is a degree 2 polynomial function that has two rootstaat can be factored easily;
the numerator is a degree 1 polynomial function. In this casecan use the following
strategy. First, factor the denominator:

Evaluate this integrét:

62° 4+ 7x +2 = (22 + 1)(3z + 2)
Assign A andB in the following way:

A . B Tr+4 B Tr+4
20+1 3rx+2 (2e+1)Bxr+2) 622+Tr+2
(Remember, this is how we defireandB.)

Next, find the common denominator and rewrite it as a singletifion in terms ofA
andB.

A . B 3Ax+2A+2Bx+ B
20 +1 3z+2  (22+1)(3z+2)
Group like terms in the numerator, and note that this has tohrthe original fraction, so:

3Ax +2A+42Br+B  (3A+2B)z+ (2A+B) Tx+4

2z +1)Bzx+2) (2z+1)Bx+2) (22 +1)(3z +2)

The above equation should hold true foraNalues; therefore:

3A+2B=7, 2A+B=4
Solving the system of equations leads4c= 1, B = 2. Using this result, we rewrite the
original expression in the form:

T4 Tekd A B _ 1 2
622 +7r+2 (e+1)Bzx+2) 22+1 3rx+2 2x+1 3z+2

Now we are ready to rewrite the integral:

2 2
Tr 44 1 2
I=] 22 = (—— d
/1 622+ 7z +2 /1 (2x+1+3x+2> v

S| 2
I= dz + 2 d
/1 1T /1 3z+2 "

Now the integral becomes a simple natural log integral thikivs the pattern of Eqn. 6.1.
Simplify:

Simplify:

2 2

1
I=—In|2z+1|
2 1

2

1

"2This section was contributed by Lu Fan
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Simplify further:
1 2 1 1 2
I= §(ln5—ln3)—|— §(1n8—ln5) = —61n5— §1n3+ §1n8.

This method can be used to solvryintegral that contain a fraction with a degree 1
polynomial in the numerator and a degree 2 polynomial (thattivo roots) in the denom-
inator.

11.6 Analysis of data: a student grade distribution

We study the distribution of student grades on a test wrltte6 students and graded out
of a maximum of 50 points.

11.6.1 Defining an average grade

Let V be the size of the class,and the grade of studerit. Herek is the number of the
student from 1 taV, andy, takes any value between 0 and 50 points). Then the average
gradeY is computed by adding up the scores of all students and diyioly the number of
students as follows:

YZ Yk -

=
M-

For example, for a class of 76 students, we would have the sum
76
. 1
Y = — Yk -
76 —

11.6.2 Fraction of students that scored a given grade

Suppose that the number of students who got the gradep;. If the class consists of a
total of V students, then it follows that

10
=1

This is just saying that the sum of the number of studentsényesne of the categories has
to add up to the total class size. The fraction of the clagsstt@red grade; is

Pi

N
(Dividing by N has normalized the distribution. The valugN is the empirical probabil-
ity of getting grader;.) The mean or average grade is:

0
Li Pi-

ot

1
N 4
=0

X:
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Grade Djstribution

mean

Figure 11.5.Distributions of grades on a test with 50 point maximum. Elveere
a total of 76 students writing the test. The mean grade 31s8asvn.

11.6.3 Frequency distribution

It is difficult to visualize all the data if we list all the grad obtained. We “lump together”
scores into various categories (or “bins”) and create aidigton. For example, test scores
might be divided into ranges of bins in increments of 5 poifits5, 6-10, 11-15, etc). We
could represent grades in each bin by some value up to a suklafiel of accuracy. For
example, grades in the the range 16-20 can be described kbgdhel8 up to an accuracy
of +2. This is what we have done in Table 11.1.

We will now reinterpret our notation somewhat. We will reflef; as the score ang
the number of students whose test score fell within the raegessented by, +accuracy.
(The notationz; is meant to remind us that we are approximating the gradesvalsor
example, consider 10 “bins” or grade categories. In that cie index takes on values
i=1,2,...10. The, e.g.74 represents all grades in the fourth “bin”, i.e. grades betwe
16-20. A plot ofp; againstz; is called afrequency distribution The bar graph shown in
Figure 11.5 represents this distribution. Table 11.1 shibw<data that produced that bar
graph.

11.6.4 Average/mean of the distribution

The frequency distribution can also be used to compute amgeevalue: each (approxi-
mate) grade valug; is achieved by, students, which is a fractiop{/N) of the whole
class. When we form the multipl, /N)z;, we assign a “weight” to each of the cate-
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i grader; numberp;, > p; > &pi (1/N)> Zips
0 0 0 0 0.0 0.0

1 3+2 1 1 3.0 0.0395
2 8+2 2 3 19 0.25

3 1342 0 3 19 0.25

4 18+2 5 8 109 1.4342
5 23+2 10 18 339 4.4605
6 28+2 8 26 563 7.4079
7 33+2 21 47 1256 16.5263
8 38+2 19 66 1978 26.0263
9 43+2 6 72 2236 29.4211
10 48+2 4 76 2428 31.9474

Table 11.1.Distribution of grades (out 030) for a class of76 students. The mean
grade for this class i81.9474.

gories according to the proportion of the class that wasah¢htegory. (The terminology
weighted averages sometimes used.)
We define theneanor averagegrade in the distribution by

(11.1)

-3

ZI”3

WhereM is the number of bins. An equivalent way of expressing themfagerage) is:

M M 7
Z;z iz Tibi. (11.2)
i=1 Zv 1pZ

The sum in the denominator of this last fraction is simplytthtal class size.

In Table 11.1, we show steps in the calculation of the meadegfar the class. This
calculation is easily handled on the same spreadsheettt@ided the frequency of grades
and that was used to plot the bar graph of that distributiogquattions 11.1 and 11.2 are
saying the same thing. We will see the second of these agdheicontext of a more
general probability distribution in Chapter 8.

11.6.5 Cumulative function

We can calculate a “running total” as shown on Figure 11.&nhve plot for each grade
category, the total number of students whose grade was igitba range.
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We define theeumulative functionZ; to be:

F; = Zpk .
k=1

Then F; is the number of students whose gragewas between:; andz; (r; <
x, < x;). Of course, when we add up all the way to the last categorgmee at the total
number of students in the class (assuming each student theotest and received a grade).
Thus

M
FnL = Zpk: = N7
k=1

Where as beforél/ stands for the number of “bins” used to represent the graadelaition.
(Note that each student has been counted in one of the cegggorresponding to the grade
he or she achieved.) Another way of saying the same thingits th

k=1
In Figure 11.6 we show the cumulative function, i.e. we plpts F;. Note that this graph

is astep function. That is,the function takes on a set of discrete values witlpis at every
5th integef®.

k.

S

Cumulative function Cumulative function

Grade Distribution

median

Figure 11.6. Top: The same grade distribution as in Figure 11.5, but singwi
the cumulative function. The grid has been removed for eai8ealization of that step
function. Bottom:The cumulative function is used to deil@enan approximate median
grade.

"3Note: ideally, this graph should be discontinuous, withizmntal segments only. The vertical‘jumps” cannot
correspond to values of a function. However the spreadgbekused to plot this function does not currently
allow this graphing option.
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11.6.6 The median

We can use the cumulative function and its features to cométhmew ways of summariz-
ing the distribution or comparing the performance of twotises. Suppose we subdivide
a given class into exactly two equal groups based on perfocenan the test. Then there
would be some grade that was achieved or surpassed by thalfagf the class only; the
rest of the students (i.e. the other half of the class) gatestoelow that level. We call that
grade thenmedianof the distribution.

To find the median grade using a cumulative function, we msistadat grade level
corresponds to a cumulative 1/2 of the class, i.eV{@ students. To determine that level,
we draw a horizontal line correspondingAy/2. As shown in Figure 11.6, because the
function f is discontinuous, we only have an approximate median of 38 oWéerve that
the median is not in general equal to the mean computed earlie

11.7 Factorial notation

Letn be an integem > 0. Thenn!, called “n factorial”, is defined as the following product
of integers:

nl=n(n—1)(n—2)...2)1)

Example

=1
20=2.1=2
31=3-2.1=6
44=4-3-2-1=24
5!=5-4-3-2-1=120

We also define

0l=1

11.8 Appendix: Permutations and combinations

11.8.1 Permutations

A permutationis a way of arranging objects, where the order of appearafite @bjects
is important.
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[0 o4l nd ]l 2l 4 nslors

n!

N

n distinct objects El l:l 1 k slots

C(nk) K

n distinct objects @ [ ][ nwakslots

Figure 11.7. This diagram illustrates the meanings of permutations aohlui-
nations. (a) The number of permutations (ways of arrangingpjects inton slots. There
aren choices for the first slot, and for each of these, thererarel choices for the second
slot, etc. In total there are! ways of arranging these objects. (Note that the order of
the objects is here important.) (b) The number of permutatiofn objects intok slots,
P(n, k), is the producty - (n — 1) - (n — 2)...(n — k 4+ 1) which can also be written as
a ratio of factorials. (c) The number of combinationsobbjects in groups of is called
C(n, k) (shown as the first arrow in part c). Here order is not impoitafhe step shown
in (b) is equivalent o the two steps shown in (c). This meaatsthiere is a relationship
betweenP(n, k) andC(n, k), namely,P(n, k) = k!C(n, k).

11.9 Appendix: Tests for convergence of series

In order for the sum of ‘infinitely many things’ to add up to aitnnumber, the terms have
to get smaller. But just getting smaller is not, in itselfpegh to guarantee convergence.
(We will show this later on by considering the harmonic sejie

There are rigorous mathematical tests which help determhether a series con-
verges or not. We discuss some of these tests'here

7Recall that=> means “implies that”. This is a one-way implicatiomd = B says that “A implies B”
and cannot be used to conclude that B impliesA.means that each statement implies the other, a two-way
implication. Just as it is important to “obey traffic signsideavoid “driving the wrong way” on a one-way street,
it is also important to be careful about use of these matheatatatements.
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11.9.1 The ratio test:

If Zak is a series withz,, > 0 and lim 2L — 1, then

=0 k—oo ag
(a) L < 1 = the series converges,
(d) L > 1 = the series diverges,

(8) L =1 = the testis inconclusive.

Example 1: Reciprocal factorial series

Recall that ifk > 0 is an integer then the notatid (read “k factorial”’) means
Kl=k-(k-1)-(k—2)...3-2-1.

Consider the series

=1 1 1 1
= — =1 _
S kzzlk! R RS RS R Y (e S
then
a ! a i
k+1 (lﬁ-'—l)" k_k"
1
Y k! 1
Ght1 _ lim (M{l)! = lim —— = lim —— =
ar k—oo al k— o0 (lﬂ—i—l)' k—oo k+ 1

ThusL = 0, L < 1 so this series converges by the ratio test. Later, we willassecond
method (comparison) to arrive at the same conclusion.

Example 2: Harmonic series

Does the following converge?

+...,

e

1 1 1
p— —:1 —_ - .« .
S ;.zlk +2+3+ +

This series is thélarmonic SeriesTo apply the ratio test, we note that

1 1
Ayl = ——, ap = —,
TR Tk
u 1
L= lim = — Jim _k:41-1 = lim —— =
k—oo ag k—oo + k—oo k + 1

k
SinceL = 1, in this case, the test is inconclusive. In fact, we show ictiBa 10.4 thathe
harmonic series diverges
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Example 3: Geometric series

Apply the ratio test to determine the condition for convercgof the geometric series,

S = irk.
k=0

Here “
k+1 ko Yk+1
app1 =" ap =¥, == =1,
ag
e
L= lim 22 —
k—oo Qg

So, by the ratio test, if. = r < 1 then the geometric series converges (confirming a fact
we have already established).

11.9.2 Series comparison tests

We can sometimes use the convergence (or divergence) ofvankseries to conclude
whether a second series converges (or diverges).

Suppose we have two series,

WK

Sa=)» ar and S, = Zbkv
k=0

E
I

0

such that terms of one series are always smaller than terthe other, i.e. satisfy
0<ap<b, forallk=0,1,....

Then
> " bi convergess > aj, converges

Z ay, diverges= Z by, diverges

The idea behind the first of these statements is that the lsrhaleries) ay, is
“squeezed in” between 0 (the lower bound) and the sum of ttgetaseries (which we
know must exist, sinc®_ b, converges.) This means that the smaller series cannot leecom
unbounded. For the second statement, we have that the sofale two series is known
to diverge, forcing the larger also to be unbounded. One wcaustfully observe that="
applies only in one direction. (For example, if the smalleries converges, we cannot
conclude anything about the larger series.)

Example: Comparison with geometric series

Does the series below converge or diverge?

=1
S:kzzoz’wrl'




240 Chapter 11. Appendix

Solution: We compare terms in this series to a terms in a geometricssaiier = 1. i.e.

5
consider
1 1

241k

ak 2k‘

Then clearly
0 <ar <b, foreveryk

(since the denominator i is larger). But we know tha} 2% converges. Therefore, so
doesy” 7

11.9.3 Alternating series

An alternating series is a series in which the signs of swbeeserms alternate. An exam-
ple of this type is the series

1 1 1 1
l—- - ——+...= —1)nt —
2 + 3 4 + Z( ) n
We will show that this series converges (essentially bex&ersns nearly cancel out), and
in fact, we show in Section 10.5.3 that it converges to the benin(2) ~ 0.693. More

generally, we have the following result.

If S'is an alternating series,

SzZ(—l)kak=a1—a2+a3—a4+...
—1

with a;, > 0 and such that (1u+| > |as| > |as] > ... etc. and (2)imy .~ ar = 0, then
the series converges. (This was established by Leibniz0®.}7

11.10 Adding and multiplying series

We first comment that arithmetic operations on infinite seoiely make sense if the series
are convergent. In this discussion, we will deal only withies of the convergent type.
When this is true, then (and only then) is it true that we carharge the order of operations
as discussed below.

If > ar andd_ b, both convergeany a, =S > bp =T, then
(@) >-(ar +by) convergesand (ar +by) = > ar+ > by =S +T.

(b) > car = ¢ ar = ¢S, wherec is any constant.

(c) The product ax) - (X bx) = 3202 o SoF L aiby_s = S - T.
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Example:

Z<%>k2<%)J:<l+%+i+> <1+%+$+...>.

Both series converge, so we can write

0o 0 k 7
1 1 1 1
S (2) (L) = . _9.3 3,
2 3 1- 1-— 2

1
7=0 k=0 2

11.11 Using series to solve a differential equation

Airy’s equation arises in the study of optics, and (withiaditonditions) is as follows:

y" =wxy, y(0)=1, ¥'(0)=0.
As before, we will write the solution as a series:
y:a0+a1x+a2x2+a3x3—|—a4x4+a5x5+...

Using the information from the initial conditions, we ggb) = ap = 1 andy’(0) = a1 =
0. Now we can write down the derivatives:

Yy = a1 + 2azx + 3azx® + dagx® + Saszt + ...
y' =2ay+2-3x+3 422 +4-523 + ...

The equation then gives

/

y' =y
2a5 + 2 - 3azx + 3 - dagr® + 4 - 5asx® + ... = x(ag + a1 + azx® + azz® +...)
2a2—|—2-3a3x+3-4a4x2+4-5a5x3+...=a0x+a1x2+a2x3+a3x4+...

Again, we can equate the coefficientsigand useiy, = 1 anda; = 0, to obtain

2a5 =0 = as =0,

2-3a3:a0 :>Cl3=2—g,

3-day = = a4 =0,

4-5a5 = as = a5 =0,

5-6ag = as = ag = 2»3}56'
This gives us the first few terms of the solution:

) 3 1‘6
Y= +2-3+2-3-5-6+"'

If we continue in this way, we can write down many terms of thees.
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3D
objects, 81

Abel’s theorem, 211
acceleration, 62
actin
cortex, 84
addition
principle, 140
age
distribution, 167
of death, 167
airways
surface area, 23
volume, 22
Airy’s equation, 241
alcohol
in the blood, 185
algorithm, 29
allele, 146, 165
alligator, 101
alternating series, 240
alveoli, 17
analytic, 214
approach, 29
annuity, 74
anti-differentiation, 49
antiderivative, 47, 110
table of, 49
applications
of integration, 61
approximation
left endpoint, 224
linear, 36, 200
right endpoint, 224
Archimedes, 4
area
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as a function, 39
circle, 6

of planar region, 27
of simple shapes, 1
parallelogram, 2
polygon, 3
rectangle, 2
triangle, 2

true, 35

average, 234

mass density, 86

of probability distribution, 137

weighted, 234

average value

of a function, 76, 161

bacterial

motion, 150
balance

energy, 188

mass, 186
bank

interest rate, 74
bell

curve, 145

Bernoulli trial, 140
bifurcate, 18

bin, 166, 233
binomial

coefficient, 142
distribution, 140, 143
theorem, 142

birth, 71, 178
blood alcohol, 185
branch

daughter, 18
parent, 18
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Index

bronchial tubes, 17

calculus

motivation for, xvii
carrying capacity, 191
center

of mass, 81, 85, 133, 137, 157, 228

centroid, 122
chain rule, 107
change

net, 66, 71

total, 66
chemical kinetics, 185
chromosomes, 146
circadean

rhythm, 72
cohort, 196, 197
coin

fair, 134

toss, 136, 165
combination, 237
comparison

integral and series, 206

integrals, 205
tests, 239

completing the square, 117

conservation
of energy, 188
of mass, 186
converge, 14
convergence, 199
of series, 200

tests for, 201, 206, 237

convergent, 15
coordinate
system, 28
critical point, 53
cumulative

function, 84, 136, 154, 155, 235

data, 133
set, 133
decay
radioactive, 162
rate, 185
definite

integral, 37, 43
density, 61, 82
probability, 153
dice, 139
differential, 107-109
equation, 177
notation, 107, 108
differential equation
linear, 184
nonlinear, 192
displacement, 62
distribution
binomial, 140
frequency, 233
Gaussian, 145
grade, 133, 137
normal, 145
uniform, 169, 174
diverge, 14, 201
divergence, 199
of series, 200
divergent, 15
dummy
variable, 40

emptying

container, 186

time, 191
endpoints, 30, 113
energy

balance, 188

conservation, 188

kinetic, 188

potential, 188
error

approximation, 216
Euler's method, 184
evaluate

a function, 208
even

function, 51
expected value, 137
experiment, 134

coin-toss, 137

repeated, 134
exponential, 35
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decaying, 202

function, 214

growth, 19, 180
eye

color, 146, 147

factorial, 238
notation, 236
factoring
denominator, 117
failure, 140
fair
dice, 139
falling object, 181
first-order
differential equation, 178
force
frictional, 181
of gravity, 181
formulae
areas, 25
volumes, 25
fractals, 18
frequency, 73, 136
friction, 181
frictional
coefficient, 181
fulcrum, 226
function
bounded, 37
continuous, 37
even, 51
inverse, 53
Fundamental Theorem of Calculus, 40,
41, 43,47, 62, 155, 216

Gauss, 11
formula, 11, 12
Gaussian
distribution, 145
gene, 146
genetics, 146
genotype, 146
geometric
series, 10, 209, 240
series, finite, 13

series,finite, 200
series,infinite, 201
Gompertz, 196
grade
distribution, 137, 232
growth
density dependent, 191
exponential, 19, 75, 180
logistic, 191
population, 197
self-similar, 18
unlimited, 179, 191
growth rate
intrinsic, 191
per capita, 179

Hanoi

tower of, 8
Hardy-Weinberg, 146
harmonic

series, 201, 206, 211, 237
height

distribution, 166
higher order terms, 200
hormone

level of, 72
hypotenuse, 121

implication, 237
improper
integral, 58, 162—-164, 203
income
stream, 74
induction, 221
mathematical, 12
infinite
series, 14, 200
initial
condition, 179
initial value, 178
problem, 178, 179
integral, 110
applications of, 61
converges, 202, 204
definite, 31, 33, 37, 40, 43, 110
definite,properties of, 44
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diverges, 202, 203
does not exist, 57, 121
exists, 163
improper, 58, 76, 162-164, 199, 202,
206
indefinite, 110, 192
integrand, 110
integration, 33
by partial fractions, 124
by parts, 107, 124, 126
by substitution, 111
constant, 111
numerical, 162
interest
compounded, 75
rate, 74
inverse function, 53
inverse trigonometric functions, 121

keratocyte, 84

kinetic

energy, 188
Kulesa

Paul, 101
leaf

area of, 33
leaking

container, 186
Leibniz, 240
length

of curve, 81, 96
of straight line, 96
limit, 29
linear approximation, 36
logistic
equation, 191
growth, 191
lung
branching, 16
human, 22

Maple, 107

mass
balance, 186
conservation, 186

density, 82, 165
discrete, 165
mass distribution
continuous, 82
discrete, 82
Mathematica, 107
mating
table, 148
maximum, 53, 55
mean, 76, 133, 137, 153, 158, 161, 234
continuous probability, 154
decay time, 162, 164
of a distribution, 157
of a probability distribution, 106
of binomial distribution, 144
measurement, 133
median, 87, 133, 158, 161, 236
continuous probability, 154
decay time, 162, 164
micron(m), 84
minimum, 53, 55
model
derivation of, 186
modeling, 177
Mogilner
Alex, 84
moment, 171
j'th, 139
first, 172
of a distribution, 171
of distribution, 139
of mass, 227
second, 139, 172
zero'th, 172
mortality, 178
age distribution, 167
constant, 178
Gompertz law of, 196
nonconstant, 196
motion
uniform, 63
uniformly accelerated, 63
multiplication
principle, 140
Murray,James D., 101
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net change, 67
Newton’s law, 177
nonlinear
differential equation, 189
normalization, 145, 155
constant, 155, 163
numerical
approach, 29
method, 184

observation, 133
ODE, 177
oscillation, 73
outcome
of experiment, 134

partial fractions, 118, 192, 231
partial sums, 15, 200
PDE, 177
pendulum, 177
perfect square, 117
period, 73
permutation, 142, 237
phenotype, 146
pi(m)
approximation for, 212
definition of, 5
polygon, 3
polynomials, 208
population
growth, 178, 197
sustainable, 195
potential
energy, 188
power
series, 199
Preface, xvii
present value, 75, 76
probability
applications of, 161
continuous, 153, 165
cumulative, 136
density, 154
discrete, 165
discrete, rules of, 135
empirical, 134, 136

symmetric, 160
theoretical, 135
product rule
for derivatives, 126
production, 71
progression
geometric, 20
mathmatical, 19
Pythagorean
theorem, 96
triangle, 121

radioactive

decay, 162
radioactive decay

cumulative, 164
raindrops, 169
random

event, 134

variable, 135

walk, 150
random variable

continuous, 153

discrete, 153
rate

birth, 178

mortality, 178

of change, 67

production, 72

removal, 72
ratio

test, 238
rational

function, 124, 231
rectangle

height of, 30
rectangular strips, 28, 43
recursion relation, 19
removal, 71
replicate, 136
rescale, 145
Riemann

sum, 28-31, 33, 40
rule

chain, 116
rules
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iterated, 23 examples, 113
trigonometric, 118, 123
savings account, 74 success, 140
scaled sum
equation, 192 geometric, 35
scaling, 192 of N cubes, 12
secant, 230 of N integers, 11
separation of N squares, 12
of variables, 65, 177-179, 182, 189, of square integers, 32
197 Riemann, 29, 30, 40
series summation
-p, 208 index, 9
alternating, 240 notation, 9
comparison tests, 239 sums

converges, 200

divergent, 238

diverges, 200, 208

finite geometric, 13

geometric, 10, 13, 200, 209, 239
harmonic, 201, 206, 211, 237, 238
infinite, 14, 199, 200

operations on, 240

Taylor, 199, 209

term by term integration, 210

Sigma

notation, 9
size distribution, 169
sketching

antiderivative, 53
solids

of revolution, 90, 91
solution

curves, 190

of initial value problem, 179

gualitative, 68

guantitative, 68

to ODE, 180
spreadsheet, 23, 29, 190
standard deviation, 138,172,173
steady state, 66, 184, 195
step

function, 138, 235
strips

area of, 28

rectangular, 28, 43
substitution, 107, 111

partial, 15, 200
surface area

cylinder, 6
survival

probability, 168

tangent line, 200
Taylor polynomial, 209
Taylor series, 199, 209
for cos(x), 216
for sin(x), 214
fore®, 213
teeth, 99
temperature, 67
terminal velocity, 180
torque, 226, 227
tree
growth, 68
structure, 18
trial
Bernoulli, 140
triangle
Pythagorean, 121
trigonometric, 120
trifurcate, 18
trigonometric
identities, 118
substitution, 118

unbiased, 134, 136
unbounded
function, 57
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undefined
function, 58
units, 7

variance, 138, 153, 172
continuous probability, 154
velocity, 62
terminal, 66, 180, 184
volume
cube, 6
cylinder, 7, 90
cylindrical shell, 7
disk, 90
of solids, 81
rectangular box, 6
shell, 90
simple shapes, 6
sphere, 7
spherical shell, 7

zygote, 147



