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Preface

Integral calculus arose originally to solve very practicalproblems that merchants,
landowners, and ordinary people faced on a daily basis. Among such pressing problems
were the following: How much should one pay for a piece of land? If that land has an
irregular shape, i.e. is not a simple geometrical shape, howshould its area (and therefore,
its cost) be calculated? How much olive oil or wine, are you getting when you purchase
a barrel-full? Barrels come is a variety of shapes and sizes.If the barrel is not close
to cylindrical, what is its volume (and thus, a reasonable price to pay)? In most such
transactions, the need to accurately measure an area or a volume went well beyond the
available results of geometry. (It was known how to compute areas of rectangles, triangles,
and polygons. Volumes of cylinders and cubes were also known, but these were at best
crude approximations to actual shapes and objects encountered in commerce.) This led to
motivation for the development of the topic we now call integral calculus.

Essentially, the approach is based on the idea of “divide andconquer”: that is, cut up
the geometric shape into smaller pieces, and approximate those pieces by regular shapes
that can be quantified using simple geometry. In computing the area of an irregular shape,
add up the areas of the (approximately regular) little partsin your “dissection”, to arrive at
an approximation of the desired area of the shape. Dependingon how fine the dissection
(i.e. how many little parts), this approximation could be quite crude, or fairly accurate.
The idea of applying a limit to obtain the true dimensions of the object was a flash of
inspiration that led to modern day calculus. Similar ideas apply to computing the volume
of a 3D object by successive subdivisions.

It is the aim of a calculus course to develop the language to deal with such concepts,
to make such concepts systematic, and to find convenient and relevant shortcuts that can
be used to solve a variety of problems that have common features. More than that, it is
the purpose of this course to show that ideas developed in theoriginal context of geometry
(finding areas or volumes of 2D or 3D shapes) can be generalized and extended to a variety
of applications that have little to do with geometry.

One area of application is that of computing total change given some time-dependent
rate of change. We encounter many cases where a process changes at a rate that varies
over time: the rate of production of hormone changes over a day, the rate of flow of water
in a river changes over the seasons, or the rate of motion of a vehicle (i.e. its velocity)
changes over its path. Computing the total change over some time span turns out to be
closely related to the same underlying concept of “divide and conquer”: namely, subdivide
(the time interval) and add up approximate changes over eachof the smaller subintervals.
The same idea applies to quantities that are distributed notin time but rather over space.

xvii



xviii Preface

We show the connection between material that is spatially distributed in a nonuniform way
(e.g. a density that varies from point to point) and total amount of material (obtained by
the same process of integration).

A theme that unites much of the approach is that integral calculus has both analytic
(i.e. pencil and paper) calculations - but these apply to a limited set of cases, and analogous
numerical (i.e. computer-enabled) calculations. The two go hand-in-hand, with concepts
that are closely linked. A set of computer labs using a spreadsheet tool are an important
part of this course. The importance of seeing calculus from these two distinct but related
perspectives is stressed: on the one hand, analytic computations can be very powerful and
helpful, but at the same time, many interesting problems aretoo challenging to be handled
by integration techniques. Here is where the same ideas, used in the context of simple
computer algorithms, comes in handy. For this reason, the importance of understanding the
concepts (not just the technical results, or the “formulae”for integrals) is vital: Ideas used to
develop the analytic techniques on which calculus is based can be adapted to develop good
working methods for harnessing computer power to solve problems. This is particularly
useful in cases where the analytic methods are not sufficientor too technically challenging.

This set of lecture notes grew out of many years of teaching ofMathematics 103. The
material is organized as follows: In Chapter 1 we develop thebasic formulae for areas and
volumes of elementary shapes, and show how to set up summations that describe compound
objects made up of many such shapes. An example to motivate these ideas is the volume
and surface area of a branching structure. In Chapter 2, we turn attention to the classic
problem of defining and computing the area of a two-dimensional region, leading to the
notion of the definite integral. In Chapter 3, we discuss the linchpin of Integral Calculus,
namely the Fundamental Theorem that connects derivatives and integrals. This allows us
to find a great shortcut to the analytic computations described in Chapter 2. Applications
of these ideas to calculating total change from rates of change, and to computing volumes
and masses are discussed in Chapters 4 and 5.

To expand our reach to other cases, we discuss the techniqueson integration in Chap-
ter 6. Here, we find that the chain rule of calculus reappears (in the form of substitution
integrals), and a variety of miscellaneous tricks are devised to simplify integrals. Among
these, the most important is integration by parts, a technique that has independent applica-
tions in many areas of science.

We study the ideas of probability in Chapters 7 and 8. Here we rediscover the con-
nection between discrete sums and continuous integration,and apply the techniques to
computing expected values for random variables. The connection between the mean (in
probability) and the center of mass (of a density distributed in space) is illustrated.

Many scientific problems are phrased in terms of rules about rates of change. Quite
often such rules take the form of differential equations. Inan earlier differential calculus
course, the student will have made acquaintance with the topic of such equations and qual-
itative techniques associated with interpreting their solutions. With the methods of integral
calculus in hand, we can solve some types of differential equations analytically. This is
discussed in Chapter 9.

The course concludes with the development of some notions ofinfinite sums and con-
vergence in Chapter 10. Of prime importance, the Taylor series is developed and discussed
in this concluding chapter.



Chapter 1

Areas, volumes and
simple sums

1.1 Introduction
This introductory chapter has several aims. First, we concentrate here a number of basic
formulae for areas and volumes that are used later in developing the notions of integral
calculus. Among these are areas of simple geometric shapes and formulae for sums of
certain common sequences. An important idea is introduced,namely that we can use the
sum of areas of elementary shapes to approximate the areas ofmore complicated objects,
and that the approximation can be made more accurate by a process of refinement.

We show using examples how such ideas can be used in calculating the volumes or
areas of more complex objects. In particular, we conclude with a detailed exploration of
the structure of branched airways in the lung as an application of ideas in this chapter.

1.2 Areas of simple shapes
One of the main goals in this course will be calculating areasenclosed by curves in the
plane and volumes of three dimensional shapes. We will find that the tools of calculus will
provide important and powerful techniques for meeting thisgoal. Some shapes are simple
enough that no elaborate techniques are needed to compute their areas (or volumes). We
briefly survey some of these simple geometric shapes and listwhat we know or can easily
determine about their area or volume.

The areas of simple geometrical objects, such as rectangles, parallelograms, triangles,
and circles are given by elementary formulae. Indeed, our ability to compute areas and
volumes of more elaborate geometrical objects will rest on some of these simple formulae,
summarized below.

Rectangular areas

Most integration techniques discussed in this course are based on the idea of carving up
irregular shapes into rectangular strips. Thus, areas of rectangles will play an important
part in those methods.

1



2 Chapter 1. Areas, volumes and simple sums

• The area of a rectangle with baseb and heighth is

A = b · h

• Any parallelogram with heighth and baseb also has area,A = b·h. See Figure 1.1(a)
and (b)

(a)

(c)

(e) (f)

(d)

(b)

b

h

b

h

h

b

b

h r

b

h

b

θ

h

Figure 1.1.Planar regions whose areas are given by elementary formulae.

Areas of triangular shapes

A few illustrative examples in this chapter will be based on dissecting shapes (such as regu-
lar polygons) into triangles. The areas of triangles are easy to compute, and we summarize
this review material below. However, triangles will play a less important role in subsequent
integration methods.

• The area of a triangle can be obtained by slicing a rectangle or parallelogram in half,
as shown in Figure 1.1(c) and (d). Thus, any triangle with base b and heighth has
area

A =
1

2
bh.



1.2. Areas of simple shapes 3

• In some cases, the height of a triangle is not given, but can bedetermined from other
information provided. For example, if the triangle has sides of lengthb andr with
enclosed angleθ, as shown on Figure 1.1(e) then its height is simplyh = r sin(θ),
and its area is

A = (1/2)br sin(θ)

• If the triangle is isosceles, with two sides of equal length,r, and base of lengthb,
as in Figure 1.1(f) then its height can be obtained from Pythagoras’s theorem, i.e.
h2 = r2 − (b/2)2 so that the area of the triangle is

A = (1/2)b
√

r2 − (b/2)2.

1.2.1 Example 1: Finding the area of a polygon using
triangles: a “dissection” method

Using the simple ideas reviewed so far, we can determine the areas of more complex ge-
ometric shapes. For example, let us compute the area of a regular polygon withn equal
sides, where the length of each side isb = 1. This example illustrates how a complex shape
(the polygon) can be dissected into simpler shapes, namely triangles1.

hθ
1

1/2

θ/2

Figure 1.2. An equilateraln-sided polygon with sides of unit length can be dis-
sected inton triangles. One of these triangles is shown at right. Since itcan be further
divided into two Pythagorean triangles, trigonometric relations can be used to find the
heighth in terms of the length of the base1/2 and the angleθ/2.

Solution

The polygon hasn sides, each of lengthb = 1. We dissect the polygon inton isosceles
triangles, as shown in Figure 1.2. We do not know the heights of these triangles, but the
angleθ can be found. It is

θ = 2π/n

since together,n of these identical angles make up a total of 360◦ or 2π radians.

1This calculation will be used again to find the area of a circlein Section 1.2.2. However, note that in later
chapters, our dissections of planar areas will focus mainlyon rectangular pieces.
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Let h stand for the height of one of the triangles in the dissected polygon. Then
trigonometric relations relate the height to the base length as follows:

opp
adj

=
b/2

h
= tan(θ/2)

Using the fact thatθ = 2π/n, and rearranging the above expression, we get

h =
b

2 tan(π/n)

Thus, the area of each of then triangles is

A =
1

2
bh =

1

2
b

(
b

2 tan(π/n)

)

.

The statement of the problem specifies thatb = 1, so

A =
1

2

(
1

2 tan(π/n)

)

.

The area of the entire polygon is thenn times this, namely

An-gon=
n

4 tan(π/n)
.

For example, the area of a square (a polygon with 4 equal sides, n = 4) is

Asquare=
4

4 tan(π/4)
=

1

tan(π/4)
= 1,

where we have used the fact thattan(π/4) = 1.
As a second example, the area of a hexagon (6 sided polygon, i.e. n = 6) is

Ahexagon=
6

4 tan(π/6)
=

3

2(1/
√

3)
=

3
√

3

2
.

Here we used the fact thattan(π/6) = 1/
√

3.

1.2.2 Example 2: How Archimedes discovered the area of a
circle: dissect and “take a limit”

As we learn early in school the formula for the area of a circleof radiusr, A = πr2.
But how did this convenient formula come about? and how couldwe relate it to what we
know about simpler shapes whose areas we have discussed so far. Here we discuss how
this formula for the area of a circle was determined long ago by Archimedes using a clever
“dissection” and approximation trick. We have already seenpart of this idea in dissecting
a polygon into triangles, in Section 1.2.1. Here we see a terrifically important second step
that formed the “leap of faith” on which most of calculus is based, namely taking a limit as
the number of subdivisions increases2.

First, we recall the definition of the constantπ:
2This idea has important parallels with our later development of integration. Here it involves adding up the

areas of triangles, and then taking a limit as the number of triangles gets larger. Later on, we do much the same,
but using rectangles in the dissections.
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Definition of π

In any circle,π is the ratio of the circumference to the diameter of the circle. (Comment:
expressed in terms of the radius, this assertion states the obvious fact that the ratio of2πr
to 2r is π.)

Shown in Figure 1.3 is a sequence of regular polygons inscribed in the circle. As the
number of sides of the polygon increases, its area graduallybecomes a better and better
approximation of the area inside the circle. Similar observations are central to integral
calculus, and we will encounter this idea often. We can compute the area of any one of
these polygons by dissecting into triangles. All triangleswill be isosceles, since two sides
are radii of the circle, whose length we’ll callr.

r r

b

h

Figure 1.3.Archimedes approximated the area of a circle by dissecting it into triangles.

Let r denote the radius of the circle. Suppose that at one stage we have ann sided
polygon. (If we knew the side length of that polygon, then we already have a formula for
its area. However, this side length is not known to us. Rather, we know that the polygon
should fit exactly inside a circle of radiusr.) This polygon is made up ofn triangles, each
one an isosceles triangle with two equal sides of lengthr and base of undetermined length
that we will denote byb. (See Figure 1.3.) The area of this triangle is

Atriangle=
1

2
bh.

The area of the whole polygon,An is then

A = n · (area of triangle) = n
1

2
bh =

1

2
(nb)h.

We have grouped terms so that(nb) can be recognized as the perimeter of the polygon
(i.e. the sum of the n equal sides of lengthb each). Now consider what happens when we
increase the number of sides of the polygon, taking larger and largern. Then the height
of each triangle will get closer to the radius of the circle, and the perimeter of the polygon
will get closer and closer to the perimeter of the circle, which is (by definition)2πr. i.e. as
n → ∞,

h → r, (nb) → 2πr

so

A =
1

2
(nb)h → 1

2
(2πr)r = πr2
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We have used the notation “→” to mean that in the limit, asn gets large, the quantity of
interest “approaches” the value shown. This argument proves that the area of a circle must
be

A = πr2.

One of the most important ideas contained in this little argument is that by approximating a
shape by a larger and larger number of simple pieces (in this case, a large number of trian-
gles), we get a better and better approximation of its area. This idea will appear again soon,
but in most of our standard calculus computations, we will use a collection of rectangles,
rather than triangles, to approximate areas of interestingregions in the plane.

Areas of other shapes

We concentrate here the area of a circle and of other shapes.

• The area of a circle of radiusr is

A = πr2.

• The surface area of a sphere of radiusr is

Sball = 4πr2.

• The surface area of a right circular cylinder of heighth and base radiusr is

Scyl = 2πrh.

Units

The units of area can be meters2 (m2), centimeters2 (cm2), square inches, etc.

1.3 Simple volumes
Later in this course, we will also be computing the volumes of3D shapes. As in the case
of areas, we collect below some basic formulae for volumes ofelementary shapes. These
will be useful in our later discussions.

1. The volume of a cube of side lengths (Figure 1.4a), is

V = s3.

2. The volume of a rectangular box of dimensionsh, w, l (Figure 1.4b) is

V = hwl.

3. The volume of a cylinder of base areaA and heighth, as in Figure 1.4(c), is

V = Ah.

This applies for a cylinder with flat base of any shape, circular or not.
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r

(a) (b)

(c) (d)

s

w
l

h

A

h

Figure 1.4.3-dimensional shapes whose volumes are given by elementaryformulae

4. In particular, the volume of a cylinder with a circular base of radiusr, (e.g. a disk) is

V = h(πr2).

5. The volume of a sphere of radiusr (Figure 1.4d), is

V =
4

3
πr3.

6. The volume of a spherical shell (hollow sphere with a shellof some small thickness,
τ ) is approximately

V ≈ τ · (surface area of sphere) = 4πτr2.

7. Similarly, a cylindrical shell of radiusr, heighth and small thickness,τ has volume
given approximately by

V ≈ τ · (surface area of cylinder) = 2πτrh.

Units

The units of volume are meters3 (m3), centimeters3 (cm3), cubic inches, etc.
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1.3.1 Example 3: The Tower of Hanoi: a tower of disks

In this example, we consider how elementary shapes discussed above can be used to de-
termine volumes of more complex objects. The Tower of Hanoi is a shape consisting of a
number of stacked disks. It is a simple calculation to add up the volumes of these disks, but
if the tower is large, and comprised of many disks, we would want some shortcut to avoid
long sums3.

Figure 1.5. Computing the volume of a set of disks. (This structure is sometimes
called the tower of Hanoi after a mathematical puzzle by the same name.)

(a) Compute the volume of a tower made up of four disks stackedup one on top of
the other, as shown in Figure 1.5. Assume that the radii of thedisks are 1, 2, 3, 4 units and
that each disk has height 1.

(b) Compute the volume of a tower made up of 100 such stacked disks, with radii
r = 1, 2, . . . , 99, 100.

Solution

(a) The volume of the four-disk tower is calculated as follows:

V = V1 + V2 + V3 + V4,

whereVi is the volume of thei’th disk whose radius isr = i, i = 1, 2 . . . 4. The height of
each disk ish = 1, so

V = (π12) + (π22) + (π32) + (π42) = π(1 + 4 + 9 + 16) = 30π.

(b) The idea will be the same, but we have to calculate

V = π(12 + 22 + 32 + . . . + 992 + 1002).

It would be tedious to do this by adding up individual terms, and it is also cumbersome
to write down the long list of terms that we will need to add up.This motivates inventing
some helpful notation, and finding some clever way of performing such calculations.

3Note that the idea of computing a volume of a radially symmetric 3D shape by dissection into disks will form
one of the main themes in Chapter 5. Here, the sums of the volumes of disks is exactly the same as the volume of
the tower. Later on, the disks will only approximate the true3D volume, and a limit will be needed to arrive at a
“true volume”.
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1.4 Summations and the “Sigma” notation
We introduce the following notation for the operation of summing a list of numbers:

S = a1 + a2 + a3 + . . . + aN ≡
N∑

k=1

ak.

The Greek symbolΣ (“Sigma”) indicates summation. The symbolk used here is
called the “index of summation” and it keeps track of where weare in the list of summands.
The notationk = 1 that appears underneathΣ indicates where the sum begins (i.e. which
term starts off the series), and the superscriptN tells us where it ends. We will be interested
in getting used to this notation, as well as in actually computing the value of the desired
sum using a variety of shortcuts.

Example 4a: Summation notation

Suppose we want to form the sum of ten numbers, each equal to 1.We would write this as

S = 1 + 1 + 1 + . . . 1 ≡
10∑

k=1

1.

The notation. . . signifies that we have left out some of the terms (out of laziness, or in cases
where there are too many to conveniently write down.) We could have just as well written
the sum with another symbol (e.g.n) as the index, i.e. the same operation is implied by

10∑

n=1

1.

To compute the value of the sum we use the elementary fact thatthe sum of ten ones is just
10, so

S =

10∑

k=1

1 = 10.

Example 4b: Sum of squares

Expand and sum the following:

S =

4∑

k=1

k2.

Solution

S =
4∑

k=1

k2 = 1 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30.

(We have already seen this sum in part (a) of The Tower of Hanoi.)
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Example 4c: Common factors

Add up the following list of 100 numbers (only a few of them areshown):

S = 3 + 3 + 3 + 3 + . . . + 3.

Solution

There are 100 terms, all equal, so we can take out a common factor

S = 3 + 3 + 3 + 3 + . . . + 3 =

100∑

k=1

3 = 3

100∑

k=1

1 = 3(100) = 300.

Example 4d: Finding the pattern

Write the following terms in summation notation:

S =
1

3
+

1

9
+

1

27
+

1

81
.

Solution

We recognize that there is a pattern in the sequence of terms,namely, each one is1/3 raised
to an increasing integer power, i.e.

S =
1

3
+

(
1

3

)2

+

(
1

3

)3

+

(
1

3

)4

.

We can represent this with the “Sigma” notation as follows:

S =

4∑

n=1

(
1

3

)n

.

The “index”n starts at 1, and counts up through 2, 3, and 4, while each term has the form of
(1/3)n. This series is ageometric series, to be explored shortly. In most cases, a standard
geometric series starts off with the value 1. We can easily modify our notation to include
additional terms, for example:

S =

5∑

n=0

(
1

3

)n

= 1 +
1

3
+

(
1

3

)2

+

(
1

3

)3

+

(
1

3

)4

+

(
1

3

)5

.

Learning how to compute the sum of such terms will be important to us, and will be de-
scribed later on in this chapter.

1.4.1 Manipulations of sums

Since addition is commutative and distributive, sums of lists of numbers satisfy many con-
venient properties. We give a few examples below:
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Example 5a: Simple operations

Simplify the following expression:

10∑

k=1

2k −
10∑

k=3

2k.

Solution

10∑

k=1

2k −
10∑

k=3

2k = (2 + 22 + 23 + · · · + 210) − (23 + · · · + 210) = 2 + 22.

We could have arrived at this conclusion directly from

10∑

k=1

2k −
10∑

k=3

2k =
2∑

k=1

2k = 2 + 22 = 2 + 4 = 6.

The idea is that all but the first two terms in the first sum will cancel. The only remaining
terms are those corresponding tok = 1 andk = 2.

Example 5b: Expanding

Expand the following expression:

5∑

n=0

(1 + 3n).

Solution

5∑

n=0

(1 + 3n) =

5∑

n=0

1 +

5∑

n=0

3n.

1.5 Summation formulas
In this section we introduce a few examples of useful sums andgive formulae that provide
a shortcut to dreary calculations.

The sum of consecutive integers (Gauss’ formula)

We first show that the sum of the firstN integers is:

S = 1 + 2 + 3 + . . . + N =

N∑

k=1

k =
N(N + 1)

2
. (1.1)
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The following trick is due to Gauss. By aligning two copies ofthe above sum, one
written backwards, we can easily add them up one by one vertically. We see that:

S = 1 + 2 + . . . + (N − 1) + N
+

S = N + (N − 1) + . . . + 2 + 1

2S = (1 + N) + (1 + N) + . . . + (1 + N) + (1 + N)

Thus, there areN times the value(N + 1) above, so that

2S = N(1 + N), so S =
N(1 + N)

2
.

Thus, Gauss’ formula is confirmed.

Example: Adding up the first 1000 integers

Suppose we want to add up the first 1000 integers. This formulais very useful in what
would otherwise be a huge calculation. We find that

S = 1 + 2 + 3 + . . . + 1000 =

1000∑

k=1

k =
1000(1 + 1000)

2
= 500(1001) = 500500.

Two other useful formulae are those for the sums of consecutive squares and of
consecutive cubes:

The sum of the first N consecutive square integers

S2 = 12 + 22 + 32 + . . . + N2 =

N∑

k=1

k2 =
N(N + 1)(2N + 1)

6
. (1.2)

The sum of the first N consecutive cube integers

S3 = 13 + 23 + 33 + . . . + N3 =

N∑

k=1

k3 =

(
N(N + 1)

2

)2

. (1.3)

In the Appendix, we show how the formula for the sum of square integers can be
proved by a technique calledmathematical induction.

1.5.1 Example 3, revisited: Volume of a Tower of Hanoi

Armed with the formula for the sum of squares, we can now return to the problem of com-
puting the volume of a tower of 100 stacked disks of heights 1 and radiir = 1, 2, . . . , 99, 100.
We have

V = π(12+22+32+. . .+992+1002) = π
100∑

k=1

k2 = π
100(101)(201)

6
= 338, 350π cubic units.
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Examples: Evaluating the sums

Compute the following two sums:

(a)Sa =
20∑

k=1

(2 − 3k + 2k2), (b)Sb =
50∑

k=10

k.

Solutions

(a) We can separate this into three individual sums, each of which can be handled by alge-
braic simplification and/or use of the summation formulae developed so far.

Sa =

20∑

k=1

(2 − 3k + 2k2) = 2

20∑

k=1

1 − 3

20∑

k=1

k + 2

20∑

k=1

k2.

Thus, we get

Sa = 2(20)− 3

(
20(21)

2

)

+ 2

(
(20)(21)(41)

6

)

= 5150.

(b) We can express the second sum as a difference of two sums:

Sb =

50∑

k=10

k =

(
50∑

k=1

k

)

−
(

9∑

k=1

k

)

.

Thus

Sb =

(
50(51)

2
− 9(10)

2

)

= 1275 − 45 = 1230.

1.6 Summing the geometric series
Consider a sum of terms that all have the formrk, wherer is some real number andk is
an integer power. We refer to a series of this type as ageometric series. We have already
seen one example of this type in a previous section. Below we will show that the sum of
such a series is given by:

SN = 1 + r + r2 + r3 + . . . + rN =

N∑

k=0

rk =
1 − rN+1

1 − r
(1.4)

wherer 6= 1. We call this sum a (finite) geometric series. We would like tofind
an expression for terms of this form in the general case of anyreal numberr, and finite
number of termsN . First we note that there areN + 1 terms in this sum, so that ifr = 1
then

SN = 1 + 1 + 1 + . . . 1 = N + 1

(a total ofN + 1 ones added.) Ifr 6= 1 we have the following trick:

S = 1 + r + r2 + . . . + rN

−
rS = r + r2 + . . . + rN+1
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Subtracting leads to

S − rS = (1 + r + r2 + . . . + rN ) − (r + r2 + . . . + rN + rN+1)

Most of the terms on the right hand side cancel, leaving

S(1 − r) = 1 − rN+1.

Now dividing both sides by1 − r leads to

S =
1 − rN+1

1 − r
,

which was the formula to be established.

Example: Geometric series

Compute the following sum:

Sc =

10∑

k=0

2k.

Solution

This is a geometric series

Sc =
10∑

k=0

2k =
1 − 210+1

1 − 2
=

1 − 2048

−1
= 2047.

1.7 Prelude to infinite series
So far, we have looked at several examples of finite series, i.e. series in which there are
only a finite number of terms,N (whereN is some integer). We would like to investigate
how the sum of a series behaves when more and more terms of the series are included. It
is evident that in many cases, such as Gauss’s series (1.1), or sums of squared or cubed
integers (e.g., Eqs. (1.2) and (1.3)), the series simply gets larger and larger as more terms
are included. We say that such seriesdivergeasN → ∞. Here we will look specifically
for series thatconverge, i.e. have a finite sum, even as more and more terms are included4.

Let us focus again on the geometric series and determine its behaviour when the
number of terms is increased. Our goal is to find a way of attaching a meaning to the
expression

Sn =

∞∑

k=0

rk,

when the series becomes aninfinite series. We will use the following definition:

4Convergence and divergence of series is discussed in fullerdepth in Chapter 10 in the context of Taylor Series.
However, these concepts are so important that it was felt necessary to introduce some preliminary ideas early in
the term.
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1.7.1 The infinite geometric series

Definition

An infinite series that has a finite sum is said to beconvergent. Otherwise it isdivergent.

Definition

Suppose thatS is an (infinite) series whose terms areak. Then thepartial sums, Sn, of this
series are

Sn =
n∑

k=0

ak.

We say that the sum of the infinite series isS, and write

S =

∞∑

k=0

ak,

provided that

S = lim
n→∞

n∑

k=0

ak.

That is, we consider the infinite series as the limit of the partial sums as the number of
termsn is increased. In this case we also say that the infinite seriesconverges toS.

We will see that only under certain circumstances will infinite series have a finite
sum, and we will be interested in exploring two questions:

1. Under what circumstances does an infinite series have a finite sum.

2. What value does the partial sum approach as more and more terms are included.

In the case of a geometric series, the sum of the series, (1.4)depends on the number
of terms in the series,n via rn+1. Wheneverr > 1, or r < −1, this term will get bigger in
magnitude asn increases, whereas, for0 < r < 1, this term decreases in magnitude with
n. We can say that

lim
n→∞

rn+1 = 0 provided |r| < 1.

These observations are illustrated by two specific examplesbelow. This leads to the fol-
lowing conclusion:

The sum of an infinite geometric series,

S = 1 + r + r2 + . . . + rk + . . . =

∞∑

k=0

rk,

exists provided|r| < 1 and is

S =
1

1 − r
. (1.5)

Examples of convergent and divergent geometric series are discussed below.
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1.7.2 Example: A geometric series that converges.

Consider the geometric series withr = 1
2 , i.e.

Sn = 1 +
1

2
+

(
1

2

)2

+

(
1

2

)3

+ . . . +

(
1

2

)n

=

n∑

k=0

(
1

2

)k

.

Then

Sn =
1 − (1/2)n+1

1 − (1/2)
.

We observe that asn increases, i.e. as we retain more and more terms, we obtain

lim
n→∞

Sn = lim
n→∞

1 − (1/2)n+1

1 − (1/2)
=

1

1 − (1/2)
= 2.

In this case, we write
∞∑

n=0

(
1

2

)n

= 1 +
1

2
+ (

1

2
)2 + . . . = 2

and we say that “the (infinite) seriesconvergesto 2”.

1.7.3 Example: A geometric series that diverges

In contrast, we now investigate the case thatr = 2: then the series consists of terms

Sn = 1 + 2 + 22 + 23 + . . . + 2n =
n∑

k=0

2k =
1 − 2n+1

1 − 2
= 2n+1 − 1

We observe that asn grows larger, the sum continues to grow indefinitely. In thiscase, we
say that the sumdoes not converge, or, equivalently, that the sumdiverges.

It is important to remember that an infinite series, i.e. a sumwith infinitely many
terms added up, can exhibit either one of these two very different behaviours. It may
converge in some cases, as the first example shows, ordiverge(fail to converge) in other
cases. We will see examples of each of these trends again. It is essential to be able to
distinguish the two. Divergent series (or series that diverge under certain conditions) must
be handled with particular care, for otherwise, we may find contradictions or seemingly
reasonable calculations that have meaningless results.

1.8 Application of geometric series to the branching
structure of the lungs

In this section, we will compute the volume and surface area of the branched airways of
lungs5. We use the summation formulae to arrive at the results, and we also illustrate how
the same calculation could be handled using a simple spreadsheet.

5This section provides an example of how to set up a biologically relevant calculation based on geometric
series. It is further studied in the homework problems. A similar example is given as an exercise for the student
in Lab 1 of this calculus course.
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Our lungs pack an amazingly large surface area into a confinedvolume. Most of
the oxygen exchange takes place in tiny sacs calledalveoli at the terminal branches of the
airways passages. The bronchial tubes conduct air, and distribute it to the many smaller
and smaller tubes that eventually lead to those alveoli. Theprinciple of this efficient organ
for oxygen exchange is that these very many small structurespresent a very large surface
area. Oxygen from the air can diffuse across this area into the bloodstream very efficiently.

The lungs, and many other biological “distribution systems” are composed of a
branched structure. The initial segment is quite large. It bifurcates into smaller segments,
which then bifurcate further, and so on, resulting in a geometric expansion in the number of
branches, their collective volume, length, etc. In this section, we apply geometric series to
explore this branched structure of the lung. We will construct a simple mathematical model
and explore its consequences. The model will consist in somewell-formulated assumptions
about the way that “daughter branches” are related to their “parent branch”. Based on these
assumptions, and on tools developed in this chapter, we willthen predict properties of the
structure as a whole. We will be particularly interested in the volumeV and the surface
areaS of the airway passages in the lungs6.

2

l0

r0

Segment 0

1

Figure 1.6. Air passages in the lungs consist of a branched structure. The index
n refers to the branch generation, starting from the initial segment, labeled0. All segments
are assumed to be cylindrical, with radiusrn and lengthℓn in then’th generation.

1.8.1 Assumptions

• The airway passages consist of many “generations” of branched segments. We label
the largest segment with index “0”, and its daughter segments with index “1”, their
successive daughters “2”, and so on down the structure from large to small branch
segments. We assume that there areM “generations”, i.e. the initial segment has un-
dergoneM subdivisions. Figure 1.6 shows only generations 0, 1, and 2.(Typically,
for human lungs there can be up to 25-30 generations of branching.)

• At each generation, every segment is approximated as a cylinder of radiusrn and
lengthℓn.

6The surface area of the bronchial tubes does not actually absorb much oxygen, in humans. However, as an
example of summation, we will compute this area and compare how it grows to the growth of the volume from
one branching layer to the next.
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radius of first segment r0 0.5 cm
length of first segment ℓ0 5.6 cm
ratio of daughter to parent length α 0.9
ratio of daughter to parent radius β 0.86
number of branch generations M 30
average number daughters per parentb 1.7

Table 1.1.Typical structure of branched airway passages in lungs.

• The number of branches grows along the “tree”. On average, each parent branch
producesb daughter branches. In Figure 1.6, we have illustrated this idea forb = 2.
A branched structure in which each branch produces two daughter branches is de-
scribed as abifurcating tree structure (whereastrifurcating impliesb = 3). In real
lungs, the branching is slightly irregular. Not every levelof the structure bifurcates,
but in general, averaging over the many branches in the structureb is smaller than 2.
In fact, the rule that links the number of branches in generation n, here denotedxn

with the number (of smaller branches) in the next generation, xn+1 is

xn+1 = bxn. (1.6)

We will assume, for simplicity, thatb is a constant. Since the number of branches
is growing down the length of the structure, it must be true that b > 1. For human
lungs, on average,1 < b < 2. Here we will takeb to be constant, i.e.b = 1.7. In
actual fact, this simplification cannot be precise, becausewe have just one segment
initially (x0 = 1), and at level 1, the number of branchesx1 should be some small
integer, not a number like “1.7”. However, as in many mathematical models, some
accuracy is sacrificed to get intuition. Later on, details that were missed and are
considered important can be corrected and refined.

• The ratios of radii and lengths of daughters to parents are approximated by “pro-
portional scaling”. This means that the relationship of theradii and lengths satisfy
simple rules: The lengths are related by

ℓn+1 = αℓn, (1.7)

and the radii are related by
rn+1 = βrn, (1.8)

with α andβ positive constants. For example, it could be the case that the radius of
daughter branches is 1/2 or 2/3 that of the parent branch. Since the branches decrease
in size (while their number grows), we expect that0 < α < 1 and0 < β < 1.

Rules such as those given by equations (1.7) and (1.8) are often calledself-similar growth
laws. Such concepts are closely linked to the idea of fractals, i.e. theoretical structures
produced by iterating such growth laws indefinitely. In a real biological structure, the
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number of generations is finite. (However, in some cases, a finite geometric series is well-
approximated by an infinite sum.)

Actual lungs are not fully symmetric branching structures,but the above approxi-
mations are used here for simplicity. According to physiological measurements, the scale
factors for sizes of daughter to parent size are in the range0.65 ≤ α, β ≤ 0.9. (K. G.
Horsfield, G. Dart, D. E. Olson, and G. Cumming, (1971) J. Appl. Phys. 31, 207217.) For
the purposes of this example, we will use the values of constants given in Table 1.1.

1.8.2 A simple geometric rule

The three equations that govern the rules for successive branching, i.e. equations (1.6), (1.7),
and (1.8), are examples of a very generic “geometric progression” recipe. Before returning
to the problem at hand, let us examine the implications of this recursive rule, when it is
applied to generating the whole structure. Essentially, wewill see that the rule linking two
generations implies an exponential growth. To see this, letus write out a few first terms in
the progression of the sequence{xn}:

initial value:x0

first iteration:x1= bx0

second iteration:x2= bx1 = b(bx0) = b2x0

third iteration:x3= bx2 = b(b2x0) = b3x0

...

By the same pattern, at then’th generation, the number of segments will be

n’th iteration: xn = bxn−1 = b(bxn−2) = b(b(bxn−3)) = . . . = (b · b · · · b)
︸ ︷︷ ︸

n factors

x0 = bnx0.

We have arrived at a simple, but important result, namely:

The rule linking two generations,
xn = bxn−1 (1.9)

implies that then’th generation will have grown by a factorbn, i.e.,

xn = bnx0. (1.10)

This connection between the rule linking two generations and the resulting number of
members at each generation is useful in other circumstances. Equation (1.9) is sometimes
called arecursion relation, and its solution is given by equation (1.10). We will use the
same idea to find the connection between the volumes, and surface areas of successive
segments in the branching structure.
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1.8.3 Total number of segments

We used the result of Section 1.8.2 and the fact that there is one segment in the 0’th gener-
ation, i.e.x0 = 1, to conclude that at then’th generation, the number of segments is

xn = x0b
n = 1 · bn = bn.

For example, ifb = 2, the number of segments grows by powers of 2, so that the tree
bifurcates with the pattern 1, 2, 4, 8, etc.

To determine how many branch segments there are in total, we add up over all gen-
erations,0, 1, . . .M . This is a geometric series, whose sum we can compute. Using equa-
tion (1.4), we find

N =

M∑

n=0

bn =

(
1 − bM+1

1 − b

)

.

Givenb andM , we can then predict the exact number of segments in the structure. The
calculation is summarized further on for values of the branching parameter,b, and the
number of branch generations,M , given in Table 1.1.

1.8.4 Total volume of airways in the lung

Since each lung segment is assumed to be cylindrical, its volume is

vn = πr2
nℓn.

Here we mean just a single segment in then’th generation of branches. (There arebn such
identical segments in then’th generation, and we will refer to the volume of all of them
together asVn below.)

The length and radius of segments also follow a geometric progression. In fact, the
same idea developed above can be used to relate the length andradius of a segment in the
n’th, generation segment to the length and radius of the original 0’th generation segment,
namely,

ℓn = αℓn−1 ⇒ ℓn = αnℓ0,

and
rn = βrn−1 ⇒ rn = βnr0.

Thus the volume of one segment in generation n is

vn = πr2
nℓn = π(βnr0)

2(αnℓ0) = (αβ2)n (πr2
0ℓ0)

︸ ︷︷ ︸

v0

.

This is just a product of the initial segment volumev0 = πr2
0ℓ0, with then’th power of a

certain factor(α, β). (That factor takes into account that both the radius and the length are
being scaled down at every successive generation of branching.) Thus

vn = (αβ2)nv0.
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The total volume of all (bn) segments in then’th layer is

Vn = bnvn = bn(αβ2)nv0 = (bαβ2

︸ ︷︷ ︸

a

)n v0.

Here we have grouped terms together to reveal the simple structure of the relationship:
one part of the expression is just the initial segment volume, while the other is now a
“scale factor” that includes not only changes in length and radius, but also in the number of
branches. Letting the constanta stand for that scale factor,a = (bαβ2) leads to the result
that the volume of all segments in then’th layer is

Vn = anv0.

The total volume of the structure is obtained by summing the volumes obtained at
each layer. Since this is a geometric series, we can use the summation formula. i.e.,
Equation (1.4). Accordingly, total airways volume is

V =

30∑

n=0

Vn = v0

30∑

n=0

an = v0

(
1 − aM+1

1 − a

)

.

The similarity of treatment with the previous calculation of number of branches is appar-
ent. We compute the value of the constanta in Table 1.2, and find the total volume in
Section 1.8.6.

1.8.5 Total surface area of the lung branches

The surface area of a single segment at generationn, based on its cylindrical shape, is

sn = 2πrnℓn = 2π(βnr0)(α
nℓ0) = (αβ)n (2πr0ℓ0)

︸ ︷︷ ︸

s0

,

wheres0 is the surface area of the initial segment. Since there arebn branches at generation
n, the total surface area of all then’th generation branches is thus

Sn = bn(αβ)ns0 = (bαβ
︸︷︷︸

c

)ns0,

where we have letc stand for the scale factorc = (bαβ). Thus,

Sn = cns0.

This reveals the similar nature of the problem. To find the total surface area of the airways,
we sum up,

S = s0

M∑

n=0

cn = s0

(
1 − cM+1

1 − c

)

.

We compute the values ofs0 andc in Table 1.2, and summarize final calculations of the
total airways surface area in section 1.8.6.
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volume of first segment v0 = πr2
0ℓ0 4.4 cm3

surface area of first segment s0 = 2πr0ℓ0 17.6 cm2

ratio of daughter to parent segment volume (αβ2) 0.66564
ratio of daughter to parent segment surface area (αβ) 0.774
ratio of net volumes in successive generations a = bαβ2 1.131588
ratio of net surface areas in successive generationsc = bαβ 1.3158

Table 1.2. Volume, surface area, scale factors, and other derived quantities. Be-
causea and c are bases that will be raised to large powers, it is importantto that their
values are fairly accurate, so we keep more significant figures.

1.8.6 Summary of predictions for specific parameter values

By setting up the model in the above way, we have revealed thateach quantity in the struc-
ture obeys a simple geometric series, but with distinct “bases” b, a andc and coefficients
1, v0, ands0. This approach has shown that the formula for geometric series applies in
each case. Now it remains to merely “plug in” the appropriatequantities. In this section,
we collect our results, use the sample values for a model “human lung” given in Table 1.1,
or the resulting derived scale factors and quantities in Table 1.2 to finish the task at hand.

Total number of segments

N =

M∑

n=0

bn =

(
1 − bM+1

1 − b

)

=

(
1 − (1.7)31

1 − 1.7

)

= 1.9898 · 107 ≈ 2 · 107.

According to this calculation, there are a total of about 20 million branch segments overall
(including all layers, form top to bottom) in the entire structure!

Total volume of airways

Using the values fora andv0 computed in Table 1.2, we find that the total volume of all
segments in then’th generation is

V = v0

30∑

n=0

an = v0

(
1 − aM+1

1 − a

)

= 4.4
(1 − 1.13158831)

(1 − 1.131588)
= 1510.3 cm3.

Recall that 1 litre = 1000 cm3. Then we have found that the lung airways contain about 1.5
litres.
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Total surface area of airways

Using the values ofs0 andc in Table 1.2, the total surface area of the tubes that make up
the airways is

S = s0

M∑

n=0

cn = s0

(
1 − cM+1

1 − c

)

= 17.6
(1 − 1.315831)

(1 − 1.3158)
= 2.76 · 105 cm2.

There are 100 cm per meter, and(100)2 = 104 cm2 per m2. Thus, the area we have
computed is equivalent to about 28 square meters!

1.8.7 Exploring the problem numerically

Up to now, all calculations were done using the formulae developed for geometric series.
However, sometimes it is more convenient to devise a computer algorithm to implement
“rules” and perform repetitive calculations in a problem such as discussed here. The ad-
vantage of that approach is that it eliminates tedious calculations by hand, and, in cases
where summation formulae are not know to us, reduces the needfor analytical computa-
tions. It can also provide a shortcut to visual summary of theresults. The disadvantage is
that it can be less obvious how each of the values of parameters assigned to the problem
affects the final answers.

A spreadsheet is an ideal tool for exploring iterated rules such as those given in the
lung branching problem7. In Figure 1.7 we show the volumes and surface areas associated
with the lung airways for parameter values discussed above.Both layer by layer values and
cumulative sums leading to total volume and surface area areshown in each of (a) and (c).
In (b) and (d), we compare these results to similar graphs in the case that one parameter, the
branching number,b is adjusted from 1.7 (original value) to 2. The contrast between the
graphs shows how such a small change in this parameter can significantly affect the results.

1.8.8 For further independent study

The following problems can be used for further independent exploration of these ideas.

1. In our model, we have assumed that, on average, a parent branch has only “1.7”
daughter branches, i.e. thatb = 1.7. Suppose we had assumed thatb = 2. What
would the total volumeV be in that case, keeping all other parameters the same?
Explain why this is biologically impossible in the caseM = 30 generations. For
what value ofM would b = 2 lead to a reasonable result?

2. Suppose that the first 5 generations of branching produce 2daughters each, but then
from generation 6 on, the branching number isb = 1.7. How would you set up this
variant of the model? How would this affect the calculated volume?

3. In the problem we explored, the net volume and surface areakeep growing by larger
and larger increments at each “generation” of branching. Wewould describe this as
“unbounded growth”. Explain why this is the case, paying particular attention to the
scale factorsa andc.

7See Lab 1 for a similar problem that is also investigated using a spreadsheet.
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Cumulative volume to layer n

Vn = Volume of layer n
||
V

-0.5 30.5

0.0

1500.0

Cumulative volume to layer n

Vn = Volume of layer n

-0.5 30.5

0.0

1500.0

(a) (b)

Cumulative surface area to n’th layer

surface area of n’th layer

-0.5 30.5

0.0

250000.0
Cumulative surface area to n’th layer

surface area of n’th layer

-0.5 30.5

0.0

250000.0

(c) (d)

Figure 1.7. (a) Vn, the volume of layer n (red bars), and the cumulative volume
down to layer n (yellow bars) are shown for parameters given in Table 1.1. (b) Same as (a)
but assuming that parent segments always produce two daughter branches (i.e.b = 2). The
graphs in (a) and (b) are shown on the same scale to accentuatethe much more dramatic
growth in (b). (c) and (d): same idea showing the surface areaof n’th layer (green) and
the cumulative surface area to layer n (blue) for original parameters (in c), as well as for
the valueb = 2 (in d).

4. Suppose we want a set of tubes with a large surface area but small total volume.
Whichsinglefactor or parameter should we change (and how should we change it) to
correct this feature of the model, i.e. to predict that the total volume of the branching
tubes remains roughly constant while the surface area increases as branching layers
are added.

5. Determine how the branching properties of real human lungs differs from our as-
sumed model, and use similar ideas to refine and correct our estimates. You may
want to investigate what is known about the actual branchingparameterb, the num-
ber of generations of branches,M , and the ratios of lengths and radii that we have
assumed. Alternately, you may wish to find parameters for other species and do a
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comparative study of lungs in a variety of animal sizes.

6. Branching structures are ubiquitous in biology. Many species of plants are based
on a regular geometric sequence of branching. Consider a tree that trifurcates (i.e.
produces 3 new daughter branches per parent branch,b = 3). Explain (a) What
biological problem is to be solved in creating such a structure (b) What sorts of
constraints must be satisfied by the branching parameters tolead to a viable structure.
This is an open-ended problem.

1.9 Summary
In this chapter, we collected useful formulae for areas and volumes of simple 2D and 3D
shapes. A summary of the most important ones is given below. Table 1.3 lists the areas of
simple shapes, Table 1.4 the volumes and Table 1.5 the surface areas of 3D shapes.

We used areas of triangles to compute areas of more complicated shapes, including
regular polygons. We used a polygon withN sides to approximate the area of a circle, and
then, by lettingN go to infinity, we were able to prove that the area of a circle ofradiusr
is A = πr2. This idea, and others related to it, will form a deep underlying theme in the
next two chapters and later on in this course.

We introduced some notation for series and collected usefulformulae for summation
of such series. These are summarized in Table 1.6. We will usethese extensively in our
next chapter.

Finally, we investigated geometric series and studied a biological application, namely
the branching structure of lungs.

Object dimensions area,A

triangle baseb, heighth 1
2bh

rectangle baseb, heighth bh

circle radiusr πr2

Table 1.3. Areas of planar regions
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Object dimensions volume,V

box baseb, heighth, width w hwb

circular cylinder radiusr, heighth πr2h

sphere radiusr 4
3πr3

cylindrical shell* radiusr, heighth, thicknessτ 2πrhτ

spherical shell* radiusr, thicknessτ 4πr2τ

Table 1.4. Volumes of 3D shapes. * Assumes a thin shell, i.e. smallτ .

Object dimensions surface area,S

box baseb, heighth, width w 2(bh + bw + hw)

circular cylinder radiusr, heighth 2πrh

sphere radiusr 4πr2

Table 1.5. Surface areas of 3D shapes

Sum Notation Formula Comment

1 + 2 + 3 + . . . + N
∑N

k=1 k N(1+N)
2 Gauss’ formula

12 + 22 + 32 + . . . + N2
∑N

k=1 k2 N(N+1)(2N+1)
6 Sum of squares

13 + 23 + 33 + . . . + N3
∑N

k=1 k3
(

N(N+1)
2

)2

Sum of cubes

1 + r + r2 + r3 . . . rN
∑N

k=0 rk 1−rN+1

1−r Geometric sum

Table 1.6. Useful summation formulae.



Chapter 2

Areas

2.1 Areas in the plane
A long-standing problem of integral calculus is how to compute the area of a region in
the plane. This type of geometric problem formed part of the original motivation for the
development of calculus techniques, and we will discuss it in many contexts in this course.
We have already seen examples of the computation of areas of especially simple geometric
shapes in Chapter 1. For triangles, rectangles, polygons, and circles, no advanced methods
(beyond simple geometry) are needed. However, beyond theseelementary shapes, such
methods fail, and a new idea is needed. We will discuss such ideas in this chapter, and in
Chapter 3.

x

y

a b

A

y=f(x)

Figure 2.1. We consider the problem of determining areas of regions such
bounded by the x axis, the linesx = a andx = b and the graph of some function,y = f(x).

We now consider the problem of determining the area of a region in the plane that
has the following special properties: The region is formed by straight lines on three sides,
and by a smooth curve on one of its edges, as shown in Figure 2.1. You might imagine
that the shaded portion of this figure is a plot of land boundedby fences on three sides, and
by a river on the fourth side. A farmer wishing to purchase this land would want to know
exactly how large an area is being acquired. Here we set up thecalculation of that area.

27
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More specifically, we use a cartesian coordinate system to describe the region: we
require that it falls between thex-axis, the linesx = a andx = b, and the graph of a
functiony = f(x). This is required for the process described below to work8. We will first
restrict attention to the case thatf(x) > 0 for all points in the intervala ≤ x ≤ b as we
concentrate on “real areas”. Later, we generalize our results and lift this restriction.

We will approximate the area of the region shown in Figure 2.1by dissecting it into
smaller regions (rectangular strips) whose areas are easy to determine. We will refer to this
type of procedure as aRiemann sum. In Figure 2.2, we illustrate the basic idea using a
region bounded by the functiony = f(x) = x2 on 0 ≤ x ≤ 1. It can be seen that the

y=f(x)=x^2

x

N=10 rectangles

0.0 1.0

0.0

1.0

y=f(x)=x^2

x

N=20 rectangles

0.0 1.0

0.0

1.0

y=f(x)=x^2

x

N=40 rectangles

0.0 1.0

0.0

1.0

y=f(x)=x^2

True area of region

x

N -> infinity

0.0 1.0

0.0

1.0

Figure 2.2. The functiony = x2 for 0 ≤ x ≤ 1 is shown, with rectangles that
approximate the area under its curve. As we increase the number of rectangular strips, the
total area of the strips becomes a better and better approximation of the desired “true”
area. Shown are the intermediate stepsN = 10, N = 20, N = 40 and the true area for
N → ∞

approximation is fairly coarse when the number of rectangles is small9. However, if the
number of rectangles is increased, (as shown in subsequent panels of this same figure), we

8Not all planar areas have this property. Later examples indicate how to deal with some that do not.
9That is, the area of the rectangles is very different from thearea of the region of interest.
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obtain a better and better approximation of the true area. Inthe limit asN , the number of
rectangles, approaches infinity, the area of the desired region is obtained. This idea will
form the core of this chapter. The reader will note a similarity with the idea we already en-
countered in obtaining the area of a circle, though in that context, we had used a dissection
of the circle into approximating triangles.

With this idea in mind, in Section 2.2, we compute the area of the region shown in
Figure 2.2 in two ways. First, we use a simple spreadsheet to do the computations for us.
This is meant to illustrate the “numerical approach”.

Then, as the alternate analytic approach , we set up the Riemann sum corresponding
to the function shown in Figure 2.2. We will find that carefully setting up the calculation
of areas of the approximating rectangles will be important.Making a cameo appearance
in this calculation will be the formula for the sums of squareintegers developed in the
previous chapter. A new feature will be the limitN → ∞ that introduces the final step of
arriving at the smooth region shown in the final panel of Figure 2.2.

2.2 Computing the area under a curve by rectangular
strips

2.2.1 First approach: Numerical integration using a
spreadsheet

The same tool that produces Figure 2.2 can be used to calculate the areas of the steps for
each of the panels in the figure. To do this, we fixN for a given panel, (e.g.N = 10, 20,
or 40), find the corresponding value of∆x, and set up a calculation which adds up the
areas of steps, i.e.

∑
x2∆x in a given panel. The ideas are analogous to those described in

Section 2.2.2, but a spreadsheet does the number crunching for us.
Using a spreadsheet, for example, we find the following results at each stage: For

N = 10 strips, the area is 0.3850 units2, for N = 20 strips it is 0.3588, forN = 40 strips,
the area is 0.3459. If we increaseN greatly, e.g. setN = 1000 strips, which begins to
approximate the limit ofN → ∞, then the area obtained is 0.3338 units210.

This example illustrates that areas can be computed “numerically” - indeed many of
the laboratory exercises that accompany this course will bebased on precisely this idea.
The advantage of this approach is that it requires only elementary “programming” - i.e.
the assembly of a simplealgorithm , i.e. a set of instructions. Once assembled, we can use
essentially the same algorithm to explore various functions, intervals, number of rectangles,
etc. Lab 2 in this course will motivate the student to explorethis numerical integration
approach, and later labs will expand and generalize the ideato a variety of settings.

In our second approach, we set up the problem analytically. We will find that results
are similar. However, we will get deeper insight by understanding what happens in the limit
as the number of stripsN gets very large.

10Note that all these values are approximations, correct to 4 decimal places. Compare with the exact calcula-
tions in Section 2.2.2



30 Chapter 2. Areas

2.2.2 Second approach: Analytic computation using Riemann
sums

In this section we consider the detailed steps involved in analytically computing the area of
the region bounded by the function

y = f(x) = x2, 0 ≤ x ≤ 1.

By this we mean that we use “pen-and-paper” calculations, rather than computational aids
to determine that area.

We set up the rectangles (as shown in Figure 2.2, with detailed labeling in Fig-
ures 2.3), determine the heights and areas of these rectangle, sum their total area, and
then determine how this value behaves as the rectangles get more numerous (and thinner).

1

 

y
y=f(x)=x2

f(x)

∆x0

f(x   )

 

y

x      x x     ... ...1 k−1 k Nxx0

y=f(x)

kf(x   )

 N

Figure 2.3. The region under the graph ofy = f(x) for 0 ≤ x ≤ 1 will be
approximated by a set ofN rectangles. A rectangle (shaded) has base width∆x and
heightf(x). Since0 ≤ x ≤ 1, and the all rectangles have the same base width, it follows
that∆x = 1/N . In the panel on the right, the coordinates of base corners and two typical
heights of the rectangles have been labeled. Herex0 = 0, xN = 1 andxk = k∆x.

The interval of interest in this problem is0 ≤ x ≤ 1. Let us subdivide this interval
into N equal subintervals. Then each has width1/N . (We will refer to this width as∆x, as
shown in Figure 2.3, as it forms a difference of successivex coordinates.) The coordinates
of the endpoints of these subintervals will be labeledx0, x1, . . . , xk, . . . , xN , where the
valuex0 = 0 andxN = 1 are the endpoints of the original interval. Since the pointsare
equally spaced, starting atx0 = 0, the coordinatexk is just k steps of size1/N along
the x axis, i.e. xk = k(1/N) = k/N . In the right panel of Figure 2.3, some of these
coordinates have been labeled. For clarity, we show only thefirst few points, together with
a representative pairxk−1 andxk inside the region.

Let us look more carefully at one of the rectangles. Suppose we look at the rectangle
labeledk. Such a representative k-th rectangle is shown shaded in Figures 2.3. The height
of this rectangle is determined by the value of the function,since one corner of the rectangle
is “glued” to the curve. The choice shown in Figure 2.3 is to affix the right corner of each
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rectangle (k) right x coord (xk) heightf(xk) areaak

1 (1/N) (1/N)2 (1/N)2∆x
2 (2/N) (2/N)2 (2/N)2∆x
3 (3/N) (3/N)2 (3/N)2∆x
...
k (k/N) (k/N)2 (k/N)2∆x
...
N (N/N) = 1 (N/N)2 = 1 (1)∆x

Table 2.1. The label, position, height, and areaak of each rectangular strip is
shown above. Each rectangle has the same base width,∆x = 1/N . We approximate the
area under the curvey = f(x) = x2 by the sum of the values in the last column, i.e. the
total area of the rectangles.

rectangle on the curve. This implies that the height of thek-th rectangle is obtained from
substitutingxk into the function, i.e. height =f(xk). The base of every rectangle is the
same, i.e. base =∆x = 1/N . This means that the area of thek-th rectangle, shown shaded,
is

ak = height× base= f(xk)∆x

We now use three facts:

f(xk) = x2
k, ∆x =

1

N
, xk =

k

N
.

Then the area of thek’th rectangle is

ak = height× base= f(xk)∆x =

(
k

N

)2

︸ ︷︷ ︸

f(xk)

(
1

N

)

︸ ︷︷ ︸

∆x

.

A list of rectangles, and their properties are shown in Table2.1. This may help the
reader to see the pattern that emerges in the summation. (In general this table is not needed
in our work, and it is presented for this example only, to helpvisualize how heights of
rectangles behave.) The total area of all rectangular strips (a sum of the values in the right
column of Table 2.1) is

AN strips=
N∑

k=1

ak =
N∑

k=1

f(xk)∆x =
N∑

k=1

(
k

N

)2(
1

N

)

. (2.1)

The expressions shown in Eqn. (2.1) is a Riemann sum. A recurring theme underlying
integral calculus is the relationship between Riemann sumsand definite integrals, a concept
introduced later on in this chapter.
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We now rewrite this sum in a more convenient form so that summation formulae
developed in Chapter 1 can be used. In this sum, only the quantity k changes from term to
term. All other quantities are common factors, so that

AN strips=

(
1

N3

) N∑

k=1

k2.

The formula (1.2) for the sum of square integers can be applied to the summation, resulting
in

AN strips=

(
1

N3

)
N(N + 1)(2N + 1)

6
=

(N + 1)(2N + 1)

6N2
. (2.2)

In the box below, we use Eqn. (2.2) to compute that approximate area for values ofN
shown in the first three panels of Fig 2.2. Note that these are comparable to the values we
obtained “numerically” in Section 2.2.1. (We plug in the value ofN into (2.2) and use a
calculator to obtain the results below.)

If N = 10 strips (Figure 2.2a), the width of each strip is 0.1 unit. Accordingto equa-
tion 2.2, the area of the 10 strips (shown in red) is

A10 strips=
(10 + 1)(2 · 10 + 1)

6 · 102
= 0.385.

If N = 20 strips (Figure 2.2b),∆x = 1/20 = 0.05, and

A20 strips=
(20 + 1)(2 · 20 + 1)

6 · 202
= 0.35875.

If N = 40 strips (Figure 2.2c),∆x = 1/40 = 0.025 and

A40 strips=
(40 + 1)(2 · 40 + 1)

6 · 402
= 0.3459375.

We will definethe true areaunder the graph of the functiony = f(x) over the given
interval to be:

A = lim
N→∞

AN strips.

This means that the true area is obtained by letting the number of rectangular strips,N , get
very large, (while the width of each one,∆x = 1/N gets very small.)

In the example discussed in this section, the true area is found by taking the limit as
N gets large in equation (2.2), i.e.,

A = lim
N→∞

(
1

N2

)
(N + 1)(2N + 1)

6
=

1

6
lim

N→∞

(N + 1)(2N + 1)

N2
.

To evaluate this limit, note that whenN gets very large, we can use the approximations,
(N + 1) ≈ N and(2N + 1) ≈ 2N so that (simplifying and cancelling common factors)

lim
N→∞

(N + 1)(2N + 1)

N2
= lim

N→∞

(N)

N

(2N)

N
= 2.
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The result is:

A =
1

6
(2) =

1

3
≈ 0.333. (2.3)

Thus, the true area of the region (Figure 2.2d) is is 1/3 units2.

2.2.3 Comments

Many student who have had calculus before in highschool, ask“why do we bother with
such tedious calculations, when we could just use integration?”. Indeed, our development
of Riemann sums foreshadows and anticipates the idea of a definite integral, and in short
order, some powerful techniques will help to shortcut such technical calculations. There
are two reasons why we linger on Riemann sums. First, in orderto understand integration
adequately, we must understand the underlying “technology” and concepts; this proves
vital in understanding how to use the methods, and when things can go wrong. It also helps
to understand what integrals represent in applications that occur later on. Second, even
though we will shortly have better tools for analytical calculations, the ideas of setting up
area approximations using rectangular strips is very similar to the way that the spreadsheet
computations are designed. (However, the summation is handled automatically using the
spreadsheet, and no “formulae” are needed.) In Section 2.2.1, we gave only few details of
the steps involved. The student will find that understandingthe ideas of Section 2.2.2 will
go hand-in-hand with understanding the numerical approachof Section 2.2.1.

The ideas outlined above can be applied to more complicated situations. In the next
section we consider a practical problem in which a similar calculation is carried out.

2.3 The area of a leaf
Leaves act as solar energy collectors for plants. Hence, their surface area is an important
property. In this section we use our techniques to determinethe area of a rhododendron
leaf, shown in Figure 2.4. For simplicity of treatment, we will first consider a function
designed to mimic the shape of the leaf in a simple system of units: we will scale distances
by the length of the leaf, so that its profile is contained in the interval0 ≤ x ≤ 1. We later
ask how to modify this treatment to describe similarly curved leaves of arbitrary length and
width, and leaves that are less symmetric. As shown in Figure2.4, a simple parabola, of
the form

y = f(x) = x(1 − x),

provides a convenient approximation to the top edge of the leaf. To check that this is the
case, we observe that atx = 0 andx = 1, the curve intersects the x axis. At0 < x < 1,
the curve is above the axis. Thus, the area between this curveand the x axis, is one half of
the leaf area.

We set up the computation of approximating rectangular strips as before, by sub-
dividing the interval of interest intoN rectangular strips. We can set up the calculation
systematically, as follows:

length of interval= 1 − 0 = 1
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1

x

y

0

y=f(x)=x(1−x)

x

y

x  =00 x1 x2   x  =1n

ky  =f(x   )k

∆ x

k’th 
rectangle
(enlarged)

xk

Figure 2.4. In this figure we show how the area of a leaf can be approximatedby
rectangular strips.

number of segments, N

width of rectangular strips, ∆x =
1

N

thek’th x value, xk = k
1

N
=

k

N
height ofk’th rectangular strip, f(xk) = xk(1 − xk)

The representativek’th rectangle is shown shaded in Figure 2.4: Its area is

ak = base× height= ∆x · f(xk) =

(
1

N

)

︸ ︷︷ ︸

∆x

·
(

k

N
(1 − k

N
)

)

︸ ︷︷ ︸

f(xk)

.

The total area of these rectangular strips is:

AN strips=

N∑

k=1

ak =

N∑

k=1

∆x · f(xk) =

N∑

k=1

(
1

N

)

·
(

k

N
(1 − k

N
)

)

.
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Simplifying the result (so we can use summation formulae) leads to:

AN strips=

(
1

N

) N∑

k=1

(
k

N
(1 − k

N
)

)

=

(
1

N2

) N∑

k=1

k −
(

1

N3

) N∑

k=1

k2.

Using the summation formulae (1.1) and(1.2) from Chapter 1 results in:

AN strips=

(
1

N2

)(
N(N + 1)

2

)

−
(

1

N3

)(
(2N + 1)N(N + 1)

6

)

.

Simplifying, and regrouping terms, we get

AN strips=
1

2

(
(N + 1)

N

)

− 1

6

(
(2N + 1)(N + 1)

N2

)

.

This is the area for a finite number,N , of rectangular strips. As before, thetrue area is
obtained as the limit asN goes to infinity, i.e.A = limN→∞ AN strips. We obtain:

A = lim
N→∞

1

2

(
(N + 1)

N

)

− lim
N→∞

1

6

(
(2N + 1)(N + 1)

N2

)

=
1

2
− 1

6
· 2 =

1

6
.

Taking the limit leads to

A =
1

2
− 1

6
· 2 =

1

2
− 1

3
=

1

6
.

Thus the area of the entire leaf (twice this area) is 1/3.

Remark:

The function in this example can be written asy = x − x2. For part of this expression,
we have seen a similar calculation in Section 2.2. This example illustrates an important
property of sums, namely the fact that we can rearrange the terms into simpler expressions
that can be summed individually.

In the homework problems accompanying this chapter, we investigate how to de-
scribe leaves with arbitrary lengths and widths, as well as leaves with shapes that are ta-
pered, broad, or less symmetric than the current example.

2.4 Area under an exponential curve
In the precious examples, we considered areas under curves described by a simple quadratic
functions. Each of these led to calculations in which sums ofintegers or square integers
appeared. Here we demonstrate an example in which a geometric sum will be used. Recall
that we derived Eqn. (1.4) in Chapter 1, for a finite geometricsum.

We will find the area under the graph of the functiony = f(x) = e2x over the
interval betweenx = 0 andx = 2. In evaluating a limit in this example, we will also use
the fact that the exponential function has a linear approximation as follows:

ez ≈ 1 + z
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(See Linear Approximations in an earlier calculus course.)
As before, we subdivide the interval into N pieces, each of width 2/N . Proceeding

systematically as before, we write

length of interval= 2 − 0 = 2

number of segments= N

width of rectangular strips, ∆x =
2

N

thek’th x value, xk = k
2

N
=

2k

N

height ofk’th rectangular strip, f(xk) = exk = e2(2k/N) = e4k/N

We observe that the length of the interval (here 2) has affected the details of the calculation.
As before, the area of the k’th rectangle is

ak = base× height= ∆x × f(xk) =

(
2

N

)

e4k/N ,

and the total area of all the rectangles is

AN strips=

(
2

N

) N∑

k=1

e4k/N =

(
2

N

) N∑

k=1

rk =

(
2

N

)( N∑

k=0

rk − r0

)

,

wherer = e4/N . This is a finite geometric series. Because the series startswith k = 1 and
not withk = 0, the sum is

AN strips=

(
2

N

)[
(1 − rN+1)

(1 − r)
− 1

]

.

After some simplification and usingr = e4/N , we find that

AN strips=

(
2

N

)

e4/N 1 − e4

1 − e4/N
= 2

1 − e4

N(e−4/N − 1)
.

We need to determine what happens whenN gets very large. We can use the linear approx-
imation

e−4/N ≈ 1 − 4/N

to evaluate the limit of the term in the denominator, and we find that

A = lim
N→∞

2
1 − e4

N(e−4/N − 1)
= lim

N→∞

2
1 − e4

−N(1 + 4/N − 1)
= 2

e4 − 1

4
≈ 26.799.

2.5 Extensions and other examples
More general interval

To calculate the area under the curvey = f(x) = x2 over the interval2 ≤ x ≤ 5 using
N rectangles, the width of each one would be∆x = (5 − 2)/N = 3/N , (i.e., length of
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interval divided by N). Since the interval starts atx0 = 2, and increments in units of(3/N),
thek’th coordinate isxk = 2 + k(3/N) = 2 + (3k/N). The area of thek’th rectangle is
thenAK = f(xk) × ∆x = [(2 + (3k/N))2](3/N), and this is to be summed overk. A
similar algebraic simplification, summation formulae, andlimit is needed to calculate the
true area.

Other examples

In the Appendix 11.2 we discuss a number of other examples with several modifications:
First, in Appendix 11.2.1, we show how to set up a Riemann sum for a more complicated
quadratic function on a general interval,a ≤ x ≤ b.

Second, we show how Riemann sums can be set up for left, ratherthan right endpoint
approximations. The results are entirely analogous.

2.6 The definite integral
We now introduce a central concept that will form an important theme in this course, that
of the definite integral. We begin by defining a new piece of notation relevant to the topic
in this chapter, namely the area associated with the graph ofa function. For a functiony =

x

y

a b

A

y=f(x)

Figure 2.5. The shaded areaA corresponds to the definite integralI of the func-
tion f(x) over the intervala ≤ x ≤ b.

f(x) > 0 that is bounded and continuous11 on an interval[a, b] (also writtena ≤ x ≤ b),
we define thedefinite integral,

I =

∫ b

a

f(x) dx (2.4)

to be the areaA of the region under the graph of the function between the endpointsa and
b. See Figure 2.5.

2.6.1 Remarks

1. The definite integral is a number.

11A function is said to be bounded if its graph stays between some pair of horizontal lines. It is continuous if
there are no “breaks” in its graph.
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2. The value of the definite integral depends on the function,and on the two end points
of the interval.

3. From previous remarks, we have a procedure to calculate the value of the definite
integral by dissecting the region into rectangular strips,summing up the total area of
the strips, and taking a limit asN , the number of strips gets large. (The calculation
may be non-trivial, and might involve sums that we have not discussed in our simple
examples so far, but in principle the procedure is well-defined.)

(a)                                  (b)

(c)                                   (d)

0 1 0

2 4 0 2

1

x

x

y

y

Figure 2.6.Examples (1-4) relate areas shown above todefinite integrals.

2.6.2 Examples

We have calculated the areas of regions bounded by particularly simple functions. To
practice notation, we write down the corresponding definiteintegral in each case. Note
that in many of the examples below, we need no elaborate calculations, but merely use
previously known or recently derived results, to familiarize the reader with the new notation
just defined.

Example (1)

The area under the functiony = f(x) = x over the interval0 ≤ x ≤ 1 is triangular,
with base and height 1. The area of this triangle is thusA = (1/2)base× height= 0.5
(Figure 2.6a). Hence,

∫ 1

0

xdx = 0.5.
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Example (2)

In Section 2.2, we also computed the area under the functiony = f(x) = x2 on the interval
0 ≤ x ≤ 1 and found its area to be 1/3 (See Eqn. (2.3) and Fig. 2.6(b)). Thus

∫ 1

0

x2 dx = 1/3 ≃ 0.333.

Example (3)

A constant function of the formy = 1 over an interval2 lex ≤ 4 would produce a rectan-
gular region in the plane, with base (4-2)=2 and height 1 (Figure 2.6(c)). Thus

∫ 4

2

1 dx = 2.

Example (4)

The functiony = f(x) = 1 − x/2 (Figure 2.6(d)) forms a triangular region with base 2
and height 1, thus

∫ 2

0

(1 − x/2) dx = 1.

2.7 The area as a function
In Chapter 3, we will elaborate on the idea of the definite integral and arrive at some very
important connection between differential and integral calculus. Before doing so, we have
to extend the idea of the definite integral somewhat, and thereby define a new function,
A(x).

y

a

y=f(x)

A(x)

bx

Figure 2.7. We define a new functionA(x) to be the area associated with the
graph of some functiony = f(x) from the fixed endpointa up to the endpointx, where
a ≤ x ≤ b.

We will investigate how the area under the graph of a functionchanges as one of the
endpoints of the interval moves. We can think of this as a function that gradually changes
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(i.e. the area accumulates) as we sweep across the interval(a, b) from left to right in
Figure 2.1. The functionA(x) represents the area of the region shown in Figure 2.7.

Extending our definition of the definite integral, we might betempted to use the
notation

A(x) =

∫ x

a

f(x) dx.

However, there is a slight problem with this notation: the symbol x is used in slightly
confusing ways, both as the argument of the function and as the variable endpoint of the
interval. To avoid possible confusion, we will prefer the notation

A(x) =

∫ x

a

f(s) ds.

(or some symbol other thans used as a placeholder instead ofx.)
An analogue already seen is the sum

N∑

k=1

k2

whereN denotes the “end” of the sum, andk keeps track of where we are in the process
of summation. The symbols, sometimes called a “dummy variable” is analogous to the
summation symbolk.

In the upcoming Chapter 3, we will investigate properties ofthis new “area function”
A(x) defined above. This will lead us to theFundamental Theorem of Calculus, and will
provide new and powerful tools to replace the dreary summations that we had to perform
in much of Chapter 2. Indeed, we are about to discover the amazing connection between a
function, the areaA(x) under its curve, and the derivative ofA(x).

2.8 Summary
In this chapter, we showed how to calculate the area of a region in the plane that is bounded
by the x axis, two lines of the formx = a andx = b, and the graph of a positive function
y = f(x). We also introduced the terminology “definite integral” (Section 2.6) and the
notation (2.4) to represent that area.

One of our main efforts here focused on how to actually compute that area by the
following set of steps:

• Subdivide the interval[a, b] into smaller intervals (width∆x).

• Construct rectangles whose heights approximate the heightof the function above the
given interval.

• Add up the areas of these approximating rectangles. (Here weoften used summation
formulae from Chapter 1.) The resulting expression, such asEqn. (2.1), for example,
was denoted a Riemann sum.

• Find out what happens to this total area in the limit when the width ∆x goes to zero
(or, in other words, when the number of rectanglesN goes to infinity).
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We showed both the analytic approach, using Riemann sums andsummation formu-
lae to find areas, as well as numerical approximations using aspreadsheet tool to arrive at
similar results. We then used a variety of examples to illustrate the concepts and arrive at
computed areas.

As a final important point, we noted that the area “under the graph of a function” can
itself be considered a function. This idea will emerge as particularly important and will lead
us to the key concept linking the geometric concept of areas with the analytic properties
of antiderivatives. We shall see this link in the Fundamental Theorem of Calculus, in
Chapter 3.
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Chapter 3

The Fundamental
Theorem of Calculus

In this chapter we will formulate one of the most important results of calculus, the Funda-
mental Theorem. This result will link together the notions of an integral and a derivative.
Using this result will allow us to replace the technical calculations of Chapter 2 by much
simpler procedures involving antiderivatives of a function.

3.1 The definite integral
In Chapter 2, we defined the definite integral,I, of a functionf(x) > 0 on an interval[a, b]
as the area under the graph of the function over the given interval a ≤ x ≤ b. We used the
notation

I =

∫ b

a

f(x)dx

to represent that quantity. We also set up a technique for computing areas: the procedure
for calculating the value ofI is to write down a sum of areas of rectangular strips and to
compute a limit as the number of strips increases:

I =

∫ b

a

f(x)dx = lim
N→∞

N∑

k=1

f(xk)∆x, (3.1)

whereN is the number of strips used to approximate the region,k is an index associated
with thek’th strip, and∆x = xk+1 − xk is the width of the rectangle. As the number of
strips increases (N → ∞), and their width decreases (∆x → 0), the sum becomes a better
and better approximation of the true area, and hence, of the definite integral,I. Example
of such calculations (tedious as they were) formed the main theme of Chapter 2 .

We can generalize the definite integral to include functionsthat are not strictly pos-
itive, as shown in Figure 3.1. To do so, note what happens as weincorporate strips cor-
responding to regions of the graph below thex axis: These are associated with negative
values of the function, so that the quantityf(xk)∆x in the above sum would be negative
for each rectangle in the “negative” portions of the function. This means that regions of the
graph below thex axis will contribute negatively to the net value ofI.

43
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If we refer toA1 as the area corresponding to regions of the graph off(x) above the
x axis, andA2 as the total area of regions of the graph under thex axis, then we will find
that the value of the definite integralI shown above will be

I = A1 − A2.

Thus the notion of “area under the graph of a function” must beinterpreted a little carefully
when the function dips below the axis.

x

y
y=f(x)

x

y
y=f(x)

(a) (b)

x

y

a

y=f(x)

x

y

a

y=f(x)

b c
(c) (d)

Figure 3.1. (a) If f(x) is negative in some regions, there are terms in the sum (3.1)
that carry negative signs: this happens for all rectangles in parts of the graph that dip
below thex axis. (b) This means that the definite integralI =

∫ b

a f(x)dx will correspond
to the difference of two areas,A1−A2 whereA1 is the total area (dark) of positive regions
minus the total area (light) of negative portions of the graph. Properties of the definite
integral: (c) illustrates Property 1. (d) illustrates Property 2.

3.2 Properties of the definite integral
The following properties of a definite integral stem from itsdefinition, and the procedure for
calculating it discussed so far. For example, the fact that summation satisfies the distributive
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property means that an integral will satisfy the same the same property. We illustrate some
of these in Fig 3.1.

1.
∫ a

a

f(x)dx = 0,

2.
∫ c

a

f(x)dx =

∫ b

a

f(x)dx +

∫ c

b

f(x)dx,

3.
∫ b

a

Cf(x)dx = C

∫ b

a

f(x)dx,

4.
∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x) +

∫ b

a

g(x)dx,

5.
∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

Property 1 states that the “area” of a region with no width is zero. Property 2 shows
how a region can be broken up into two pieces whose total area is just the sum of the
individual areas. Properties 3 and 4 reflect the fact that theintegral is actually just a sum,
and so satisfies properties of simple addition. Property 5 isobtained by noting that if
we perform the summation “in the opposite direction”, then we must replace the previous
“rectangle width” given by∆x = xk+1−xk by the new “width” which is of opposite sign:
xk − xk+1. This accounts for the sign change shown in Property 5.

3.3 The area as a function
In Chapter 2, we investigated how the area under the graph of afunction changes as one of
the endpoints of the interval moves. We defined a function that represents the area under
the graph of a functionf , from some fixed starting point,a to an endpointx.

A(x) =

∫ x

a

f(t) dt.

This endpoint is considered as a variable12, i.e. we will be interested in the way that this
area changes as the endpoint varies (Figure 3.2(a)). We willnow investigate the interesting
connection betweenA(x) and the original function,f(x).

We would like to study howA(x) changes asx is increased ever so slightly. Let
∆x = h represent some (very small) increment inx. (Caution: do not confuseh with
height here. It is actually a step size along thex axis.) Then, according to our definition,

A(x + h) =

∫ x+h

a

f(t) dt.

12Recall that the “dummy variable”t inside the integral is just a “place holder”, and is used to avoid confusion
with the endpoint of the integral (x in this case). Also note that the value ofA(x) does not depend in any way on
t, so any letter or symbol in its place would do just as well.
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a x

y

y=f(x)

A(x)

a x

y

y=f(x)

x+h

A(x+h)

(a) (b)

a x

y

y=f(x)

x+h

A(x+h)−A(x)

a

y

y=f(x)

h

f(x)

(c) (d)

Figure 3.2.When the right endpoint of the interval moves by a distanceh, the area
of the region increases fromA(x) to A(x + h). This leads to the important Fundamental
Theorem of Calculus, given in Eqn. (3.2).

In Figure 3.2(a)(b), we illustrate the areas represented byA(x) and byA(x + h), respec-
tively. The difference between the two areas is a thin sliver(shown in Figure 3.2(c)) that
looks much like a rectangular strip (Figure 3.2(d)). (Indeed, if h is small, then the approx-
imation of this sliver by a rectangle will be good.) The height of this sliver is specified
by the functionf evaluated at the pointx, i.e. byf(x), so that the area of the sliver is
approximatelyf(x) · h. Thus,

A(x + h) − A(x) ≈ f(x)h

or
A(x + h) − A(x)

h
≈ f(x).

As h gets small, i.e.h → 0, we get a better and better approximation, so that, in the limit,

lim
h→0

A(x + h) − A(x)

h
= f(x).

The ratio above should be recognizable. It is simply the derivative of the area function, i.e.

f(x) =
dA

dx
= lim

h→0

A(x + h) − A(x)

h
. (3.2)
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We have just given a simple argument in support of an important result, called the
Fundamental Theorem of Calculus, which is restated below..

3.4 The Fundamental Theorem of Calculus
3.4.1 Fundamental theorem of calculus: Part I

Let f(x) be a bounded and continuous function on an interval[a, b]. Let

A(x) =

∫ x

a

f(t) dt.

Then fora < x < b,
dA

dx
= f(x).

In other words, this result says thatA(x) is an “antiderivative” of the original function,
f(x)13.

Proof

See above argument. and Figure 3.2.

3.4.2 Example: an antiderivative

Recall the connection between functions and their derivatives. Consider the following two
functions:

g1(x) =
x2

2
, g2 =

x2

2
+ 1.

Clearly, both functions have the same derivative:

g′1(x) = g′2(x) = x.

We would say thatx2/2 is an “antiderivative” ofx and that(x2/2) + 1 is also an “an-
tiderivative” ofx. In fact,anyfunction of the form

g(x) =
x2

2
+ C whereC is any constant

is also an “antiderivative” ofx.
This example illustrates that adding a constant to a given function will not affect

the value of its derivative, or, stated another way, antiderivatives of a given function are
defined only up to some constant. We will use this fact shortly: if A(x) andF (x) are both
antiderivatives of some functionf(x), thenA(x) = F (x) + C.

13We often write “antiderivative”, with no hyphen.
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3.4.3 Fundamental theorem of calculus: Part II

Let f(x) be a continuous function on[a, b]. SupposeF (x) is anyantiderivative off(x).
Then fora ≤ x ≤ b,

A(x) =

∫ x

a

f(t) dt = F (x) − F (a).

Proof

From comments above, we know that a functionf(x) could have many different antideriva-
tives that differ from one another by some additive constant. We are told thatF (x) is an
antiderivative off(x). But from Part I of the Fundamental Theorem, we know thatA(x) is
also an antiderivative off(x). It follows that

A(x) =

∫ x

a

f(t) dt = F (x) + C, whereC is some constant. (3.3)

However, by property 1 of definite integrals,

A(a) =

∫ a

a

f(t) = F (a) + C = 0.

Thus,

C = −F (a).

ReplacingC by−F (a) in equation 3.3 leads to the desired result. Thus

A(x) =

∫ x

a

f(t) dt = F (x) − F (a).

Remark 1: Implications

This theorem has tremendous implications, because it allows us to use a powerful new
tool in determining areas under curves. Instead of the drudgery of summations in order to
compute areas, we will be able to use a shortcut: find an antiderivative, evaluate it at the
two endpointsa, b of the interval of interest, and subtract the results to get the area. In the
case of elementary functions, this will be very easy and convenient.

Remark 2: Notation

We will often use the notation

F (t)|xa = F (x) − F (a)

to denote the difference in the values of a function at two endpoints.



3.5. Review of derivatives (and antiderivatives) 49

3.5 Review of derivatives (and antiderivatives)
By remarks above, we see that integration is related to “anti-differentiation”. This moti-
vates a review of derivatives of common functions. Table 3.1lists functionsf(x) and their
derivativesf ′(x) (in the first two columns) and functionsf(x) and their antiderivatives
F (x) in the subsequent two columns. These will prove very helpfulin our calculations of
basic integrals.

function derivative function antiderivative
f(x) f ′(x) f(x) F (x)

Cx C C Cx

xn nxn−1 xm xm+1

m+1

sin(ax) a cos(ax) cos(bx) (1/b) sin(bx)

cos(ax) −a sin(ax) sin(bx) −(1/b) cos(bx)

tan(ax) a sec2(ax) sec2(bx) (1/b) tan(bx)

ekx kekx ekx ekx/k

ln(x)
1

x

1

x
ln(x)

arctan(x)
1

1 + x2

1

1 + x2
arctan(x)

arcsin(x)
1√

1 − x2

1√
1 − x2

arcsin(x)

Table 3.1.Common functions and their derivatives (on the left two columns) also
result in corresponding relationships between functions and their antiderivatives (right two
columns). In this table, we assume thatm 6= −1, b 6= 0, k 6= 0. Also, when usingln(x) as
antiderivative for1/x, we assume thatx > 0.

As an example, consider the polynomial

p(x) = a0 + a1x + a2x
2 + a3x

3 + . . .

This polynomial could have many other terms (or even an infinite number of such terms,
as we discuss much later, in Chapter 10). Its antiderivativecan be found easily using the
“power rule” together with the properties of addition of terms. Indeed, the antiderivative is

F (x) = C + a0x +
a1

2
x2 +

a2

3
x3 +

a3

4
x4 + . . .
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This can be checked easily by differentiation14.

3.6 Examples: Computing areas with the
Fundamental Theorem of Calculus

3.6.1 Example 1: The area under a polynomial

Consider the polynomial
p(x) = 1 + x + x2 + x3.

(Here we have taken the first few terms from the example of the last section with coeffi-
cients all set to 1.) Then, computing

I =

∫ 1

0

p(x) dx

leads to

I =

∫ 1

0

(1 + x + x2 + x3) dx = (x +
1

2
x2 +

1

3
x3 +

1

4
x4)

∣
∣
∣
∣

1

0

= 1 +
1

2
+

1

3
+

1

4
≈ 2.083.

3.6.2 Example 2: Simple areas

Determine the values of the following definite integrals by finding antiderivatives and using
the Fundamental Theorem of Calculus:

1. I =

∫ 1

0

x2 dx,

2. I =

∫ 1

−1

(1 − x2) dx,

3. I =

∫ 1

−1

e−2x dx,

4. I =

∫ π

0

sin
(x

2

)

dx,

Solutions

1. An antiderivative off(x) = x2 is F (x) = (x3/3), thus

I =

∫ 1

0

x2dx = F (x)

∣
∣
∣
∣

1

0

= (1/3)(x3)

∣
∣
∣
∣

1

0

=
1

3
(13 − 0) =

1

3
.

14In fact, it is very good practice to perform such checks.
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2. An antiderivative off(x) = (1 − x2) is F (x) = x − (x3/3), thus

I =

∫ 1

−1

(1−x2) dx = F (x)

∣
∣
∣
∣

1

−1

=
(
x − (x3/3)

)
∣
∣
∣
∣

1

−1

=
(
1 − (13/3)

)
−
(
(−1) − ((−1)3/3)

)
= 4/3

See comment below for a simpler way to compute this integral.

3. An antiderivative ofe−2x is F (x) = (−1/2)e−2x. Thus,

I =

∫ 1

−1

e−2x dx = F (x)

∣
∣
∣
∣

1

−1

= (−1/2)(e−2x)

∣
∣
∣
∣

1

−1

= (−1/2)(e−2 − e2).

4. An antiderivative ofsin(x/2) is F (x) = − cos(x/2)/(1/2) = −2 cos(x/2). Thus

I =

∫ π

0

sin
(x

2

)

dx = −2 cos(x/2)

∣
∣
∣
∣

π

0

− 2(cos(π/2) − cos(0)) = −2(0 − 1) = 2.

Comment: The evaluation of Integral 2. in the examples above is trickyonly in that signs
can easily get garbled when we plug in the endpoint at -1. However, we can simplify our
work by noting the symmetry of the functionf(x) = 1 − x2 on the given interval. As
shown in Fig 3.3, the areas to the right and to the left ofx = 0 are the same for the interval
−1 ≤ x ≤ 1. This stems directly from the fact that the function considered iseven15.
Thus, we can immediately write

I =

∫ 1

−1

(1 − x2) dx = 2

∫ 1

0

(1 − x2) dx = 2
(
x − (x3/3)

)
∣
∣
∣
∣

1

0

= 2
(
1 − (13/3)

)
= 4/3

Note that this calculation is simpler since the endpoint atx = 0 is trivial to plug in.

2

−1 0 1
x

y=1−x

Figure 3.3. We can exploit the symmetry of the functionf(x) = 1 − x2 in the
second integral of Examples 3.6.2. We can integrate over0 ≤ x ≤ 1 and double the result.

We state the general result we have obtained, which holds true for any function with
even symmetry integrated on a symmetric interval aboutx = 0:

If f(x) is anevenfunction, then
∫ a

−a

f(x) dx = 2

∫ a

−a

f(x) dx (3.4)

15Recall that a functionf(x) is evenif f(x) = f(−x) for all x. A function isodd if f(x) = −f(−x).
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3.6.3 Example 3: The area between two curves

The definite integral is an area of a somewhat special type of region, i.e., an axis, two
vertical lines (x = a andx = b) and the graph of a function. However, using additive
(or subtractive) properties of areas, we can generalize to computing areas of other regions,
including those bounded by the graphs of two functions.

(a) Find the area enclosed between the graphs of the functionsy = x3 andy = x1/3

in the first quadrant.
(b) Find the area enclosed between the graphs of the functionsy = x3 andy = x in

the first quadrant.
(c) What is the relationship of these two areas? What is the relationship of the func-

tionsy = x3 andy = x1/3 that leads to this relationship between the two areas?

A

A

y=x

y=x

y=x

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

1

2

3

1/3

Figure 3.4. In Example 3, we compute the areasA1 andA2 shown above.

Solution

(a) The two curves,y = x3 andy = x1/3, intersect atx = 0 and atx = 1 in the first
quadrant. Thus the interval that we will be concerned with is0 < x < 1. On this
interval,x1/3 > x3, so that the area we want to find can be expressed as:

A1 =

∫ 1

0

(

x1/3 − x3
)

dx.

Thus,

A1 =
x4/3

4/3

∣
∣
∣
∣

1

0

− x4

4

∣
∣
∣
∣

1

0

=
3

4
− 1

4
=

1

2
.

(b) The two curvesy = x3 andy = x also intersect atx = 0 and atx = 1 in the
first quadrant, and on the interval0 < x < 1 we havex > x3. The area can be
represented as

A2 =

∫ 1

0

(
x − x3

)
dx.
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A2 =
x2

2

∣
∣
∣
∣

1

0

− x4

4

∣
∣
∣
∣

1

0

=
1

2
− 1

4
=

1

4
.

(c) The area calculated in (a) is twice the area calculated in(b). The reason for this is that
x1/3 is the inverse of the functionx3, which means geometrically that the graph of
x1/3 is the mirror image of the graph ofx3 reflected about the liney = x. Therefore,
the areaA1 betweeny = x1/3 andy = x3 is twice as large as the areaA2 between
y = x andy = x3 calculated in part (b):A1 = 2A2 (see Figure 3.4).

3.6.4 Example 4: Area of land

Find the exact area of the piece of land which is bounded by they axis on the west, thex
axis in the south, the lake described by the functiony = f(x) = 100 + (x/100)2 in the
north and the linex = 1000 in the east.

Solution

The area is

A =

∫ 1000

0

(

100 +
( x

100

)2
)

dx. =

∫ 1000

0

(

100 +

(
1

10000

)

x2

)

dx.

Note that the multiplicative constant (1/10000) is not affected by integration. The result is

A = 100x

∣
∣
∣
∣

1000

0

+
x3

3

∣
∣
∣
∣

1000

0

·
(

1

10000

)

=
4

3
105.

3.7 Qualitative ideas
In some cases, we are given a sketch of the graph of a function,f(x), from which we would
like to construct a sketch of the associated functionA(x). This sketching skill is illustrated
in the figures shown in this section.

Suppose we are given a function as shown in the top left hand panel of Figure 3.5.
We would like to assemble a sketch of

A(x) =

∫ x

a

f(t)dt

which corresponds to the area associated with the graph of the functionf . As x moves
from left to right, we show how the “area” accumulated along the graph gradually changes.
(SeeA(x) in bottom panels of Figure 3.5): We start with no area, at the point x = a
(since, by definitionA(a) = 0) and gradually build up to some net positive amount, but
then we encounter a portion of the graph off below thex axis, and this subtracts from
the amount accrued. (Hence the graph ofA(x) has a little peak that corresponds to the
point at whichf = 0.) Every time the functionf(x) crosses thex axis, we see thatA(x)
has either a maximum or minimum value. This fits well with our idea ofA(x) as the
antiderivative off(x): Places whereA(x) has a critical point coincide with places where
dA/dx = f(x) = 0.



54 Chapter 3. The Fundamental Theorem of Calculus

(a)

x

f(x)

x

A(x)

(b)

x

f(x)

x

A(x)

(c)

x

f(x)

x

A(x)

(d)

x

f(x)

x

A(x)

Figure 3.5.Given a functionf(x), we here show how to sketch the corresponding
“area function” A(x). (The relationship is thatf(x) is the derivative ofA(x)

Sketching the functionA(x) is thus analogous to sketching a functiong(x) when we
are given a sketch of its derivativeg′(x). Recall that this was one of the skills we built up in
learning the connection between functions and their derivatives in a first semester calculus
course.

Remarks

The following remarks may be helpful in gaining confidence with sketching the “area”
functionA(x) =

∫ x

a f(t) dt, from the original functionf(x):

1. The endpoint of the interval,a on the x axis indicates the place at whichA(x) = 0.
This follows from Property 1 of the definite integral, i.e. from the fact thatA(a) =
∫ a

a
f(t) dt = 0.

2. Wheneverf(x) is positive,A(x) is an increasing function - this follows from the fact
that the area continues to accumulate as we “sweep across” positive regions off(x).



3.7. Qualitative ideas 55

a

x

x

f(x)

g(x)

+
−

+

−

+
a

Figure 3.6. Given a functionf(x) (top, solid line), we assemble a plot of the
corresponding functiong(x) =

∫ x

a f(t)dt (bottom, solid line).g(x) is an antiderivative
of f(x). Whetherf(x) is positive (+) or negative (-) in portions of its graph, determines
whetherg(x) is increasing or decreasing over the given intervals. Places wheref(x)
changes sign correspond to maxima and minima of the functiong(x) (Two such places are
indicated by dotted vertical lines). The box in the middle ofthe sketch shows configurations
of tangent lines tog(x) based on the sign off(x). Wheref(x) = 0, those tangent lines
are horizontal. The functiong(x) is drawn as a smooth curve whose direction is parallel to
the tangent lines shown in the box. While the functionf(x) has many antiderivatives (e.g.,
dashed curve parallel tog(x)), only one of these satisfiesg(a) = 0 as required by Property
1 of the definite integral. (See dashed vertical line atx = a). This determines the height of
the desired functiong(x).

3. Whereverf(x), changes sign, the functionA(x) has a local minimum or maximum.
This means that either the area stops increasing (if the transition is from positive to

negative values off ), or else the area starts to increase (iff crosses from negative to
positive values).

4. SincedA/dx = f(x) by the Fundamental Theorem of Calculus, it follows that (tak-
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ing a derivative of both sides)d2A/dx2 = f ′(x). Thus, whenf(x) has a local
maximum or minimum, (i.e.f ′(x) = 0), it follows thatA′′(x) = 0. This means that
at such points, the functionA(x) would have an inflection point.

Given a functionf(x), Figure 3.6 shows in detail how to sketch the corresponding function

g(x) =

∫ x

a

f(t)dt.

3.7.1 Example: sketching A(x)

Consider thef(x) whose graph is shown in the top part of Figure 3.7. Sketch the corre-
sponding functiong(x) =

∫ x

a
f(x)dx.

x

+

−

+

f(x)

g(x)

a

a

x

Figure 3.7. The original functions,f(x) is shown above. The corresponding
functionsg(x) is drawn below.

Solution

See Figure 3.7

3.8 Some fine print
The Fundamental Theorem has a number of restrictions that must be satisfied before its
results can be applied. In this section we look at some examples in which care must be
used.
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3.8.1 Function unbounded I

Consider the definite integral
∫ 2

0

1

x
dx.

The functionf(x) = 1
x is undefined atx = 0, and unbounded on any interval that contains

the pointx = 0. Hence, we cannot evaluate this integral using the Fundamental theorem,
and indeed, we say that “this integral does not exist”.

3.8.2 Function unbounded II

Consider the definite integral
∫ 1

−1

1

x2
dx.

This function is also undefined (and hence not continuous) atx = 0. The Fundamental
Theorem of Calculus cannot be applied. Technically, although one can “go through the
motions” of computing an antiderivative, evaluating it at both endpoints, and getting a
numerical answer, the result so obtained would be simply wrong. We say that his integral
does not exist.

3.8.3 Example: Function discontinuous or with distinct par ts

Suppose we are given the integral

I =

∫ 2

−1

|x| dx.

This function is actually made up of two distinct parts, namely

f(x) =

{
x if x > 0
−x if x < 0.

The integralI must therefore be split up into two parts, namely

I =

∫ 2

−1

|x| dx =

∫ 0

−1

(−x) dx +

∫ 2

0

x dx.

We find that

I = − x2

2

∣
∣
∣
∣

0

−1

+
x2

2

∣
∣
∣
∣

2

0

= −
[

0 − 1

2

]

+

[
4

2
− 0

]

= 2.5

3.8.4 Function undefined

Now let us examine the integral
∫ 1

−1

x1/2 dx.
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x

y
y= |x|

−1 20

Figure 3.8. In this example, to compute the integral over the interval−1 ≤ x ≤ 2,
we must split up the region into two distinct parts.

We see that there is a problem here. Recall thatx1/2 =
√

x. Hence, the function is not
defined forx < 0 and the interval of integration is inappropriate. Hence, this integral does
not make sense.

3.8.5 Infinite domain (“improper integral”)

Consider the integral

I =

∫ b

0

e−rx dx, wherer > 0, andb > 0 are constants.

Simple integration using the antiderivative in Table 3.1 (for k = −r) leads to the result

I =
e−rx

−r

∣
∣
∣
∣

b

0

= −1

r

(
e−rb − e0

)
=

1

r

(
1 − e−rb

)
.

This is the area under the exponential curve betweenx = 0 andx = b. Now consider what
happens whenb, the upper endpoint of the integral increases, so thatb → ∞. Then the
value of the integral becomes

I = lim
b→∞

∫ b

0

e−rx dx = lim
b→∞

1

r

(
1 − e−rb

)
=

1

r
(1 − 0) =

1

r
.

(We used the fact thate−rb → 0 asb → ∞.) We have, in essence, found that

I =

∫
∞

0

e−rx dx =
1

r
. (3.5)

An integral of the form (3.5) is called animproper integral . Even though the domain
of integration of this integral is infinite,(0,∞), observe that the value we computed is
finite, so long asr 6= 0. Not all such integrals have a bounded finite value. Learningto
distinguish between those that do and those that do not will form an important theme in
Chapter 10.
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Regions that need special treatment

So far, we have learned how to compute areas of regions in the plane that are bounded
by one or more curves. In all our examples so far, the basis forthese calculations rests on
imagining rectangles whose heights are specified by one or another function. Up to now, all
the rectangular strips we considered had bases (of width∆x) on thex axis. In Figure 3.9
we observe an example in which it would not be possible to use this technique. We are

∆ y

x=g(y)

x

yy

x

Figure 3.9. The area in the region shown here is best computed by integrating
in they direction. If we do so, we can use the curved boundary as a single function that
defines the region. (Note that the curve cannot be expressed in the form of a function in the
usual sense,y = f(x), but it can be expressed in the form of a functionx = f(y).)

asked to find the area between the curvey2 − y + x = 0 and they axis. However, one and
the same curve,y2 − y + x = 0 forms the boundary from both the top and the bottom of
the region. We are unable to set up a series of rectangles withbases along thex axis whose
heights are described by this curve. This means that our definite integral (which is really
just a convenient way of carrying out the process of area computation) has to be handled
with care.

Let us consider this problem from a “new angle”, i.e. with rectangles based on they
axis, we can achieve the desired result. To do so, let us express our curve in the form

x = g(y) = y − y2.

Then, placing our rectangles along the interval0 < y < 1 on the y axis (each having base
of width ∆y) leads to the integral

I =

∫ 1

0

g(y) dy =

∫ 1

0

(y − y2)dy =

(
y2

2
− y3

3

) ∣
∣
∣
∣

1

0

=
1

2
− 1

3
=

1

6
.

3.9 Summary
In this chapter we first recapped the definition of the definiteintegral in Section 3.1, recalled
its connection to an area in the plane under the graph of some functionf(x), and examined
its basic properties.

If one of the endpoints,x of the integral is allowed to vary, the area it represents,
A(x), becomes a function ofx. Our construction in Figure 3.2 showed that there is a con-
nection between the derivativeA′(x) of the area and the functionf(x). Indeed, we showed
thatA′(x) = f(x) and argued that this makesA(x) an antiderivative of the functionf(x).
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This important connection between integrals and antiderivatives is the crux of In-
tegral Calculus, forming the Fundamental Theorem of Calculus. Its significance is that
finding areas need not be as tedious and labored as the calculation of Riemann sums that
formed the bulk of Chapter 2. Rather, we can take a shortcut using antidifferentiation.

Motivated by this very important result, we reviewed some common functions and
derivatives, and used this to relate functions and their antiderivatives in Table 3.1. We
used these antiderivatives to calculate areas in several examples. Finally, we extended the
treatment to include qualitative sketches of functions andtheir antiderivatives.

As we will see in upcoming chapters, the ideas presented herehave a much wider
range of applicability than simple area calculations. Indeed, we will shortly show that the
same concepts can be used to calculate net changes in continually varying processes, to
compute volumes of various shapes, to determine displacement from velocity, mass from
densities, as well as a host of other quantities that involvea process of accumulation. These
ideas will be investigated in Chapters 4, and 5.



Chapter 4

Applications of the
definite integral to
velocities and rates

4.1 Introduction
In this chapter, we encounter a number of applications of thedefinite integral to practical
problems. We will discuss the connection between acceleration, velocity and displacement
of a moving object, a topic we visited in an earlier, Differential Calculus Course. Here
we will show that the notion of antiderivatives and integrals allows us to deduce details of
the motion of an object from underlying Laws of Motion. We will consider both uniform
and accelerated motion, and recall how air resistance can bedescribed, and what effect it
induces.

An important connection is made in this chapter between a rate of change (e.g. rate
of growth) and the total change (i.e. the net change resulting from all the accumulation and
loss over a time span). We show that such examples also involve the concept of integration,
which, fundamentally, is a cumulative summation of infinitesimal changes. This allows us
to extend the utility of the mathematical tools to a variety of novel situations. We will see
examples of this type in Sections 4.3 and 4.4.

Several other important ideas are introduced in this chapter. We encounter for the
first time the idea of spatial density, and see that integration can also be used to “add up”
the total amount of material distributed over space. In Section 5.2.2, this idea is applied to
the density of cars along a highway. We also consider mass distributions and the notion of
a center of mass.

Finally, we also show that the definite integral is useful fordetermining the average
value of a function, as discussed in Section 4.6. In all theseexamples, the important step
is to properly set up the definite integral that corresponds to the desired net change. Com-
putations at this stage are relatively straightforward to emphasize the process of setting up
the appropriate integrals and understanding what they represent.

61
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4.2 Displacement, velocity and acceleration
Recall from our study of derivatives that forx(t) the position of some particle at timet,
v(t) its velocity, anda(t) the acceleration, the following relationships hold:

dx

dt
= v,

dv

dt
= a.

(Velocity is the derivative of position andaccelerationis the derivative of velocity.) This
means that position is an anti-derivative of velocity and velocity is an anti-derivative of
acceleration.

Since position,x(t), is an anti-derivative of velocity,v(t), by the Fundamental The-
orem of Calculus, it follows that over the time intervalT1 ≤ t ≤ T2,

∫ T2

T1

v(t) dt = x(t)

∣
∣
∣
∣

T2

T1

= x(T2) − x(T1). (4.1)

The quantity on the right hand side of Eqn. (4.1) is adisplacement,, i.e., the difference
between the position at timeT1 and the position at timeT2. In the case thatT1 = 0, T2 = T ,
we have

∫ T

0

v(t) dt = x(T ) − x(0),

as the displacement over the time interval0 ≤ t ≤ T .
Similarly, since velocity is an anti-derivative of acceleration, the Fundamental Theo-

rem of Calculus says that

∫ T2

T1

a(t) dt = v(t)

∣
∣
∣
∣

T2

T1

= v(T2) − v(T1). (4.2)

as above, we also have that

∫ T

0

a(t) dt = v(t)

∣
∣
∣
∣

T

0

= v(T ) − v(0)

is the net change in velocity between time 0 and timeT , (though this quantity does not
have a special name).

4.2.1 Geometric interpretations

Suppose we are given a graph of the velocityv(t), as shown on the left of Figure 4.1. Then
by the definition of the definite integral, we can interpret

∫ T2

T1
v(t) dt as the “area” associ-

ated with the curve (counting positive and negative contributions) between the endpoints
T1 andT2. Then according to the above observations, this area represents the displacement
of the particle between the two timesT1 andT2.

Similarly, by previous remarks, the area under the curvea(t) is a geometric quantity
that represents the net change in the velocity, as shown on the right of Figure 4.1.

Next, we consider two examples where either the acceleration or the velocity is con-
stant. We use the results above to compute the displacementsin each case.
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T T

v

1 2

t

displacement
This area represents

a  

net velocity change
This area represents

T1 T2

t

Figure 4.1. The total area under the velocity graph represents net displacement,
and the total area under the graph of acceleration represents the net change in velocity
over the intervalT1 ≤ t ≤ T2.

4.2.2 Displacement for uniform motion

We first examine the simplest case that the velocity is constant, i.e. v(t) = v = constant.
Then clearly, the acceleration is zero sincea = dv/dt = 0 whenv is constant. Thus, by
direct antidifferentiation,

∫ T

0

v dt = vt

∣
∣
∣
∣

T

0

= v(T − 0) = vT.

However, applying result (4.1) over the time interval0 ≤ t ≤ T also leads to
∫ T

0

v dt = x(T ) − x(0).

Therefore, it must be true that the two expressions obtainedabove must be equal, i.e.

x(T ) − x(0) = vT.

Thus, for uniform motion, the displacement is proportionalto the velocity and to the time
elapsed. The final position is

x(T ) = x(0) + vT.

This is true for all timeT , so we can rewrite the results in terms of the more familiar (lower
case) notation for time,t, i.e.

x(t) = x(0) + vt. (4.3)

4.2.3 Uniformly accelerated motion

In this case, the accelerationa is a constant. Thus, by direct antidifferentiation,
∫ T

0

a dt = at

∣
∣
∣
∣

T

0

= a(T − 0) = aT.
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However, using Equation (4.2) for0 ≤ t ≤ T leads to

∫ T

0

a dt = v(T ) − v(0).

Since these two results must match,v(T ) − v(0) = aT so that

v(T ) = v(0) + aT.

Let us refer to the initial velocityV (0) asv0. The above connection between velocity and
acceleration holds for any final timeT , i.e., it is true for allt that:

v(t) = v0 + at. (4.4)

This just means that velocity at timet is the initial velocity incremented by an increase (over
the given time interval) due to the acceleration. From this we can find the displacement and
position of the particle as follows: Let us call the initial positionx(0) = x0. Then

∫ T

0

v(t) dt = x(T ) − x0. (4.5)

But

I =

∫ T

0

v(t) dt =

∫ T

0

(v0 + at) dt =

(

v0t + a
t2

2

)∣
∣
∣
∣

T

0

=

(

v0T + a
T 2

2

)

. (4.6)

So, setting Equations (4.5) and (4.6) equal means that

x(T ) − x0 = v0T + a
T 2

2
.

But this is true forall final times,T , i.e. this holds for any timet so that

x(t) = x0 + v0t + a
t2

2
. (4.7)

This expression represents the position of a particle at time t given that it experienced a
constant acceleration. The initial velocityv0, initial positionx0 and accelerationa allowed
us to predict the position of the objectx(t) at any later timet. That is the meaning of
Eqn. (4.7)16.

4.2.4 Non-constant acceleration and terminal velocity

In general, the acceleration of a falling body is not actually uniform, because frictional
forces impede that motion. A better approximation to the rate of change of velocity is
given by thedifferential equation

dv

dt
= g − kv. (4.8)

16Of course, Eqn. (4.7) only holds so long as the object is accelerating. Once the a falling object hits the ground,
for example, this equation no longer holds.
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We will assume that initially the velocity is zero, i.e.v(0) = 0.
This equation is a mathematical statement that relates changes in velocityv(t) to the

constant acceleration due to gravity,g, and drag forces due to friction with the atmosphere.
A good approximation for such drag forces is the termkv, proportional to the velocity,
with k, a positive constant, representing a frictional coefficient. Becausev(t) appears both
in the derivative and in the expressionkv, we cannot apply the methods developed in the
previous section directly. That is, we do not have an expression that depends on time whose
antiderivative we would calculate. The derivative ofv(t) (on the left) is connected to the
unknownv(t) on the right.

Finding the velocity and then the displacement for this typeof motion requires special
techniques. In Chapter 9, we will develop a systematic approach, called Separation of
Variables to find analytic solutions to equations such as (4.8).

Here, we use a special procedure that allows us to determine the velocity in this case.
We first recall the following result from first term calculus material:

The differential equation and initial condition

dy

dt
= −ky, y(0) = y0 (4.9)

has a solution
y(t) = y0e

−kt. (4.10)

Equation (4.8) implies that
a(t) = g − kv(t),

wherea(t) is the acceleration at timet. Taking a derivative of both sides of this equation
leads to

da

dt
= −k

dv

dt
= −ka.

We observe that this equation has the same form as equation (4.9) (with a replacingy),
which implies (according to 4.10) thata(t) is given by

a(t) = C e−kt = a0 e−kt.

Initially, at timet = 0, the acceleration isa(0) = g (sincea(t) = g−kv(t), andv(0) = 0).
Therefore,

a(t) = g e−kt.

Since we now have an explicit formula for acceleration vs time, we can apply direct inte-
gration as we did in the examples in Sections 4.2.2 and 4.2.3.The result is:

∫ T

0

a(t) dt =

∫ T

0

g e−kt dt = g

∫ T

0

e−kt dt = g

[
e−kt

−k

] ∣
∣
∣
∣

T

0

= g
(e−kT − 1)

−k
=

g

k

(
1 − e−kT

)
.

In the calculation, we have used the fact that the antiderivative of e−kt is e−kt/k. (This can
be verified by simple differentiation.)
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t

velocity v(t)

0.0 30.0

0.0

50.0

Figure 4.2. Terminal velocity (m/s) for acceleration due to gravityg=9.8 m/s2,
andk = 0.2/s. The velocity reaches a near constant 49 m/s by about 20 s.

As before, based on equation (4.2) this integral of the acceleration over0 ≤ t ≤ T
must equalv(T ) − v(0). But v(0) = 0 by assumption, and the result is true foranyfinal
time T , so, in particular, settingT = t, and combining both results leads to an expression
for the velocity at any time:

v(t) =
g

k

(
1 − e−kt

)
. (4.11)

We will study the differential equation (4.8) again in Section 9.3.2, in the context of a more
detailed discussion of differential equations

From our result here, we can also determine how the velocity behaves in the long
term: observe that fort → ∞, the exponential terme−kt → 0, so that

v(t) → g

k
(1 − very small quantity) ≈ g

k
.

Thus, when drag forces are in effect, the falling object doesnot continue to accelerate
indefinitely: it eventually attains aterminal velocity. We have seen that this limiting
velocity isv = g/k. The object continues to fall at this (approximately constant) speed as
shown in Figure 4.2. The terminal velocity is also a steady state value of Eqn. (4.8), i.e. a
value of the velocity at which no further change occurs.

4.3 From rates of change to total change
In this section, we examine several examples in which the rate of change of some process is
specified. We use this information to obtain the total change17 that occurs over some time
period.

17We will use the terminology “total change” and “net change” interchangeably in this section.
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Changing temperature

We must carefully distinguish between information about the time dependence of some
function, from information about the rate of change of some function. Here is an example
of these two different cases, and how we would handle them

(a) The temperature of a cup of juice is observed to be

T (t) = 25(1 − e−0.1t)◦Celcius

wheret is time in minutes. Find the change in the temperature of the juice between
the timest = 1 andt = 5.

(b) Therate of changeof temperature of a cup of coffee is observed to be

f(t) = 8e−0.2t◦Celcius per minute

wheret is time in minutes. What is thetotal change in the temperature between
t = 1 andt = 5 minutes ?

Solutions

(a) In this case, we are given the temperature as a function oftime. To determine what
net changeoccurred between timest = 1 andt = 5, we find the temperatures at
each time point and subtract: That is, the change in temperature between timest = 1
andt = 5 is simply

T (5)−T (1) = 25(1− e−0.5)−25(1− e−0.1) = 25(0.94−0.606) = 7.47◦Celcius.

(b) Here, we do not know the temperature at any time, but we aregiven information
aboutthe rate of change. (Carefully note the subtle difference in the wording.)
To get the total change, we would sum up all the small changes,f(t)∆t (overN
subintervals of duration∆t = (5 − 1)/N = 4/N ) for t starting at 1 and ending
at 5 min. We obtain a sum of the form

∑
f(tk)∆t wheretk is the k’th time point.

Finally, we take a limit as the number of subintervals increases (N → ∞). By now,
we recognize that this amounts to a process of integration. Based on this variation
of the same concept we can take the usual shortcut of integrating the rate of change,
f(t), from t = 1 to t = 5. To do so, we apply the Fundamental Theorem as before,
reducing the amount of computation to finding antiderivatives. We compute:

I =

∫ 5

1

f(t) dt =

∫ 5

1

8e−0.2tdt = −40e−0.2t

∣
∣
∣
∣

5

1

= −40e−1 + 40e−0.2,

I = 40(e−0.2 − e−1) = 40(0.8187− 0.3678) = 18.

Only in the second case did we need to use a definite integral tofind a net change, since we
were given the way that therate of changedepended on time. Recognizing the subtleties
of the wording in such examples will be an important skill that the reader should gain.
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2

0 1 2 3
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rate
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4       year

Figure 4.3.Growth rates of two trees over a four year period. Tree 1 initially has
a higher growth rate, but tree 2 catches up and grows faster after year 3.

4.3.1 Tree growth rates

The rate of growth in height for two species of trees (in feet per year) is shown in Figure 4.3.
If the trees start at the same height, which tree is taller after 1 year? After 4 years?

Solution

In this problem we are provided with a sketch, rather than a formula for the growth rate of
the trees. Our solution will thus bequalitative(i.e. descriptive), rather thanquantitative.
(This means we do not have to calculate anything; rather, we have to make some important
observations about the behaviour shown in Fig 4.3.)

We recognize that the net change in height of each tree is of the form

Hi(T ) − Hi(0) =

∫ T

0

gi(t)dt, i = 1, 2.

wherei = 1 for tree 1,i = 2 for tree 2,gi(t) is the growth rate as a function of time
(shown for each tree in Figure 4.3) andHi(t) is the height of tree “i” at time t. But, by the
Fundamental Theorem of Calculus, this definite integral corresponds to the area under the
curvegi(t) from t = 0 to t = T . Thus we must interpret the net change in height for each
tree as the area under its growth curve. We see from Figure 4.3that att = 1 year, the area
under the curve for tree 1 is greater, so it has grown more. Att = 4 years the area under
the second curve is greatest so tree 2 has grown the most by that time.

4.3.2 Radius of a tree trunk

The trunk of a tree, assumed to have the shape of a cylinder, grows incrementally, so that its
cross-section consists of “rings”. In years of plentiful rain and adequate nutrients, the tree
grows faster than in years of drought or poor soil conditions. Suppose the rainfall pattern
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time, t

f(t)

0.0 14.0

0.0

3.0

Figure 4.4.Rate of change of radius,f(t) for a growing tree over a period of 14 years.

has been cyclic, so that, over a period of 14 years, the growthrate of the radius of the tree
trunk (in cm/year) is given by the function

f(t) = 1.5 + sin(πt/5),

as shown in Figure 4.4. Let the height of the tree trunk be approximately constant over this
ten year period, and assume that the density of the trunk is approximately 1 gm/cm3.

(a) If the radius was initiallyr0 at timet = 0, what will the radius of the trunk be at
time t later?

(b) What is the ratio of the mass of the tree trunk att = 10 years andt = 0 years?
(i.e. find the ratio mass(10)/mass(0).)

Solution

(a) LetR(t) denote the trunk’s radius at time t. The rate of change of the radius of the tree
is given by the functionf(t), and we are told that att = 0, R(0) = r0. A graph of this
growth rate over the first fifteen years is shown in Figure 4.4.The net change in the radius
is

R(t) − R(0) =

∫ t

0

f(s) ds =

∫ t

0

(1.5 + sin(πs/5)) ds.

Integrating the above, we get

R(t) − R(0) =

(

1.5t − cos(πs/5)

π/5

) ∣
∣
∣
∣

t

0

.

Here we have used the fact that the antiderivative ofsin(ax) is−(cos(ax)/a).
Thus, using the initial value,R(0) = r0 (which is a constant), and evaluating the

integral, leads to

R(t) = r0 + 1.5t − 5 cos(πt/5)

π
+

5

π
.
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(The constant at the end of the expression stems from the factthatcos(0) = 1.) A graph
of the radius of the tree over time (usingr0 = 1) is shown in Figure 4.5. This function
is equivalent to the area associated with the function shownin Figure 4.4. Notice that
Figure 4.5 confirms that the radius keeps growing over the entire period, but that its growth
rate (slope of the curve) alternates between higher and lower values.

time, t

R(t)

0.0 14.0

0.0

25.0

Figure 4.5. The radius of the tree,R(t), as a function of time, obtained by inte-
grating the rate of change of radius shown in Fig. 4.4.

After ten years we have

R(10) = r0 + 15 − 5

π
cos(2π) +

5

π
.

But cos(2π) = 1, so

R(10) = r0 + 15.

(b) The mass of the tree is density times volume, and since thedensity in this example
is constant, 1 gm/cm3, we need only obtain the volume att = 10. Taking the trunk to be
cylindrical means that the volume at any given time is

V (t) = π[R(t)]2h.

The ratio we want is then

V (10)

V (0)
=

π[R(10)]2h

πr2
0h

=
[R(10)]2

r2
0

=

(
r0 + 15

r0

)2

.

In this problem we used simple anti-differentiation to compute the desired total change.
We also related the graph of the radial growth rate in Fig. 4.4to that of the resulting radius
at timet, in Fig. 4.5.
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4.3.3 Birth rates and total births

After World War II, the birth rate in western countries increased dramatically. Suppose that
the number of babies born (in millions per year) was given by

b(t) = 5 + 2t, 0 ≤ t ≤ 10,

wheret is time in years after the end of the war.

(a) How many babies in total were born during this time period(i.e in the first 10 years
after the war)?

(b) Find the timeT0 such that the total number of babies born from the end of the war
up to the timeT0 was precisely 14 million.

Solution

(a) To find the number of births, we would integrate the birth rate,b(t) over the given
time period. Thenet changein the population due to births (neglecting deaths) is

P (10)−P (0) =

∫ 10

0

b(t) dt =

∫ 10

0

(5+2t) dt = (5t+t2)|100 = 50+100 = 150[million babies].

(b) Denote byT the time at which the total number of babies born was 14 million. Then,
[in units of million]

I =

∫ T

0

b(t) dt = 14 =

∫ T

0

(5 + 2t) dt = 5T + T 2

equatingI = 14 leads to the quadratic equation,T 2 + 5T − 14 = 0, which can be
written in the factored form,(T − 2)(T + 7) = 0. This has two solutions, but we
rejectT = −7 since we are looking for time after the War. Thus we find thatT = 2
years, i.e it took two years for 14 million babies to have beenborn.

While this problem involves simple integration, we had to solve for a quantity (T ) based
on information about behaviour of that integral. Many problems in real application involve
such slight twists on the ideas of integration.

4.4 Production and removal
The process of integration can be used to convert rates of production and removal into net
amounts present at a given time. The example in this section is of this type. We investigate
a process in which a substance accumulates as it is being produced, but disappears through
some removal process. We would like to determine when the quantity of material increases,
and when it decreases.
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Circadean rhythm in hormone levels

Consider a hormone whose level in the blood at timet will be denoted byH(t). We will
assume that the level of hormone is regulated by two separateprocesses: one might be
the secretion rate of specialized cells that produce the hormone. (The production rate of
hormone might depend on the time of day, in some cyclic pattern that repeats every 24
hours or so.) This type of cyclic pattern is calledcircadeanrhythm. A competing process
might be the removal of hormone (or its deactivation by some enzymes secreted by other
cells.) In this example, we will assume that both the production rate,p(t), and the removal
rate,r(t), of the hormone are time-dependent, periodic functions with somewhat different
phases.

126 60 0
(noon)

3 3 99

r(t)

hour

hormone production/removal rates

t

p(t)

Figure 4.6.The rate of hormone productionp(t) and the rate of removelr(t) are
shown here. We want to use these graphs to deduce when the level of hormone is highest
and lowest.

A typical example of two such functions are shown in Figure 4.6. This figure shows
the production and removal rates over a period of 24 hours, starting at midnight. Our first
task will be to use properties of the graph in Figure 4.6 to answer the following questions:

1. When is the production rate,p(t), maximal?

2. When is the removal rater(t) minimal?

3. At what time is the hormone level in the blood highest?

4. At what time is the hormone level in the blood lowest?

5. Find the maximal level of hormone in the blood over the period shown, assuming
that its basal (lowest) level isH = 0.

Solutions

1. We see directly from Fig. 4.6 that production rate is maximal at about 9:00 am.
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2. Similarly, removal rate is minimal at noon.

3. To answer this question we note that the total amount of hormone produced over a
time perioda ≤ t ≤ b is

Ptotal =
∫ b

a

p(t)dt.

The total amount removed over time intervala ≤ t ≤ b is

Rtotal =
∫ b

a

r(t)dt.

This means that the net change in hormone level over the giventime interval (amount
produced minus amount removed) is

H(b) − H(a) = Ptotal− Rtotal =
∫ b

a

(p(t) − r(t))dt.

We interpret this integral as thearea between the curvesp(t) and r(t). But we
must use caution here: For any time interval over whichp(t) > r(t), this integral
will be positive, and the hormone level will have increased.Otherwise, ifr(t) <
p(t), the integral yields a negative result, so that the hormone level has decreased.
This makes simple intuitive sense: If production is greaterthan removal, the level
of the substance is accumulating, whereas in the opposite situation, the substance is
decreasing. With these remarks, we find that the hormone level in the blood will be
greatestat 3:00 pm, when the greatest (positive) area between the twocurves has
been obtained.

4. Similarly, the least hormone level occurs after a period in which the removal rate has
been larger than production for the longest stretch. This occurs at 3:00 am, just as
the curves cross each other.

5. Here we will practice integration by actually fitting somecyclic functions to the
graphs shown in Figure 4.6. Our first observation is that if the length of the cycle
(also called theperiod) is 24 hours, then thefrequencyof the oscillation isω =
(2π)/24 = π/12. We further observe that the functions shown in the Figure 4.7
have the form

p(t) = A(1 + sin(ωt)), r(t) = A(1 + cos(ωt)).

Intersection points occur when
p(t) = r(t)

A(1 + sin(ωt)) = A(1 + cos(ωt)),

sin(ωt) = cos(ωt)),

⇒ tan(ωt) = 1.

This last equality leads toωt = π/4, 5π/4. But then, the fact thatω = π/12 implies
that t = 3, 15. Thus, over the time period3 ≤ t ≤ 15 hrs, the hormone level is
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t

Figure 4.7. The functions shown above are trigonometric approximations to the
rates of hormone production and removal from Figure 4.6

increasing. For simplicity, we will take the amplitudeA = 1. (In general, this would
just be a multiplicative constant in whatever solution we compute.) Then the net
increase in hormone over this period is calculated from the integral

Htotal =
∫ 15

3

[p(t) − r(t)] dt =

∫ 15

3

[(1 + sin(ωt)) − (1 + cos(ωt))] dt

In the problem set, the reader is asked to compute this integral and to show that the
amount of hormone that accumulated over the time interval3 ≤ t ≤ 15, i.e. between
3:00 am and 3:00 pm is24

√
2/π.

4.5 Present value of a continuous income stream
Here we discuss the value of an annuity, which is a kind of savings account that guarantees
a continuous stream of income. You would like to payP dollars to purchase an annuity that
will pay you an incomef(t) every year from now on, fort > 0. In some cases, we might
want a constant income every year, in which casef(t) would be constant. More generally,
we can consider the case that at each future yeart, we ask for incomef(t) that could vary
from year to year. If the bank interest rate isr, how much should you pay now?

Solution

If we investP dollars (the “principal” i.e., the amount deposited) in thebank with interest
r (compounded continually) then the amountA(t) in the account at timet (in years), will
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grow as follows:

A(t) = P
(

1 +
r

n

)nt

,

wherer is the yearly interest rate (e.g. 5%) andn is the number of times per year that
interest is compound (e.g.n = 2 means interest compounded twice per year,n = 12
means monthly compounded interest, etc.) Define

h =
r

n
. Then n =

r

h
.

Then at timet, we have that

A(t) = P (1 + h)
1
h

rt

= P
[

(1 + h)
1
h

]rt

≈ Pert for largen or smallh.

Here we have used the fact that whenh is small (i.e. frequent intervals of compounding)
the expression in square brackets above can be approximatedby e, the base of the natural
logarithms. Recall that

e = lim
h→0

[

(1 + h)
1
h

]

.

(This result was obtained in a first semester calculus courseby selecting the base of expo-
nentials such that the derivative ofex is justex itself.) Thus, we have found that the amount
in the bank at timet will grow as

A(t) = Pert, (assuming continually compounded interest). (4.12)

Having established the exponential growth of an investment, we return to the question
of how to set up an annuity for a continuous stream of income inthe future. Rewriting
Eqn. (4.12), the principle amount that we should invest in order to haveA(t) to spend at
time t is

P = A(t)e−rt.

Suppose we want to havef(t) spending money for each yeart. We refer to thepresent
valueof yeart as the quantity

P = f(t)e−rt.

(i.e. We must payP now, in the present, to getf(t) in a future yeart.) Summing over all
the years, we find that the present value of the continuous income stream is

P =
L∑

t=1

f(t)e−rt · 1
︸︷︷︸

“∆t′′

≈
∫ L

0

f(t)e−rt dt,

whereL is the expected number of years left in the lifespan of the individual to whom this
annuity will be paid, and where we have approximated a sum of payments by an integral
(of a continuous income stream). One problem is that we do notknow in advance how long
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the lifespanL will be. As a crude approximation, we could assume that this income stream
continues forever, i.e. thatL ≈ ∞. In such an approximation, we have to compute the
integral:

P =

∫
∞

0

f(t)e−rt dt. (4.13)

The integral in Eqn. (4.13) is animproper integral (i.e. integral over an unbounded do-
main), as we have already encountered in Section 3.8.5. We shall have more to say about
the properties of such integrals, and about their technicaldefinition, existence, and proper-
ties in Chapter 10. We refer to the quantity

P =

∫
∞

0

f(t)e−rt dt, (4.14)

as thepresent value of a continuous income streamf(t).

Example: Setting up an annuity

Suppose we want an annuity that provides us with an annual payment of10, 000 from the
bank, i.e. in this casef(t) = $10, 000 is a function that has a constant value for every year.
Then from Eqn (4.14),

P =

∫
∞

0

10000e−rt dt = 10000

∫
∞

0

e−rt dt.

By a previous calculation in Section 3.8.5, we find that

P = 10000 · 1

r
,

e.g. if interest rate is 5% (and assumed constant over futureyears), then

P =
10000

0.05
= $200, 000.

Therefore, we need to pay $200,000 today to get10, 000 annually for every future year.

4.6 Average value of a function
In this final example, we apply the definite integral to computing the average height of
a function over some interval. First, we define what is meant by average value in this
context.18

Given a function
y = f(x)

over some intervala ≤ x ≤ b, we will define average value of the function as follows:

18In Chapters 5 and 8, we will encounter a different type of average (also called mean) that will represent an
average horizontal position or center of mass. It is important to avoid confusing these distinct notions.



4.6. Average value of a function 77

Definition

The average value off(x) over the intervala ≤ x ≤ b is

f̄ =
1

b − a

∫ b

a

f(x)dx.

Example 1

Find the average value of the functiony = f(x) = x2 over the interval2 < x < 4.

Solution

f̄ =
1

4 − 2

∫ 4

2

x2 dx =
1

2

x3

3

∣
∣
∣
∣

4

2

=
1

6

(
43 − 23

)
=

28

3

Example 2: Day length over the year

Suppose we want to know the average length of the day during summer and spring. We
will assume that day length follows a simple periodic behaviour, with a cycle length of 1
year (365 days). Let us measure timet in days, witht = 0 at the spring equinox, i.e. the
date in spring when night and day lengths are equal, each being 12 hrs. We will refer to
the number of daylight hours on dayt by the functionf(t). (We will also callf(t) the
day-length on dayt.

A simple function that would describe the cyclic changes of day length over the
seasons is

f(t) = 12 + 4 sin

(
2πt

365

)

.

This is a periodic function with period 365 days as shown in Figure 4.8. Its maximal value
is 16h and its minimal value is8h. The average day length over spring and summer, i.e.
over the first (365/2)≈ 182 days is:

f̄ =
1

182

∫ 182

0

f(t)dt

=
1

182

∫ 182

0

(

12 + 4 sin(
πt

182
)

)

dt

=
1

182

(

12t − 4 · 182

π
cos(

πt

182
)

) ∣
∣
∣
∣

182

0

=
1

182

(

12 · 182 − 4 · 182

π
[cos(π) − cos(0)]

)

= 12 +
8

π
≈ 14.546 hours (4.15)
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summer winter
<=================> <=================>

0.0 365.0

0.0

16.0

summer winter
<=================> <=================>

0.0 365.0

0.0

16.0

Figure 4.8. We show the variations in day length (cyclic curve) as well asthe
average day length (height of rectangle) in this figure.

Thus, on average, the day is 14.546 hrs long during the springand summer.
In Figure 4.8, we show the entire day length cycle over one year. It is left as an

exercise for the reader to show that the average value off over the entire year is 12 hrs.
(This makes intuitive sense, since overall, the short days in winter will average out with the
longer days in summer.)

Figure 4.8 also shows geometrically what the average value of the function repre-
sents. Suppose we determine the area associated with the graph off(x) over the interval of
interest. (This area is painted red (dark) in Figure 4.8, where the interval is0 ≤ t ≤ 365,
i.e. the whole year.) Now let us draw in a rectangle over the same interval (0 ≤ t ≤ 365)
having the same total area. (See the big rectangle in Figure 4.8, and note that its area
matches with the darker, red region.) The height of the rectangle represents the average
value off(t) over the interval of interest.

4.7 Summary
In this chapter, we arrived at a number of practical applications of the definite integral.

1. In Section 4.2, we found that for motion at constant acceleration a, the displace-
ment of a moving object can be obtained by integrating twice:the definite integral
of acceleration is the velocityv(t), and the definite integral of the velocity is the
displacement.

v(t) = v0 +

∫ t

0

a ds. x(t) = x(0) +

∫ t

0

v(s) ds.

(Here we use the “dummy variable”s inside the integral, but the meaning is, of
course, the same as in the previous presentation of the formulae.) We showed that at
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any timet, the position of an object initially atx0 with velocityv0 is

x(t) = x0 + v0t + a
t2

2
.

2. We extended our analysis of a moving object to the case of non-constant acceleration
(Section 4.2.4), when air resistance tends to produce a dragforce to slow the motion
of a falling object. We found that in that case, the acceleration gradually decreases,
a(t) = ge−kt. (The decaying exponential means thata → 0 ast increases.) Again,
using the definite integral, we could compute a velocity,

v(t) =

∫ t

0

a(s) ds =
g

k
(1 − e−kt).

3. We illustrated the connection between rates of change (over time) and total change
(between on time point and another). In general, we saw that if r(t) represents a rate
of change of some process, then

∫ b

a

r(s) ds = Total change over the time intervala ≤ t ≤ b.

This idea was discussed in Section 4.3.

4. In the concluding Section 4.6, we discussed the average value of a functionf(x)
over some intervala ≤ x ≤ b,

f̄ =
1

b − a

∫ b

a

f(x)dx.

In the next few chapters we encounters a vast assortment of further examples and
practical applications of the definite integral, to such topics as mass, volumes, length,
etc. In some of these we will be called on to “dissect” a geometric shape into pieces
that are not simple rectangles. The essential idea of an integral as a sum of many
(infinitesimally) small pieces will, nevertheless be the same.
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Chapter 5

Applications of the
definite integral to
calculating volume,
mass, and length

5.1 Introduction
In this chapter, we consider applications of the definite integral to calculating geometric
quantities such as volumes of geometric solids, masses, centers of mass, and lengths of
curves.

The idea behind the procedure described in this chapter is closely related to those we
have become familiar with in the context of computing areas.That is, we first imagine an
approximation using a finite number of pieces to represent a desired result. Then, a limiting
process of refinement leads to the desired result. The technology of the definite integral,
developed in Chapters 2 and 3 applies directly. This means that we need not re-derive
the link between Riemann Sums and the definite integral, we can use these as we did in
Chapter 4.

In the first parts of this chapter, we will calculate the totalmass of a continuous
density distribution. In this context, we will also define the concept of a center of mass.
We will first motivate this concept for a discrete distribution made up of a number of finite
masses. Then we show how the same concept can be applied in thecontinuous case. The
connection between the discrete and continuous representation will form an important link
with our study of analogous concepts in probability, in Chapters 7 and 8.

In the second part of this chapter, we will consider how to dissect certain three dimen-
sional solids into a set of simpler parts whose volumes are easy to compute. We will use
familiar formulae for the volumes of disks and cylindrical shells, and carefully construct
a summation to represent the desired volume. The volume of the entire object will then
be obtained by summing up volumes of a stack of disks or a set ofembedded shells, and
considering the limit as the thickness of the dissection cuts gets thinner. There are some im-
portant differences between material in this chapter and inprevious chapters. Calculating
volumes will stretch our imagination, requiring us to visualize 3-dimensional (3D) objects,
and how they can be subdivided into shells or slices. Most of our effort will be aimed at
understanding how to set up the needed integral. We provide anumber of examples of this
procedure, but first we review the basics of elementary volumes that will play the dominant
role in our calculations.

81
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5.2 Mass distributions in one dimension
We start our discussion with a number of example of mass distributed along a single dimen-
sion. First, we consider a discrete collection of masses andthen generalize to a continuous
density. We will be interested in computing the total mass (by summation or integration)
as well as other properties of the distribution.

In considering the example of mass distributions, it becomes an easy step to develop
the analogous concepts for continuous distributions. Thisallows us to recapitulate the link
between finite sums and definite integrals that we developed in earlier chapters. Examples
in this chapter also further reinforce the idea of density (in the context of mass density).
Later, we will find that these ideas are equally useful in the context of probability, explored
in Chapters 7 and 8.

5.2.1 A discrete distribution: total mass of beads on a wire

5

m1 m2 m3 m4 m5

x1 x2 x3 x4 x

Figure 5.1.A discrete distribution of masses along a (one dimensional)wire.

In Figure 5.1 we see a number of beads distributed along a thinwire. We will label
each bead with an index,i = 1 . . . n (there are five beads so thatn = 5). Each bead has a
certain position (that we will think of as the value ofxi) and a mass that we will callmi.
We will think of this arrangement as adiscrete mass distribution: both the masses of the
beads, and their positions are of interest to us. We would like to describe some properties
of this distribution.

The total mass of the beads,M , is just the sum of the individual masses, so that

M =
n∑

i=1

mi. (5.1)

5.2.2 A continuous distribution: mass density and total mas s

We now consider a continuous mass distribution where the mass per unit length (“density”)
changes gradually from one point to another. For example, the bar in Figure 5.2 has a
density that varies along its length.

The portion at the left is made of lighter material, or has a lower density than the
portions further to the right. We will denote that density byρ(x) and this carries units of
mass per unit length. (The density of the material along the length of the bar is shown in
the graph.) How would we find the total mass?

Suppose the bar has lengthL and letx (0 ≤ x ≤ L) denote position along that bar.
Let us imagine dividing up the bar into small pieces of length∆x as shown in Figure 5.2.



5.2. Mass distributions in one dimension 83

x

mass distribution

ρ(   )x

...

∆ x

m1 m2 mn

x1 x2 xn

...

Figure 5.2. Top: A continuous mass distribution along a one dimensionalbar,
discussed in Example 5.3.3. The density of the bar (mass per unit length),ρ(x) is shown
on the graph. Bottom: the discretized approximation of thissame distribution. Here we
have subdivided the bar inton smaller pieces, each of length∆x. The mass of each piece
is approximatelymk = ρ(xk)∆x wherexk = k∆x. The total mass of the bar (“sum of
all the pieces”) will be represented by an integral (5.2) as we let the size,∆x, of the pieces
become infinitesimal.

The coordinates of the endpoints of those pieces are then

x0 = 0, . . . , xk = k∆x, . . . , xN = L

and the corresponding masses of each of the pieces are approximately

mk = ρ(xk)∆x.

(Observe that units are correct, that is massk=(mass/length)· length. Note that∆x has units
of length.) The total mass is then a sum of masses of all the pieces, and, as we have seen in
an earlier chapter, this sum will approach the integral

M =

∫ L

0

ρ(x)dx (5.2)

as we make the size of the pieces smaller.
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We can also define acumulative function for the mass distribution as

M(x) =

∫ x

0

ρ(s)ds. (5.3)

ThenM(x) is the total mass in the part of the interval between the left end (assumed at
0) and the positionx. The idea of a cumulative function becomes useful in discussions of
probability in Chapter 8.

5.2.3 Example: Actin density inside a cell

Biologists often describe the density of protein, receptors, or other molecules in cells. One
example is shown in Fig. 5.3. Here we show a keratocyte, whichis a cell from the scale
of a fish. A band of actin filaments (protein responsible for structure and motion of the

2

nucleus

actin cortex

actin cortex

b

c

d

−1 1

−1 0 1 x

  =1−xρ

Figure 5.3. A cell (keratocyte) shown in (a) has a dense distribution of actin
in a band called the actin cortex. In (b) we show a schematic sketch of the actin cortex
(shaded). In (c) that band of actin is scaled and straightened out so that it occupies a
length corresponding to the interval−1 ≤ x ≤ 1. We are interested in the distribution
of actin filaments across that band. That distribution is shown in (d). Note that actin is
densest in the middle of the band. (a) Credit to Alex Mogilner.

cell) are found at the edge of the cell in a band called theactin cortex. It has been found
experimentally that the density of actin is greatest in the middle of the band, i.e. the position
corresponding to the midpoint of the edge of the cell shown inFig. 5.3a. According to
Alex Mogilner19, the density of actin across the cortex in filaments per edgeµm is well
approximated by a distribution of the form

ρ(x) = α(1 − x2) − 1 ≤ x ≤ 1,

wherex is the fraction of distance20 from midpoint to the end of the band (Fig. 5.3c and d).
Hereρ(x) is an actin filament density in units of filaments perµm. That is,ρ is the number

19Alex Mogilner is a professor of mathematics who specializesin cell biology and the actin cytoskeleton
20Note that 1µm (read “ 1 micro-meter” or “micron”) is 10−6meters, and is appropriate for measuring lengths

of small objects such as cells.
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of actin fibers per unit length.
We can find the total number of actin filaments,N in the band by integration, i.e.

N =

∫ 1

−1

α(1 − x2) dx = α

∫ 1

−1

(1 − x2) dx.

The integral above has already been computed (Integral 2.) in the Examples 3.6.2 of Chap-
ter 3 and was found to be 4/3. Thus, we have that there areN = 4α/3 actin filaments in
the band.

5.3 Mass distribution and the center of mass
It is useful to describe several other properties of mass distributions. We first define the
“center of mass”,̄x which is akin to an averagex coordinate.

5.3.1 Center of mass of a discrete distribution

The center of mass̄x of a mass distribution is given by:

x̄ =
1

M

n∑

i=1

ximi .

This can also be written in the form

x̄ =

∑n
i=1 ximi
∑n

i=1 mi
.

5.3.2 Center of mass of a continuous distribution

We can generalize the concept of the center of mass for a continuous mass density. Our
usual approach of subdividing the interval0 ≤ x ≤ L and computing a Riemann sum leads
to

x̄ =
1

M

n∑

i=1

xiρ(xi)∆x.

As ∆x → dx, this becomes an integral. Based on this, it makes sense to define thecenter
of massof the continuous mass distribution as follows:

x̄ =
1

M

∫ L

0

xρ(x)dx .

We can also write this in the form

x̄ =

∫ L

0
xρ(x)dx

∫ L

0 ρ(x)dx
.
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5.3.3 Example: Center of mass vs average mass density

Here we distinguish between two (potentially confusing) quantities in the context of an
example.

A long thin bar of lengthL is made of material whose density varies along the length
of the bar. Letx be distance from one end of the bar. Suppose that the mass density is given
by

ρ(x) = ax, 0 ≤ x ≤ L.

This type of mass density is shown in a panel in Fig. 5.2.

(a) Find the total mass of the bar.

(b) Find the average mass density along the bar.

(c) Find the center of mass of the bar.

(d) Where along the length of the bar should you cut to get two pieces of equal mass?

Solution

(a) From our previous discussion, the total mass of the bar is

M =

∫ L

0

ax dx =
ax2

2

∣
∣
∣
∣

L

0

=
aL2

2
.

(b) The average mass density along the bar is computed just asone would compute the
average value of a function: integrate the function over an interval and divide by the
length of the interval. An example of this type appeared in Section 4.6. Thus

ρ̄ =
1

L

∫ L

0

ρ(x) dx =
1

L

(
aL2

2

)

=
aL

2

A bar having a uniform densitȳρ = aL/2 would have the same total mass as the bar
in this example. (This is the physical interpretation of average mass density.)

(c) The center of mass of the bar is

x̄ =

∫ L

0 xp(x) dx

M
=

1

M

∫ L

0

ax2 dx =
a

M

x3

3

∣
∣
∣
∣

L

0

=
2a

aL2

L3

3
=

2

3
L.

Observe that the center of mass is an “average x coordinate”,which is not the same
as the average mass density.

(d) We can use the cumulative function defined in Eqn. (5.3) tofigure out where half of
the mass is concentrated. Suppose we cut the bar at some position x = s. Then the
mass of this part of the bar is

M1 =

∫ s

0

ρ(x) dx =
as2

2
,
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We ask for what values ofs is it true thatM1 is exactly half the total mass? Using
the result of part (a), we find that for this to be true, we must have

M1 =
M

2
, ⇒ as2

2
=

1

2

aL2

2

Solving fors leads to

s =
1√
2
L =

√
2

2
L.

Thus, cutting the bar at a distance(
√

2/2)L from x = 0 results in two equal masses.

Remark: the position that subdivides the mass into two equalpieces is analogous to
the idea of a median. This concept will appear again in the context of probability in
Chapter 8.

5.3.4 Physical interpretation of the center of mass

The center of mass has a physical interpretation: it is the point at which the mass would
“balance”. In the Appendix 11.3 we discuss this in detail.

5.4 Miscellaneous examples and related problems
The idea of mass density can be extended to related problems of various kinds. We give
some examples in this section.

Up to now, we have seen examples of mass distributed in one dimension: beads on a
wire, actin density along the edge of a cell, (in Chapter 4), or a bar of varying density. For
the continuous distributions, we determined the total massby integration. Underlying the
integral we computed was the idea that the interval could be “dissected” into small parts
(of width ∆x), and a sum of pieces transformed into an integral. In the next examples, we
consider similar ideas, but instead of dissecting the region into 1-dimensional intervals, we
have slightly more interesting geometries.

5.4.1 Example: A glucose density gradient

A cylindrical test-tube of radiusr, and heighth, contains a solution of glucose which has
been prepared so that the concentration of glucose is greatest at the bottom and decreases
gradually towards the top of the tube. (This is called adensity gradient). Suppose that the
concentrationc as a function of the depthx is c(x) = 0.1 + 0.5x grams per centimeter3.
(x = 0 at the top of the tube, andx = h at the bottom of the tube.) In Figure 5.4 we show a
schematic version of what this gradient might look like. (Inreality, the transition between
high and low concentration would be smoother than shown in this figure.) Determine the
total amount of glucose in the tube (in gm). Neglect the “rounded” lower portion of the
tube: i.e. assume that it is a simple cylinder.
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x=0

r

 x=h

∆ x

Figure 5.4.A test-tube of radiusr containing a gradient of glucose. A disk-shaped
slice of the tube with small thickness∆x has approximately constant density.

Solution

We assume a simple cylindrical tube and consider imaginary “slices” of this tube along
its vertical axis, here labeled as the “x” axis. Suppose that the thickness of a slice is∆x.
Then the volume of each of these (disk shaped) slices isπr2∆x. The amount of glucose in
the slice is approximately equal to the concentrationc(x) multiplied by the volume of the
slice, i.e. the small slice contains an amountπr2∆xc(x) of glucose. In order to sum up the
total amount over all slices, we use a definite integral. (As before, we imagine∆x → dx
becoming “infinitesimal” as the number of slices increases.) The integral we want is

G = πr2

∫ h

0

c(x) dx.

Even though the geometry of the test-tube, at first glance, seems more complicated than
the one-dimensional highway described in Chapter 4, we observe here that the integral
that computes the total amount is still a sum over a single spatial variable,x. (Note the
resemblance between the integrals

I =

∫ L

0

C(x) dx and G = πr2

∫ h

0

c(x) dx,

here and in the previous example.) We have neglected the complication of the rounded bot-
tom portion of the test-tube, so that integration over its length (which is actually summation
of disks shown in Figure 5.4) is a one-dimensional problem.

In this case the total amount of glucose in the tube is

G = πr2

∫ h

0

(0.1 + 0.5x)dx = πr2

(

0.1x +
0.5x2

2

) ∣
∣
∣
∣

h

0

= πr2

(

0.1h +
0.5h2

2

)

.

Suppose that the height of the test-tube ish = 10 cm and its radius isr = 1 cm.
Then the total mass of glucose is

G = π

(

0.1(10) +
0.5(100)

2

)

= π (1 + 25) = 26π gm.
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In the next example, we consider a circular geometry, but theconcept of dissecting
and summing is the same. Our task is to determine how to set up the problem in terms
of an integral, and, again, we must imagine which type of subdivision would lead to the
summation (integration) needed to compute total amount.

5.4.2 Example: A circular colony of bacteria

A circular colony of bacteria has radius of1 cm. At distancer from the center of the
colony, the density of the bacteria, in units of one million cells per square centimeter, is
observed to beb(r) = 1−r2 (Note:r is distance from the center in cm, so that0 ≤ r ≤ 1).
What is the total number of bacteria in the colony?

(one ring)

∆ r

Side view Top−down view

r

b(r)

b(r)=1−r

r

2

Figure 5.5.A colony of bacteria with circular symmetry. A ring of small thickness
∆r has roughly constant density. The superimposed curve on theleft is the bacterial density
b(r) as a function of the radiusr.

Solution

Figure 5.5 shows a rough sketch of a flat surface with a colony of bacteria growing on it.
We assume that this distribution is radially symmetric. Thedensity as a function of distance
from the center is given byb(r), as shown in Figure 5.5. Note that the function describing
density,b(r) is smooth, but to accentuate the strategy of dissecting the region, we have
shown a top-down view of a ring of nearly constant density on the right in Figure 5.5. We
see that this ring occupies the region between two circles, e.g. between a circle of radiusr
and a slightly bigger circle of radiusr + ∆r. The area of that “ring”21 would then be the
area of the larger circle minus that of the smaller circle, namely

Aring = π(r + ∆r)2 − πr2 = π(2r∆r + (∆r)2).

However, if we make the thickness of that ring really small (∆r → 0), then the quadratic
term is very very small so that

Aring ≈ 2πr∆r.

21Students commonly make the error of writingAring = π(r + ∆r − r)2 = π(∆r)2. This trap should be
avoided! It is clear that the correct expression has additional terms, since we really are computing a difference of
two circular areas.
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Consider all the bacteria that are found inside a “ring” of radiusr and thickness∆r
(see Figure 5.5.) The total number within such a ring is the product of the density,b(r) and
the area of the ring, i.e.

b(r) · (2πr∆r) = 2πr(1 − r2)∆r.

To get the total number in the colony we sum up over all the rings fromr = 0 to r = 1
and let the thickness,∆r → dr become very small. But, as with other examples, this is
equivalent to calculating a definite integral, namely:

Btotal =
∫ 1

0

(1 − r)(2πr) dr = 2π

∫ 1

0

(1 − r2)rdr = 2π

∫ 1

0

(r − r3)dr.

We calculate the result as follows:

Btotal = 2π

(
r2

2
− r4

4

) ∣
∣
∣
∣

1

0

= (πr2 − π
r4

2
)

∣
∣
∣
∣

1

0

= π − π

2
=

π

2
.

Thus the total number of bacteria in the entire colony isπ/2 million which is approximately
1.57 million cells.

5.5 Volumes of solids of revolution
We now turn to the problem of calculating volumes of 3D solids. Here we restrict attention
to symmetric objects denotedsolids of revolution. The outer surface of these objects is
generated by revolving some curve around a coordinate axis.In Figure 5.7 we show one
such curve, and the surface it forms when it is revolved aboutthey axis.

5.5.1 Volumes of cylinders and shells

Before starting the calculation, let us recall the volumes of some of the geometric shapes
that are to be used as elementary pieces into which our shapeswill be carved. See Fig-
ure 5.6.

1. Thevolume of a cylinder of heighth having circular base of radiusr, is

Vcylinder= πr2h.

2. Thevolume of a circular disk of thicknessτ , and radiusr (shown on the left in
Figure 5.6 ), is a special case of the above,

Vdisk = πr2τ.

3. Thevolume of a cylindrical shell of height h, with circular radiusr and small
thicknessτ (shown on the right in Figure 5.6) is

Vshell = 2πrhτ.

(This approximation holds forτ << r.)
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r

h

τ

r

τ

disk                                       shell

Figure 5.6.The volumes of these simple 3D shapes are given by simple formulae.
We use them as basic elements in computing more complicated volumes. Here we will
present examples based on disks. In Appendix 11.4 we give an example based on shells.

y

x x x

y y

Figure 5.7. A solid of revolution is formed by revolving a region in the xy-plane
about the y-axis. We show how the region is approximated by rectangles of some given
width, and how these form a set of approximating disks for the3D solid of revolution.

5.5.2 Computing the Volumes

Consider the curve in Figure 5.7 and the surface it forms whenit is revolved about the
y axis. In the same figure, we also show how a set of approximating rectangular strips
associated with the planar region (grey rectangles) lead toa set of stacked disks (orange
shapes) that approximate the volume of the solid (greenish object in Fig. 5.7). The total
volume of the disks is not the same as the volume of the object but if we make the thickness
of these disks very small, the approximation of the true volume is good. In the limit, as
the thickness of the disks becomes infinitesimal, we arrive at the true volume of the solid
of revolution. The reader should recognize a familiar theme. We used the same concept in
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computing areas using Riemann sums based on rectangular strips in Chapter 2.
Fig. 5.8 similarly shows a volume of revolution obtained by revolving the graph of

the functiony = f(x) about the x axis. We note that if this surface is cut into slices, the
radius of the cross-sections depend on the position of the cut. Let us imagine a stack of
disks approximating this volume. One such disk has been pulled out and labeled for our
inspection. We note that its radius (in the y direction) is given by the height of the graph
of the function, so thatr = f(x). The thickness of the disk (in the x direction) is∆x. The
volume of this single disk is thenv = π[f(x)]2∆x. Considering this disk to be based at
the k’th coordinate point in the stack, i.e. atxk, means that its volume is

vk = π[f(xk)]2∆x.

Summing up the volumes of all such disks in the stack leads to the total volume of disks

Vdisks=
∑

k

π[f(xk)]2∆x.

When we increase the number of disks, making each one thinnerso that∆x → 0, we

disk thickness:

disk radius:

x∆

x

y

x

y=f(x)

r=f(x)

Figure 5.8.Here the solid of revolution is formed by revolving the curvey = f(x)
about the y axis. A typical disk used to approximate the volume is shown. The radius of the
disk (parallel to the y axis) isr = y = f(x). The thickness of the disk (parallel to the x
axis) is∆x. The volume of this disk is hencev = π[f(x)]2∆x

arrive at a definite integral,

V =

∫ b

a

π[f(x)]2dx.

In most of the examples discussed in this chapter, the key step is to make careful observation
of the way that the radius of a given disk depends on the function thatgeneratesthe surface.
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(By this we mean the function that specifies the curve that forms the surface of revolution.)
We also pay attention to the dimension that forms the disk thickness,∆x.

Some of our examples will involve surfaces revolved about the x axis, and others
will be revolved about they axis. In setting up these examples, a diagram is usually quite
helpful.

Example 1: Volume of a sphere

k

y

x

f(x  )k

∆ x

∆ x
x

Figure 5.9. When the semicircle (on the left) is rotated about the x axis,it gen-
erates a sphere. On the right, we show one disk generated by the revolution of the shaded
rectangle.

We can think of a sphere of radiusR as a solid whose outer surface is formed by
rotating a semi-circle about its long axis. A function that describe a semi-circle (i.e. the
top half of the circle,y2 + x2 = R2) is

y = f(x) =
√

R2 − x2.

In Figure 5.9, we show the sphere dissected into a set of disks, each of width∆x. The disks
are lined up along thex axis with coordinatesxk, where−R ≤ xk ≤ R. These are just
integer multiples of the slice thickness∆x, so for example,

x0 = −R, x1 = −R + ∆x, . . . , xk = −R + k∆x .

The radius of the disk depends on its position22. Indeed, the radius of a disk through thex
axis at a pointxk is specified by the functionrk = f(xk). The volume of thek’th disk is

Vk = πr2
k∆x.

By the above remarks, using the fact that the functionf(x) determines the radius, we have

Vk = π[f(xk)]2∆x,

22Note that the radius is oriented along the y axis, so sometimes we may write this asrk = yk = f(xk)
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Vk = π

[√

R2 − x2
k

]2

∆x = π(R2 − x2
k)∆x.

The total volume ofall the disksis

V =
∑

k

Vk =
∑

k

π[f(xk)]2∆x = π
∑

k

(R2 − x2
k)∆x.

as∆x → 0, this sum becomes a definite integral, and represents the true volume. We start
the summation atx = −R and end atxN = R since the semi-circle extends fromx = −R
to x = R. Thus

Vsphere=
∫ R

-R
π[f(xk)]2 dx = π

∫ R

-R
(R2 − x2) dx.

We compute this integral using the Fundamental Theorem of calculus, obtaining

Vsphere= π

(

R2x − x3

3

) ∣
∣
∣
∣

R

−R

.

Observe that this is twice the volume obtained for the interval 0 < x < R,

Vsphere= 2π

(

R2x − x3

3

) ∣
∣
∣
∣

R

0

= 2π

(

R3 − R3

3

)

.

We often use such symmetry properties to simplify computations. After simplification, we
arrive at the familiar formula

Vsphere=
4

3
πR3.

Example 2: Volume of a paraboloid

Consider the curve
y = f(x) = 1 − x2.

If we rotate this curve about they axis, we will get a paraboloid, as shown in Figure 5.10.
In this section we show how to compute the volume by dissecting into disks stacked up
along they axis.

Solution

The object has the y axis as its axis of symmetry. Hence disks are stacked up along the
y axis to approximate this volume. This means that the width of each disk is∆y. This
accounts for thedy in the integral below. The volume of each disk is

Vdisk = πr2∆y,

where the radius,r is now in the direction parallel to thex axis. Thus we must express
radius as

r = x = f−1(y),



5.5. Volumes of solids of revolution 95

2

y

x x

y

y=f(x)=1−x

Figure 5.10. The curve that generates the shape of a paraboloid (left) andthe
shape of the paraboloid (right).

i.e, we invert the relationship to obtainx as a function ofy. Fromy = 1 − x2 we have
x2 = 1 − y sox =

√
1 − y. The radius of a disk at heighty is thereforer = x =

√
1 − y.

The shape extends from a smallest value ofy = 0 up toy = 1. Thus the volume is

V = π

∫ 1

0

[f(y)]2 dy = π

∫ 1

0

[
√

1 − y]2 dy.

It is helpful to note that once we have identified the thickness of the disks (∆y), we are
guided to write an integral in terms of the variabley, i.e. to reformulate the equation
describing the curve. We compute

V = π

∫ 1

0

(1 − y) dy = π

(

y − y2

2

) ∣
∣
∣
∣

1

0

= π

(

1 − 1

2

)

=
π

2
.

The above example was set up using disks. However, there are other options. In
Appendix 11.4 we show yet another method, comprised ofcylindrical shellsto compute
the volume of a cone. In some cases, one method is preferable to another, but here either
method works equally well.

Example 3

Find the volume of the surface formed by rotating the curve

y = f(x) =
√

x, 0 ≤ x ≤ 1

(a) about thex axis. (b) about they axis.

Solution

(a) If we rotate this curve about thex axis, we obtain a bowl shape; dissecting this
surface leads to disks stacked along thex axis, with thickness∆x → dx, with radii
in the y direction, i.e. r = y = f(x), and withx in the range0 ≤ x ≤ 1. The
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volume will thus be

V = π

∫ 1

0

[f(x)]2 dx = π

∫ 1

0

[
√

x]2 dx = π

∫ 1

0

x dx = π
x2

2

∣
∣
∣
∣

1

0

=
π

2
.

(b) When the curve is rotated about they axis, it forms a surface with a sharp point at the
origin. The disks are stacked along they axis, with thickness∆y → dy, and radii in
thex direction. We must rewrite the function in the form

x = g(y) = y2.

We now use the interval along they axis, i.e.0 < y < 1 The volume is then

V = π

∫ 1

0

[f(y)]2 dy = π

∫ 1

0

[y2]2 dy = π

∫ 1

0

y4 dy = π
y5

5

∣
∣
∣
∣

1

0

=
π

5
.

5.6 Length of a curve: Arc length
Analytic geometry provides a simple way to compute the length of a straight line segment,
based on the distance formula23. Recall that, given pointsP1 = (x1, y1) andP2 = (x2, y2),
the length of the line joining those points is

d =
√

(x2 − x1)2 + (y2 − y1)2.

Things are more complicated for “curves” that are not straight lines, but in many cases, we
are interested in calculating the length of such curves. In this section we describe how this
can be done using the definite integral “technology”.

The idea of dissection also applies to the problem of determining the length of a
curve. In Figure 5.11, we see the general idea of subdividinga curve into many small
“arcs”. Before we look in detail at this construction, we consider a simple example, shown
in Figure 5.12. In the triangle shown, by the Pythagorean theorem we have the length of
the sloped side related as follows to the side lengths∆x, ∆y:

∆ℓ2 = ∆x2 + ∆y2,

∆ℓ =
√

∆x2 + ∆y2 =

(√

1 +
∆y2

∆x2

)

∆x =

√

1 +

(
∆y

∆x

)2

∆x.

We now consider a curve given by some function

y = f(x) a < x < b,

as shown in Figure 5.11(a). We will approximate this curve bya set of line segments, as
shown in Figure 5.11(b). To obtain these, we have selected some step size∆x along the
x axis, and placed points on the curve at each of thesex values. We connect the points
with straight line segments, and determine the lengths of those segments. (The total length

23The reader should recall that this formula is a simple application of Pythagorean theorem.
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y=f(x)
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y=f(x)
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y=f(x)
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∆
∆

Figure 5.11. Top: Given the graph of a function,y = f(x) (at left), we draw
secant lines connecting points on its graph at values ofx that are multiples of∆x (right).
Bottom: a small part of this graph is shown, and then enlarged, to illustrate the relationship
between the arc length and the length of the secant line segment.

y

x

x

y

∆

∆
∆ l

Figure 5.12. The basic idea of arclength is to add up lengths∆l of small line
segments that approximate the curve.

of the segments is only an approximation of the length of the curve, but as the subdivision
gets finer and finer, we will arrive at the true total length of the curve.)

We show one such segment enlarged in the circular inset in Figure 5.11. Its slope,
shown at right is given by∆y/∆x. According to our remarks, above, the length of this
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segment is given by

∆ℓ =

√

1 +

(
∆y

∆x

)2

∆x.

As the step size is made smaller and smaller∆x → dx, ∆y → dy and

∆ℓ →

√

1 +

(
dy

dx

)2

dx.

We recognize the ratio inside the square root as as the derivative, dy/dx. If our curve is
given by a functiony = f(x) then we can rewrite this as

dℓ =

√

1 + (f ′(x))
2

dx.

Thus, the length of the entire curve is obtained from summing(i.e. adding up) these small
pieces, i.e.

L =

∫ b

a

√

1 + (f ′(x))
2

dx. (5.4)

Example 1

Find the length of a line whose slope is−2 given that the line extends fromx = 1 to x = 5.

Solution

We could find the equation of the line and use the distance formula. But for the purpose of
this example, we apply the method of Equation (5.4): we are given that the slopef ′(x) is
-2. The integral in question is

L =

∫ 5

1

√

1 + (f ′(x))2 dx =

∫ 5

1

√

1 + (−2)2 dx =

∫ 1

5

√
5 dx.

We get

L =
√

5

∫ 5

1

dx =
√

5x

∣
∣
∣
∣

5

1

=
√

5[5 − 1] = 4
√

5.

Example 2

Find an integral that represents the length of the curve thatforms the graph of the function

y = f(x) = x3, 1 < x < 2.

Solution

We find that
dy

dx
= f ′(x) = 3x2.
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Thus, the integral is

L =

∫ 2

1

√

1 + (3x2)2 dx =

∫ 2

1

√

1 + 9x4 dx.

At this point, we will not attempt to find the actual length, aswe must first develop tech-
niques for finding the anti-derivative for functions such as

√
1 + 9x4.

Using the spreadsheet to calculate arclength

Most integrals for arclength contain square roots and functions that are not easy to integrate,
simply because their antiderivatives are difficult to determine. However, now that we know
the idea behind determining the length of a curve, we can apply the ideas developed have
to approximate the length of a curve “numerically”. The spreadsheet is a simple tool for
doing the necessary summations.

As an example, we show here how to calculate the length of the curve

y = f(x) = 1 − x2 for 0 ≤ x ≤ 1

using a simple numerical procedure implemented on the spreadsheet.
Let us choose a step size of∆x = 0.1 along thex axis, for the interval0 ≤ x ≤ 1.

We calculate the function, the slopes of the little segments(change in y divided by change
in x), and from this, compute the length of each segment

∆ℓ =
√

1 + (∆y/∆x)2 ∆x

and the accumulated length along the curve from left to right, L which is just a sum of
such values. The Table 5.6 shows steps in the calculation of the ratio∆y/∆x, the value
of ∆ℓ, the cumulative sum, and, finally the total lengthL. The final value ofL = 1.4782
represents the total length of the curve over the entire interval 0 < x < 1.

In Figure 5.13(a) we show the actual curvey = 1 − x2. with points placed on it
at each multiple of∆x. In Figure 5.13(b), we show (in blue) how the lengths of the little
straight-line segments connecting these points changes across the interval. (The segments
on the left along the original curve are nearly flat, so their length is very close to∆x. The
segments on the right part of the curve are much more sloped, and their lengths are thus
bigger.) We also show (in red) how the total accumulated length L depends on the position
x across the interval. This function represents the total arc-length of the curvey = 1 − x2,
from x = 0 up to a given x value. Atx = 1 this function returns the valuey = L, as it has
added up the full length of the curve for0 ≤ x ≤ 1.

5.6.1 How the alligator gets its smile

The American alligator,Alligator mississippiensishas a set of teeth best viewed at some
distance. The regular arrangement of these teeth, i.e. their spacing along the jaw is im-
portant in giving the reptile its famous bite. We will concern ourselves here with how that
pattern of teeth is formed as the alligator develops from itsembryonic stage to that of an
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    y = f(x) =1-x^2

0.0 1.0

0.0

1.5

    y = f(x) =1-x^2

cumulative length L

length increment 

Arc Length

0.0 1.0

0.0

1.5

Figure 5.13. The spreadsheet can be used to compute approximate values of
integrals, and hence to calculate arclength. Shown here is the graph of the functiony =
f(x) = 1 − x2 for 0 ≤ x ≤ 1, together with the length increment and the cumulative
arclength along that curve.
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x y = f(x) ∆y/∆x ∆ℓ L =
∑

∆ℓ

0. 0 1.0000 -0.1 0.1005 0.0000
0.1 0.9900 -0.3 0.1044 0.1005
0.2 0.9600 -0.5 0.1118 0.2049
0.3 0.9100 -0.7 0.1221 0.3167
0.4 0.8400 -0.9 0.1345 0.4388
0.5 0.7500 -1.1 0.1487 0.5733
0.6 0.6400 -1.3 0.1640 0.7220
0.7 0.5100 -1.5 0.1803 0.8860
0.8 0.3600 -1.7 0.1972 1.0663
0.9 0.1900 -1.9 0.2147 1.2635
1. 0 0.0000 -2.1 0.2326 1.4782

Table 5.1.For the functiony = f(x) = 1 − x2, and0 ≤ x ≤ 1, we show how to
calculate an approximation to the arc-length using the spreadsheet.

adult. As is the case in humans, the teeth on an alligator do not form or sprout simultane-
ously. In the development of the baby alligator, there is a sequence of initiation of teeth,
one after the other, at well-defined positions along the jaw.

Paul Kulesa, a former student of James D Muray, set out to understand the pattern of
development of these teeth, based on data in the literature about what happens at distinct
stages of embryonic growth. Of interest in his research wereseveral questions, including
what determines the positions and timing of initiation of individual teeth, and what mecha-
nisms lead to this pattern of initiation. One theory proposed by this group was that chemical
signals that diffuse along the jaw at an early stage of development give rise to instructions
that are interpreted by jaw cells: where the signal is at a high level, a tooth will start to
initiate.

While we will not address the details of the mechanism of development here, we
will find a simple application of the ideas of arclength in thedevelopmental sequence of
teething. Shown in Figure 5.14 is a smiling baby alligator (no doubt thinking of some
future tasty meal). A close up of its smile (at an earlier stage of development) reveals the
shape of the jaw, together with the sites at which teeth are becoming evident. (One of these
sites, called primordia, is shown enlarged in an inset in this figure.)

Paul Kulesa found that the shape of the alligator’s jaw can bedescribed remarkably
well by a parabola. A proper choice of coordinate system, andsome experimentation leads
to the equation of the best fit parabola

y = f(x) = −ax2 + b

wherea = 0.256, andb = 7.28 (in units not specified).
We show this curve in Figure 5.15(a). Also shown in this curveis a set of points at

which teeth are found, labelled by order of appearance. In Figure 5.15(b) we see the same
curve, but we have here superimposed the functionL(x) given by the arc length along the
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curve from the front of the jaw (i.e. the top of the parabola),i.e.

L(x) =

∫ x

0

√

1 + [f ′(s)]2 ds.

This curve measures distance along the jaw, from front to back. The distances of the teeth
from one another, or along the curve of the jaw can be determined using this curve if we
know thex coordinates of their positions.

The table below gives the original data, courtesy of Dr. Kulesa, showing the order
of the teeth, their(x, y) coordinates, and the value ofL(x) obtained from the arclength
formula. We see from this table that the teeth do not appear randomly, nor do they fill in
the jaw in one sweep. Rather, they appear in several stages.

In Figure 5.15(c), we show the pattern of appearance: Plotting the distance along the
jaw of successive teeth reveals that the teeth appear in waves of nearly equally-spaced sites.
(By equally spaced, we refer to distance along the parabolicjaw.) The first wave (teeth 1, 2,
3) are followed by a second wave (4, 5, 6, 7), and so on. Each wave forms a linear pattern
of distance from the front, and each successive wave fills in the gaps in a similar, equally
spaced pattern.

The true situation is a bit more complicated: the jaw grows asthe teeth appear as
shown in 5.15(c). This has not been taken into account in our simple treatment here, where
we illustrate only the essential idea of arc length application.

Tooth number position distance along jaw
x y L(x)

1 1.95 6.35 2.1486
2 3.45 4.40 4.7000
3 4.54 2.05 7.1189
4 1.35 6.95 1.4000
5 2.60 5.50 3.2052
6 3.80 3.40 5.4884
7 5.00 1.00 8.4241
8 3.15 4.80 4.1500
9 4.25 2.20 6.3923
10 4.60 1.65 7.3705
11 0.60 7.15 0.6072
12 3.45 4.05 4.6572
13 5.30 0.45 9.2644

Table 5.2. Data for the appearance of teeth, in the order in which they appear
as the alligator develops. We can use arc-length computations to determine the distances
between successive teeth.
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Figure 5.14.Alligator mississippiensisand its teeth
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jaw  y = f(x)
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(c) (d)

Figure 5.15. (a) The parabolic shape of the jaw, showing positions of teeth and
numerical order of emergence. (b) Arc length along the jaw from front to back. (c) Distance
of successive teeth along the jaw. (d) Growth of the jaw.
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5.7 Summary
Here are the main points of the chapter:

1. We introduced the idea of a spatially distributed mass density ρ(x) in Section 5.2.2.
Here the definite integral represents

∫ b

a

ρ(x) dx = Total mass in the intervala ≤ x ≤ b.

2. In this chapter, we defined the center of mass of a (discrete) distribution ofn masses
by

X̄ =
1

M

n∑

i=0

xi mi. (5.5)

We developed the analogue of this for a continuous mass distribution (distributed in
the interval0 ≤ x ≤ L). We defined the center of mass of a continuous distribution
by the definite integral

x̄ =
1

M

∫ L

0

xρ(x)dx . (5.6)

Importantly, the quantitiesmi in the sum (5.5) carry units of mass, whereas the
analogous quantities in (5.6) areρ(x)dx. [Recall thatρ(x) is a mass per unit length
in the case of mass distributed along a bar or straight line.]

3. We defined a cumulative function. In the discrete case, this was defined as In the
continuous case, it is

M(x) =

∫ x

0

ρ(s)ds.

4. The mean is an averagex coordinate, whereas the median is thex coordinate that
splits the distribution into two equal masses (Geometrically, the median subdivides
the graph of the distribution into two regions of equal areas). The mean and median
are the same only in symmetric distributions. They differ for any distribution that is
asymmetric. The mean (but not the median) is influenced more strongly by distant
portions of the distribution.
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5. In the later parts of this chapter, we showed how to computevolumes of various
objects that have radial symmetry (“solids of revolution”). We showed that if the
surface is generated by rotating the graph of a functiony = f(x) about thex axis
(for a ≤ x ≤ b), then its volume can be described by an integral of the form

V =

∫ b

a

π[f(x)]2dx.

We used this idea to show that the volume of a sphere of radiusR is Vsphere =
(4/3)πR3

In the Chapters 7 and 8, we find applications of the ideas of density and center of
mass to the context of a probability distribution and its mean.



Chapter 6

Techniques of
Integration

In this chapter, we expand our repertoire for antiderivatives beyond the “elementary” func-
tions discussed so far. A review of the table of elementary antiderivatives (found in Chap-
ter 3) will be useful. Here we will discuss a number of methodsfor finding antiderivatives.
We refer to these collected “tricks” as methods of integration. As will be shown, in some
cases, these methods are systematic (i.e. with clear steps), whereas in other cases, guess-
work and trial and error is an important part of the process.

A primary method of integration to be described issubstitution. A close relationship
exists between the chain rule of differential calculus and the substitution method. A second
very important method isintegration by parts. Aside from its usefulness in integration
per se, this method has numerous applications in physics, mathematics, and other sciences.
Many other techniques of integration used to form a core of methods taught in such courses
in integral calculus. Many of these are quite technical. Nowadays, with sophisticated
mathematical software packages (including Maple and Mathematica), integration can be
carried our automatically via computation called “symbolic manipulation”, reducing our
need to dwell on these technical methods.

6.1 Differential notation
We begin by familiarizing the reader with notation that appears frequently in substitution
integrals, i.e. differential notation. Consider a straight line

y = mx + b.

Recall that the slope of the line,m, is

m =
change iny
change inx

=
∆y

∆x
.

This relationship can also be written in the form

∆y = m∆x.

107
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y

x∆

∆

x

y

Figure 6.1.The slope of the line shown here ism = ∆y/∆x. This means that the
small quantities∆y and∆x are related by∆y = m∆x.

If we take a very small step along this line in thex direction, call itdx (to remind us of an
“infinitesimally small” quantity), then the resulting change in they direction, (call itdy) is
related by

dy = m dx.

Now suppose that we have a curve defined by some arbitrary function, y = f(x)
which need not be a straight line.For a given point(x, y) on this curve, a step∆x in the x
direction is associated with a step∆y in the y direction. The relationship between the step

y=f(x)

x

y

x+ ∆x

y+∆ y

x

y

x+dx

y+dy

secant tangent

Figure 6.2. On this figure, the graph of some function is used to illustrate the
connection between differentialsdy anddx. Note that these are related via the slope of a
tangent line,mt to the curve, in contrast with the relationship of∆y and∆x which stems
from the slope of the secant linems on the same curve.

sizes is:

∆y = ms∆x,

where nowms is the slope of a secant line (shown connecting two points on the curve in
Figure 6.2). If the sizes of the steps are small (dx anddy), then this relationship is well
approximated by the slope of the tangent line,mt as shown in Figure 6.2 i.e.

dy = mt dx = f ′(x)dx.
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The quantitiesdx anddy are calleddifferentials. In general, they link a small step on the
x axis with the resulting small change in height along the tangent line to the curve (shown
in Figure 6.2). We might observe that the ratio of the differentials, i.e.

dy

dx
= f ′(x),

appears to link our result to the definition of the derivative. We remember, though, that the
derivative is actually defined as a limit:

f ′(x) = lim
∆x→0

∆y

∆x
.

When the step size∆x is quite small, it is approximately true that

∆y

∆x
≈ dy

dx
.

This notation will be useful in substitution integrals.

Examples

We give some examples of functions, their derivatives, and the differential notation that
goes with them.

1. The functiony = f(x) = x3 has derivativef ′(x) = 3x2. Thus

dy = 3x2 dx.

2. The functiony = f(x) = tan(x) has derivativef ′(x) = sec2(x). Therefore

dy = sec2(x) dx.

3. The functiony = f(x) = ln(x) has derivativef ′(x) = 1
x so

dy =
1

x
dx.

With some practice, we can omit the intermediate step of writing down a derivative
and go directly from function to differential notation. Given a functiony = f(x) we will
often write

df(x) =
df

dx
dx

and occasionally, we use just the symboldf to mean the same thing. The following exam-
ples illustrate this idea with specific functions.

d(sin(x)) = cos(x) dx, d(xn) = nxn−1 dx, d(arctan(x)) =
1

1 + x2
dx.

Moreover, some of the basic rules of differentiation translate directly into rules for
handling and manipulating differentials. We give a list of some of these elementary rules
below.
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Rules for derivatives and differentials

1.
d

dx
C = 0, dC = 0.

2.
d

dx
(u(x) + v(x)) =

du

dx
+

dv

dx
d(u + v) = du + dv.

3.
d

dx
u(x)v(x) = u

dv

dx
+ v

du

dx
d(uv) = u dv + v du.

4.
d

dx
(Cu(x)) = C

du

dx
, d(Cu) = C du

6.2 Antidifferentiation and indefinite integrals
In Chapters 2 and 3, we defined the concept of thedefinite integral, which represents a
number. It will be useful here to consider the idea of anindefinite integral, which is a
function, namely an antiderivative.

If two functions,F (x) andG(x), have the same derivative, sayf(x), then they differ
at most by a constant, that isF (x) = G(x) + C, whereC is some constant.

Proof

SinceF (x) andG(x) have the same derivative, we have

d

dx
F (x) =

d

dx
G(x),

d

dx
F (x) − d

dx
G(x) = 0,

d

dx
(F (x) − G(x)) = 0.

This means that the functionF (x)−G(x) should be a constant, since its derivative is zero.
Thus

F (x) − G(x) = C,

so
F (x) = G(x) + C,

as required.F (x) andG(x) are called antiderivatives off(x), and this confirms, once
more, that any two antiderivatives differ at most by a constant.

In another terminology, which means the same thing, we also say thatF (x) (orG(x))
is the integral of the functionf(x), and we refer tof(x) as theintegrand. We write this as
follows:

F (x) =

∫

f(x) dx.

This notation is sometimes called “anindefinite integral” because it does not denote a
specific numerical value, nor is an interval specified for theintegration range. An indefinite
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integral is a function with an arbitrary constant. (Contrast this with the definite integral
studied in our last chapters: in the case of the definite integral, we specified an interval, and
interpreted the result, a number, in terms of areas associated with curves.) We also write

∫

f(x) dx = F (x) + C,

if we want to indicate the form of all possible functions thatare antiderivatives off(x). C
is referred to as aconstant of integration.

6.2.1 Integrals of derivatives

Suppose we are given an integral of the form
∫

df

dx
dx,

or alternately, the same thing written using differential notation,
∫

df.

How do we handle this? We reason as follows. Thedf/dx (a quantity that is, itself, a
function) is the derivative of the functionf(x). That means thatf(x) is the antiderivative
of df/dx. Then, according to the Fundamental Theorem of Calculus,

∫
df

dx
dx = f(x) + C.

We can write this same result using the differential off , as follows:
∫

df = f(x) + C.

The following examples illustrate the idea with several elementary functions.

Examples

1.
∫

d(cosx) = cosx + C.

2.
∫

dv = v + C.

3.
∫

d(x3) = x3 + C.

6.3 Simple substitution
In this section, we observe that the forms of some integrals can be simplified by making a
judicious substitution, and using our familiarity with derivatives (and the chain rule). The
idea rests on the fact that in some cases, we can spot a “helperfunction”

u = f(x),
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such that the quantity

du = f ′(x)dx

appears in the integrand. In that case, the substitution will lead to eliminatingx entirely in
favour of the new quantityu, and simplification may occur.

6.3.1 Example: Simple substitution

Suppose we are given the function

f(x) = (x + 1)10.

Then its antiderivative (indefinite integral) is

F (x) =

∫

f(x) dx =

∫

(x + 1)10 dx.

We could find an antiderivative by expanding the integrand(x + 1)10 into a degree 10
polynomial and using methods already known to us; but this would be laborious. Let us
observe, however, that if we define

u = (x + 1),

then

du =
d(x + 1)

dx
dx =

(
dx

dx
+

d(1)

dx

)

dx = (1 + 0)dx = dx.

Now replacing(x + 1) by u anddx by the equivalentdu we get:

F (x) =

∫

u10du.

An antiderivative to this can be easily found, namely,

F (x) =
u11

11
=

(x + 1)11

11
+ C.

In the last step, we converted the result back to the originalvariable, and included the
arbitrary integration constant. A very important point to remember is that we can always
check our results by differentiation:

Check

DifferentiateF (x) to obtain

dF

dx
=

1

11
(11(x + 1)10) = (x + 1)10.
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6.3.2 How to handle endpoints

We consider how substitution type integrals can be calculated when we have endpoints, i.e.
in evaluating definite integrals. Consider the example:

I =

∫ 2

1

1

x + 1
dx .

This integration can be done by making the substitutionu = x+1 for whichdu = dx. We
can handle the endpoints in one of two ways:

Method 1: Change the endpoints

We can change the integral over entirely to a definite integral in the variableu as follows:
Sinceu = x + 1, the endpointx = 1 corresponds tou = 2, and the endpointx = 2
corresponds tou = 3, so changing the endpoints to reflect the change of variablesleads to

I =

∫ 3

2

1

u
du = ln |u|

∣
∣
∣
∣

3

2

= ln 3 − ln 2 = ln
3

2
.

In the last steps we have plugged in the new endpoints (appropriate tou).

Method 2: Change back to x before evaluating at endpoints

Alternately, we could rewrite the antiderivative in terms of x.
∫

1

u
du = ln |u| = ln |x + 1|

and then evaluate this function at the original endpoints.

∫ 2

1

1

x + 1
dx = ln |x + 1|

∣
∣
∣
∣

2

1

= ln
3

2

Here we plugged in the original endpoints (as appropriate tothe variablex).

6.3.3 Examples: Substitution type integrals

Find a simple substitution and determine the antiderivatives (indefinite or definite integrals)
of the following functions:

1. I =

∫
2

x + 2
dx.

2. I =

∫ 1

0

x2ex3

dx

3. I =

∫
1

(x + 1)2 + 1
dx.
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4. I =

∫

(x + 3)
√

x2 + 6x + 10 dx.

5. I =

∫ π

0

cos3(x) sin(x) dx.

6. I =

∫
1

ax + b
dx

7. I =

∫
1

b + ax2
dx.

Solutions

1. I =

∫
2

x + 2
dx. Let u = x + 2. Thendu = dx and we get

I =

∫
2

u
du = 2

∫
1

u
du = 2 ln |u| = 2 ln |x + 2| + C.

2. I =

∫ 1

0

x2ex3

dx. Let u = x3. Thendu = 3x2 dx. Here we use method 2 for

handling endpoints. ∫

eu du

3
=

1

3
eu =

1

3
ex3

+ C.

Then

I =

∫ 1

0

x2ex3

dx =
1

3
ex3

∣
∣
∣
∣

1

0

=
1

3
(e − 1).

(We converted the antiderivative to the original variable,x, before plugging in the
original endpoints.)

3. I =

∫
1

(x + 1)2 + 1
dx. Let u = x + 1, thendu = dx so we have

I =

∫
1

u2 + 1
du = arctan(u) = arctan(x + 1) + C.

4. I =

∫

(x+3)
√

x2 + 6x + 10 dx. Let u = x2 +6x+10. Thendu = (2x+6) dx =

2(x + 3) dx. With this substitution we get

I =

∫ √
u

du

2
=

1

2

∫

u1/2 du =
1

2

u3/2

3/2
=

1

3
u3/2 =

1

3
(x2 + 6x + 10)3/2 + C.

5. I =

∫ π

0

cos3(x) sin(x) dx. Let u = cos(x). Thendu = − sin(x) dx. Here we use

method 1 for handling endpoints. Forx = 0, u = cos 0 = 1 and forx = π, u =
cosπ = −1, so changing the integral and endpoints to u leads to

I =

∫
−1

1

u3(−du) = −u4

4

∣
∣
∣
∣

−1

1

= −1

4
((−1)4 − 14) = 0.
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Here we plugged in the new endpoints that are relevant to the variableu.

6.
∫

1

ax + b
dx. Let u = ax + b. Thendu = a dx, sodx = du/a. Substitute the

above equations into the first equation and simplify to get

I =

∫
1

u

du

a
=

1

a

∫
1

u
du =

1

a
ln|u|+ C.

Substituteu = ax + b back to arrive at the solution

I =

∫
1

ax + b
dx =

1

a
ln |ax + b| (6.1)

7. I =

∫
1

b + ax2
dx =

1

b

∫
1

1 + (a/b)x2
dx. This can be brought to the form of

an arctan type integral as follows: Letu2 = (a/b)x2, sou =
√

a/b x anddu =
√

a/b dx. Now substituting these, we get

I =
1

b

∫
1

1 + u2

du
√

a/b
=
√

b/a
1

b

∫
1

1 + u2
du

I =
1√
ba

arctan(u) du =
1√
ba

arctan(
√

a/b x) + C.

6.3.4 When simple substitution fails

Not every integral can be handled by simple substitution. Let us see what could go wrong:

Example: Substitution that does not work

Consider the case

F (x) =

∫
√

1 + x2 dx =

∫

(1 + x2)1/2 dx.

A “reasonable” guess for substitution might be

u = (1 + x2).

Then
du = 2x dx,

anddx = du/2x. Attempting to convert the integral to the form containingu would lead
to

I =

∫ √
u

du

2x
.

We have not succeeded in eliminatingx entirely, so the expression obtained contains a
mixture of two variables. We can proceed no further. This substitution did not simplify the
integral and we must try some other technique.
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6.3.5 Checking your answer

Finding an antiderivative can be tricky. (To a large extent,methods described in this chap-
ter are a “collection of tricks”.) However, it is always possible (and wise) to check for
correctness, by differentiating the result. This can help uncover errors.

For example, suppose that (in the previous example) we had incorrectly guessed that
the antiderivative of ∫

(1 + x2)1/2 dx

might be

Fguess(x) =
1

3/2
(1 + x2)3/2.

The following check demonstrates the incorrectness of thisguess: DifferentiateFguess(x)
to obtain

F ′

guess(x) =
1

3/2
(3/2)(1 + x2)(3/2)−1 · 2x = (1 + x2)1/2 · 2x

The result is clearly not the same as(1 + x2)1/2, since an “extra” factor of2x appears
from application of the chain rule: this means that the trialfunctionFguess(x) was not the
correct antiderivative. (We can similarly check to confirm correctness of any antiderivative
found by following steps of methods here described. This canhelp to uncover sign errors
and other algebraic mistakes.)

6.4 More substitutions
In some cases, rearrangement is needed before the form of an integral becomes apparent.
We give some examples in this section. The idea is to reduce each one to the form of an
elementary integral, whose antiderivative is known.

Standard integral forms

1. I =

∫
1

u
du = ln |u| + C.

2. I =

∫

un du =
un+1

n + 1
.

3. I =

∫
1

1 + u2
du = arctan(u) + C.

However, finding which of these forms is appropriate in a given case will take some in-
genuity and algebra skills. Integration tends to be more of an art than differentiation, and
recognition of patterns plays an important role here.

6.4.1 Example: perfect square in denominator

Find the antiderivative for

I =

∫
1

x2 − 6x + 9
dx.
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Solution

We observe that the denominator of the integrand is a perfectsquare, i.e. thatx2−6x+9 =
(x − 3)2. Replacing this in the integral, we obtain

I =

∫
1

x2 − 6x + 9
dx =

∫
1

(x − 3)2
dx.

Now making the substitutionu = (x − 3), anddu = dx leads to a power type integral

I =

∫
1

u2
du =

∫

u−2 du = −u−1 = − 1

(x − 3)
+ C.

6.4.2 Example: completing the square

A small change in the denominator will change the character of the integral, as shown by
this example:

I =

∫
1

x2 − 6x + 10
dx.

Solution

Here we use “completing the square” to express the denominator in the formx2−6x+10 =
(x − 3)2 + 1. Then the integral takes the form

I =

∫
1

1 + (x − 3)2
dx.

Now a substitutionu = (x − 3) anddu = dx will result in

I =

∫
1

1 + u2
du = arctan(u) = arctan(x − 3) + C.

Remark: in cases where completing the square gives rise to a constant other than 1 in the
denominator, we use the technique illustrated in Example 6.3.3 Eqn. (6.1) to simplify the
problem.

6.4.3 Example: factoring the denominator

A change in one sign can also lead to a drastic change in the antiderivative. Consider

I =

∫
1

1 − x2
dx.

In this case, we can factor the denominator to obtain

I =

∫
1

(1 − x)(1 + x)
dx.
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We will show shortly that the integrand can be simplified to the sum of two fractions, i.e.
that

I =

∫
1

(1 − x)(1 + x)
dx =

∫
A

(1 − x)
+

B

(1 + x)
dx,

whereA, B are constants. The algebraic technique for finding these constants, and hence of
forming the simpler expressions, calledPartial fractions, will be discussed in an upcoming
section. Once these constants are found, each of the resulting integrals can be handled by
substitution.

6.5 Trigonometric substitutions
Trigonometric functions provide a rich set of interconnected functions that show up in
many problems. It is useful to remember three very importanttrigonometric identities that
help to simplify many integrals. These are:

Essential trigonometric identities

1. sin2(x) + cos2(x) = 1

2. sin(A + B) = sin(A) cos(B) + sin(B) cos(A)

3. cos(A + B) = cos(A) cos(B) − sin(A) sin(B).

In the special case thatA = B = x, the last two identities above lead to:

Double angle trigonometric identities

1. sin(2x) = 2 sin(x) cos(x).

2. cos(2x) = cos2(x) − sin2(x).

From these, we can generate a variety of other identities as special cases. We list the most
useful below. The first two are obtained by combining the double-angle formula for cosines
with the identitysin2(x) + cos2(x) = 1.

Useful trigonometric identities

1. cos2(x) =
1 + cos(2x)

2
.

2. sin2(x) =
1 − cos(2x)

2
.

3. tan2(x) + 1 = sec2(x).

6.5.1 Example: simple trigonometric substitution

Find the antiderivative of

I =

∫

sin(x) cos2(x) dx.
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Solution

This integral can be computed by a simple substitution, similar to Example 5 of Section 6.3.
We letu = cos(x) anddu = − sin(x)dx to get the integral into the form

I = −
∫

u2 du =
−u3

3
=

− cos3(x)

3
+ C.

We need none of the trigonometric identities in this case. Simple substitution is always the
easiest method to use. It should be the first method attemptedin each case.

6.5.2 Example: using trigonometric identities (1)

Find the antiderivative of

I =

∫

cos2(x) dx.

Solution

This is an example in which the “Useful trigonometric identity” 1 leads to a simpler inte-
gral. We write

I =

∫

cos2(x) dx =

∫
1 + cos(2x)

2
dx =

1

2

∫

(1 + cos(2x)) dx.

Then clearly,

I =
1

2

(

x +
sin(2x)

2

)

+ C.

6.5.3 Example: using trigonometric identities (2)

Find the antiderivative of

I =

∫

sin3(x) dx.

Solution

We can rewrite this integral in the form

I =

∫

sin2(x) sin(x) dx.

Now using the trigonometric identitysin2(x) + cos2(x) = 1, leads to

I =

∫

(1 − cos2(x)) sin(x) dx.

This can be split up into

I =

∫

sin(x) dx −
∫

sin(x) cos2(x) dx.
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The first part is elementary, and the second was shown in a previous example. Therefore
we end up with

I = − cos(x) +
cos3(x)

3
+ C.

Note that it is customary to combine all constants obtained in the calculation into a single
constant,C at the end.

Aside from integrals that, themselves, contain trigonometric functions, there are other
cases in which use of trigonometric identities, though at first seemingly unrelated, is cru-
cial. Many expressions involving the form

√
1 ± x2 or the related form

√
a ± bx2 will be

simplified eventually by conversion to trigonometric expressions!

6.5.4 Example: converting to trigonometric functions

Find the antiderivative of

I =

∫
√

1 − x2 dx.

Solution

The simple substitutionu = 1 − x2 will not work, (as shown by a similar example in
Section 6.3). However, converting to trigonometric expressions will do the trick. Let

x = sin(u), then dx = cos(u)du.

(In Figure 6.3, we show this relationship on a triangle. Thisdiagram is useful in reversing
the substitutions after the integration step.) Then1 − x2 = 1 − sin2(u) = cos2(u), so the

x
1

1−x2

u

Figure 6.3.This triangle helps to convert the (trigonometric) functions ofu to the
original variablex in Example 6.5.4.

substitutions lead to

I =

∫
√

cos2(u) cos(u) du =

∫

cos2(u) du.

From a previous example, we already know how to handle this integral. We find that

I =
1

2

(

u +
sin(2u)

2

)

=
1

2
(u + sin(u) cos(u)) + C.
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(In the last step, we have used the double angle trigonometric identity. We will shortly see
why this simplification is relevant.)

We now desire to convert the result back to a function of the original variable,x.
We note thatx = sin(u) impliesu = arcsin(x). To convert the termcos(u) back to an
expression depending onx we can use the relationship1 − sin2(u) = cos2(u), to deduce
that

cos(u) =

√

1 − sin2(u) =
√

1 − x2.

It is sometimes helpful to use a Pythagorean triangle, as shown in Figure 6.3, to
rewrite the antiderivative in terms of the variablex. The idea is this: We construct the
triangle in such a way that its side lengths are related to the“angle” u according to the
substitution rule. In this example,x = sin(u) so the sides labeledx and1 were chosen so
that their ratio (“opposite over hypotenuse” coincides with the sine of the indicated angle,
u, thereby satisfyingx = sin(u). We can then determine the length of the third leg of
the triangle (using the Pythagorean formula) and thus all other trigonometric functions
of u. For example, we note that the ratio of “adjacent over hypotenuse” iscos(u) =√

1 − x2/1 =
√

1 − x2. Finally, with these reverse substitutions, we find that,

I =

∫
√

1 − x2 dx =
1

2

(

arcsin(x) + x
√

1 − x2
)

+ C.

Remark: In computing a definite integral of the same type, we can circumvent the
need for the conversion back to an expression involvingx by using the appropriate method
for handling endpoints. For example, the integral

I =

∫ 1

0

√

1 − x2 dx

can be transformed to

I =

∫ π/2

0

√

cos2(u) cos(u) du,

by observing thatx = sin(u) implies thatu = 0 whenx = 0 andu = π/2 whenx = 1.
Then this means that the integral can be evaluated directly (without changing back to the
variablex) as follows:

I =

∫ π/2

0

√

cos2(u) cos(u) du =
1

2

(

u +
sin(2u)

2

) ∣
∣
∣
∣

π/2

0

=
1

2

(
π

2
+

sin(π)

2

)

=
π

4

where we have used the fact thatsin(π) = 0.
Some subtle points about the domains of definition of inversetrigonometric functions

will not be discussed here in detail. (See material on these functions in a first term calculus
course.) Suffice it to say that some integrals of this type will be undefined if this endpoint
conversion cannot be carried out (e.g. if the interval of integration had been0 ≤ x ≤ 2,
we would encounter an impossible relation2 = sin(u). Since no value ofu satisfies this
relation, such a definite integral has no meaning, i.e. “doesnot exist”.)
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6.5.5 Example: The centroid of a two dimensional shape

We extend the concept of centroid (center of mass) for a region that has uniform density
in 2D, but where we consider the distribution of mass along the x (or y) axis. Consider
the semicircle shape of uniform thickness, shown in Figure 6.4, and suppose it is balanced
along its horizontal edge. Find the x coordinatec̄ at which the shape balances.

x

y

y=   9 − x2

Figure 6.4.A semicircular shape.

Solution

The semicircle is one quarter of a circle of radius 3. Its edgeis described by the equation

y = f(x) =
√

9 − x2.

We will assume that the density per unit area is uniform. However, the mass per unit
length along thex axis is not uniform, due to the shape of the object. We apply the idea of
integration: If we cut the shape at increments of∆x along thex axis, we get a collection
of pieces whose mass is each proportional tof(x)∆x. Summing up such contributions and
letting the widths∆x → dx get small, we arrive at the integral for mass. The total mass of
the shape is thus

M =

∫ 3

0

f(x) dx =

∫ 3

0

√

9 − x2 dx.

Furthermore, if we compute the integral

I =

∫ 3

0

xf(x) dx =

∫ 3

0

x
√

9 − x2 dx,

we obtain thex coordinate of the center of mass,

x̄ =
I

M
.

It is evident that the mass is proportional to the area of one quarter of a circle of radius 3:

M =
1

4
π(3)2 =

9

4
π.
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(We could also see this by performing a trigonometric substitution integral.) The second
integral can be done by simple substitution. Consider

I =

∫ 3

0

xf(x) dx =

∫ 3

0

x
√

9 − x2 dx.

Let u = 9 − x2. Thendu = −2x dx. The endpoints are converted as follows:x = 0 ⇒
u = 9 − 02 = 9 andx = 3 ⇒ u = 9 − 32 = 0 so that we get the integral

I =

∫ 0

9

√
u

1

−2
du.

We can reverse the endpoints if we switch the sign, and this leads to

I =
1

2

∫ 9

0

u1/2 du =

(
1

2

)(
u3/2

3/2

) ∣
∣
∣
∣

9

0

.

Since93/2 = (91/2)3 = 33, we getI = (33)/3 = 32 = 9. Thus thex coordinate of the
center of mass is

x̄ =
I

M
=

9

(9/4)π
=

4

π
.

We can similarly find they coordinate of the center of mass: To do so, we would express
the boundary of the shape in the formx = f(y) and integrate to find

ȳ =

∫ 3

0

yf(y) dy.

For the semicircle,y2 + x2 = 9, sox = f(y) =
√

9 − y2. Thus

ȳ =

∫ 3

0

y
√

9 − y2 dy.

This integral looks identical to the one we wrote down forx̄. Thus, based on this similarity
(or based on the symmetry of the problem) we will find that

ȳ =
4

π
.

6.5.6 Example: tan and sec substitution

Find the antiderivative of

I =

∫
√

1 + x2 dx.

Solution

We aim for simplification by the identity1 + tan2(u) = sec2(u), so we set

x = tan(u), dx = sec2(u)du.
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Then the substitution leads to

I =

∫ √

1 + tan2(u) sec2(u) du =

∫
√

sec2(u) sec2(u) du =

∫

sec3(u) du.

This integral will require further work, and will be partly calculated byIntegration by Parts
in Appendix 11.5. In this example, the triangle shown in Figure 6.5 shows the relationship
betweenx andu and will help to convert other trigonometric functions ofu to functions of
x.

x
u

1+x
2

1

Figure 6.5.As in Figure 6.3 but for example 6.5.6.

6.6 Partial fractions
In this section, we show a simple algebraic trick that helps to simplify an integrand when
it is in the form of somerational functionsuch as

f(x) =
1

(ax + b)(cx + d)
.

The idea is to break this up into simpler rational expressions by finding constantsA, B
such that

1

(ax + b)(cx + d)
=

A

(ax + b)
+

B

(cx + d)
.

Each part can then be handled by a simple substitution, as shown in Example 6.3.3, Eqn. (6.1).
We give several examples below.

6.6.1 Example: partial fractions (1)

Find the antiderivative of

I =

∫
1

x2 − 1
.

Factoring the denominator,x2 − 1 = (x − 1)(x + 1), suggests breaking up the integrand
into the form

1

x2 − 1
=

A

(x + 1)
+

B

(x − 1)
.
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The two sides are equal provided:

1

x2 − 1
=

A(x − 1) + B(x + 1)

x2 − 1
.

This means that
1 = A(x − 1) + B(x + 1)

must be true for allx values. We now ask what values ofA andB make this equation hold
for anyx. Choosing two “easy” values, namelyx = 1 andx = −1 leads to isolating one
or the other unknown constants,A, B, with the results:

1 = −2A, 1 = 2B.

ThusB = 1/2, A = −1/2, so the integral can be written in the simpler form

I =
1

2

(∫ −1

(x + 1)
dx +

∫
1

(x − 1)
dx

)

.

(A common factor of(1/2) has been taken out.) Now a simple substitution will work for
each component. (Letu = x + 1 for the first, andu = x − 1 for the second integral.) The
result is

I =

∫
1

x2 − 1
=

1

2
(− ln |x + 1| + ln |x − 1|) + C.

6.6.2 Example: partial fractions (2)

Find the antiderivative of

I =

∫
1

x(1 − x)
dx.

This example is similar to the previous one. We set

1

x(1 − x)
=

A

x
+

B

(1 − x)
.

Then
1 = A(1 − x) + Bx.

This must hold for allx values. In particular, convenient values ofx for determining the
constants arex = 0, 1. We find that

A = 1, B = 1.

Thus

I =

∫
1

x(1 − x)
dx =

∫
1

x
dx +

∫
1

1 − x
dx.

Simple substitution now gives

I = ln |x| − ln |1 − x| + C.
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6.6.3 Example: partial fractions (3)

Find the antiderivative of

I =

∫
x

x2 + x − 2
.

The rational expression above factors intox2 + x − 2 = (x − 1)(x + 2), leading to the
expression

x

x2 + x − 2
=

A

(x − 1)
+

B

(x + 2)
.

Consequently, it follows that

A(x + 2) + B(x − 1) = x.

Substituting the valuesx = 1,−2 into this leads toA = 1/3 andB = 2/3. The usual
procedure then results in

I =

∫
x

x2 + x − 2
=

1

3
ln |x − 1| + 2

3
ln |x + 2| + C.

Another example of the technique of partial fractions is provided in Appendix 11.5.2.

6.7 Integration by parts
The method described in this section is important as an additional tool for integration. It
also has independent theoretical stature in many applications in mathematics and physics.
The essential idea is that in some cases, we can exchange the task of integrating a function
with the job of differentiating it.

The idea rests on the product rule for derivatives. Suppose that u(x) andv(x) are
two differentiable functions. Then we know that the derivative of their product is

d(uv)

dx
= v

du

dx
+ u

dv

dx
,

or, in the differential notation:

d(uv) = v du + u dv,

Integrating both sides, we obtain
∫

d(uv) =

∫

v du +

∫

u dv

i.e.

uv =

∫

v du +

∫

u dv.

We write this result in the more suggestive form
∫

u dv = uv −
∫

v du.

The idea here is that if we have difficulty evaluating an integral such as
∫

u dv, we may be
able to “exchange it” for a simpler integral in the form

∫
v du. This is best illustrated by

the examples below.
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Example: Integration by parts (1)

Compute

I =

∫ 2

1

ln(x) dx.

Solution

Let u = ln(x) anddv = dx. Thendu = (1/x) dx andv = x.
∫

ln(x) dx = x ln(x) −
∫

x(1/x) dx = x ln(x) −
∫

dx = x ln(x) − x.

We now evaluate this result at the endpoints to obtain

I =

∫ 2

1

ln(x) dx = (x ln(x) − x)

∣
∣
∣
∣

2

1

= (2 ln(2) − 2) − (1 ln(1) − 1) = 2 ln(2) − 1.

(Where we used the fact thatln(1) = 0.)

Example: Integration by parts (2)

Compute

I =

∫ 1

0

xex dx.

Solution

At first, it may be hard to decide how to assign roles foru anddv. Suppose we tryu = ex

anddv = xdx. Thendu = ex dx andv = x2/2. This means that we would get the integral
in the form

I =
x2

2
ex −

∫
x2

2
ex dx.

This is certainlynot a simplification, because the integral we obtain has a higherpower of
x, and is consequently harder, not easier to integrate. This suggests that our first attempt
was not a helpful one. (Note that integration often requirestrial and error.)

Let u = x anddv = ex dx. This is a wiser choice because when we differentiateu,
we reduce the power ofx (from 1 to 0), and get a simpler expression. Indeed,du = dx,
v = ex so that ∫

xex dx = xex −
∫

ex dx = xex − ex + C.

To find a definite integral of this kind on some interval (say0 ≤ x ≤ 1), we compute

I =

∫ 1

0

xex dx = (xex − ex)

∣
∣
∣
∣

1

0

= (1e1 − e1) − (0e0 − e0) = 0 + e0 = e0 = 1.

Note that all parts of the expression are evaluated at the twoendpoints.
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Example: Integration by parts (2b)

Compute

In =

∫

xnex dx.

Solution

We can calculate this integral by repeated application of the idea in the previous example.
Lettingu = xn anddv = ex dx leads todu = nxn−1 andv = ex. Then

In = xnex −
∫

nxn−1ex dx = xnex − n

∫

xn−1ex dx.

Each application of integration by parts, reduces the powerof the termxn inside an integral
by one. The calculation is repeated until the very last integral has been simplified, with
no remaining powers ofx. This illustrates that in some problems, integration by parts is
needed more than once.

Example: Integration by parts (3)

Compute

I =

∫

arctan(x) dx.

Solution

Let u = arctan(x) anddv = dx. Thendu = (1/(1 + x2)) dx andv = x so that

I = x arctan(x) −
∫

1

1 + x2
x dx.

The last integral can be done with the simple substitutionw = (1 + x2) anddw = 2x dx,
giving

I = x arctan(x) − (1/2)

∫

(1/w)dw.

We obtain, as a result

I = x arctan(x) − 1

2
ln(1 + x2).

Example: Integration by parts (3b)

Compute

I =

∫

tan(x) dx.
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Solution

We might try to fit this into a similar pattern, i.e. letu = tan(x) anddv = dx. Then
du = sec2(x) dx andv = x, so we obtain

I = x tan(x) −
∫

x sec2(x) dx.

This is not really a simplification, and we see that integration by parts will not necessarily
work, even on a seemingly related example. However, we mightinstead try to rewrite the
integral in the form

I =

∫

tan(x) dx =

∫
sin(x)

cos(x)
dx.

Now we find that a simple substitution will do the trick, i.e. thatw = cos(x) anddw =
− sin(x) dx will convert the integral into the form

I =

∫
1

w
(−dw) = − ln |w| = − ln | cos(x)|.

This example illustrates that we should always try substitution, first, before attempting
other methods.

Example: Integration by parts (4)

Compute

I1 =

∫

ex sin(x) dx.

We refer to this integral asI1 because a related second integral, that we’ll callI2 will appear
in the calculation.

Solution

Let u = ex anddv = sin(x) dx. Thendu = ex dx andv = − cos(x) dx. Therefore

I1 = −ex cos(x) −
∫

(− cos(x))ex dx = −ex cos(x) +

∫

cos(x)ex dx.

We now have another integral of a similar form to tackle. Thisseems hopeless, as we
have not simplified the result, but let us not give up! In this case, another application of
integration by parts will do the trick. CallI2 the integral

I2 =

∫

cos(x)ex dx,

so that
I1 = −ex cos(x) + I2.

Repeat the same procedure for the new integralI2, i.e. Letu = ex anddv = cos(x) dx.
Thendu = ex dx andv = sin(x) dx. Thus

I2 = ex sin(x) −
∫

sin(x)ex dx = ex sin(x) − I1.
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This appears to be a circular argument, but in fact, it has a purpose. We have determined
that the following relationships are satisfied by the above two integrals:

I1 = −ex cos(x) + I2

I2 = ex sin(x) − I1.

We can eliminateI2, obtaining

I1 = −ex cos(x) + I2 = −ex cos(x) + ex sin(x) − I1.

that is,
I1 = −ex cos(x) + ex sin(x) − I1.

Rearranging (takingI1 to the left hand side) leads to

2I1 = −ex cos(x) + ex sin(x),

and thus, the desired integral has been found to be

I1 =

∫

ex sin(x) dx =
1

2
(−ex cos(x) + ex sin(x)) =

1

2
ex(sin(x) − cos(x)) + C.

(At this last step, we have included the constant of integration.) Moreover, we have also
found thatI2 is related, i.e. usingI2 = ex sin(x) − I1 we now know that

I2 =

∫

cos(x)ex dx =
1

2
ex (sin(x) + cos(x)) + C.

6.8 Summary
In this chapter, we explored a number of techniques for computing antiderivatives. We here
summarize the most important results:

1. Substitution is the first method to consider. This method works provided the change
of variable results in elimination of the original variableand leads to a simpler, more
elementary integral.

2. When using substitution on a definite integral, endpointscan be converted to the
new variable (Method 1) or the resulting antiderivative canbe converted back to its
original variable before plugging in the (original) endpoints (Method 2).

3. The integration by parts formula for functionsu(x), v(x) is
∫

u dv = uv −
∫

v du.

Integration by parts is useful whenu is easy to differentiate (but not easy to integrate).
It is also helpful when the integral contains a product of elementary functions such
asxn and a trigonometric or an exponential function. Sometimes more than one
application of this method is needed. Other times, this method is combined with
substitution or other simplifications.
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4. Using integration by parts on a definite integral means that both parts of the formula
are to be evaluated at the endpoints.

5. Integrals involving
√

1 ± x2 can be simplified by making a trigonometric substitu-
tion.

6. Integrals with products or powers of trigonometric functions can sometimes be sim-
plified by application of trigonometric identities or simple substitution.

7. Algebraic tricks, and many associated manipulations areoften applied to twist and
turn a complicated integral into a set of simpler expressions that can each be handled
more easily.

8. Even with all these techniques, the problem of finding an antiderivative can be very
complicated. In some cases, we resort to handbooks of integrals, use symbolic ma-
nipulation software packages, or, if none of these work, calculate a given definite
integral numerically using a spreadsheet.

Table of elementary antiderivatives

1.
∫

1

u
du = ln |u| + C.

2.
∫

un du =
un+1

n + 1
+ C

3.
∫

1

1 + u2
= arctan(u) + C

4.
∫

1√
1 − x2

= arcsin(u) + C

5.
∫

sin(u) du = − cos(u) + C

6.
∫

cos(u) du = sin(u) + C

7.
∫

sec2(u) du = tan(u) + C

Additional useful antiderivatives

1.
∫

tan(u) du = ln | sec(u)| + C.

2.
∫

cot(u) du = ln | sin(u)| + C

3.
∫

sec(u) = ln | sec(u) + tan(u)| + C



132 Chapter 6. Techniques of Integration



Chapter 7

Discrete probability and
the laws of chance

7.1 Introduction
In this chapter we lay the groundwork for calculations and rules governing simple discrete
probabilities24. Such skills are essential in understanding problems related to random pro-
cesses of all sorts. In biology, there are many examples of such processes, including the
inheritance of genes and genetic diseases, the random motion of cells, the fluctuations in
the number of RNA molecules in a cell, and a vast array of otherphenomena.

To gain experience with probability, it is important to see simple examples. In this
chapter, we discuss experiments that can be easily reproduced and tested by the reader.

7.2 Dealing with data
Scientists studying phenomena in the real world, collect data of all kinds, some resulting
from experimental measurement or field observations. Data sets can be large and complex.
If an experiment is repeated, and comparisons are to be made between multiple data sets,
it is unrealistic to compare each and every numerical value.Some shortcuts allow us to
summarize trends or descriptions of data sets in simple values such as averages (means),
medians, and similar quantities. In doing so we lose the detailed information that the data
set contains, in favor of simplicity of one or several “simple” numerical descriptors such
as themean and themedian of a distribution. We have seen related ideas in Chapter 5
in the context of mass distributions. The idea of a center of mass is closely related to that
of the mean of a distribution. Here we revisit such ideas in the context of probability. An
additional example of real data is described in Appendix 11.6. There, we show how grade
distributions on a test can be analyzed by similar methods.

24I am grateful to Robert Israel for comments regarding the organization of this chapter
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7.3 Simple experiments

7.3.1 Experiment

We will consider “experiments” such as tossing a coin, rolling a die, dealing cards, applying
treatment to sick patients, and recording how many are cured. In order for the ideas of
probability to apply, we should be able to repeat the experiment as many times as desired
under exactly the same conditions. The number of repetitions will often be denotedN .

7.3.2 Outcome

Whenever we perform the experiment, exactly one outcome happens. In this chapter we
will deal with discrete probability, where there is a finite list of possible outcomes.

Consider the following experiment: We toss a coin and see howit lands. Here there
are only two possible results: “heads” (H) or “tails” (T). A fair coin is one for which these
results are equally likely. This means that if we repeat thisexperiment many many times,
we expect that on average, we get H roughly 50% of the time and Troughly 50% of the
time. This will lead us to define a probability of 1/2 for each outcome.

Similarly, consider the experiment of rolling a dice: A six-sided die can land on any
of its six faces, so that a “single experiment” has six possible outcomes. For a fair die, we
anticipate getting each of the results with an equal probability, i.e. if we were to repeat
the same experiment many many times, we would expect that, onaverage, the six possible
events would occur with similar frequencies, each 1/6 of thetimes. We say that the events
are random and unbiased for “fair” dice.

We will often be interested in more complex experiments. Forexample, if we toss a
coin five times, an outcome corresponds to a five-letter sequence of “Heads” (H) and “Tails”
(T), such as THTHH. We are interested in understanding how toquantify the probability
of each such outcome in fair (as well as unfair) coins. If we toss a coin ten times, how
probable is it that we get eight out of ten heads? For dice, we could ask how likely are
we to roll a 5anda 6 in successive experiments? A 5or a 6? For such experiments we
are interested in quantifying how likely it is that a certainevent is obtained. Our goal in
this chapter is to make more precise our notion of probability, and to examine ways of
quantifying and computing probabilities. To motivate thisinvestigation, we first look at
results of a real experiment performed in class by students.

7.3.3 Empirical probability

We can arrive at a notion of probability by actually repeating a real experimentN times,
and counting how many times each outcome happens. Let us use the notationxi to refer to
the number of times that outcomei was obtained. An example of this sort is illustrated in
Section 7.4.1. We define theempirical probability pi of outcomei to be

pi = xi/N,

i.e pi is the fraction of times that the resulti is obtained out of all the experiments. We ex-
pect that if we repeated the experiment many more times, thisempirical probability would
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approach, as a limit, the actual probability of the outcome.So if in a coin-tossing experi-
ment, repeated 1000 times, the outcome HHTHH is obtained 25 times, then we would say
that the empirical probabilitypHHTHH is 25/1000.

7.3.4 Theoretical Probability

For theoretical probability, we make some reasonable basicassumptions on which we base
a calculation of the probabilities. For example, in the caseof a “fair coin”, we can argue by
symmetry that every sequence ofn heads and tails has the same probability as any other.
We then use two fundamental rules of probability to calculate the probability as illustrated
below.

Rules of probability

1. In discrete probability,0 ≤ pi ≤ 1 for each outcomei.

2. For discrete probability
∑

i pi = 1, where the sum is over all possible outcomes.

About Rule 1: pi = 0 implies that the given outcome never happens, whereaspi = 1
implies that this outcome is the only possibility (and always happens). Any value inside
the range (0,1) means that the outcome occurs some of the time. Rule 2 makes intuitive
sense: it means that we have accounted for all possibilities, i.e. the fractions corresponding
to all of the outcomes add up to 100% of the results.

In a case where there areM possible outcomes, all with equal probability, it follows
thatpi = 1/M for everyi.

7.3.5 Random variables and probability distributions

A random variable is a numerical quantityX that depends on the outcome of an exper-
iment. For example, suppose we toss a coinn times, and letX be the number of heads
that appear. If, say, we toss the coinn = 4 times, then the number of heads,X could take
on any of the values{xi} = {0, 1, 2, 3, 4} (i.e., no heads, one head, . . . four heads). In the
case of discrete probability there are a discrete number of possible values for the random
variable to take on.

We will be interested in the probability distribution ofX . In general if the possible
valuesxi are listed in increasing order fori = 0, ..., n, we would like to characterize their
probabilitiesp(xi), wherep(xi) =Prob(X = xi)

25.
Even thoughp(xi) is a discrete quantity taking on one of a discrete set of values,

we should still think of this mathematical object as a function: it associates a number
(the probability)p with each allowable value of the random variablexi for i = 0, . . . , n.
In what follows, we will be interested in characterizing such function, termed probability
distributions and their properties.

25Read:p(xi) is the probability that the random variableX takes on the valuexi
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7.3.6 The cumulative distribution

Given a probability distribution, we can also define acumulative function as follows:

The cumulative function corresponding to the probability distributionp(xi) is defined as

F (xi) = Prob(X ≤ xi).

For a given numerical outcomexi, the value ofF (xi) is hence

F (xi) =

i∑

j=0

p(xj).

The functionF merely sums up all the probabilities of outcomes up to and including xi,
hence is called “cumulative”. This implies thatF (xn) = 1 wherexn is the largest value
attainable by the random variable. For example, in the rolling of a die, if we list the possible
outcomes in ascending order as{1, 2, . . . , 6}, thenF (6) stands for the probability of rolling
a 6 or any lower value, which is clearly equal to 1 for a six-sided die.

7.4 Examples of experimental data
7.4.1 Example1: Tossing a coin

We illustrate ideas with an example of real data obtained by repeating an “experiment”
many times. The experiment, actually carried out by each of 121 students in this calcu-
lus course, consisted of tossing a coinn = 10 times and recording the number,xi, of
“Heads” that came up. Each student recorded one of eleven possible outcomes,xi =
{0, 1, 2, . . . , 10} (i.e. no heads, one, two, etc, up to ten heads out of the ten tosses). By
pooling together such data, we implicitly assume that all coins and all tossers are more
or less identical and unbiased, so the “experiment” hasN = 121 replicates (one for each
student). Table 7.1 shows the result of this experiment. Here ni is the number of students
who gotxi heads. We refer to this as thefrequency of the given result. Also, soni/N is
the fraction of experiments that led to the given result, andwe define the empirical proba-
bility assigned toxi as this fraction, that isp(xi) = ni/N . In column (3) we display the
cumulative number of students who got any number up to and includingxi heads, and then
in column (5) we compute the cumulative (empirical) probability F (xi).

In Figure 7.1 we show what this distribution looks like on a bar graph. The horizontal
axis isxi, the number of heads obtained, and the vertical axis isp(xi). Because in this
example, only discrete integer values (0, 1, 2, etc) can be obtained in the experiment,
it makes sense to represent the data as discrete points, as shown on the bottom panel in
Fig. 7.1. We also show the cumulative functionF (xi), superimposed as an xy-plot on a
graph ofp(xi). Observe thatF starts with the value 0 and climbs up to value 1, since the
probabilities of any of the events (0, 1, 2, etc heads) must add up to 1.
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Number frequency cumulative empirical cumulative
of heads (number of students) number probability function

xi ni

i∑

0

nj p(xi) = ni/N F (xi) =
i∑

0

p(xj)

0 0 0 0.00 0.00
1 1 1 0.0083 0.0083
2 2 3 0.0165 0.0248
3 10 13 0.0826 0.1074
4 27 40 0.2231 0.3306
5 26 66 0.2149 0.5455
6 34 100 0.2810 0.8264
7 14 114 0.1157 0.9421
8 7 121 0.0579 1.00
9 0 121 0.00 1.00
10 0 121 0.00 1.00

Table 7.1. Results of a real coin-tossing experiment carried out by 121students
in this mathematics course. Each student tossed a coin 10 times. We recorded the “fre-
quency”, i.e. the number of studentsni who each gotxi = 0, 1, 2, . . . , 10 heads. The
fraction of the class that got each outcome,ni/N , is identified with the (empirical) prob-
ability of that outcome,p(xi). We also compute the cumulative functionF (xi) in the last
column. See Figure 7.1 for the same data presented graphically.

7.4.2 Example 2: grade distributions

Another example of real data is provided in Appendix 11.6. There we discuss distributions
of grades on a test. Many of the ideas described here apply in the same way. For space
constraints, that example is provided in an Appendix, rather than here.

7.5 Mean and variance of a probability distribution
We next discuss some very important quantities related to the random variable. Such quan-
tities provide numerical descriptions of the average valueof the random variable and the
fluctuations about that average. We define each of these as follows:

Themean(or average orexpected value), x̄ of a probability distribution is

x̄ =

n∑

i=0

xip(xi) .

The expected value is a kind of “average value of x”, where values ofx are weighted
by their frequency of occurrence. This idea is related to theconcept of center of mass
defined in Section 5.3.1 (x positions weighted by masses associated with those positions).
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number of heads (i)

empirical probability of i heads in 10 tosses

0.0 10.0

0.0

0.4

Cumulative function

number of heads (i)0.0 10.0

0.0

1.0

Figure 7.1. The data from Table 7.1 is shown plotted on this graph. A totalof
N = 121 people were asked to toss a coinn = 10 times. In the bar graph (left), the
horizontal axis reflectsi, the number, of heads (H) that came up during those 10 coin
tosses. The vertical axis reflects the fractionp(xi) of the class that achieved that particular
number of heads. In the lower graph, the same data is shown by the discrete points. We
also show the cumulative function that sums up the values from left to right. Note that the
cumulative function is a “step function” .

The mean is a point on thex axis, representing the “average” outcome of an experiment.
(Recall that in the distributions we are describing, the possible outcomes of some observa-
tion or measurement process are depicted on thex axis of the graph.) The mean isnot the
same as the average value of a function, discussed in Section4.6. (In that case, the average
is an average y coordinate, or average height of the function.)26

We also define quantities that represents the width of the distribution. We define the
variance,V and standard deviation,σ as follows:

Thevariance, V , of a distribution is

V =
n∑

i=0

(xi − x̄)2p(xi).

wherex̄ is the mean. Thestandard deviation, σ is

σ =
√

V .

The variance is related to the square of the quantity represented on thex axis, and since
the standard deviation its square root,σ carries the same units asx. For this reason, it is

26Note to the instructor: students often mix these two distinct meanings of the word average, and they should
be helped to overcome this difficulty with terminology.
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common to associate the value ofσ, with a typical “width” of the distribution. Having a
low value ofσ means that most of the experimental results are close to the mean, whereas
a largeσ signifies that there is a large scatter of experimental values about the mean.

In the problem sets, we show that the variance can also be expressed in the form

V = M2 − x̄2,

whereM2 is thesecond momentof the distribution. Moments of a distribution are defined
as the values obtained by summing up products of the probability weighted by powers of
x.

Thej’th moment, Mj of a distribution is

Mj =

n∑

i=0

(xi)
jp(xi).

Example 7.1 (Rolling a die) Suppose you toss a die, and let the random variable beX be
the number obtained on the die, i.e. (1 to 6). If this die is fair, then it is equally likely to get
any of the six possible outcomes, so each has probability 1/6. In this case

xi = i, i = 1, 2 . . . 6 p(xi) = 1/6.

We calculate the various quantities as follows: The mean is

x̄ =

6∑

i=1

i · 1

6
=

1

6
·
(

6 · 7
2

)

=
7

2
= 3.5.

The second moment,M2 is

M2 =

6∑

i=1

i2 · 1

6
=

1

6
·
(

6 · 7 · 13

6

)

=
91

6
.

We can now obtain the variance,

V =
91

6
−
(

7

2

)2

=
35

12
,

and the standard deviation,
σ =

√

35/12 ≈ 1.7078.

Example 7.2 (Expected number of heads (empirical))For the empirical probability dis-
tribution shown in Figure 7.1, the mean (expected value) is calculated from results in Ta-
ble 7.1 as follows:

x̄ =

10∑

k=0

xip(xi) = 0(0)+1(0.0083)+2(0.0165)+. . .+8(0.0579)+9(0)+10(0) = 5.2149
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Thus, the mean number of heads in this set of experiments is about 5.2. This is close to
what we would expect intuitively in a fair coin, namely that,on average, 5 out of 10 tosses
(i.e. 50%) would result in heads. To compute the variance we form the sum

V =

10∑

k=0

(xk − x̄)2p(xk) =

10∑

k=0

(k − 5.2149)2p(k).

Here we have used the mean calculated above and the fact thatxk = k. We obtain

V = (0 − 5.2149)2(0) + (1 − 5.2149)2(0.0083) + . . . + (7 − 5.2149)2(0.1157)

+ (8 − 5.2149)2(0.0579) + (9 − 5.2149)2(0) + (10 − 5.2149)2(0) = 2.053

(Because there was no replicate of the experiment that led to9 or 10 heads out of 10
tosses, these values do not contribute to the calculation.)The standard deviation is then
σ =

√
V = 1.4328.

7.6 Bernoulli trials
A Bernoulli trial is an experiment in which there are two possible outcomes. A typical
example, motivated previously, is tossing a coin (the outcome being H or T). Traditionally,
we refer to one of the outcomes of a Bernoulli trial as ”success” Sand the other ”failure”27,
F.

Let p be the probability of success andq = 1 − p the probability of failure in a
Bernoulli trial. We now consider how to calculate the probability of some number of
“successes” in a set of repetitions of a Bernoulli trial. In short, we are interested in the
probability of tossing some number of Heads inn coin tosses.

7.6.1 The Binomial distribution

Suppose we repeat a Bernoulli trialn times; we will assume that each trial is identical and
independent of the others. This implies that the probability p of success andq of failure
is the same in each trial. LetX be the number of successes. ThenX is said to have a
Binomial distribution with parametersn andp.

Let us consider how to calculate the probability distribution ofX , i.e. the probability
thatX = k wherek is some number of successes between none (k = 0) and all (k = n).
Recall that the notation for this probability is Prob(X = k) for k = 0, 1, . . . , n. Also note
that

X = k means that in then trials there arek successes andn − k failures. Consider
the following example for the case ofn = 3, where we list all possible outcomes and their
probabilities:

In constructing Table 7.2, we use amultiplication principle applied to computing
the probability of a compound experiment. We state this, together with a usefuladdition
principle below.

27For example “Heads you win, Tails you lose”.
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Result probability number of heads
SSS p3 X = 3
SSF p2q X = 2
SFS p2q X = 2
SFF pq2 X = 1
FSS p2q X = 2
FSF pq2 X = 1
FFS pq2 X = 1
FFF q3 X = 0

Table 7.2.A list of all possible results of three repetitions (n = 3) of a Bernoulli
trial. S=“success” andF=“failure. (Substituting H for S, and T for F gives the same
results for a coin tossing experiment repeated 3 times).

Multiplication principle : if e1, . . . , ek are independent events, then

Prob(e1 ande2 and . . . ek) = Prob(e1)Prob(e2) . . . Prob(ek)

Addition principle : if e1, ..., ek are mutually exclusive events, then

Prob(e1 ore2 or . . . ek) = Prob(e1) + Prob(e2) + . . . + Prob(ek).

Based on the results in Table 7.2 and on the two principles outline above, we can compute
the probability of obtaining 0, 1, 2, or 3 successes out of 3 trials. The results are shown
in Table 7.3. In constructing Table 7.3, we have considered all the ways of obtaining 0

Probability ofX heads

Prob(X = 0) = q3

Prob(X = 1) = 3pq2

Prob(X = 2) = 3p2q
Prob(X = 3) = p3

Table 7.3. The probability of obtainingX successes out of 3 Bernoulli trials,
based on results in Table 7.2 and the addition principle of probability.

successes (there is only one such way, namely SSS, and its probability isp3), all the ways
of obtaining only one success (here we must allow for SFF, FSF, FFS, each having the
same probabilitypq2) etc. Since these results are mutually exclusive (only one such result
is possible for any given replicate of the 3-trial experiment), the addition principle is used
to compute the probability Prob(SFF or FSF or FFS).
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In general, for each replicate of an experiment consisting of n Bernoulli trials, the
probability of an outcome that hask successes andn − k failures (in some specific order)
is pkq(n−k). To get the total probability ofX = k, we need to count how many possible
outcomes consist ofk successes andn − k failures. As illustrated by the above example,
there are, in general, many such ways, since the order in which S and F appear can differ
from one outcome to another. In mathematical terminology, there can be manypermuta-
tions (i.e. arrangements of the order) of S and F that have the same number of successes
in total. (See Section 11.8 for a review.) In fact, the numberof ways thatn trials can lead
to k successes isC(n, k), thebinomial coefficient, which is, by definition, the number of
ways of choosingk objects out of a collection ofn objects. That binomial coefficient is

C(n, k) = (n choose k)=
n!

(n − k)!k!
.

(See Section 11.7 for the definition of factorial notation “!” used here.) We have arrived at
the following result forn Bernoulli trials:

The probability ofk successes inn Bernoulli trials is

Prob(X = k) = C(n, k)pkqn−k.

In the above example, withn = 3, we find that

Prob(X = 2) = C(3, 2)p2q = 3p2q.

7.6.2 The Binomial theorem

The namebinomial coefficientcomes from thebinomial theorem: which accounts for the
expression obtained by expanding a binomial.

(a + b)n =

n∑

k=0

C(n, k)akbn−k.

Let us consider a few examples. A familiar example is

(a + b)2 = (a + b) · (a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2.

The coefficientsC(2, 2) = 1, C(2, 1) = 2, andC(2, 0) = 1 appear in front of the three
terms, representing, respectively, the number of ways of choosing 2a’s, 1a, and noa’s out
of then factors of(a + b). [Respectively, these account for the termsa2, ab andb2 in the
resulting expansion.] Similarly, the product of three terms is

(a + b)3 = (a + b) · (a + b) · (a + b) = (a + b)3 = a3 + 3a2b + 3ab2 + b3

whereby coefficients are of the formC(3, k) for k = 3, 2, 1, 0. More generally, an expan-
sion ofn terms leads to

(a + b)n = an + C(n, 1)an−1b + C(n, 2)an−2b2 + . . . + C(n, k)akbn−k

+ . . . + C(n, n − 2)a2bn−2 + C(n, n − 1)abn−1 + bn

=

n∑

k=0

C(n, k)akbn−k
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Table 7.4. Pascal’s triangle contains the binomial coefficients of theC(n, k).
Each term in Pascal’s triangle is obtained by adding the two diagonally above it. The top
of the triangle representsC(0, 0). The next row representsC(1, 0) andC(1, 1). For row
numbern, terms along the row are the binomial coefficientsC(n, k), starting withk = 0
at the beginning of the row and and going tok = n at the end of the row.

The binomial coefficients are symmetric, so thatC(n, k) = C(n, n − k). They are entries
that occur inPascal’s triangle, shown in Table 7.4.

7.6.3 The binomial distribution

The binomial distribution

p=1/2   q=1/2

-0.5 10.5

0.0

0.4

The binomial distribution

p=1/4   q=3/4

-0.5 10.5

0.0

0.4

Figure 7.2. The binomial distribution is shown here forn = 10. We have plotted
Prob(X = k) versusk for k = 0, 1, . . .10. This distribution is the same as the probability
of gettingX heads out of 10 coin tosses for a fair coin. In the first panel, the probability
of success and failure are the same, i.e.p = q = 0.5. The distribution is then symmetric.
In the second panel, the probability of success isp = 1/4, soq = 3/4 and the resulting
distribution is skewed.

What does the binomial theorem say about the binomial distribution? First, since
there are only two possible outcomes in each Bernoulli trial, it follows that

p + q = 1, and hence (p + q)n = 1.
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Using the binomial theorem, we can expand the latter to obtain

(p + q)n =
n∑

k=0

C(n, k)pkqn−k =
n∑

k=0

Prob(X = k) = 1.

That is, the sum of these terms represents the sum of probabilities of obtainingk =
0, 1, . . . , n successes. (And since this accounts for all possibilities,it follows that the sum
adds up to 1.)

We can compute the mean and variance of the binomial distribution using the follow-
ing tricks. We will write out an expansion for a product of theform (px + q)n. Herex will
be an abstract quantity introduced for convenience (i.e., for making the trick work):

(px + q)n =
n∑

k=0

C(n, k)(px)kqn−k =
n∑

k=0

C(n, k)pkqn−kxk.

Taking the derivative of the above with respect tox leads to:

n(px + q)n−1 · p =

n∑

k=0

C(n, k)pkqn−k kxk−1,

which, (plugging inx = 1) implies that

np =

n∑

k=0

k · C(n, k)pkqn−k =

n∑

k=0

k · Prob(X = k) = X̄. (7.1)

Thus, we have found that

The mean of the binomial distribution is̄X = np wheren is the number of trials andp is
the probability of success in one trial.

We continue to compute other quantities of interest. Multiply both sides of Eqn. 7.1
by x to obtain

nx(px + q)n−1p =

n∑

k=0

C(n, k)pkqn−kkxk.

Take the derivative again. The result is

n(px + q)n−1p + n(n − 1)x(px + q)n−2p2 =
n∑

k=0

C(n, k)pkqn−kk2xk−1.

Plug inx = 1 to get

np + n(n − 1)p2 =

n∑

k=0

k2C(n, k)pkqn−k = M2.

Thereby we have calculated the second moment of the distribution, the variance, and the
standard deviation. In summary, we found the following results:
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The second momentM2, the VarianceV and the standard deviationσ of a binomial distri-
bution are

M2 = np + n2p2 − np2,

V = M2 − X̄2 = np − np2 = np(1 − p) = npq,

σ =
√

npq.

7.6.4 The normalized binomial distribution

We can “normalize” (i.e. rescale) the binomial random variable so that it has a convenient
mean and width. To do so, define the new random variableX̃ to be:X̃ = X − X̄. ThenX̃
has mean 0 and standard deviationσ. Now define

Z =
(X − X̄)

σ

ThenZ has mean 0 and standard deviation 1. In the limit asn → ∞, we can approximate
Z with a continuous distribution, called the standard normaldistribution.

The Normal distribution

-4.0 4.0

0.0

0.4

Figure 7.3.The Normal (or Gaussian) distribution is given by equation (7.2) and
has the distribution shown in this figure.

As the number of Bernoulli trials grows, i.e. as we toss our imaginary coin in longer
and longer sets (n → ∞), a remarkable thing happens to the binomial distribution:it
becomes smoother and smoother, until it grows to resemble a continuous distribution that
looks like a “Bell curve”. That curve is known as theGaussianor Normal distribution . If
we scale this curve vertically and horizontally (stretch vertically and compress horizontally
by the factor

√
N/2) and shift its peak tox = 0, then we find a distribution that describes

the deviation from the expected value of 50% heads. The resulting function is of the form

p(x) =
1√
2π

e−x2/2 (7.2)
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We will study properties of this (and other) such continuousdistributions in a later
section. We show a typical example of the Normal distribution in Figure 7.3. Its cumulative
distribution is then shown (without and with the original distribution superimposed) in
Figure 7.4.

The cumulative distribution

-4.0 4.0

0.0

1.0

The cumulative distribution

The normal distribution

-4.0 4.0

0.0

1.0

Figure 7.4.The Normal probability density with its corresponding cumulative function.

7.7 Hardy-Weinberg genetics
In this section, we investigate how the ideas developed in this chapter apply to genetics.
We find that many of the simple concepts presented here will beuseful in calculating the
probability of inheriting genes from one generation to the next.

Each of us has two entire sets of chromosomes: one set is inherited from our mother,
and one set comes from our father. These chromosomes carry genes, the unit of genetic
material that “codes” for proteins and ultimately, throughcomplicated biochemistry and
molecular biology, determines all of our physical traits.

We will investigate how a single gene (with two “flavors”, called alleles) is passed
from one generation to the next. We will consider a particularly simple situation, when the
single gene determines some physical trait (such as eye color). The trait (say blue or green
eyes) will be denoted thephenotypeand the actual pair of genes (one on each parentally
derived chromosome) will be called thegenotype.

Suppose that the gene for eye color comes in two forms that will be referred to as
A anda. For example,A might be an allele for blue eyes, whereasa could be an allele
for brown eyes. Consider the following “experiment”: select a random individual from the
population of interest, and examine the region in one of their chromosomes determining
eye colour. Then there are two possible mutually exclusive outcomes,A or a; according to
our previous definition, the experiment just described is a Bernoulli trial.

The actual eye color phenotype will depend on both inheritedalleles, and hence, we
are interested in a “repeated Bernoulli trial” withn = 2. In principle, each chromosome
will come with one or the other allele, so each individual would have one of the following
pairs of combinationsAA, Aa, aA, or aa. The order Aa or aA is synonymous, so only the



7.7. Hardy-Weinberg genetics 147

Genotype: aA AA aa Aa
Probability: pq p2 q2 pq

Genotype: aA or Aa AA aa
Probability: 2pq p2 q2

Table 7.5. If the probability of finding alleleA is p and the probability of finding
allele A is q, then the eye color gene probabilities are as shown in the toptable. However,
because genotypeAa is equivalent to genotypeaA, we have combined these outcomes in
the revised second table.

number of alleles of typeA (or equivalently of typea) is important.
Suppose we know that the fraction of all genes for eye color oftypeA in the popu-

lation isp, and the fraction of all genes for eye color of typea is q, wherep + q = 1. (We
have used the fact that there areonly two possibilities for the gene type, of course.) Then
we can interpretp andq as probabilities that a gene selected at random from the population
will turn out to be typea (respectivelyA), i.e., Prob(A) = p, Prob(a)=q.

Now suppose we draw at random two alleles out of the (large) population. If the
population size isN , then, on average we would expectNp2 individuals of typeAA , Nq2

of typeaa and2Npq individuals of the mixed type. Note that the sum of the probabilities
of all the genotypes is

p2 + 2pq + q2 = (p + q)2 = 1.

(We have seen this before in the discussion of Bernoulli trials, and in the definition of
properties of probability.)

7.7.1 Random non-assortative mating

We now examine what happens if mates are chosen randomly and offspring arise from
such parents. The father and mother each pass down one or another copy of their alleles to
the progeny. We investigate how the proportion of genes of various types is arranged, and
whether it changes in the next generation. In Table 7.6, we show the possible genotypes of
the mother and father, and calculate the probability that mating of such individuals would
occur under the assumption that choice of mate is random - i.e., does not depend at all
on “eye color”. We assume that the allele donated by the father (carried in his sperm) is
independent of the allele found in the mother’s egg cell28. This means that we can use the
multiplicative property of probability to determine the probability of a given combination
of parental alleles. (i.e. Prob(x and y)=Prob(x)·Prob(y)).

For example, the probability that a couple chosen at random will consist of a woman
of genotypeaA and a man of genotypeaa is a product of the fraction of females that are of
typeaA and the fraction of males that are of typeaa. But that is just(2pq)(p2), or simply
2p3q. Now let us examine the distribution of possible offspring of various parents.

28Recall that the sperm and the egg each have one single set of chromosomes, and their union produces the
zygote that carries the doubled set of chromosomes.
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In Table 7.6, we note, for example, that if the couple are bothof typeaA, each parent
can “donate” eithera or A to the progeny, so we expect to see children of typesaa, aA, AA
in the ratio 1:2:1 (regardless of the values ofp andq).

We can now group together and summarize all the progeny of a given genotype, with
the probabilities that they are produced by one or another such random mating. Using this
table, we can then determine the probability of each of the three genotypes in the next
generation.

Mother: AA aA aa
p2 2pq q2

Father:
AA AA 1

2aA 1
2AA Aa

p2 p4 2pqp2 p2q2

aA 1
2aA 1

2AA 1
4aa 1

2aA 1
4AA 1

2aa 1
2Aa

2pq 2pqp2 4p2q2 2pqq2

aa Aa 1
2aA 1

2aa aa
q2 p2q2 2pqq2 q4

Table 7.6.The frequency of progeny of various types in Hardy-Weinberggenetics
can be calculated as shown in this “mating table”. The genotype of the mother is shown
across the top and the father’s genotype is shown on the left column. The various progeny
resulting from mating are shown as entries in bold face. The probabilities of the given
progeny are directly under those entries. (We did not simplify the expressions - this is to
emphasize that they are products of the original parental probabilities.)

Example 7.3 (Probability of AA progeny) Find the probability that a random (Hardy Wein-
berg) mating will give rise to a progeny of typeAA .

Solution 1

Using Table 7.6, we see that there are only four ways that a child of type AA can result
from a mating: either both parents areAA , or one or the other parent isAa, or both parents
areAa. Thus, for children of typeAA the probability is

Prob(child of typeAA) = p4 +
1

2
(2pqp2) +

1

2
(2pqp2) +

1

4
(4p2q2).

Simplifying leads to

Prob(child of typeAA) = p2(p2 + 2qp + q2) = p2(p + q)2 = p2.



7.7. Hardy-Weinberg genetics 149

In the problem set, we also find that the probability of a childof type aA is 2qp, the
probability of the child being typeaa is q2. We thus observe that the frequency of genotypes
of the progeny is exactly the same as that of the parents. Thistype of genetic makeup is
termed Hardy-Weinberg genetics.

Alternate solution

1/2

child
 AA

motherfather

Aa AA Aa AA

A    or     AA     or     A

2pq p 2pq p22

(pq+p    )    ( pq +  p   )2 2.

1/2 1 1

Figure 7.5. A tree diagram to aid the calculation of the probability thata child
with genotypeAA results from random assortative (Hardy Weinberg) mating.

In Figure 7.5, we show an alternate solution to the same problem using a tree dia-
gram. Reading from the top down, we examine all the possibilities at each branch point.
A child AA cannot have any parent of genotype aa, so both father and mother’s genotype
could only have been one ofAA or Aa. Each arrow indicating the given case is accom-
panied by the probability of that event. (For example, a random individual has probability
2pq of having genotypeAa, as shown on the arrows from the father and mother to these
genotypes.) Continuing down the branches, we ask with what probability the given parent
would have contributed an allele of typeA to the child. For a parent of typeAA , this is
certainly true, so the given branch carries probability 1. For a parent of typeAa, the proba-
bility that A is passed down to the child is only 1/2. Thecombinedprobability is computed
as follows: we determine the probability of getting anA from father (of typeAA OR Aa):
This is Prob(A from father)=(1/2)2pq + 1 · p2) = (pq + p2) and multiply it by a similar
probability of gettingA from the mother (of typeAA OR Aa). (We must multiply, since
we needA from the father ANDA from the mother for the genotypeAA .) Thus,

Prob(child of typeAA ) =(pq + p2)(pq + p2) = p2(q + p)2 = p2 · 1 = p2.
It is of interest to investigate what happens when one of the assumptions we made is
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relaxed, for example, when the genotype of the individual has an impact on survival or on
the ability to reproduce. While this is beyond our scope here, it forms an important theme
in the area of genetics.

7.8 Random walker
In this section we discuss an application of the binomial distribution to the process of a
random walk. A shown in Figure 7.6(a), we consider a straight(1 dimensional) path and an
erratic walker who takes steps randomly to the left or right.We will assume that the walker
never stops. With probabilityp, she takes a step towards the right, and with probabilityq
she takes a step towards the left. (Since these are the only two choices, it must be true that
p + q = 1.) In Figure 7.6(b) we show the walker’s position,x plotted versus the number of
steps (n) she has taken. (We may as well assume that the steps occur at regular intervals of
time, so that the horizontal axis of this plot can be thought of as a time axis.)

(a)
pq

0−1 1

n

x

x

(b)

Figure 7.6. A random walker in 1 dimension takes a step to the right with proba-
bility p and a step to the left with probabilityq.

The process described here is classic, and often attributedto a drunken wanderer. In
our case, we could consider this motion as a 1D simplificationof the random tumbles and
swims of a bacterium in its turbulent environment. it is usually the case that a goal of this
swim is a search for some nutrient source, or possibly avoidance of poor environmental
conditions. We shall see that if the probabilities of left and right motion are unequal (i.e.
the motion is biased in one direction or another) this swimmer tends to drift along towards
a preferred direction.

In this problem, each step has only two outcomes (analogous to a trial in a Bernoulli
experiment). We could imagine the walker tossing a coin to determine whether to move
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right or left. We wish to characterize the probability of thewalker being at a certain posi-
tion at a given time, and to find her expected position aftern steps. Our familiarity with
Bernoulli trials and the binomial distribution will prove useful in this context.

Example

(a) What is the probability of a run of steps as follows: RLRRRLRLLLL

(b) Find the probability that the walker movesk steps to the right out of a total run ofn
consecutive steps.

(c) Suppose thatp = q = 1/2. What is the probability that a walker starting at the origin
returns to the origin on her 10’th step?

Solution

(a) The probability of the run RLRRRLRLLL is the productpqpppqpqqq = p5q5. Note
the similarity to the question “What is the probability of tossing HTHHHTHTTT?”

(b) This problem is identical to the problem ofk heads inn tosses of a coin. The proba-
bility of such an event is given by a term in the binomial distribution:

P(k out ofn moves to right)=C(n, k)pkqn−k.

(c) The walker returns to the origin after 10 steps only if shehas taken 5 steps to the left
(total) and 5 steps to the right (total). The order of the steps does not matter. Thus
this problem reduces to the problem (b) with 5 steps out of 10 taken to the right. The
probability is thus

P(back at 0 after 10 steps) = P(5 out of 10 steps to right)

=C(10, 5)p5q5 = C(10, 5)

(
1

2

)10

=

(
10!

5!5!

)
1

1024
= 0.24609

Mean position

We now ask how to determine the expected position of the walker aftern steps, i.e. how
the mean value ofx depends on the number of steps and the probabilities associated with
each step. After 1 step, with probabilityp the position isx = +1 and with probabilityq,
the position isx = −1. The expected (mean) position after 1 move is thus

x1 = p(+1) + q(−1) = p − q

But the process follows a binomial distribution, and thus the mean aftern steps is

xn = n(p − q).
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7.9 Summary
In this chapter, we introduced the notion of discrete probability of elementary events. We
learned that a probability is always a number between 0 and 1,and that the sum of (dis-
crete) probabilities of all possible (discrete) outcomes is 1. We then described how to
combine probabilities of elementary events to calculate probabilities of compound inde-
pendent events in a variety of simple experiments. We definedthe notion of a Bernoulli
trial, such as tossing of a coin, and studied this in detail.

We investigated a number of ways of describing results of experiments, whether in
tabular or graphical form, and we used the distribution of results to define simple numerical
descriptors. Themeanis a number that, more or less, describes the location of the “center”
of the distribution (analogous to center of mass), defined asfollows:

The mean (expected value) x̄ of a probability distribution is

x̄ =

n∑

i=0

xip(xi).

The standard deviation is, roughly speaking, the “width” ofthe distribution.

Thestandard deviation, σ is
σ =

√
V

whereV is thevariance,

V =

n∑

i=0

(xi − x̄)2p(xi).

While the chapter was motivated by results of a real experiment, we then investigated
theoretical distributions, including the binomial. We found that the distribution of events in
a repetition of a Bernoulli trial (e.g. coin tossedn times) was a binomial distribution, and
we computed the mean of that distribution.

Suppose that the probability of one of the events, say event e1 in a Bernoulli trial isp (and
hence the probability of the other event e2 is q = 1 − p), then

P (k occurrences of given event out of n trials) =
n!

k!(n − k)!
pkqn−k.

This is called thebinomial distribution. The mean of the binomial distribution, i.e. the
mean number of events e1 in n repeated Bernoulli trials is

x̄ = np.



Chapter 8

Continuous probability
distributions

8.1 Introduction
In Chapter 7, we explored the concepts of probability in a discrete setting, where outcomes
of an experiment can take on only one of a finite set of values. Here we extend these
ideas to continuous probability. In doing so, we will see that quantities such as mean and
variance that were previously defined by sums will now becomedefinite integrals. Here
again, we will see the concepts of integral calculus in the context of practical examples and
applications.

We begin by extending the idea of a discrete random variable to the continuous case.
We callx a continuous random variable ina ≤ x ≤ b if x can take on any value in this
interval. An example of a random variable is the height of a person, say an adult male,
selected randomly from a population. (This height typically takes on values in the range
0.5 ≤ x ≤ 3 meters, say, soa = 0.5 andb = 3.)

If we select a male subject at random from a large population,and measure his height,
we might expect to get a result in the proximity of 1.7-1.8 meters most often - thus, such
heights will be associated with a larger value of probability than heights in some other
interval of equal length, e.g. heights in the range2.7 < x < 2.8 meters, say. Unlike
the case of discrete probability, however, the measured height can take on any real number
within the interval of interest. This leads us to redefine ouridea of a continuous probability,
using a continuous function in place of the discrete bar-graph seen in Chapter 7.

8.2 Basic definitions and properties
Here we extend previous definitions from Chapter 7 to the caseof continuous probability.
One of the most important differences is that we now considera probabilitydensity, rather
than a value of the probability per se29. First and foremost, we observe that nowp(x)
will no longer be a probability, but rather “ a probabilityper unitx”. This idea is analo-

29This leap from discrete values that are the probability of anoutcome (as seen in Chapter 7) to a probability
density is challenging for many students. Reinforcing the analogy with discrete masses versus distributed mass
density (discussed in Chapter 5) may be helpful.
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gous to the connection between the mass of discrete beads anda continuous mass density,
encountered previously in Chapter 5.

Definition

A functionp(x) is a probability density provided it satisfies the followingproperties:

1. p(x) ≥ 0 for all x.

2.
∫ b

a
p(x) dx = 1 where the possible range of values ofx is a ≤ x ≤ b.

The probability that a random variablex takes on values in the intervala1 ≤ x ≤ a2

is defined as

∫ a2

a1

p(x) dx.

The transition to probability density means that the quantity p(x) does not carry the same
meaning as our previous notation for probability of an outcomexi, namelyp(xi) in the
discrete case. In fact,p(x)dx, or its approximationp(x)∆x is now associated with the
probability of an outcome whose values is “close tox”.

Unlike our previous discrete probability, we will not ask “what is the probability that
x takes on some exact value?” Rather, we ask for the probability that x is within some
range of values, and this is computed by performing an integral30.

Having generalized the idea of probability, we will now find that many of the asso-
ciated concepts have a natural and straight-forward generalization as well. We first define
the cumulative function, and then show how the mean, median,and variance of a contin-
uous probability density can be computed. Here we will have the opportunity to practice
integration skills, as integrals replace the sums in such calculations.

Definition

For experiments whose outcome takes on values on some interval a ≤ x ≤ b, we define a
cumulative function,F (x), as follows:

F (x) =

∫ x

a

p(s) ds.

ThenF (x) represents the probability that the random variable takes on a value in the range
(a, x) 31. The cumulative function is simply the area under the probability density (between
the left endpoint of the interval,a, and the pointx).

The above definition has several implications:

30Remark: the probability thatx is exactly equal tob is the integral

∫ b

b

p(x) dx. But this integral has a value

zero, by properties of the definite integral.
31By now, the reader should be comfortable with the use of “s” as the “dummy variable” in this formula, where

x plays the role of right endpoint of the interval of integration.
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Properties of continuous probability

1. Sincep(x) ≥ 0, the cumulative function is anincreasingfunction.

2. The connection between the probability density and its cumulative function can be
written (using the Fundamental Theorem of Calculus) as

p(x) = F ′(x).

3. F (a) = 0. This follows from the fact that

F (a) =

∫ a

a

p(s) ds.

By a property of the definite integral, this is zero.

4. F (b) = 1. This follows from the fact that

F (b) =

∫ b

a

p(s) ds = 1

by Property 2 of the definition of the probability density,p(x).

5. The probability thatx takes on a value in the intervala1 ≤ x ≤ a2 is the same as

F (a2) − F (a1).

This follows from the additive property of integrals and theFundamental Theorem
of Calculus:
∫ a2

a

p(s) ds −
∫ a1

a

p(s) ds =

∫ a2

a1

p(s) ds =

∫ a2

a1

F ′(s) ds = F (a2) − F (a1)

Finding the normalization constant

Not every real-valued function can represent a probabilitydensity. For one thing, the func-
tion must be positive everywhere. Further, the total area under its graph should be 1, by
Property 2 of a probability density. Given an arbitrary positive function,f(x) ≥ 0, on
some intervala ≤ x ≤ b such that

∫ b

a

f(x)dx = A > 0,

we can always define a corresponding probability density,p(x) as

p(x) =
1

A
f(x), a ≤ x ≤ b.

It is easy to check thatp(x) ≥ 0 and that
∫ b

a p(x)dx = 1. Thus we have converted the
original function to a probability density. This process iscallednormalization, and the
constantC = 1/A is called the normalization constant32.

32The reader should recognize that we have essentially rescaled the original function by dividing it by the “area”
A. This is really what normalization is all about.
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8.2.1 Example: probability density and the cumulative
function

Consider the functionf(x) = sin (πx/6) for 0 ≤ x ≤ 6.

(a) Normalize the function so that it describes a probability density.

(b) Find the cumulative distribution function,F (x).

Solution

The function is positive in the interval0 ≤ x ≤ 6, so we can define the desired probability
density. Let

p(x) = C sin
(π

6
x
)

.

(a) We must find the normalization constant,C, such that Property 2 of continuous prob-
ability is satisfied, i.e. such that

1 =

∫ 6

0

p(x) dx.

Carrying out this computation leads to

∫ 6

0

C sin
(π

6
x
)

dx = C
6

π

(

− cos
(π

6
x
))
∣
∣
∣
∣

6

0

= C
6

π
(1 − cos(π)) = C

12

π

(We have used the fact thatcos(0) = 1 in a step here.) But by Property 2, forp(x)
to be a probability density, it must be true thatC(12/π) = 1. Solving forC leads to
the desired normalization constant,

C =
π

12
.

Note that this calculation is identical to finding the area

A =

∫ 6

0

sin
(π

6
x
)

dx,

and setting the normalization constant toC = 1/A.

Once we rescale our function by this constant, we get the probability density,

p(x) =
π

12
sin
(π

6
x
)

.

This density has the property that the total area under its graph over the interval
0 ≤ x ≤ 6 is 1. A graph of this probability density function is shown asthe black
curve in Figure 8.1.
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(b) We now compute the cumulative function,

F (x) =

∫ x

0

p(s) ds =
π

12

∫ x

0

sin
(π

6
s
)

ds

Carrying out the calculation33 leads to

F (x) =
π

12
· 6

π

(

− cos
(π

6
s
))
∣
∣
∣
∣

x

0

=
1

2

(

1 − cos
(π

6
x
))

.

This cumulative function is shown as a red curve in Figure 8.1.

p(x)

F(x)

0.0 6.0

0.0

1.0

Figure 8.1. The probability densityp(x) (black), and the cumulative function
F (x) (red) for Example 8.2.1. Note that the area under the black curve is 1 (by normal-
ization), and thus the value ofF (x), which is the cumulative area function is 1 at the right
endpoint of the interval.

8.3 Mean and median
When we are given a distribution, we often want to describe itwith simpler numerical
values that characterize its “center”: the mean and the median both give this type of in-
formation. We also want to describe whether the distribution is narrow or fat - i.e. how
clustered it is about its “center”. The variance and higher moments will provide that type
of information.

Recall that in Chapter 5 for mass densityρ(x), we defined acenter of mass,

x̄ =

∫ b

a
xρ(x) dx

∫ b

a ρ(x) dx
. (8.1)

33Notice that the integration involved in findingF (x) is the same as the one done to find the normalization
constant. The only difference is the ultimate step of evaluating the integral at the variable endpointx rather than
the fixed endpointb = 6.
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The mean of a probability density is defined similarly, but the definition simplifies by virtue
of the fact that

∫ b

a
p(x) dx = 1. Since probability distributions are normalized, the denom-

inator in Eqn. (8.1) is simply 1.Consequently, themeanof a probability density is given as
follows:

Definition

For a random variable ina ≤ x ≤ b and a probability densityp(x) defined on this interval,
themeanor averagevalue ofx (also called theexpected value), denoted̄x is given by

x̄ =

∫ b

a

xp(x) dx.

To avoid confusion note the distinction between the mean as an average value ofx versus
the average value of the functionp over the given interval. Reviewing Example 5.3.3 may
help to dispel such confusion.

The idea of median encountered previously in grade distributions also has a parallel
here. Simply put, the median is the value ofx that splits the probability distribution into
two portions whose areas are identical.

Definition

Themedianxmed of a probability distribution is a value ofx in the intervala ≤ xmed ≤ b
such that

∫ xmed

a

p(x) dx =

∫ b

xmed

p(x) dx =
1

2
.

It follows from this definition that the median is the value ofx for which the cumulative
function satisfies

F (xmed) =
1

2
.

8.3.1 Example: Mean and median

Find the mean and the median of the probability density foundin Example 8.2.1.

Solution

To find themeanwe compute

x̄ =
π

12

∫ 6

0

x sin
(π

6
x
)

dx.
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Integration by parts is required here34. Let u = x, dv = sin
(

π
6 x
)

dx.
Thendu = dx, v = − 6

π cos
(

π
6 x
)
. The calculation is then as follows:

x̄ =
π

12

(

−x
6

π
cos
(π

6
x
)
∣
∣
∣
∣

6

0

+
6

π

∫ 6

0

cos
(π

6
x
)

dx

)

=
1

2

(

−x cos
(π

6
x
)
∣
∣
∣
∣

6

0

+
6

π
sin
(π

6
x
)
∣
∣
∣
∣

6

0

)

=
1

2

(

−6 cos(π) +
6

π
sin(π) − 6

π
sin(0)

)

=
6

2
= 3. (8.2)

(We have usedcos(π) = −1, sin(0) = sin(π) = 0 in the above.)
To find themedian, xmed, we look for the value ofx for which

F (xmed) =
1

2
.

Using the form of the cumulative function from Example 8.2.1, we find that

F(x)

0.5

x med0.0 6.0

0.0

1.0

Figure 8.2. The cumulative functionF (x) (red) for Example 8.2.1 in relation
to the median, as computed in Example 8.3.1. The median is the value ofx at which
F (x) = 0.5, as shown in green.

∫ xmed

0

sin
(π

6
s
)

ds =
1

2
⇒ 1

2

(

1 − cos
(π

6
xmed

))

=
1

2
.

34Recall from Chapter 6 that
∫

udv = vu −

∫
vdu. Calculations of the mean in continuous probability often

involve Integration by Parts (IBP), since the integrand consists of an expressionxp(x)dx. The idea of IBP is
to reduce the integration to something involving onlyp(x)dx, which is done essentially by “differentiating” the
termu = x, as we show here.
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Here we must solve for the unknown value ofxmed.

1 − cos
(π

6
xmed

)

= 1, ⇒ cos
(π

6
xmed

)

= 0.

The angles whose cosine is zero are±π/2,±3π/2 etc. We select the angle so that the
resulting value ofxmed will be inside the relevant interval (0 ≤ x ≤ 6 for this example),
i.e. π/2. This leads to

π

6
xmed =

π

2

so the median is
xmed = 3.

In other words, we have found that the pointxmed subdivides the interval0 ≤ x ≤ 6 into
two subintervals whose probability is the same. The relationship of the median and the
cumulative functionF (x) is illustrated in Fig 8.2.

Remark

A glance at the original probability distribution should convince us that it is symmetric
about the valuex = 3. Thus we should have anticipated that the mean and median of this
distribution would both occur at the same place, i.e. at the midpoint of the interval. This
will be true in general for symmetric probability distributions, just as it was for symmetric
mass or grade distributions.

8.3.2 How is the mean different from the median?

p(x) p(x)

x x

Figure 8.3. In a symmetric probability distribution (left) the mean andmedian are
the same. If the distribution is changed slightly so that it is no longer symmetric (as shown
on the right) then the median may still be the same, which the mean will have shifted to the
new “center of mass” of the probability density.

We have seen in Example 8.3.1 that for symmetric distributions, the mean and the
median are the same. Is this always the case? When are the two different, and how can we
understand the distinction?

Recall that themeanis closely associated with the idea of a center of mass, a concept
from physics that describes the location of a pivot point at which the entire “mass” would
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exactly balance. It is worth remembering that

mean of p(x) = expected value of x = average value of x.

This concept is not to be confused with the average valueof a function, which is an average
value of they coordinate, i.e., the average height of the function on the given interval.

Themediansimply indicates a place at which the “total mass” is subdivided into two
equal portions. (In the case of probability density, each ofthose portions represents an
equal area,A1 = A2 = 1/2 since the total area under the graph is 1 by definition.)

Figure 8.3 shows how the two concepts ofmedian(indicated by vertical line) and
mean(indicated by triangular “pivot point”) differ. At the left, for a symmetric probability
density, the mean and the median coincide, just as they did inExample 8.3.1. To the right,
a small portion of the distribution was moved off to the far right. This change did not affect
the location of the median, since the total areas to the rightand to the left of the vertical
line are still equal. However, the fact that part of the mass is farther away to the right leads
to a shift in the mean of the distribution, to compensate for the change.

Simply put, the mean contains more information about the waythat the distribution
is arranged spatially. This stems from the fact that the meanof the distribution is a “sum” -
i.e. integral - of terms of the formxp(x)∆x. Thus the location along thex axis,x, not just
the “mass”,p(x)∆x, affects the contribution of parts of the distribution to the value of the
mean.

8.3.3 Example: a nonsymmetric distribution

We slightly modify the function used in Example 8.2.1 to the new expression

f(x) = x sin (πx/6) for 0 ≤ x ≤ 6.

This results in a nonsymmetric probability density, shown in black in Figure 8.4. Steps in
obtainingp(x) would be similar35, but we have to carry out an integration by parts to find
the normalization constant and/or to calculate the cumulative function,F (x). Further, to
compute the mean of the distribution we have to integrate by parts twice.

Alternatively, we can carry out all such computations (approximately) using the
spreadsheet, as shown in Figure 8.4. We can plotf(x) using sufficiently fine increments
∆x along the x axis and compute the approximation for its integral by adding up the quanti-
tiesf(x)∆x. The area under the curveA, and hence the normalization constant (C = 1/A)
will be thereby determined (at the point corresponding to the end of the interval,x = 6).
It is then an easy matter to replot the revised functionf(x)/A, which corresponds to the
normalized probability density. This is the curve shown in black in Figure 8.4. In the prob-
lem sets, we leave as an exercise for the reader how to determine the median and the mean
using the same spreadsheet tool for a related (simpler) example.

8.4 Applications of continuous probability
In the next few sections, we explore applications of the ideas developed in this chapter
to a variety of problems. We treat the decay of radioactive atoms, consider distribution of

35This is good practice, and the reader is encouraged to do thiscalculation.
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F(x)

0.5

xmed

p(x)

0.0 6.0

0.0

1.0

Figure 8.4. As in Figures 8.1 and 8.2, but for the probability densityp(x) =
(π/36)x sin(πx/6). This function is not symmetric, so the mean and median are not the
same. From this figure, we see that the median is approximately xmed = 3.6. We do not
show the mean (which is close but not identical). We can compute both the mean and the
median for this distribution using numerical integration with the spreadsheet. We find that
the mean is̄x = 3.5679. Note that the “most probable value”, i.e. the point at whichp(x)
is maximal is atx = 3.9, which is again different from both the mean and the median.

heights in a population, and explore how the distribution ofradii is related to the distribution
of volumes in raindrop drop sizes. The interpretation of theprobability density and the
cumulative function, as well as the means and medians in these cases will form the main
focus of our discussion.

8.4.1 Radioactive decay

Radioactive decay is a probabilistic phenomenon: an atom spontaneously emits a particle
and changes into a new form. We cannot predict exactly when a given atom will undergo
this event, but we can study a large collection of atoms and draw some interesting conclu-
sions.

We can define a probability density function that representsthe probability per unit
time that an atom would decay at timet. It turns out that a good candidate for such a
function is

p(t) = Ce−kt,

wherek is a constant that represents the rate of decay (in units of 1/time) of the specific
radioactive material. In principle, this function is defined over the interval0 ≤ t ≤ ∞;
that is, it is possible that we would have to wait a “very long time” to haveall of the atoms
decay. This means that these integrals have to be evaluated “at infinity”, leading to an
improper integral . Using this probability density for atom decay, we can characterize the
mean and median decay time for the material.
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Normalization

We first find the constant of normalization, i.e. find the constantC such that
∫

∞

0

p(t) dt =

∫
∞

0

Ce−kt dt = 1.

Recall that an integral of this sort, in which one of the endpoints is at infinity is called an
improper integral36. Some care is needed in understanding how to handle such integrals,
and in particular when they “exist” (in the sense of producing a finite value, despite the
infinitely long domain of integration). We will delay full discussion to Chapter 10, and
state here the definition:

I =

∫
∞

0

Ce−kt dt ≡ lim
T→∞

IT where IT =

∫ T

0

Ce−kt dt.

The idea is to compute an integral over a finite interval0 ≤ t ≤ T and then take a limit as
the upper endpoint,T goes to infinity (T → ∞). We compute:

IT = C

∫ T

0

e−kt dt = C

[
e−kt

−k

] ∣
∣
∣
∣

T

0

=
1

k
C(1 − e−kT ).

Now we take the limit:

I = lim
T→∞

IT = lim
T→∞

1

k
C(1 − e−kT ) =

1

k
C(1 − lim

T→∞

e−kT ). (8.3)

To compute this limit, recall that fork > 0, T > 0, the exponential term in Eqn. 8.3 decays
to zero asT increases, so that

lim
T→∞

e−kT = 0.

Thus, the second term in braces in the integralI in Eqn. 8.3 will vanish asT → ∞ so that
the value of the improper integral will be

I = lim
T→∞

IT =
1

k
C.

To find the constant of normalizationC we require thatI = 1, i.e.
1

k
C = 1, which means

that
C = k.

Thus the (normalized) probability density for the decay is

p(t) = ke−kt.

This means that the fraction of atoms that decay between timet1 andt2 is

k

∫ t2

t1

e−kt dt.

36We have already encountered such integrals in Sections 3.8.5 and 4.5. See also, Chapter 10 for a more detailed
discussion of improper integrals.
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Cumulative decays

The fraction of the atoms that decay between time 0 and timet (i.e. “any time up to time
t” or “by time t - note subtle wording”37) is

F (t) =

∫ t

0

p(s) ds = k

∫ t

0

e−ks ds.

We can simplify this expression by integrating:

F (t) = k

[
e−ks

−k

] ∣
∣
∣
∣

t

0

= −
[
e−kt − e0

]
= 1 − e−kt.

Thus, the probability of the atoms decaying by timet (which means anytime up to timet)
is

F (t) = 1 − e−kt.

We note thatF (0) = 0 andF (∞) = 1, as expected for the cumulative function.

Median decay time

As before, to determine the median decay time,tm (the time at which half of the atoms
have decayed), we setF (tm) = 1/2. Then

1

2
= F (tm) = 1 − e−ktm ,

so we get

e−ktm =
1

2
, ⇒ ektm = 2, ⇒ ktm = ln 2, ⇒ tm =

ln 2

k
.

Thus half of the atoms have decayed by this time. (Remark: this is easily recognized as the
half life of the radioactive process from previous familiarity with exponentially decaying
functions.)

Mean decay time

The mean time of decaȳt is given by

t̄ =

∫
∞

0

tp(t) dt.

We compute this integral again as an improper integral by taking a limit as the top endpoint
increases to infinity, i.e. we first find

IT =

∫ T

0

tp(t) dt,

37Note that the precise English wording is subtle, but very important here. “By timet” means that the event
could have happened at any time right up to timet.
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and then set

t̄ = lim
T→∞

IT .

To computeIT we use integration by parts:

IT =

∫ T

0

tke−kt dt = k

∫ T

0

te−kt dt.

Let u = t, dv = e−kt dt. Thendu = dt, v = e−kt/(−k), so that

IT = k

[

t
e−kt

(−k)
−
∫

e−kt

(−k)
dt

] ∣
∣
∣
∣

T

0

=

[

−te−kt +

∫

e−kt dt

] ∣
∣
∣
∣

T

0

=

[

−te−kt − e−kt

k

] ∣
∣
∣
∣

T

0

=

[

−Te−kT − e−kT

k
+

1

k

]

Now asT → ∞, we havee−kT → 0 so that

t̄ = lim
T→∞

IT =
1

k
.

Thus the mean or expected decay time is

t̄ =
1

k
.

8.4.2 Discrete versus continuous probability

In Chapter 5.3, we compared the treatment of two types of massdistributions. We first
explored a set of discrete masses strung along a “thin wire”.Later, we considered a single
“bar” with a continuous distribution of density along its length. In the first case, there was
an unambiguous meaning to the concept of “mass at a point”. Inthe second case, we could
assign a mass to somesectionof the bar between, sayx = a andx = b. (To do so we had
to integrate the mass density on the intervala ≤ x ≤ b.) In the first case, we talked about
the mass of the objects, whereas in the latter case, we were interested in the idea of density
(mass per unit distance: Note that the units of mass density are not the same as the units of
mass.)

As we have seen so far in this chapter, the same dichotomy exists in the topic of
probability. In Chapter 7, we were concerned with the probability of discrete events whose
outcome belongs to some finite set of possibilities (e.g. Head or Tail for a coin toss, allele
A or a in genetics).

The example below provides some further insight to the connection between contin-
uous and discrete probability. In particular, we will see that one can arrive at the idea of
probability density by refining a set of measurements and making the appropriate scaling.
We explore this connection in more detail below.
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8.4.3 Example: Student heights

Suppose we measure the heights of all UBC students. This would produce about 30,000
data values38. We could make a graph and show how these heights are distributed. For
example, we could subdivide the student body into those students between 0 and 1.5m, and
those between 1.5 and 3 meters. Our bar graph would contain two bars, with the number
of students in each height category represented by the heights of the bars, as shown in
Figure 8.5(a).

h

p(h)

∆ h

h

p(h) p(h)

h

∆ h

Figure 8.5. Refining a histogram by increasing the number of bins leads (eventu-
ally) to the idea of a continuous probability density.

Suppose we want to record this distribution in more detail. We could divide the
population into smaller groups by shrinking the size of the interval or “bin” into which
height is subdivided. (An example is shown in Figure 8.5(b)). Here, by a “bin” we mean a
little interval of width∆h whereh is height, i.e. a height interval. For example, we could
keep track of the heights in increments of 50 cm. If we were to plot thenumberof students
in each height category, then as the size of the bins gets smaller, so would the height of the
bar: there would be fewer students in each category if we increase the number of categories.

To keep the bar height from shrinking, we might reorganize the data slightly. Instead
of plotting thenumberof students in each bin, we might plot

number of students in the bin
∆h

.

If we do this, then both numerator and denominator decrease as the size of the bins is made
smaller, so that the shape of the distribution is preserved (i.e. it does not get flatter).

We observe that in this case, the number of students in a givenheight category is
represented by thearea of the barcorresponding to that category:

Area of bin= ∆h

(
number of students in the bin

∆h

)

= number of students in the bin.

The important point to consider is that the height of each barin the plot represents the
number of students per unit height.

38I am grateful to David Austin for developing this example.
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This type of plot is precisely what leads us to the idea of a density distribution. As
∆h shrinks, we get a continuous graph. If we “normalize”, i.e. divide by the total area
under the graph, we get a probability density,p(h) for the height of the population. As
noted,p(h) represents the fraction of students per unit height39 whose height ish. It is thus
a density, and has the appropriate units. In this case,p(h) ∆h represents the fraction of
individuals whose height is in the rangeh ≤ height≤ h + ∆h.

8.4.4 Example: Age dependent mortality

In this example, we consider an age distribution and interpret the meanings of the proba-
bility density and of the cumulative function. Understanding the connection between the
verbal description and the symbols we use to represent theseconcepts requires practice and
experience. Related problems are presented in the homework.

Letp(a) be a probability density for the probability of mortality ofa female Canadian
non-smoker at agea, where0 ≤ a ≤ 120. (We have chosen an upper endpoint of age
120 since practically no Canadian female lives past this ageat present.) LetF (a) be the
cumulative distribution corresponding to this probability density. We would like to answer
the following questions:

(a) What is the probability of dying by agea?

(b) What is the probability of surviving to agea?

(c) Suppose that we are told thatF (75) = 0.8 and thatF (80) differs fromF (75) by
0.11. Interpret this information in plain English. What is the probability of surviving
to age 80? Which is larger,F (75) or F (80)?

(d) Use the information in part (c) to estimate the probability of dying between the ages
of 75 and 80 years old. Further, estimatep(80) from this information.

Solution

(a) The probability of dyingby agea is the same as the probability of dyingany time
up to agea. Restated, this is the probability that the age of death is inthe interval
0 ≤ age of death≤ a. The appropriate quantity is the cumulative function, for this
probability density

F (a) =

∫ a

0

p(x) dx.

Remark: note that, as customary,x is playing the role of a “dummy variable”. We
are integrating over all ages between 0 anda, so we do not want to confuse the
notation for variable of integration,x and endpoint of the intervala. Hence the
symbolx rather thana inside the integral.

39Note in particular the units ofh−1 attached to this probability density, and contrast this with a discrete
probability that is a pure number carrying no such units.



168 Chapter 8. Continuous probability distributions

(b) The probability of surviving to agea is the same as the probability ofnot dying
before agea. By the elementary properties of probability discussed in the previous
chapter, this is

1 − F (a).

(c) F (75) = 0.8 means that the probability of dying some time up to age 75 is 0.8.
(This also means that the probability of surviving past thisage would be 1-0.8=0.2.)
From the properties of probability, we know that the cumulative distribution is an
increasingfunction, and thus it must be true thatF (80) > F (75). ThenF (80) =
F (75) + 0.11 = 0.8 + 0.11 = 0.91. Thus the probability of surviving to age 80
is 1-0.91=0.09. This means that 9% of the population will make it to their 80’th
birthday.

(d) The probability of dying between the ages of 75 and 80 years old is exactly
∫ 80

75

p(x) dx.

However, we can also state this in terms of the cumulative function, since
∫ 80

75

p(x) dx =

∫ 80

0

p(x) dx −
∫ 75

0

p(x) dx = F (80) − F (75) = 0.11

Thus the probability of death between the ages of 75 and 80 is 0.11.

To estimatep(80), we use the connection between the probability density and the
cumulative distribution40:

p(x) = F ′(x). (8.4)

Then it is approximately true that

p(x) ≈ F (x + ∆x) − F (x)

∆x
. (8.5)

(Recall the definition of the derivative, and note that we areapproximating the deriva-
tive by the slope of a secant line.) Here we have information at ages 75 and 80, so
∆x = 80 − 75 = 5, and the approximation is rather crude, leading to

p(80) ≈ F (80) − F (75)

5
=

0.11

5
= 0.022 per year.

Several important points merit attention in the above example. First, information contained
in the cumulative function is useful. Differences in valuesof F betweenx = a andx = b
are, after all, equivalent to an integral of the function

∫ b

a p(x)dx, and are the probability
of a result in the given interval,a ≤ x ≤ b. Second,p(x) is the derivative ofF (x). In
the expression (8.5), we approximated that derivative by a small finite difference. Here we
see at play many of the themes that have appeared in studying calculus: the connection be-
tween derivatives and integrals, the Fundamental Theorem of Calculus, and the relationship
between tangent and secant lines.

40In Eqn. (8.4) there is no longer confusion between a variableof integration and an endpoint, so we could
revert to the notationp(a) = F ′(a), helping us to identify the independent variable as age. However, we have
avoided doing so simply so that the formula in Eqn. (8.5) would be very recognizable as an approximation for a
derivative.
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8.4.5 Example: Raindrop size distribution

In this example, we find a rather non-intuitive result, linking the distribution of raindrops
of various radii with the distribution of their volumes. This reinforces the caution needed
in interpreting and handling probabilities.

During a Vancouver rainstorm, the distribution of raindropradii is uniform for radii
0 ≤ r ≤ 4 (wherer is measured in mm) and zero for largerr. By auniform distribution
we mean a function that has a constant value in the given interval. Thus, we are saying that
the distribution looks likef(r) = C for 0 ≤ r ≤ 4.

(a) Determine what is the probability density for raindrop radii, p(r)? Interpret the
meaning of that function.

(b) What is the associated cumulative functionF (r) for this probability density? Inter-
pret the meaning of that function.

(c) In terms of the volume, what is the cumulative distributionF (V )?

(d) In terms of the volume, what is the probability densityp(V )?

(e) What is the average volume of a raindrop?

Solution

This problem is challenging because one may be tempted to think that the uniform distribu-
tion of drop radii should give a uniform distribution of dropvolumes. This is not the case,
as the following argument shows! The sequence of steps is illustrated in Figure 8.6.

V

F(r)
p(r)

F(V)

r r

V

4 4

(a) (b)

(c) (d)p(V)

Figure 8.6. Probability densities for raindrop radius and raindrop volume (left
panels) and for the cumulative distributions (right) of each for Example 8.4.5.
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(a) The probability density function isp(r) = 1/4 for 0 ≤ r ≤ 4. This means that
the probabilityper unit radiusof finding a drop of sizer is the same for all radii in
0 ≤ r ≤ 4, as shown in Fig. 8.6(a). Some of these drops will correspondto small
volumes, and others to very large volumes. We will see that the probabilityper unit
volumeof finding a drop of given volume will be quite different.

(b) The cumulative function is

F (r) =

∫ r

0

1

4
ds =

r

4
, 0 ≤ r ≤ 4. (8.6)

A sketch of this function is shown in Fig. 8.6(b).

(c) The cumulative functionF (r) is proportional to the radius of the drop. We use the
connection between radii and volume of spheres to rewrite that function in terms of
the volume of the drop: Since

V =
4

3
πr3 (8.7)

we have

r =

(
3

4π

)1/3

V 1/3.

Substituting this expression into the formula (8.6), we get

F (V ) =
1

4

(
3

4π

)1/3

V 1/3.

We find the range of values ofV by substitutingr = 0, 4 into Eqn. (8.7) to get
V = 0, 4

3π43. Therefore the interval is0 ≤ V ≤ 4
3π43 or 0 ≤ V ≤ (256/3)π. The

functionF (V ) is sketched in panel (d) of Fig. 8.6.

(d) We now use the connection between the probability density and the cumulative distri-
bution, namely thatp is the derivative ofF . Now that the variable has been converted
to volume, that derivative is a little more “interesting”:

p(V ) = F ′(V )

Therefore,

p(V ) =
1

4

(
3

4π

)1/3
1

3
V −2/3.

Thus the probabilityper unit volumeof finding a drop of volumeV in 0 ≤ V ≤ 4
3π43

is not at all uniform. This probability density is shown in Fig. 8.6(c) This results
from the fact that the differential quantitydr behaves very differently fromdV , and
reinforces the fact that we are dealing with density, not with a probability per se. We
note that this distribution has smaller values at larger values ofV .
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(e) The range of values ofV is

0 ≤ V ≤ 256π

3
,

and therefore the mean volume is

V̄ =

∫ 256π/3

0

V p(V )dV =
1

12

(
3

4π

)1/3 ∫ 256π/3

0

V · V −2/3dV

=
1

12

(
3

4π

)1/3 ∫ 256π/3

0

V 1/3dV =
1

12

(
3

4π

)1/3
3

4
V 4/3

∣
∣
∣
∣

256π/3

0

=
1

16

(
3

4π

)1/3(
256π

3

)4/3

=
64π

3
≈ 67mm3.

8.5 Moments of a probability density
We are now familiar with some of the properties of probability distributions. On this page
we will introduce a set of numbers that describe various properties of such distributions.
Some of these have already been encountered in our previous discussion, but now we will
see that these fit into a pattern of quantities calledmomentsof the distribution.

8.5.1 Definition of moments

Let f(x) be any function which is defined and positive on an interval[a, b]. We might refer
to the function as a distribution, whether or not we considerit to be a probability density.
Then we will define the followingmomentsof this function:

zero’th momentM0 =

∫ b

a

f(x) dx

first momentM1 =

∫ b

a

x f(x) dx

second momentM2 =

∫ b

a

x2 f(x) dx

...

n’th moment Mn =

∫ b

a

xn f(x) dx.

Observe that moments of any order are defined by integrating the distributionf(x)
with a suitable power ofx over the interval[a, b]. However, in practice we will see that
usually moments up to the second are usefully employed to describe common attributes of
a distribution.
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8.5.2 Relationship of moments to mean and variance of a
probability density

In the particular case that the distribution is a probability density,p(x), defined on the
intervala ≤ x ≤ b, we have already established the following :

M0 =

∫ b

a

p(x) dx = 1.

(This follows from the basic property of a probability density.) ThusThe zero’th moment
of any probability density is 1. Further

M1 =

∫ b

a

x p(x) dx = x̄ = µ.

That is,The first moment of a probability density is the same as the mean (i.e. expected
value) of that probability density. So far, we have used the symbolx̄ to represent the mean
or average value ofx but often the symbolµ is also used to denote the mean.

The second moment, of a probability density also has a usefulinterpretation. From
above definitions, the second moment ofp(x) over the intervala ≤ x ≤ b is

M2 =

∫ b

a

x2 p(x) dx.

We will shortly see that the second moment helps describe theway that density is dis-
tributed about the mean. For this purpose, we must describe the notion ofvarianceor
standard deviation.

Variance and standard deviation

Two children of approximately the same size can balance on a teeter-totter by sitting very
close to the point at which the beam pivots. They can also achieve a balance by sitting at the
very ends of the beam, equally far away. In both cases, the center of mass of the distribution
is at the same place: precisely at the pivot point. However, the mass is distributed very
differently in these two cases. In the first case, the mass is clustered close to the center,
whereas in the second, it is distributed further away. We maywant to be able to describe
this distinction, and we could do so by considering higher moments of the mass distribution.

Similarly, if we want to describe how a probability density distribution is distributed
about its mean, we consider moments higher than the first. We use the idea of thevariance
to describe whether the distribution is clustered close to its mean, or spread out over a great
distance from the mean.

Variance

The variance is defined as the average value of the quantity(distance from mean)2,
where the average is taken over the whole distribution. (Thereason for the square is that
we would not like values to the left and right of the mean to cancel out.) Fordiscrete
probability with mean,µ we define variance by
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V =
∑

(xi − µ)2pi.

For acontinuous probability density, with meanµ, we define the variance by

V =

∫ b

a

(x − µ)2 p(x) dx.

The standard deviation

The standard deviationis defined as

σ =
√

V .

Let us see what this implies about the connection between thevariance and the moments
of the distribution.

Relationship of variance to second moment

From the equation for variance we calculate that

V =

∫ b

a

(x − µ)2 p(x) dx =

∫ b

a

(x2 − 2µx + µ2) p(x) dx.

Expanding the integral leads to:

V =

∫ b

a

x2 p(x)dx −
∫ b

a

2µx p(x) dx +

∫ b

a

µ2 p(x) dx

=

∫ b

a

x2 p(x)dx − 2µ

∫ b

a

x p(x) dx + µ2

∫ b

a

p(x) dx.

We recognize the integrals in the above expression, since they are simply moments of the
probability distribution. Using the definitions, we arriveat

V = M2 − 2µ µ + µ2.

Thus

V = M2 − µ2.

Observe that the variance is related to the second moment,M2 and to the mean,µ of the
distribution.
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Relationship of variance to second moment

Using the above definitions, the standard deviation,σ can be expressed as

σ =
√

V =
√

M2 − µ2.

8.5.3 Example: computing moments

Consider a probability density such thatp(x) = C is constant for values ofx in the interval
[a, b] and zero for values outside this interval41. The area under the graph of this function
for a ≤ x ≤ b is A = C · (b − a) ≡ 1 (enforced by the usual property of a probability
density), so it is easy to see that the value of the constantC should beC = 1/(b−a). Thus

p(x) =
1

b − a
, a ≤ x ≤ b.

We compute some of the moments of this probability density

M0 =

∫ b

a

p(x)dx =
1

b − a

∫ b

a

1 dx = 1.

(This was already known, since we have determined that the zeroth moment of any proba-
bility density is 1.) We also find that

M1 =

∫ b

a

x p(x) dx =
1

b − a

∫ b

a

x dx =
1

b − a

x2

2

∣
∣
∣
∣

b

a

=
b2 − a2

2(b − a)
.

This last expression can be simplified by factoring, leadingto

µ = M1 =
(b − a)(b + a)

2(b − a)
=

b + a

2
.

The value(b+a)/2 is a midpoint of the interval[a, b]. Thus we have found that the meanµ
is in the center of the interval, as expected for a symmetric distribution. The median would
be at the same place by a simple symmetry argument: half the area is to the left and half
the area is to the right of this point.

To find the variance we calculate the second moment,

M2 =

∫ b

a

x2 p(x) dx =
1

b − a

∫ b

a

x2 dx =

(
1

b − a

)
x3

3

∣
∣
∣
∣

b

a

=
b3 − a3

3(b − a)
.

Factoring simplifies this to

M2 =
(b − a)(b2 + ab + a2)

3(b − a)
=

b2 + ab + a2

3
.

41As noted before, this is a uniform distribution. It has the shape of a rectangular band of heightC and base
(b − a).
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The variance is then

V = M2 − µ2 =
b2 + ab + a2

3
− (b + a)2

4
=

b2 − 2ab + a2

12
=

(b − a)2

12
.

The standard deviation is

σ =
(b − a)

2
√

3
.

8.6 Summary
In this chapter, we extended the discrete probability encountered in Chapter 7 to the case of
continuous probability density. We learned that this function is a probability per unit value
(of the variable of interest), so that

∫ b

a

p(x)dx = probability that x takes a value in the interval(a, b).

We also defined and studied the cumulative function

F (x) =

∫ x

a

p(s)ds = probability of a value in the interval(a, x).

We noted that by the Fundamental Theorem of Calculus,F (x) is an antiderivative ofp(x)
(or synonymously,p′(x) = F (x).)

The mean and median are two descriptors for some features of probability densities.
For p(x) defined on an intervala ≤ x ≤ b and zero outside, the mean, (x̄, or sometimes
calledµ) is

x̄ =

∫ b

a

xp(x)dx

whereas the median,xmed is the value for which

F (xmed) =
1

2
.

Both mean and median correspond to the “center” of a symmetric distribution. If the dis-
tribution is non-symmetric, a long tail in one direction will shift the mean toward that
direction more strongly than the median. The variance of a probability density is

V =

∫ b

a

(x − µ)2 p(x) dx,

and the standard deviation is
σ =

√
V .

This quantity describes the “width” of the distribution, i.e. how spread out (largeσ) or
clumped (smallσ) it is.

We defined the n’th moment of a probability density as

Mn =

∫ b

a

xnp(x)dx,
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and showed that the first few moments are related to mean and variance of the probability.
Most of these concepts are directly linked to the analogous ideas in discrete probability,
but in this chapter, we used integration in place of summation, to deal with the continuous,
rather than the discrete case.



Chapter 9

Differential Equations

9.1 Introduction
A differential equation is a relationship between some (unknown) function and one of its
derivatives. Examples of differential equations were encountered in an earlier calculus
course in the context of population growth, temperature of acooling object, and speed of a
moving object subjected to friction. In Section 4.2.4, we reviewed an example of a differ-
ential equation for velocity, (4.8), and discussed its solution, but here, we present a more
systematic approach to solving such equations using a technique calledseparation of vari-
ables. In this chapter, we apply the tools of integration to findingsolutions to differential
equations. The importance and wide applicability of this topic cannot be overstated.

In this course, since we are concerned only with functions that depend on a single
variable, we discussordinary differential equations (ODE’s), whereas later, after a mul-
tivariate calculus course where partial derivatives are introduced, a wider class, ofpartial
differential equations (PDE’s) can be studied. Such equations are encountered in many ar-
eas of science, and in any quantitative analysis of systems where rates of change are linked
to the state of the system. Most laws of physics are of this form; for example, applying
the familiar Newton’s law,F = ma, links the position of a pendulum’s mass to its accel-
eration (second derivative of position).42 Many biological processes are also described by
differential equations. The rate of growth of a populationdN/dt depends on the size of
that population at the given timeN(t).

Constructing the differential equation that adequately represents a system of interest
is an art that takes some thought and experience. In this process, which we call “modeling”,
many simplifications are made so that the essential properties of a given system are cap-
tured, leaving out many complicating details. For example,friction might be neglected in
“modeling” a perfect pendulum. The details of age distribution might be neglected in mod-
eling a growing population. Now that we have techniques for integration, we can devise a
new approach to computing solutions of differential equations.

Given a differential equation and a starting value, the goalis to make a prediction

42Newton’s law states that force is proportional to acceleration. For a pendulum, the force is due to gravity, and
the acceleration is a second derivative of the x or y coordinate of the bob on the pendulum.

177
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about the future behaviour of the system. This is equivalentto identifying the function that
satisfies the given differential equation and initial value(s). We refer to such a function as
the solution to the initial value problem (IVP). In differential calculus, our exploration
of differential equations was limited to those whose solution could be guessed, or whose
solution was supplied in advance. We also explored some of the fascinating geometric and
qualitative properties of such equations and their predictions.

Now that we have techniques of integration, we can find the analytic solution to a
variety of simple first-order differential equations (i.e.those involving the first derivative
of the unknown function). We will describe the technique ofseparation of variables. This
technique works for examples that are simple enough that we can isolate the dependent
variable (e.g.y) on one side of the equation, and the independent variable (e.g. timet) on
the other side.

9.2 Unlimited population growth
We start with a simple example that was treated thoroughly inthe differential calculus
semester of this course. We consider a population with per capita birth and mortality rates
that are constant, irrespective of age, disease, environmental changes, or other effects. We
ask how a population in such ideal circumstances would change over time. We build up
a simple model (i.e. a differential equation) to describe this ideal case, and then proceed
to find its solution. Solving the differential equation is accomplished by a new technique
introduced here, namely separation of variables. This reduces the problem to integration
and algebraic manipulation, allowing us to compute the population size at any timet. By
going through this process, we essentially convert information about the rate of change and
starting level of the population to a detailed prediction ofthe population at later times.43

9.2.1 A simple model for population growth

Let y(t) represent the size of a population at timet. We will assume that at timet = 0, the
population level is specified, i.e.y(0) = y0 is some given constant. We want to find the
population at later times, given information about birth and mortality rates, (both of which
are here assumed to be constant over time).

The population changes through births and mortality. Suppose thatb > 0 is the per
capita average birth rate, andm > 0 the per capita average mortality rate. The assumption
that b, m are both constants is a simplification that neglects many biological effects, but
will be used for simplicity in this first example.

The statement that the population increases through birthsand decreases due to mor-
tality, can be restated as

rate of change ofy = rate of births− rate of mortality

where the rate of births is given by the product of the per capita average birth rateb and the
population sizey. Similarly, the rate of mortality is given bymy. Translating the rate of

43Of course, we must keep in mind that such predictions are based on simplifying assumptions, and are to be
taken as an approximation of any real population growth.
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change into the corresponding derivative ofy leads to

dy

dt
= by − my = (b − m)y.

Let us define the new constant,
k = b − m.

Thenk is thenet per capita growth rateof the population. We can distinguish two possible
cases:b > m means that there are more births then deaths, so we expect thepopulation
to grow. b < m means that there are more deaths than births, so that the population will
eventually go extinct. There is also a marginal case thatb = m, for whichk = 0, where the
population does not change at all. To summarize, this simplemodel of unlimited growth
leads to the differential equation and initial condition:

dy

dt
= ky, y(0) = y0. (9.1)

Recall that a differential equation together with an initial condition is called an initial value
problem. To find a solution to such a problem, we look for the functiony(t) that describes
the population size at any future timet, given its initial size at timet = 0.

9.2.2 Separation of variables and integration

We here introduce the technique,separation of variables, that will be used in all the
examples described in this chapter. Since the differentialequation (9.1) is relatively simple,
this first example will be relatively straightforward. We would like to determiney(t) given
the differential equation

dy

dt
= ky.

Rather than integrating this equation as is44, we use an alternate approach, consid-
eringdt anddy as “differentials” in the sense defined in Section 6.1. We rearrange and
rewrite the above equation in the form

1

y
dy = k dt, (9.2)

This step of putting expressions involving the independentvariablet on one side and ex-
pressions involving the dependent variabley on the opposite side gives rise to the name
“separation of variables”.

Now, the LHS of Eqn. (9.2) depends only on the variabley, and the RHS only ont.
The constantk will not interfere with any integration step. Moreover, integrating each side
of Eqn. (9.2) can be carried out independently.

To determine the appropriate intervals for integration, weobserve that when time
sweeps over some interval0 ≤ t ≤ T (from initial to final time), the value ofy(t) will

44We may be tempted to integrate both sides of this equation with respect to the independent variablet, e.g.
writing

∫
dy

dt
dt =

∫
ky dt + C, (whereC is some constant), but this is not very useful, since the integral on

the right hand side (RHS) can only be carried out if we know thefunction y = y(t), which we are trying to
determine.
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change over a corresponding intervaly0 ≤ y ≤ y(T ). Herey0 is the given starting value
of y (prescribed by the initial condition in (9.1)). We do not yetknowy(T ), but our goal
is to find that value, i.e to predict the future behaviour ofy. Integrating leads to

∫ y(T )

y0

1

y
dy =

∫ T

0

k dt = k

∫ T

0

dt,

ln |y|
∣
∣
∣
∣

y(T )

y0

= kt

∣
∣
∣
∣

T

0

,

ln |y(T )| − ln |y(0)| = k(T − 0),

ln

∣
∣
∣
∣

y(T )

y0

∣
∣
∣
∣
= kT,

y(T )

y0
= ekT ,

y(T ) = y0e
kT .

But this result holds for any arbitrary final time,T . In other words, since this is true for any
time we chose, we can setT = t, arriving at the desired solution

y(t) = y0e
kt. (9.3)

The above formula relates the predicted value ofy at any timet to its initial value, and to
all the parameters of the problem. Observe that plugging int = 0, we gety(0) = y0e

kt =
y0e

0 = y0, so that the solution (9.3) satisfies the initial condition.We leave as an exercise
for the reader45 to validate that the function in(9.3) also satisfies the differential equation in
(9.1).

By solving the initial value problem (9.1), we have determined that, under ideal con-
ditions, when the net per capita growth ratet is constant, a population will grow expo-
nentially with time. Recall that this validates results that we had encountered in our first
calculus course.

9.3 Terminal velocity and steady states
Here we revisit the equation for velocity of a falling objectthat we first encountered in Sec-
tion 4.2.4. We wish to derive the appropriate differential equation governing that velocity,
and find the solutionv(t) as a function of time. We will first reconsider the simplest case of
uniformly accelerated motion (i.e. where friction is neglected), as in Section 4.2.3. We then
include friction, as in Section 4.2.4 and use the new technique of separation of variables to
shortcut the method of solution.

45This kind of check is good practice and helps to spot errors. Simply differentiate Eqn. (9.3) and show that the
result is the same ask times the original function, as required by the equation (9.1).
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9.3.1 Ignoring friction: the uniformly accelerated case

Let v(t) anda(t) be the velocity and the acceleration, respectively of an object falling
under the force of gravity at timet. We take the positive direction to be downwards, for
convenience. Suppose that at timet = 0, the object starts from rest, i.e. the initial velocity
of the object is known to bev(0) = 0. When friction is neglected, the object will accelerate,

a(t) = g,

which is equivalent to the statement that the velocity increases at a constant rate,

dv

dt
= g. (9.4)

Becauseg is constant,we do not need to use separation of variables, i.e. we can integrate
each side of this equation directly46. Writing

∫
dv

dt
dt =

∫

g dt + C = g

∫

dt + C,

whereC is an integration constant, we arrive at

v(t) = gt + C. (9.5)

Here we have used (on the LHS) thatv is the antiderivative ofdv/dt. (equivalently, we can
simplify the integral

∫
dv
dt dt =

∫
dv = v). Plugging inv(0) = 0 into Eqn. (9.5) leads to

0 = g · 0 + C = C, so the constant we need isC = 0 and the velocity satisfies

v(t) = gt.

We have just arrived at a result that parallels Eqn. (4.4) of Section 4.2.3 (in slightly different
notation).

9.3.2 Including friction: the case of terminal velocity

When a falling object experiences the force of friction, it cannot accelerate indefinitely. In
fact, a frictional force retards the downwards motion. To a good approximation, that force
is proportional to the velocity.

A force balance for the falling object leads to

ma(t) = mg − γv(t),

whereγ is the frictional coefficient. For an object of constant mass, we can divide through
by m, so

a(t) = g − γ

m
v(t).

46It is important to note the distinction between this simple example and other cases where separation of vari-
ables is required. It would not bewrong to use separation of variables to find the solution for Eqn. (9.4), but it
would just be “overkill”, since simple integration of the each side of the equation “as is” does the job.
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Let k = γ/m. Then, the velocity at any time satisfies the differential equation and initial
condition

dv

dt
= g − kv, v(0) = 0. (9.6)

We can find the solution to this differential equation and predict the velocity at any timet
using separation of variables.

terminal velocity

time t

velocity v

0.0 10.0

0.0

20.0

Figure 9.1.The velocityv(t) as a function of time given by Eqn. (9.7) as found in
Section 9.3.2. Note that as time increases, the velocity approaches some constant terminal
velocity. The parameters used wereg = 9.8 m/s2 andk = 0.5.

Consider a time interval0 ≤ t ≤ T , and suppose that, during this time interval, the
velocity changes from an initial value ofv(0) = 0 to the final value,v(T ) at the final time,
T . Then using separation of variables and integration, we get

dv

dt
= g − kv,

dv

g − kv
= dt,

∫ v(T )

0

dv

g − kv
=

∫ T

0

dt.
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Substituteu = g − kv for the integral on the left hand side. Thendu = −kdv, dv =
(−1/k)du, so we get an integral of the form

−1

k

∫
1

u
du = −1

k
ln |u|.

After replacingu by g − kv, we arrive at

−1

k
ln |g − kv|

∣
∣
∣
∣

v(T )

0

= t

∣
∣
∣
∣

T

0

.

We use the fact thatv(0) = 0 to write this as

−1

k
(ln |g − kv(T )| − ln |g|) = T,

−1

k

(

ln

∣
∣
∣
∣

g − kv(T )

g

∣
∣
∣
∣

)

= T,

ln

∣
∣
∣
∣

g − kv(T )

g

∣
∣
∣
∣
= −kT.

We are finished with the integration step, but the function weare trying to find,v(T )
is still tangled up inside an expression involving the natural logarithm. Extricating it will
involve some subtle reasoning about signs because there is an absolute value to contend
with. As a first step, we exponentiate both sides to remove thelogarithm.

∣
∣
∣
∣

g − kv(T )

g

∣
∣
∣
∣
= e−kT ⇒ |g − kv(T )| = ge−kT .

Because the constantg is positive, we could remove absolute values signs from it. To
simplify further, we have to consider the sign of the term inside the absolute value in the
numerator. In the case we are considering here,v(0) = 0. This will mean that the quantity
g − kv(T ) is always be non-negative (i.e.g − kv(T ) ≥ 0). We will verify this fact shortly.
For the moment, supposing this is true, we can write

|g − kv(T )| = g − kv(T ) = ge−kT ,

and finally solve forv(T ) to obtain our final result,

v(T ) =
g

k
(1 − e−kT ).

Here we note thatv(T ) can never be larger thang/k since the term(1 − e−kT ) is always
≤ 1. Hence, we were correct in assuming thatg − kv(T ) ≥ 0.

As before, the above formula relating velocity to time holdsfor any choice of the
final timeT , so we can write, in general,

v(t) =
g

k
(1 − e−kt). (9.7)
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This is the solution to the initial value problem (9.6). It predicts the velocity of the
falling object through time. Note that we have arrived once more at the result obtained
in Eqn. (4.11), but using the technique of separation of variables47.

We graph the expression given in (9.7) in Figure 9.1. Note that ast increases, the
terme−kt decreases rapidly, so that the velocity approaches a constant whose value is

v(t) → g

k
.

We call this theterminal velocity48.

9.3.3 Steady state

We might observe that the terminal velocity can also be foundquite simply and directly
from thedifferential equation itself: it is thesteady stateof the differential equation, i.e.
the value for which no further change takes place. The steadystate can be found by setting
the derivative in the differential equation, to zero, i.e. by letting

dv

dt
= 0.

When this is done, we arrive at

g − kv = 0 ⇒ v =
g

k
.

Thus, at steady state, the velocity of the falling object is indeed the same as the terminal
velocity that we have just discovered.

9.4 Related problems and examples
The example discussed in Section 9.3.2 belongs to a class of problems that share many
common features. Generally, this class is represented by linear differential equations of the
form

dy

dt
= a − by, (9.8)

with given initial conditiony(0) = y0. Properties of this equation were studied in the
context of differential calculus in a previous semester. Now, with the same method as we
applied to the problem of terminal velocity, we can integrate this equation by separation of
variables, writing

dy

a − by
= dt

and proceeding as in the previous example. We arrive at its solution,

y(t) =
a

b
+
(

y0 −
a

b

)

e−bt. (9.9)

47It often happens that a differential equation can be solved using several different methods.
48A similar plot of the solution of the differential equation (9.6) could be assembled using Euler’s method, as

studied in differential calculus. That is the numerical method alternative to the analytic technique discussed in this
chapter. The student may wish to review results obtained in aprevious semester to appreciate the correspondence.
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The steps are left as an exercise for the reader.
We observe that the steady state of the above equation is obtained by setting

dy

dt
= a − by = 0, i.e. y =

a

b
.

Indeed the solution given in the formula (9.9) has the property that ast increases, the
exponential terme−bt → 0 so that the term in large brackets will vanish andy → a/b.
This means that from any initial value,y will approach its steady state level.

This equation has a number of important applications that arise in a variety of context.
A few of these are mentioned below.

9.4.1 Blood alcohol

Let y(t) be the level of alcohol in the blood of an individual during a party. Suppose that
the average rate of drinking is gradual and constant (i.e. small sips are continually taken,
so that the rate of input of alcohol is approximately constant). Further, assume that alcohol
is detoxified in the liver at a rate proportional to its blood level. Then an equation of the
form (9.8) would describe the blood level over the period of drinking. y(0) = 0 would
signify the absence of alcohol in the body at the beginning ofthe evening. The constanta
would reflect the rate of intake per unit volume of the individual’s blood: larger people take
longer to “get drunk” for a given amount consumed49. The constantb represents the rate of
decay of alcohol per unit time due to degradation by the liver, assumed constant50; young
healthy drinkers have a higher value ofb than those who can no longer metabolize alcohol
as efficiently.

The solution (9.9) has several features of note: it illustrates the fact that alcohol
would increase from the initial level, but only up to a maximum of a/b, where the intake
and degradation balance. Indeed, the levely = a/b represents a steady state level (as
long as drinking continues). Of course, this level could be toxic to the drinker, and the
assumptions of the model may break down in that region! In thephase of “recovery”,
after drinking stops, the above differential equation no longer describes the level of blood
alcohol. Instead, the process of recovery is represented by

dy

dt
= −by, y(0) = y0. (9.10)

The level of blood alcohol then decays exponentially with rate b from its level at the mo-
ment that drinking ends. We show this typical pattern in Figure 9.2.

9.4.2 Chemical kinetics

The same ideas apply to any chemical substance that is formedat a constant rate (or sup-
plied at a constant rate)a, and then breaks down with rate proportional to its concentration.
We then call the constantb the “decay rate constant”.

49Of course, we are here assuming a constant intake rate, as though the alcohol is being continually sipped
all evening at a uniform rate. Most people do not drink this way, instead quaffing a few large drinks over some
hour(s). It is possible to describe this, but we will not do soin this chapter.

50This is also a simplifying assumption, as the rate of metabolism can depend on other factors, such as food
intake.
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Figure 9.2.The level of alcohol in the blood is described by Eqn. (9.8) for the first
two hours of drinking. Att = 2h, the drinking stopped (soa = 0 from then on). The level
of alcohol in the blood then decays back to zero, following Eqn. (9.10).

The variabley(t) represents the concentration of chemical at timet, and the same
differential equation describes this chemical process. Asabove, given any initial level of
the substance,y(t) = y0, the level ofy will eventually approach the steady state,y = a/b.

9.5 Emptying a container
In this section we investigate a new problem in which the differential equation that de-
scribes a process will be derived from basic physical principles51. We will look at the flow
of fluid leaking out of a container, and use mass balance to derive a differential equation
model. When this is done, we will also use separation of variables to predict how long it
takes for the container to be emptied.

We will assume that the container has a small hole at its base.The rate of emptying
of the container will depend on the height of fluid in the container above the hole52. We
can derive a simple differential equation that describes the rate that the height of the fluid
changes using the following physical argument.

9.5.1 Conservation of mass

Suppose that the container is a cylinder, with a constant cross sectional areaA > 0, as
shown in Fig. 9.3. Suppose that the area of the hole isa. The rate that fluid leaves through
the hole must balance with the rate that fluid decreases in thecontainer. This principle is
calledmass balance. We will here assume that the density of water is constant, sothat we
can talk about the net changes in volume (rather than mass).

51This example is particularly instructive. First, it shows precisely how physical laws can be combined to
formulate a model, then it shows how the problem can be recastas a single ODE in one dependent variable.
Finally, it illustrates a slightly different integral.

52As we have assumed that the hole is ath = 0, we henceforth consider the height of the fluid surface,h(t) to
be the same as ”the height of fluid above the hole”.
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A
v   t∆

aa

h

Figure 9.3. We investigate the time it takes to empty a container full of fluid by
deriving a differential equation model and solving it usingthe methods developed in this
chapter.A is the cross-sectional area of the cylindrical tank,a is the cross-sectional area
of the hole through which fluid drains,v(t) is the velocity of the fluid, andh(t) is the time
dependent height of fluid remaining in the tank (indicated bythe dashed line). The volume
of fluid leaking out in a time span∆t is av∆t - see small cylindrical volume indicated on
the right.

We refer toV (t) as the volume of fluid in the container at timet. Note that for the
cylindrical container,V (t) = Ah(t) whereA is the cross-sectional area andh(t) is the
height of the fluid at timet. The rate of change ofV is

dV

dt
= −(rate volume lost as fluid flows out).

(The minus sign indicates that the volume is decreasing).
At every second, some amount of fluid leaves through the hole.Suppose we are

told that the velocity of the water molecules leaving the hole is preciselyv(t) in units of
cm/sec. (We will find out how to determine this velocity shortly.) Then in one second,
those particles have moved a distancev cm/sec· 1 sec= v cm. In fact, all the particles in
a little cylinder of lengthv behind these molecules have also left the hole. Indeed, if we
know the area of the hole, we can determine precisely what volume of water exits through
the hole each second, namely

rate volume lost as fluid flows out= va.

(The small inset in Fig. 9.3 shows a little “cylindrical unit” of fluid that flows out of the
hole per second. The area isa and the length of that little volume isv. Thus the volume
leaving per second isva.)

So far we have a relationship between the volume of fluid in thetank and the velocity
of the water exiting the hole:

dV

dt
= −av.

Now we need to determine the velocityv of the flow to complete the formulation of the
problem.
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9.5.2 Conservation of energy

The fluid “picks up speed” because it has “dropped” by a heighth from the top of the fluid
surface to the hole. In doing so, a small mass of water has simply exchanged some potential
energy (due to its relative height above the hole) for kinetic energy (expressed by how fast
it is moving). Potential energy of a small mass of water (m) at heighth will be mgh,
whereas when the water flows out of the hole, its kinetic energy is given by(1/2)mv2

wherev is velocity. Thus, for these to balance (so that total energyis conserved) we have

1

2
mv2 = mgh.

(Herev = v(t) is the instantaneous velocity of the fluid leaving the hole and h = h(t) is
the height of the water column.) This allows us to relate the velocity of the fluid leaving
the hole to the height of the water in the tank, i.e.

v2 = 2gh ⇒ v =
√

2gh. (9.11)

In fact, both the height of fluid and its exit velocity are constantly changing as the fluid
drains, so we might write[v(t)]2 = 2gh(t) or v(t) =

√

2gh(t). We have arrived at this
result using anenergy balanceargument.

9.5.3 Putting it together

We now combine the various pieces of information to arrive atthe model, a differential
equation for a single (unknown) function of time. There are three time-dependent variables
that were discussed above, the volumeV (t), the heighth(t), of the velocityv(t). It proves
convenient to express everything in terms of the height of water in the tank,h(t), though
this choice is to some extent arbitrary. Keeping units in an equation consistent is essential.
Checking for unit consistency can help to uncover errors in equations, including differential
equations.

Recall that the volume of the water in the tank,V (t) is related to the height of fluid
h(t) by

V (t) = Ah(t),

whereA > 0 is a constant, the cross-sectional area of the tank. We can simplify as follows:

dV

dt
=

d(Ah(t))

dt
= A

d(h(t))

dt
.

But by previous steps and Eqn. (9.11)

dV

dt
= −av = −a

√

2gh.

Thus

A
d(h(t))

dt
= −a

√

2gh,

or simply put,
dh

dt
= − a

A

√

2gh = −k
√

h. (9.12)
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wherek is a constant that depends on the size and shape of the cylinder and its hole:

k =
a

A

√

2g.

If the area of the hole is very small relative to the cross-sectional area of the tank, then
k will be very small, so that the tank will drain very slowly (i.e. the rate of change inh
per unit time will not be large). On a planet with a very high gravitational force, the same
tank will drain more quickly. A taller column of water drainsfaster. Once its height has
been reduced, its rate of draining also slows down. We comment that Equation (9.12) has
a minus sign, signifying that the height of the fluid decreases.

Using simple principles such as conservation of mass and conservation of energy,
we have shown that the heighth(t) of water in the tank at timet satisfies the differential
equation (9.12). Putting this together with the initial condition (height of fluidh0 at time
t = 0), we arrive at initial value problem to solve:

dh

dt
= −k

√
h, h(0) = h0. (9.13)

Clearly, this equation is valid only forh non-negative. We also remark that Eqn. (9.13) is
nonlinear53 as it involves the variableh in a nonlinear term,

√
h. Next, we use separation

of variables to find the height as a function of time.

9.5.4 Solution by separation of variables

The equation (9.13) shows how height of fluid is related to itsrate of change, but we are
interested in an explicit formula for fluid heighth versus timet. To obtain that relationship,
we must determine the solution to this differential equation. We do this using separation of
variables. (We will also use the initial conditionh(0) = h0 that accompanies Eqn. (9.13).)
As usual, rewrite the equation in the separated form,

dh√
h

= −kdt,

We integrate fromt = 0 to t = T , during which the height of fluid that started ash0

becomes some new heighth(T ) to be determined.

∫ h(T )

h0

1√
h

dh = −k

∫ T

0

dt.

Now integrate both sides and simplify:

h1/2

(1/2)

∣
∣
∣
∣

h(T )

h0

= −kT

2
(√

h(T )−
√

h0

)

= −kT

53In many cases, nonlinear differential equations are more challenging than linear ones. However, examples
chosen in this chapter are simple enough that we will not experience the true challenges of such nonlinearities.
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√

h(T ) = −k
T

2
+
√

h0

h(T ) =

(
√

h0 − k
T

2

)2

.

Since this is true for any timet, we can also write the form of the solution as

h(t) =

(
√

h0 − k
t

2

)2

. (9.14)

Eqn. (9.14) predicts fluid height remaining in the tank versus timet. In Fig. 9.4 we show
some of the “solution curves”54, i.e. functions of the form Eqn. (9.14) for a variety of initial
fluid height valuesh0. We can also use our results to predict the emptying time, as shown
in the next section.

h(t)

time t

<= initial height of fluid

emptying time
V

Emptying a fluid-filled container

0.0 20.0

0.0

10.0

Figure 9.4. Solution curves obtained by plotting Eqn. (9.14) for three different
initial heights of fluid in the container,h0 = 2.5, 5, 10. The parameterk = 0.4 in
each case. The “V” points to the time it takes the tank to emptystarting from a height of
h(t) = 10.

54As before, this figure was produced by plotting the analytic solution (9.14). A numerical method alternative
would use Euler’s Method and the spreadsheet to obtain the (approximate) solution directly from the initial value
problem (9.13).
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9.5.5 How long will it take the tank to empty?

The tank will be empty when the height of fluid is zero. Settingh(t) = 0 in Eqn. 9.14

(
√

h0 − k
t

2

)2

= 0.

Solving this equation for the emptying timete, we get

k
te
2

=
√

h0 ⇒ te =
2
√

h0

k
.

The time it takes to empty the tank depends on the initial height of water in the tank. Three
examples are shown in Figure 9.4 for initial heights ofh0 = 2.5, 5, 10. The emptying time
depends on the square-root of the initial height. This means, for instance, that doubling the
height of fluid initially in the tank only increases the time it takes by a factor of

√
2 ≈ 1.41.

Making the hole smaller has a more direct “proportional” effect, since we have found that
k = (a/A)

√
2g.

9.6 Density dependent growth
The simple model discussed in Section 9.2 for population growth has an unrealistic feature
of unlimited explosive exponential growth. To correct for this unrealistic feature, a common
assumption is that the rate of growth is “density dependent”. In this section, we consider
a revised differential equation that describes such growth, and use the new tools to analyze
its predictions. In place of our previous notation we will now useN to represent the size
of a population.

9.6.1 The logistic equation

The logistic equation is the simplest density dependent growth equation, and we study its
behaviour below.

Let N(t) be the size of a population at timet. Clearly, we expectN(t) ≥ 0 for all
time t, since a population cannot be negative. We will assume that the initial population is
known,N(0) = N0. The logistic differential equation states that the rate ofchange of the
population is given by

dN

dt
= rN

(
K − N

K

)

. (9.15)

Herer > 0 is called theintrinsic growth rate andK > 0 is called thecarrying capacity.
K reflects that size of the population that can be sustained by the given environment. We
can understand this equation as a modified growth law in whichthe “density dependent”
term,r(K − N)/K, replaces the previous constant net growth ratek.



192 Chapter 9. Differential Equations

9.6.2 Scaling the equation

The form of the equation can be simplified if we measure the population in units of the
carrying capacity, instead of “numbers of individuals”. i.e. if we define a new quantity

y(t) =
N(t)

K
.

This procedure is calledscaling. To see this, consider dividing each side of the logistic
equation (9.15) by the constantK. Then

1

K

dN

dt
=

r

K
N

(
K − N

K

)

.

We now group terms conveniently, forming

d(N
K )

dt
= r

(
N

K

)(

1 −
(

N

K

))

.

Replacing(N/K) by y in each case, we obtain the scaled equation and initial condition
given by

dy

dt
= ry(1 − y), y(0) = y0. (9.16)

Now the variabley(t) measures population size in “units” of the carrying capacity, and
y0 = N0/K is the scaled initial population level. Here again is an initial value problem,
like Eqn. (9.13), but unlike Eqn. (9.1), the logistic differential equation is nonlinear. That
is, the variabley appears in a nonlinear expression (in fact a quadratic) in the equation.

9.6.3 Separation of variables

Here we will solve Eqn. (9.16) by separation of variables. The idea is essentially the same
as our previous examples, but is somewhat more involved. To show an alternative method
of handling the integration, we will treat both sides as indefinite integrals. Separating the
variables leads to

1

y(1 − y)
dy = r dt

∫
1

y(1 − y)
dy =

∫

r dt + K.

The integral on the right will lead tort + K whereK is some constant of integration that
we need to incorporate since we do not have endpoints on our integrals. But we must work
harder to evaluate the integral on the left. We can do so by partial fractions, the technique
described in Section 6.6. Details are given in Section 9.6.4.

9.6.4 Application of partial fractions

Let

I =

∫
1

y(1 − y)
dy.
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Then for some constantsA, B we can write

I =

∫
A

y
+

B

1 − y
dy = A ln |y| − B ln |1 − y|.

(The minus sign in front ofB stems from the fact that lettingu = 1 − y would lead to
du = −dy.) We can findA, B from the fact that

A

y
+

B

1 − y
=

1

y(1 − y)
,

so that
A(1 − y) + By = 1.

This must be true for ally, and in particular, substituting iny = 0 andy = 1 leads to
A = 1, B = 1 so that

I = ln |y| − ln |1 − y| = ln

∣
∣
∣
∣

y

1 − y

∣
∣
∣
∣
.

9.6.5 The solution of the logistic equation

We now have to extract the quantityy from the equation
(

ln

∣
∣
∣
∣

y

1 − y

∣
∣
∣
∣

)

= rt + K.

That is, we wanty as a function oft. After exponentiating both sides we need to remove
the absolute value. We will now assume thaty is initially smaller than 1, and show that it
remains so. In that case, everything inside the absolute value is positive, and we can write

y(t)

(1 − y(t))
= ert+K = eKert = Cert.

In the above step, we have simply renamed the constant,eK by the new nameC for sim-
plicity. C > 0 is now also an arbitrary constant whose value will be determined from the
initial conditions. Indeed, if we substitutet = 0 into the most recent equation, we find that

y(0)

(1 − y(0))
= Ce0 = C,

so that
C =

y0

(1 − y0)
.

We will use this fact shortly. What remains now is some algebra to isolate the desired
functiony(t)

y(t) = (1 − y(t))Cert.

y(t)
(
1 + Cert

)
= Cert.
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y(t) =
Cert

(1 + Cert)
=

1

(1/C)e−rt + 1
.

The desired function is now expressed in terms of the timet, and the constantsr, C. We
can also express it in terms of the initial value ofy, i.e. y0, by using what we know to be
true about the constantC, i.e. C = y0/(1 − y0). When we do so, we arrive at

y(t) =
1

1+y0

y0
e−rt + 1

=
y0

(y0 + (1 − y0)e−rt)
. (9.17)

Some typical solution curves of the logistic equation are shown in Fig. 9.5.

y(t)

time t

Solutions to Logistic equation

0.0 30.0

0.0

1.0

Figure 9.5. Solution curves fory(t) in the scaled form of the logistic equation
based on (9.18). We show the predicted behaviour ofy(t) as given by Eqn. (9.17) for three
different initial conditions,y0 = 0.1, 0.25, 0.5. Note that all solutions approach the value
y = 1.

9.6.6 What this solution tells us

We have arrived at the function that describes the scaled population as a function of time
as predicted by the scaled logistic equation, (9.16). The level of population (in units of the
carrying capacityK) follows the time-dependent function

y(t) =
y0

(y0 + (1 − y0)e−rt)
. (9.18)
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We can convert this result to an equivalent expression for the unscaled total populationN(t)
by recalling thaty(t) = N(t)/K. Substituting this fory(t), and noting thaty0 = N0/K
leads to

N(t) =
N0

(N0 + (K − N0)e−rt)
. (9.19)

It is left as an exercise for the reader to check this claim.
Now recall thatr > 0. This means thate−rt is a decreasing function of time. There-

fore, (9.18) implies that, after a long time, the terme−rt in the denominator will be negli-
gibly small, and so

y(t) → y0

y0
= 1,

so thaty will approach the value 1. This means that

(N/K) → 1 or simply N(t) → K.

The population will thus settle into a constant level, i.e.,asteady state, at which no further
change will occur.

As an aside, we observe that this too, could have been predicted directly from the
differential equation. By settingdy/dt = 0, we find that

0 = ry(1 − y),

which suggests thaty = 1 is a steady state. (This is also true for the less interestingcase
of no population, i.e.y = 0 is also a steady state.) Similarly, this could have been found
by setting the derivative to zero in Eqn. (9.15), the original, unscaled logistic differential
equation. Doing so leads to

dN

dt
= 0 ⇒ rN

(
K − N

K

)

= 0.

If r > 0, the only values ofN satisfying this steady state equation areN = 0 or N =
K. This implies that eitherN = 0 or N = K are steady states. The former is not too
interesting. It states the obvious fact that if there is no population, then there can be no
population growth. The latter reflects thatN = K, the carrying capacity, is the population
size that will be sustained by the environment.

In summary, we have shown that the behaviour of the logistic equation for population
growth is more realistic than the simpler exponential growth we studied earlier. We saw
in Figure 9.5, that a small population will grow, but only up to some constant level (the
carrying capacity). Integration, and in particular the useof partial fractions allowed us to
make a full prediction of the behaviour of the population level as a function of time, given
by Eqn. (9.19).

9.7 Extensions and other population models: the
“Law of Mortality”

There are many variants of the logistic model that are used toinvestigate the growth or
mortality of a population. Here we extend tools to another example, the gradual decline of
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a group of individuals born at the same time. Such a group is called a “cohort”.55. In 1825,
Gompertz suggested that the rate of mortality,m would depend on the age of the individu-
als. Because we consider a group of people who were born at thesame time, we can trade
”age” for ”time”. Essentially, Gompertz assumed that mortality is not constant: it is low
at first, and increase as individuals age. Gompertz argued that mortality increases expo-
nentially. This turns out to be equivalent to the assumptionthat the logarithm of mortality
increases linearly with time.56 It is easy to see that these two statements are equivalent:
Suppose we assume that for some constantsA > 0, µ > 0,

ln(m(t)) = A + µt. (9.20)

Then Eqn. (9.20) means that

t

ln(   )m

A

slope µ

log mortality

age, 

Figure 9.6. In the Gompertz Law of Mortality, it is assumed that the log ofmor-
tality increases linearly with time, as depicted by Eqn. 9.20 and by the solid curve in this
diagram. Here the slope ofln(m) versus time (or age) isµ. For real populations, the
mortality looks more like the dashed curve.

m(t) = eA+µt = eAeµt

SinceA is constant, so iseA. For simplicity we define Let us definem0 = eA. (m0 = m(0)
is the so-called “birth mortality” i.e. value ofm at age 0.) Thus, the time-dependent
mortality is

m = m(t) = m0e
µt. (9.21)

9.7.1 Aging and Survival curves for a cohort:

We now study a population model having Gompertz mortality, together with the following
additional assumptions.

55This section was formulated with help from Lu Fan
56In actual fact, this is likely true for some range of ages. Infant mortality is generally higher than mortality

for young children, whereas mortality levels off or even decreases slightly for those oldest old who have survived
past the average lifespan.
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1. All individuals are assumed to be identical.

2. There is “natural” mortality, but no other type of removal. This means we ignore the
mortality caused by epidemics, by violence and by wars.

3. We consider a single cohort, and assume that no new individuals are introduced (e.g.
by immigration)57.

We will now study the size of a “cohort”, i.e. a group of peoplewho were born in the same
year. We will denote byN(t) the number of people in this group who are alive at timet,
wheret is time since birth, i.e. age. LetN(0) = N0 be the initial number of individuals in
the cohort.

9.7.2 Gompertz Model

All the people in the cohort were born at time (age)t = 0, and there wereN0 of them at
that time. That number changes with time due to mortality. Indeed,

The rate of change of cohort size= −[number of deaths per unit time]

= −[mortality rate] · [cohort size]

Translating to mathematical notation, we arrive at the differential equation

dN(t)

dt
= −m(t)N(t),

and using information about the size of the cohort at birth leads to the initial condition,
N(0) = N0. Together, this leads to the initial value problem

dN(t)

dt
= −m(t)N(t), N(0) = N0.

Note similarity to Eqn. (9.1), but now mortality is time-dependent.
In the Problem set, we apply separation of variables and integrate over the time in-

terval[0, T ]: to show that the remaining population at aget is

N(t) = N0e
−

m0
µ

(eµt
−1).

9.8 Summary
In this chapter, we used integration methods to find the analytical solutions to a variety of
differential equations where initial values were prescribed.

We investigated a number ofpopulation growth models:

1. Exponential growth, given bydy
dt = ky, with initial population levely(0) = y0

was investigated (Eqn. (9.1)). This model had an unrealistic feature that growth is
unlimited.

57Note that new births would contribute to other cohorts.
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2. The Logistic equationdN
dt = rN

(
K−N

K

)
was analyzed (Eqn. (9.15)), showing that

density-dependent growth can correct for the above unrealistic feature.

3. The Gompertz equation,dN(t)
dt = −m(t)N(t), was solved to understand how age-

dependent mortality affects a cohort of individuals.

In each of these cases, we used separation of variables to “integrate” the differential
equation, and predict the population as a function of time.

We also investigated several otherphysical modelsin this chapter, including the
velocity of a falling object subject to drag force. This led us to study a differential equation
of the form dy

dt = a − by. By slight reinterpretation of terms in this equation, we can use
results to understand chemical kinetics and blood alcohol levels, as well as a host of other
scientific applications.

Section 9.5, the “centerpiece” of this chapter, illustrated the detailed steps that go into
the formulation of a differential equation model for flow of liquid out of a container. Here
we saw how conservation statements and simplifying assumptions are interpreted together,
to arrive at a differential equation model. Such ideas occurin many scientific problems, in
chemistry, physics, and biology.



Chapter 10

Infinite series, improper
integrals, and Taylor
series

10.1 Introduction
This chapter has several important and challenging goals. The first of these is to under-
stand how concepts that were discussed for finite series and integrals can be meaningfully
extended to infinite series and improper integrals - i.e. integrals of functions over an infi-
nite domain. In this part of the discussion, we will find that the notion ofconvergenceand
divergencewill be important.

A second theme will be that of approximation of functions in terms of power series,
also calledTaylor series. Such series can be described informally as infinite polynomials
(i.e. polynomials containing infinitely many terms). Understanding when these objects are
meaningful is also related to the issue of convergence, so weuse the background assembled
in the first part of the chapter to address such concepts arising in the second part.

HOA

x

y

y=f(x)

x0

LA

Figure 10.1.The functiony = f(x) (solid heavy curve) is shown together with its
linear approximation (LA, dashed line) at the pointx0, and a better “higher order” approx-
imation (HOA, thin solid curve). Notice that this better approximation stays closer to the
graph of the function nearx0. In this chapter, we discuss how such better approximations
can be obtained.

The theme of approximation has appeared often in our calculus course. In a previous

199
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semester, we discussed alinear approximation to a function. The idea was to approximate
the value of the function close to a point on its graph using a straight line (the tangent line).
We noted in doing so that the approximation was good only close to the point of tangency.
Further away, the graph of the functions curves away from that straight line. This leads
naturally to the question: can we do better in making this approximation if we include
other terms to describe this “curving away”? Here we extend such linear approximation
methods. Our goal is to increase the accuracy of the linear approximation by including
higher order terms (quadratic, cubic, etc), i.e. to find a polynomial that approximates the
given function. This idea forms an important goal in this chapter.

We first review the idea of series introduced in Chapter 1.

10.2 Convergence and divergence of series
Recall the geometric series discussed in Section 1.6.

The sum of afinite geometric series,

Sn = 1 + r + r2 + . . . + rn =

n∑

k=0

rk, is Sn =
1 − rn+1

1 − r
. (10.1)

We also review definitions discussed in Section 1.7

Definition: Convergence of infinite series

An infinite series that has a finite sum is said to beconvergent. Otherwise it isdivergent.

Definition: Partial sums and convergence

Suppose thatS is an (infinite) series whose terms areak. Then thepartial sums, Sn, of
this series are

Sn =

n∑

k=0

ak.

We say that the sum of the infinite series isS, and write

S =

∞∑

k=0

ak, provided that S = lim
n→∞

Sn = lim
n→∞

n∑

k=0

ak.

That is, we consider the infinite series as the limit of partial sumsSn as the number of
termsn is increased. If this limit exists, we say that the infinite series converges58 to S.
This leads to the following conclusion:

58If the limit does not exist, we say that the series diverges.
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The sum of aninfinite geometric series,

S = 1 + r + r2 + . . . + rk + . . . =
∞∑

k=0

rk =
1

1 − r
, provided|r| < 1. (10.2)

If this inequality is not satisfied, then we say that this sum does not exist (meaning that it is
not finite).

It is important to remember that an infinite series, i.e. a sumwith infinitely many
terms added up, can exhibit either one of these two very different behaviours. It may
converge in some cases, as the first example shows, ordiverge (fail to converge) in other
cases. We will see examples of each of these trends again. It is essential to be able to
distinguish the two. Divergent series (or series that diverge under certain conditions) must
be handled with particular care, for otherwise, we may find contradictions or “seemingly
reasonable” calculations that have meaningless results.

We can think of convergence or divergence of series using a geometric analogy. If we
start on the number line at the origin and take a sequence of steps{a0, a1, a2, . . . , ak, . . .},
we can think ofS =

∑
∞

k=0 ak as the total distance we have travelled.S converges if that
distance remains finite and if we approach some fixed number.

"divergence"

"convergence"

Figure 10.2. An informal schematic illustrating the concept of convergence and
divergence of infinite series. Here we show only a few terms ofthe infinite series: from
left to right, each step is a term in the series. In the top example, the sum of the steps gets
closer and closer to some (finite) value. In the bottom example, the steps lead to an ever
increasing total sum.

In order for the sum of ‘infinitely many things’ to add up to a finite number, the
terms have to get smaller. But just getting smaller is not, initself, enough to guarantee
convergence. (We will show this later on by considering the harmonic series.) There are
rigorous mathematical tests which help determine whether aseries converges or not. We
discuss some of these tests in Appendix 11.9.
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10.3 Improper integrals
We will see that there is a close connection between certain infinite series and improper
integrals, i.e. integrals over an infinite domain. We have already encountered an example of
an improper integral in Section 3.8.5 and in the context of radioactive decay in Section 8.4.
Recall the following definition:

Definition

An improper integral is an integral performed over an infinite domain, e.g.
∫

∞

a

f(x) dx.

The value of such an integral is understood to be a limit, as given in the following definition:

∫
∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

i.e. we evaluate an improper integral by first computing a definite integral over a finite
domaina ≤ x ≤ b, and then taking a limit as the endpointb moves off to larger and larger
values. The definite integral can be interpreted as an area under the graph of the function.
The essential question being addressed here is whether thatarea remains bounded when we
include the “infinite tail” of the function (i.e. as the endpoint b moves to larger values.) For
some functions (whose values get small enough fast enough) the answer is “yes”.

Definition

When the limit shown above exists, we say that the improper integralconverges. Other
wise we say that the improper integraldiverges.

With this in mind, we compute a number of classic integrals:

10.3.1 Example: A decaying exponential: convergent
improper integral

Here we recall that the improper integral of a decaying exponential converges. (We have
seen this earlier, in Section 3.8.5, and again in applications in Sections 4.5 and 8.4.1. Here
we recap this important result in the context of our discussion of improper integrals.) Sup-
pose thatr > 0 and let

I =

∫
∞

0

e−rt dt ≡ lim
b→∞

∫ b

0

e−rt dt.

Then note thatb > 0 so that

I = lim
b→∞

−1

r
e−rt

∣
∣
∣
∣

b

0

= −1

r
lim

b→∞

(e−rb − e0) = −1

r
( lim
b→∞

e−rb

︸ ︷︷ ︸

0

−1) =
1

r
.
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We have used the fact thatlimb→∞ e−rb = 0 since (forr, b > 0) the exponential function
is decreasing with increasingb. Thusthe limit exists (is finite)and the integralconverges.
In fact it converges to the valueI = 1/r.

1
x

y

y= 1/x

y=1/x2

Figure 10.3. In Sections 10.3.2 and 10.3.3, we consider two functions whose
values decrease along thex axis,f(x) = 1/x andf(x) = 1/x2. We show that one, but not
the other encloses a finite (bounded) area over the interval(1,∞). To do so, we compute
an improper integral for each one. The heavy arrow is meant toremind us that we are
considering areas over an unbounded domain.

10.3.2 Example: The improper integral of 1/x diverges

We now consider a classic and counter-intuitive result, andone of the most important results
in this chapter. Consider the function

y = f(x) =
1

x
.

Examining the graph of this function for positivex, e.g. for the interval(1,∞), we know
that values decrease to zero asx increases59. The function is not only itself bounded, but
also falls to arbitrarily small values asx increases. Nevertheless, this isnot enoughto
guarantee that the enclosed area remains finite! We show thisin the following calculation.

I =

∫
∞

1

1

x
dx = lim

b→∞

∫ b

a

1

x
dx = lim

b→∞

ln(x)

∣
∣
∣
∣

b

1

= lim
b→∞

(ln(b) − ln(1))

I = lim
b→∞

ln(b) = ∞

The fact that we get an infinite value for this integral follows from the observation that
ln(b) increases without bound asb increases, that isthe limit does not exist (is not finite).
Thus the area under the curvef(x) = 1/x over the interval1 ≤ x ≤ ∞ is infinite. We say
that the improper integral of1/x diverges(or does not converge). We will use this result
again in Section 10.4.1.

59We do not chose the interval(0,∞) because this function is undefined atx = 0. We want here to emphasize
the behaviour at infinity, not the blow up that occurs close tox = 0.



204 Chapter 10. Infinite series, improper integrals, and Taylor series

10.3.3 Example: The improper integral of 1/x2 converges

Now consider the related function

y = f(x) =
1

x2
, and the corresponding integralI =

∫
∞

1

1

x2
dx

Then

I = lim
b→∞

∫ b

1

x−2 dx. = lim
b→∞

(−x−1)

∣
∣
∣
∣

b

1

= − lim
b→∞

(
1

b
− 1

)

= 1.

Thus,the limit exists, and, in fact,I = 1, so, in contrast to the Example 10.3.2, this integral
converges.

We observe that the behaviours of the improper integrals of the functions1/x and
1/x2 are very different. The former diverges, while the latter converges. The only differ-
ence between these functions is the power ofx. As shown in Figure 10.3, that power affects
how rapidly the graph “falls off” to zero asx increases. The function1/x2 decreases much
faster than1/x. (Consequently1/x2 has a sufficiently “slim” infinite “tail”, that the area
under its graph does not become infinite - not an easy concept to digest!) This observations
leads us to wonder what powerp is needed to make the improper integral of a function
1/xp converge. We answer this question below.

10.3.4 When does the integral of 1/xp converge?

Here we consider an arbitrary power,p, that can be any real number. We ask when the
corresponding improper integral converges or diverges. Let

I =

∫
∞

1

1

xp
dx.

For p = 1 we have already established that this integral diverges (Section 10.3.2), and for
p = 2 we have seen that it is convergent (Section 10.3.3). By a similar calculation, we find
that

I = lim
b→∞

x1−p

(1 − p)

∣
∣
∣
∣

b

1

= lim
b→∞

(
1

1 − p

)
(
b1−p − 1

)
.

Thus this integral converges provided that the termb1−p does not “blow up” asb increases.
For this to be true, we require that the exponent(1 − p) should be negative, i.e.1 − p < 0
or p > 1. In this case, we have

I =
1

p − 1
.

To summarize our result,

∫
∞

1

1

xp
dx converges ifp > 1, diverges ifp ≤ 1.



10.3. Improper integrals 205

Examples:
∫

1/xp that do or do not converge

1. The integral
∫

∞

1

1√
x

dx, diverges.

We see this from the following argument:
√

x = x
1
2 , sop = 1

2 < 1. Thus, by the
general result, this integral diverges.

2. The integral
∫

∞

1

x−1.01 dx, converges.

Herep = 1.01 > 1, so the result implies convergence of the integral.

10.3.5 Integral comparison tests

The integrals discussed above can be used to make comparisons that help us to identify
when other improper integrals converge or diverge60. The following important result estab-
lishes how these comparisons work:

Suppose we are given two functions,f(x) and g(x), both continuous on some infinite
interval [a,∞). Suppose, moreover, that, at all points on this interval, the first function is
smaller than the second, i.e.

0 ≤ f(x) ≤ g(x).

Then the following conclusionsa can be made:

1.
∫

∞

a

f(x) dx ≤
∫

∞

a

g(x) dx. (This means that the area underf(x) is smaller than

the area underg(x).)

2. If
∫

∞

a

g(x) dx converges, then
∫

∞

a

f(x) dx converges. (If the larger area is finite,

so is the smaller one)

3. If
∫

∞

a

f(x) dx diverges, then
∫

∞

a

g(x) dx diverges. (If the smaller area is infinite,

so is the larger one.)

aThese statements have to be carefully noted. What is assumedand what is concluded works “one way”. That
is the order “if..then” is important. Reversing that order leads to a common error.

60The reader should notice the similarity of these ideas to thecomparisons made for infinite series in the
Appendix 11.9.2. This similarity stems from the fact that there is a close connection between series and integrals,
a recurring theme in this course.
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Example: comparison of improper integrals

We can determine that the integral
∫

∞

1

x

1 + x3
dx converges

by noting that for allx > 0

0 ≤ x

1 + x3
≤ x

x3
=

1

x2
.

Thus ∫
∞

1

x

1 + x3
dx ≤

∫
∞

1

1

x2
dx.

Since the larger integral on the right is known to converge, so does the smaller integral on
the left.

10.4 Comparing integrals and series
The convergence of infinite series was discussed earlier, inSection 1.7 and here again in
Section 10.2. Many tests for convergence are provided in theAppendix 11.9, and will not
be discussed in detail due to time and space constraints. However, an interesting connection
exists between convergence of series and integrals. This isthe topic we examine here.

Convergence of series and convergence of integrals is related. We can use the con-
vergence/divergence of an integral/series to determine the behaviour of the other. Here we
give an example of this type by establishing a connection between the harmonic series and
a divergent improper integral.

10.4.1 The harmonic series

The harmonic series is a sum of terms of the form1/k wherek = 1, 2, . . .. At first ap-
pearance, this series might seem to have the desired qualities of a convergent series, simply
because the successive terms being added are getting smaller and smaller, but this appear-
ance is deceptive and actually wrong61.

The harmonic series

∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ . . . +

1

k
+ . . . diverges

We establish that the harmonic series diverges by comparingit to the improper integral of
the related function62.

y = f(x) =
1

x
.

61We have already noticed a similar surprise in connection with the improper integral of1/x. These two
“surprises” are closely related, as we show here using a comparison of the series and the integral.

62This function is “related” since for integer values ofx, the function takes on values that are the same as
successive terms in the series, i.e. ifx = k is an integer, thenf(x) = f(k) = 1/k
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The harmonic series

<====  the function  y=1/x

0.0 11.0

0.0

1.0

Figure 10.4.The harmonic series is a sum that corresponds to the area under the
staircase shown above. Note that we have purposely shown thestairs arranged so that they
are higher than the function. This is essential in drawing the conclusion that the sum of the
series is infinite: It islargerthan an area under1/x that we already know to be infinite, by
Section 10.3.2.

In Figure 10.4 we show on one graph a comparison of the area under this curve, and a
staircase area representing the first few terms in the harmonic series. For the area of the
staircase, we note that the width of each step is 1, and the heights form the sequence

{1,
1

2
,
1

3
,
1

4
, . . .}

Thus the area of (infinitely many) of these steps can be expressed as the (infinite) harmonic
series,

A = 1 · 1 + 1 · 1

2
+ 1 · 1

3
+ 1 · 1

4
+ . . . = 1 +

1

2
+

1

3
+

1

4
+ . . . =

∞∑

k=1

1

k
.

On the other hand, the area under the graph of the functiony = f(x) = 1/x for 0 ≤ x ≤ ∞
is given by the improper integral

∫
∞

1

1

x
dx.
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We have seen previously in Section 10.3.2 thatthis integral diverges!
From Figure 10.4 we see that the areas under the function,Af and under the staircase,

As, satisfy
0 < Af < As.

Thus, since the smaller of the two (the improper integral) isinfinite, so is the larger (the
sum of the harmonic series). We have established, using thiscomparison, that the the sum
of the harmonic series cannot be finite, so that this seriesdiverges.

Other comparisons: The “p” series

More generally, we can compare series of the form

∞∑

k=1

1

kp
to the integral

∫
∞

1

1

xp
dx

in precisely the same way. This leads to the conclusion that

The “p” series,
∞∑

k=1

1

kp
converges ifp > 1, diverges ifp ≤ 1.

For example, the series

∞∑

k=1

1

k2
= 1 +

1

4
+

1

9
+

1

16
+ . . .

converges, sincep = 2 > 1. Notice, however, that the comparison does not give us a value
to which the sum converges. It merely indicates that the series does converge.

10.5 From geometric series to Taylor polynomials
In studying calculus, we explored a variety of functions. Among the most basic are poly-
nomials, i.e. functions such as

p(x) = x5 + 2x2 + 3x + 2.

Our introduction to differential calculus started with such functions for a reason: these
functions are convenient and simple to handle. We found longago that it is easy to compute
derivatives of polynominals. The same can be said for integrals. One of our first examples,
in Section 3.6.1 was the integral of a polynomial. We needed only use a power rule to
integrate each term. An additional convenience of polynomials is that “evaluating” the
function, (i.e. plugging in anx value and determining the correspondingy value) can be
done by simple multiplications and additions, i.e. by basicoperations easily handled by
an ordinary calculator. This is not the case for, say, trigonometric functions, exponential
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functions, or for that matter, most other functions we considered63. For this reason, being
able toapproximatea function by a polynomial is an attractive proposition. This forms our
main concern in the sections that follow.

We can arrive at connections between several functions and their polynomial approx-
imations by exploiting our familiarity with thegeometric series. We use both the results
for convergence of the geometric series (from Section 10.2)and the formula for the sum of
that series to derive a number of interesting, (somewhat haphazard) results64.

Recall from Sections 1.7.1 and 10.2 thatthe sum of an infinite geometric series is

S = 1 + r + r2 + . . . + rk + . . . =

∞∑

k=0

rk =
1

1 − r
, provided |r| < 1. (10.3)

To connect this result to a statement about a function, we need a “variable”. Let us consider
the behaviour of this series when we vary the quantityr. To emphasize that nowr is our
variable, it will be helpful to change notation by substituting r = x into the above equation,
while remembering that the formula in Eqn (10.3) hold only provided|r| = |x| < 1.

10.5.1 Example 1: A simple expansion

Substitute the variablex = r into the series (10.3). Then formally, rewriting the above with
this substitution, leads to the conclusion that

1

1 − x
= 1 + x + x2 + . . . (10.4)

We can think of this result as follows: Let

f(x) =
1

1 − x
(10.5)

Then for everyx in −1 < x < 1, it is true thatf(x) can be approximated by terms in the
polynomial

p(x) = 1 + x + x2 + . . . (10.6)

In other words, by (10.3), for|x| < 1 the two expressions “are the same”, in the sense that
the polynomial converges to the value of the function. We refer to thisp(x) as an (infinite)
Taylor polynomial65 or simply aTaylor seriesfor the functionf(x). The usefulness of this
kind of result can be illustrated by a simple example.

Example 10.1 (Using the Taylor Series (10.6) to approximatethe function (10.5)) Compute
the value of the functionf(x) given by Eqn. (10.5) forx = 0.1 without using a calculator.

63For example, to find the decimal value ofsin(2.5) we would need a scientific calculator. These days the
distinction is blurred, since powerful hand-held calculators are ubiquitous. Before such devices were available,
the ease of evaluating polynomials made them even more important.

64We say “haphazard” here because we are not yet at the point of asystematic procedure for computing a
Taylor Series. That will be done in Section 10.6. Here we “take what we can get” using simple manipulations of
a geometric series.

65A Taylor polynomial contains finitely many terms,n, whereas a Taylor series hasn → ∞.
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Solution: Plugging in the valuex = 0.1 into the function directly leads to1/(1 − 0.1) =
1/0.9, whose evaluation with no calculator requires long division66. Using the polynomial
representation, we have a simpler method:

p(0.1) = 1 + 0.1 + 0.12 + . . . = 1 + 0.1 + 0.01 + . . . = 1.11 . . .

We provide a few other examples based on substitutions of various sorts using the geomet-
ric series as a starting point.

10.5.2 Example 2: Another substitution

We make the substitutionr = −t, then|r| < 1 means that| − t| = |t| < 1, so that the
formula (10.3) for the sum of a geometric series implies that:

1

1 − (−t)
= 1 + (−t) + (−t)2 + (−t)3 + . . .

1

1 + t
= 1 − t + t2 − t3 + t4 + . . . provided|t| < 1

This means we have produced a series expansion for the function 1/(1 + t). We can go
farther with this example by a new manipulation, whereby we integrate both sides to arrive
at a new function and its expansion, shown next.

10.5.3 Example 3: An expansion for the logarithm

We will use the results of Example 10.5.2, but we follow our substitution by integration.
On the left, we integrate the functionf(t) = 1/(1 + t) (to arrive at a logarithm type
integral) and on the right we integrate the power terms of theexpansion. We are permitted
to integrate the power series term by termprovided that the series converges. This is an
important restriction that we emphasize:Manipulation of infinite series by integration,
differentiation, addition, multiplication, or any other “term by term” computation makes
sense only so long as the original series converges.

Provided|t| < 1, we have that

∫ x

0

1

1 + t
dt =

∫ x

0

(1 − t + t2 − t3 + t4 − . . .) dt

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . .

This procedure has allowed us to find a series representationfor a new function,ln(1 + x).

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . . =

∞∑

k=1

(−1)k+1 xk

k
. (10.7)

66This example is slightly “trivial”, in the sense that evaluating the function itself is not very difficult. However,
in other cases, we will find that the polynomial expansion is theonly way to find the desired value.
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The formula appended on the right is just a compact notation that represents the pattern of
the terms. Recall that in Chapter 1, we have gotten thoroughly familiar with such summa-
tion notation67.

Example 10.2 (Evaluating the logarithm forx = 0.25) An expansion for the logarithm
is definitely useful, in the sense that (without a scientific calculator or log tables) it is not
possible to easily calculate the value of this function at a given point. For example, forx =
0.25, we cannot findln(1 + 0.25) = ln(1.25) using simple operations, whereas the value
of the first few terms of the series are computable by simple multiplication, division, and
addition (0.25− 0.252

2 + 0.253

3 ≈ 0.2239). (A scientific calculator givesln(1.25) ≈ 0.2231,
so the approximation produced by the series is relatively good.)

When is the series forln(1 + x) in (10.7) expected to converge? Retracing our steps
from the beginning of Example 10.5.2 we note that the value oft is not permitted to leave
the interval|t| < 1 so we need also|x| < 1 in the integration step68. We certainly cannot
expect the series forln(1 + x) to converge when|x| > 1. Indeed, forx = −1, we have
ln(1 + x) = ln(0) which is undefined. Also note that forx = −1 the right hand side of
(10.7) becomes

−
(

1 +
1

2
+

1

3
+

1

4
+ . . .

)

.

This is the recognizable harmonic series (multiplied by -1). But we already know from
Section 10.4.1 that the harmonic series diverges. Thus, we must avoidx = −1, since
the expansion will not converge there, and neither is the function defined.This example
illustrates that outside the interval of convergence, the series and the function become
“meaningless”.

Example 10.3 (An expansion forln(2)) Strictly speaking, our analysis does not predict
what happens if we substitutex = 1 into the expansion of the function found in Sec-
tion 10.5.3, because this value ofx is outside of the permitted range−1 < x < 1 in which
the Taylor series can be guaranteed to converge. It takes some deeper mathematics (Abel’s
theorem) to prove that the result of this substitution actually makes sense, and converges,
i.e. that

ln(2) = 1 − 1

2
+

1

3
− 1

4
+ . . .

We state without proof here that thealternating harmonic series converges toln(2).

10.5.4 Example 4: An expansion for arctan

Suppose we make the substitutionr = −t2 into the geometric series formula, and recall
that we need|r| < 1 for convergence. Then

1

1 − (−t2)
= 1 + (−t2) + (−t2)2 + (−t2)3 + . . .

67The summation notation is not crucial and should certainly not be memorized. We are usually interested only
in the first few terms of such a series in any approximation of practical value.

68Strictly speaking, we should have ensured that we are insidethis interval of convergence before we computed
the last example.
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1

1 + t2
= 1 − t2 + t4 − t6 + t8 + . . . =

∞∑

k=0

(−1)nt2n

This series will converge provided|t| < 1. Now integrate both sides, and recall that the
antiderivative of the function1/(1 + t2) is arctan(t). Then

∫ x

0

1

1 + t2
dt =

∫ x

0

(1 − t2 + t4 − t6 + t8 + . . .) dt

arctan(x) = x − x3

3
+

x5

5
− x7

7
+ . . . =

∞∑

k=1

(−1)k+1 x(2k−1)

(2k − 1)
. (10.8)

Example 10.4 (An expansion forπ) For a particular application of this expansion, con-
sider plugging inx = 1 into Equation (10.8). Then

arctan(1) = 1 − 1

3
+

1

5
− 1

7
+ . . .

But arctan(1) = π/4. Thus we have found a way of computing the irrational numberπ,
namely

π = 4

(

1 − 1

3
+

1

5
− 1

7
+ . . .

)

= 4

(
∞∑

k=1

(−1)k+1 1

(2k − 1)

)

.

While it is true that this series converges, the convergenceis slow. (This can be seen by
adding up the first 100 or 1000 terms of this series with a spreadsheet.) This means that it
is not practical to use such a series as an approximation forπ. (There are other series that
converge toπ very rapidly that are used in any practical application.)

10.6 Taylor Series: a systematic approach
In Section 10.5, we found a variety of Taylor series expansions directly from the formula
for a geometric series. Here we ask how such Taylor series canbe constructed more sys-
tematically, if we are given a function that we want to approximate69.

Suppose we have a function which we want to represent by a power series,

f(x) = a0 + a1x + a2x
2 + a3x

3 + . . . =
∞∑

k=0

akxk.

Here we will use the function to directly determine the coefficientsak. To determinea0,
let x = 0 and note that

f(0) = a0 + a10 + a20
2 + a30

3 + . . . = a0.

We conclude that
a0 = f(0).

69The development of this section was motivated by online notes by David Austin.
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By differentiating both sides we find the following:

f ′(x) = a1 + 2a2x + 3a3x
2 + . . . + kakxk−1 + . . .

f ′′(x) = 2a2 + 2 · 3a3x + . . . + (k − 1)kakxk−2 + . . .

f ′′′(x) = 2 · 3a3 + . . . + (k − 2)(k − 1)kakxk−3 + . . .

f (k)(x) = 1 · 2 · 3 · 4 . . . kak + . . .

Here we have used the notationf (k)(x) to denote thek’th derivative of the function. Now
evaluate each of the above derivatives atx = 0. Then

f ′(0) = a1, ⇒ a1 = f ′(0)

f ′′(0) = 2a2, ⇒ a2 = f ′′(0)
2

f ′′′(0) = 2 · 3a3, ⇒ a3 = f ′′′(0)
2·3

f (k)(0) = k!ak, ⇒ ak = f(k)(0)
k!

This gives us a recipe for calculating all coefficientsak. This means that if we can compute
all the derivatives of the functionf(x), then we know the coefficients of the Taylor series
as well. Because we have evaluated all the coefficients by thesubstitutionx = 0, we say
that the resulting power series is theTaylor series of the function aboutx = 0.

10.6.1 Taylor series for the exponential function, ex

Consider the functionf(x) = ex. All the derivatives of this function are equal toex. In
particular,

f (k)(x) = ex ⇒ f (k)(0) = 1.

So that the coefficients of the Taylor series are

ak =
f (k)(0)

k!
=

1

k!
.

Therefore the Taylor series forex aboutx = 0 is

a0+a1x+a2x
2+a3x

3+. . .+akxk+. . . = 1+x+
x2

2
+

x3

6
+

x4

24
+. . .+

xk

k!
+. . . =

∞∑

k=0

xk

k!

This is a very interesting series. We state here without proof that this series converges for
all values ofx. Further, the function defined by the series is in fact equal to ex that is,

ex = 1 + x +
x2

2
+

x3

6
+ . . . =

∞∑

k=0

xk

k!
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The implication is that the functionex is completely determined (for allx values)
by its behaviour (i.e. derivatives of all orders) atx = 0. In other words, the value of the
function atx = 1, 000, 000 is determined by the behaviour of the function aroundx = 0.
This means thatex is a very special function with superior “predictable features”. If a
functionf(x) agrees with its Taylor polynomial on a region(−a, a), as was the case here,
we say thatf is analytic on this region. It is known thatex is analytic for allx.

We can use the results of this example to establish the fact that the exponential func-
tion grows “faster” than any power functionxn. That is the same as saying that the ratio of
ex to xn (for any powern) increases withx. We leave this as an exercise for the reader.

We can also easily obtain a Taylor series expansion for functions related toex, with-
out assembling the derivatives. We start with the result that

eu = 1 + u +
u2

2
+

u3

6
+ . . . =

∞∑

k=0

uk

k!

Then, for example, the substitutionu = x2 leads to

ex2

= 1 + x2 +
(x2)2

2
+

(x2)3

6
+ . . . =

∞∑

k=0

(x2)k

k!

10.6.2 Taylor series of trigonometric functions

In this example we determine the Taylor series for the sine function. The function and its
derivatives are

f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sin x, f ′′′(x) = − cosx, f (4)(x) = sin x, . . .

After this, the cycle repeats. This means that

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, . . .

and so on in a cyclic fashion. In other words,

a0 = 0, a1 = 1, a2 = 0, a3 = − 1

3!
, a4 = 0, a5 =

1

5!
, . . .

Thus,

sinx = x − x3

3!
+

x5

5!
− x7

7!
+ . . . =

∞∑

n=0

(−1)n x2n+1

(2n + 1)!
.

We state here without proof that the functionsin(x) is analytic, so that the expansion
converges to the function for allx.

It is instructive to demonstrate how successive terms in a Taylor series expansion
lead to approximations that improve.Doing this kind of thing will be the subject of the last
computer laboratory exercise in this course.
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sin(x)

T1

T2

T3

T4

0.0 7.0

-2.0

2.0

Figure 10.5. An approximation of the functiony = sin(x) by successive Taylor
polynomials,T1, T2, T3, T4. The higher Taylor polynomials do a better job of approximat-
ing the function on a larger interval aboutx = 0.

Here we demonstrate this idea with the expansion for the function sin(x) that we just
obtained. To see this, consider the sequence of polynomials

T1(x) = x,

T2(x) = x − x3

3!
,

T3(x) = x − x3

3!
+

x5

5!
,

T4(x) = x − x3

3!
+

x5

5!
− x7

7!
.

Then these polynomials provide a better and better approximation to the functionsin(x)
close tox = 0. The first of these is just a linear (or tangent line) approximation that we
had studied long ago. The second improves this with a quadratic approximation, etc. Fig-
ure 10.5 illustrates how the first few Taylor polynomials approximate the functionsin(x)
nearx = 0. Observe that as we keep more terms,n, in the polynomialTn(x), the approx-
imating curve “hugs” the graph ofsin(x) over a longer and longer range. The student will
be asked to use the spreadsheet, together with some calculations as done in this section, to
produce a composite graph similar to Fig. 10.5 for some otherfunction.
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Example 10.5 (The error in successive approximations)For a given value ofx close to
the base point (atx = 0), the error in the approximation between the polynomials and
the function is the vertical distance between the graphs of the polynomial and the function
sin(x) (shown in black). For example, atx = 2 radianssin(2) = 0.9093 (as found on
a scientific calculator). The approximations are:T1(2) = 2, which is very inaccurate,
T2(2) = 2 − 23/3! ≈ 0.667 which is too small,T3(2) ≈ 0.9333 that is much closer and
T4(2) ≈ .9079 that is closer still. In general, we can approximate the sizeof the error using
the next term that would occur in the polynomial if we kept a higher order expansion. The
details of estimating such errors is omitted from our discussion.

We also note that all polynomials that approximatesin(x) contain only odd powers
of x. This stems from the fact thatsin(x) is an odd function, i.e. its graph is symmetric to
rotation about the origin, a concept we discussed in an earlier term.

The Taylor series forcos(x) could be found by a similar sequence of steps. But in
this case, this is unnecessary: We already know the expansion for sin(x), so we can find the
Taylor series forcos(x) by simple differentiation term by term. (Sincesin(x) is analytic,
this is permitted for allx.) We leave as an exercise for the reader to show that

cos(x) = 1 − x2

2
+

x4

4!
− x6

6!
+ . . . =

∞∑

n=0

(−1)n x2n

(2n)!
.

Sincecos(x) has symmetry properties of an even function, we find that its Taylor series is
composed of even powers ofx only.

10.7 Application of Taylor series
In this section we illustrate some of the applications of Taylor series to problems that may
be difficult to solve using other conventional methods. Somefunctions do not have an
antiderivative that can be expressed in terms of other simple functions. Integrating these
functions can be a problem, as we cannot use the Fundamental Theorem of Calculus spec-
ifies. In some cases, we can approximate the value of the definite integral using a Taylor
series. We show this in Section 10.7.1.

Another application of Taylor series is to compute an approximate solution to a dif-
ferential equation. We provide one example of that sort in Section 10.7.2 and another in
Appendix 11.11.

10.7.1 Example 1: using a Taylor series to evaluate an integr al

Evaluate the definite integral
∫ 1

0

sin(x2) dx.

A simple substitution (e.g.u = x2) will not work here, and we cannot find an antideriva-
tive. Here is how we might approach the problem using Taylor series: We know that the
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series expansion forsin(t) is

sin t = t − t3

3!
+

t5

5!
− t7

7!
+ . . .

Substitutingt = x2, we have

sin(x2) = x2 − x6

3!
+

x10

5!
− x14

7!
+ . . .

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the
Taylor series, just as we would a polynomial:

∫ 1

0

sin(x2) dx =

∫ 1

0

(x2 − x6

3!
+

x10

5!
− x14

7!
+ . . .) dx

=

(
x3

3
− x7

7 · 3!
+

x11

11 · 5!
− x15

15 · 7!
+ . . .

) ∣
∣
∣
∣

1

0

=
1

3
− 1

7 · 3!
+

1

11 · 5!
− 1

15 · 7!
+ . . .

This is an alternating series so we know that it converges. Ifwe add up the first four terms,
the pattern becomes clear: the series converges to0.31026.

10.7.2 Example 2: Series solution of a differential equatio n

We are already familiar with the differential equation and initial condition that describes
unlimited exponential growth.

dy

dx
= y,

y(0) = 1.

Indeed, from previous work, we know that the solution of thisdifferential equation and ini-
tial condition isy(x) = ex, but we will pretend that we do not know this fact in illustrating
the usefulness of Taylor series. In some cases, where separation of variables does not work,
this option would have great practical value.

Let us express the “unknown” solution to the differential equation as

y = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + . . .

Our task is to determine values for the coefficientsai

Since this function satisfies the conditiony(0) = 1, we must havey(0) = a0 = 1.
Differentiating this power series leads to

dy

dx
= a1 + 2a2x + 3a3x

2 + 4a4x
3 + . . .



218 Chapter 10. Infinite series, improper integrals, and Taylor series

But according to the differential equation,dy
dx = y. Thus, it must be true that the two Taylor

series match, i.e.

a0 + a1x + a2x
2 + a3x

3 + a4x
4 + . . . = a1 + 2a2x + 3a3x

2 + 4a4x
3 + . . .

This equality hold for all values ofx. This can only happen if the coefficients of like terms
are the same, i.e. if the constant terms on either side of the equation are equal, if the terms of
the formCx2 on either side are equal, and so on for all powers ofx. Equating coefficients,
we obtain:

a0 = a1 = 1, ⇒ a1 = 1,
a1 = 2a2, ⇒ a2 = a1

2 = 1
2 ,

a2 = 3a3, ⇒ a3 = a2

3 = 1
2·3 ,

a3 = 4a4, ⇒ a4 = a3

4 = 1
2·3·4 ,

an−1 = nan, ⇒ an = an−1

n = 1
1·2·3...n = 1

n! .

This means that

y = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
+ . . . = ex,

which, as we have seen, is the expansion for the exponential function. This agrees with the
solution we have been expecting. In the example here shown, we would hardly need to use
series to arrive at the right conclusion, but in the next example, we would not find it as easy
to discover the solution by other techniques discussed previously.

We provide an example of a more complicated differential equation and its series
solution in Appendix 11.11.

10.8 Summary
The main points of this chapter can be summarized as follows:

1. We reviewed the definition of an improper integral

∫
∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

2. We computed some examples of improper integrals and discussed their convergence
or divergence. We recalled (from earlier chapters) that

I =

∫
∞

0

e−rt dt converges,

whereas

I =

∫
∞

1

1

x
dx diverges.



10.8. Summary 219

3. More generally, we showed that
∫

∞

1

1

xp
dx converges ifp > 1, diverges ifp ≤ 1.

4. Using a comparison between integrals and series we showedthat the harmonic series,

∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ . . . +

1

k
+ . . . diverges.

5. More generally, our results led to the conclusion that the“p” series,

∞∑

k=1

1

kp
converges ifp > 1, diverges ifp ≤ 1.

6. We studied Taylor series and showed that some can be found using the formula for
convergent geometric series. Two examples of Taylor seriesthat were obtained in
this way are

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . . for |x| < 1

and

arctan(x) = x − x3

3
+

x5

5
− x7

7
+ . . . for |x| < 1

7. In discussing Taylor series, we considered some of the following questions: (a) For
what range of values ofx can we expect the series to converges? (b) Suppose we
approximate the function on the right by a finite number of terms on the left. How
good is that approximation? Another interesting question is: (c) If we include more
and more such terms, does that approximation get better and better? (i.e., does the
series converge to the function?) (d) Is the convergence rate rapid? Some of these
questions occupy the attention of career mathematicians, and are beyond the scope
of this introductory calculus course.

8. More generally, we showed that the Taylor series for a function aboutx = 0,

f(x) = a0 + a1x + a2x
2 + a3x

3 + . . . =

∞∑

k=0

akxk.

can be found by computing the coefficients

ak =
f (k)(0)

k!

9. We discussed some of the applications of Taylor series. Weused Taylor series to
approximate a function, to find an approximation for a definite integral of a function,
and to solve a differential equation.
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Chapter 11

Appendix

11.1 How to prove the formulae for sums of squares
and cubes

Mathematicians are concerned with rigorously establishing formulae such as sums of squared
(or cubed) integers. While it is not hard to see that these formulae “work” for a few cases,
determining that they work in general requires more work. Here we provide a taste of how
such careful arguments works. We give two examples. The first, based onmathematical
inductionprovides a general method that could be used in many similar kinds of proofs.
The second argument, also for purposes of illustration usesa “trick”. Devising such tricks
is not as straightforward, and depends to some degree on serendipity or experience with
numbers.

Proof by induction (optional)

Here, we prove the formula for the sum of square integers,

N∑

k=1

k2 =
N(N + 1)(2N + 1)

6
,

using a technique calledinduction. The idea of the method is to check that the formula
works for one or two simple cases (e.g. the “sum” of just one orjust two terms of the
series), and then show that whenever it works for one case (summing up toN ), it has to
also work for the next case (summing up toN + 1).

First, we verify that this formula works for a few test cases:
N = 1: If there is only one term, then clearly, by inspection,

1∑

k=1

k2 = 12 = 1.

221
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The formula indicates that we should get

S =
1(1 + 1)(2 · 1 + 1)

6
=

1(2)(3)

6
= 1,

so this case agrees with the prediction.
N = 2:

2∑

k=1

k2 = 12 + 22 = 1 + 4 = 5.

The formula would then predict that

S =
2(2 + 1)(2 · 2 + 1)

6
=

2(3)(5)

6
= 5.

So far, elementary computation matches with the result predicted by the formula.
Now we show that if this formula holds for any one case, e.g. for the sum of the firstN
squares, then it is also true for the next case, i.e. for the sum of N + 1 squares. So we will
assumethat someone has checked that for some particular value ofN it is true that

SN =

N∑

k=1

k2 =
N(N + 1)(2N + 1)

6
.

Now the sum of the firstN + 1 squares will be just a bit bigger: it will have one more term
added to it:

SN+1 =

N+1∑

k=1

k2 =

N∑

k=1

k2 + (N + 1)2.

Thus

SN+1 =
N(N + 1)(2N + 1)

6
+ (N + 1)2.

Combining terms, we get

SN+1 = (N + 1)

[
N(2N + 1)

6
+ (N + 1)

]

,

SN+1 = (N + 1)
2N2 + N + 6N + 6

6
= (N + 1)

2N2 + 7N + 6

6
.

Simplifying and factoring the last term leads to

SN+1 = (N + 1)
(2N + 3)(N + 2)

6
.

We want to check that this still agrees with what the formula predicts. To make the notation
simpler, we will letM stand forN +1. Then, expressing the result in terms of the quantity
M = N + 1 we get

SM =

M∑

k=1

k2 = (N + 1)
[2(N + 1) + 1][(N + 1) + 1]

6
= M

[2M + 1][M + 1]

6
.

This is the same formula as we started with, only written in terms ofM instead ofN . Thus
we have verified that the formula works. ByMathematical Inductionwe find that the result
has been proved.
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Another method using a trick 70

There is another method for determining the sums
n∑

k=1

k2 or
n∑

k=1

k3. Write

(k + 1)3 − (k − 1)3 = 6k2 + 2,

so
n∑

k=1

(
(k + 1)3 − (k − 1)3

)
=

n∑

k=0

(6k2 + 2).

But looking more carefully at the left hand side (LHS), we seethat

n∑

k=1

((k+1)3− (k−1)3) = 23−03 +33−13 +43−23 +53−33...+(n+1)3− (n−1)3.

most of the terms cancel, leaving only−1 + n3 + (n + 1)3, so this means that

−1 + n3 + (n + 1)3 = 6

n∑

k=1

k2 +

n∑

k=1

2,

so
n∑

k=1

k2 = (−1 + n3 + (n + 1)3 − 2n)/6 = (2n3 + 3n2 + n)/6.

Similarly, the formula for
n∑

k=1

k3, can be obtained by starting with

(k + 1)4 − (k − 1)4 = 4k3 + 4k.

11.2 Riemann Sums: Extensions and other examples
We take up some issues here that were not yet considered in thecontext of our examples of
Riemann sums in Chapter 2 . First, we consider an arbitrary intervala ≤ x ≤ b. Then we
comment on other ways of constructing the rectangular stripapproximation (that eventually
lead to the same limit when the true area is computed.)

11.2.1 A general interval: a ≤ x ≤ b

Example 2: (Lu Fan)

Find the area under the graph of the function

y = f(x) = x2 + 2x + 1 a ≤ x ≤ b.

70I want to thank Robert Israel for contributing this material
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Here the interval isa ≤ x ≤ b. Let us leave the values ofa, b general for a moment, and
consider how the calculation is set up in this case. Then we have

length of interval= b − a

number of segments= N

width of rectangular strips= ∆x =
b − a

N

thek’th x value= xk = a + k
(b − a)

N

height ofk’th rectangular strip= f(xk) = x2
k + 2xk + 1

Combining the last two steps, the height of rectanglek is:

f(xk) =

(

a +
k(b − a)

N

)2

+ 2

(

a +
k(b − a)

N

)

+ 1

and its area is

ak = f(xk) × ∆x = f(xk) ×
(

b − a

N

)

.

We use the last two equations to expressak in terms ofk (and the quantitiesa, b, N ), then
sum overk as before (A = ΣAk). Some algebra is needed to simplify the sums so that
summation formulae can be applied. The details are left as anexercise for the reader (see
homework problems). Evaluating the limitN → ∞, we finally obtain

A = lim
N→∞

N∑

k=1

ak = (a + 1)2(b − a) + (a + 1)(b − a)2 +
(b − a)3

3
.

as the area under the functionf(x) = x2 + 2x + 1, over the intervala ≤ x ≤ b. Observe
that the solution depends ona, andb. (The endpoints of the interval influence the total
area under the curve.) For example, if the given interval happens to be2 ≤ x ≤ 4. then,
substitutinga = 2, b = 4 into the above result forA, leads to

A = (2 + 1)2(4 − 2) + (2 + 1)(4 − 2)2 +
4 − 2

3
= 18 + 12 +

2

3
=

32

3

In the next chapter, we will show that the tools of integration will lead to the same conclu-
sion.

11.2.2 Using left (rather than right) endpoints

So far, we used the right endpoint of each rectangular strip to assign its height using the
given function (see Figs. 2.2, 2.3, 2.4). Restated, we “glued” the top right corner of the
rectangle to the graph of the function. This is the so calledright endpoint approxima-
tion. We can just as well use the left corners of the rectangles to assign their heights (left
endpoint approximation). A comparison of these for the functiony = f(x) = x2 is
shown in Figs. 11.1 and 11.2. In the case of the left endpoint approximation, we evaluate
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y=f(x)

a b
x

y

x x x1a=x0 k−1 k Nx  =b x x x1a=x0 k−1 k Nx  =b
x

y

x

y

Figure 11.1.The area under the curvey = f(x) over an intervala ≤ x ≤ b could
be computed by using either a left or right endpoint approximation. That is, the heights of
the rectangles are adjusted to match the function of interest either on the right or on their
left corner. Here we compare the two approaches. Usually both lead to the same result
once a limit is computer to arrive at the “true ” area.

the heights of the rectangles starting atx0 (instead ofx1, and ending atxN−1 (instead of
xN ). There are stillN rectangles. To compare, sum of areas of the rectangles in theleft
versus the right endpoint approximation is

Right endpoints: AN strips=

N∑

k=1

f(xk)∆x.

Left endpoints: AN strips=

N−1∑

k=0

f(xk)∆x.

Details of one such computation is given in the box.
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Example of left endpoint calculation

We here look again at a simple example, using the quadratic function,

f(x) = x2, 0 ≤ x ≤ 1,

We now compare the right and left endpoint approximation. These are shown in panels of
Figure 11.2. Note that

∆x =
1

N
, xk =

k

N
,

The area of thek’th rectangle is

ak = f(xk) × ∆x = (k/N)
2
(1/N) ,

but now the sum starts atk = 0 so

AN strips=

N−1∑

k=0

f(xk)∆x =

N−1∑

k=0

(
k

N

)2(
1

N

)

=

(
1

N3

)N−1∑

k=0

k2.

The first rectangle corresponds tok = 0 in the left endpoint approximation (rather than
k = 1 in the right endpoint approximation). But thek = 0 rectangle makes no contribution
(as its area is zero in this example) and we have one less rectangle at the right endpoint of
the interval, since the N’th rectangle isk = N − 1. Then the sum is

AN strips=

(
1

N3

)
(2(N − 1) + 1)(N − 1)(N)

6
=

(2N − 1)(N − 1)

6N2
.

The area, obtained by taking a limit forN → ∞ is

A = lim
N→∞

AN strips= lim
N→∞

(2N − 1)(N − 1)

6N2
=

2

6
=

1

3
.

We see that, after computing the limit, the result for the “true area” under the curve is
exactly the same as we found earlier in this chapter using theright endpoint approximation.

11.3 Physical interpretation of the center of mass
We defined the idea of a center of mass in Chapter 5. The center of mass has a physical
interpretation for a real mass distribution. Loosely speaking, it is the position at which the
mass “balances” without rotating to the left or right. In physics, we say that there is no net
torque. The analogy with children sitting on a teeter-totter is relevant: many children may
sit along the length of the frame of a teeter totter, but if they distribute themselves in a way
that the center of mass is at the fulcrum of the teeter totter,they will remain precariously
balanced (until one of them fidgets or gets off!). Notice thatboth the mass and the position
of each child is important - a light child sitting on the very edge of the teeter totter can
balance a heavier child sitting closer to the fulcrum (middle). The center of mass need
not be the same as the median position. As we have see, the median is a position that
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Right endpoint approximation

0.0 10.0

0.0

100.0

Left endpoint approximation

0.0 10.0

0.0

100.0

Comparison of

LeftRight

approximations

0.0 10.0

0.0

100.0

Figure 11.2. Rectangles with left or right corners on the graph ofy = x2 are
compared in this picture. The approximation shown in pink is“missing” the largest rect-
angle shown in green. However, in the limit as the number of rectangles,N → ∞, the true
area obtained is the same.

subdivides the distribution into two equal masses (or, moregenerally, produces equal sized
areas under the graph of the density function.) The center ofmass assigns a greater weight
to parts of the distribution that are “far away” in the same sense. (However, for symmetric
distributions, the median and the mean are the same.)

In physics, we speak of the “moment of mass” of a distributionabout a point. This
quantity is related to the tendency of the mass to contributea torque, i.e. to make the
object rotate. Suppose we are interested in a particular point of referencex. In a discrete
mass distribution, for example, the moment of mass of each ofthe beads relative to point
x is given by the product of the mass and its distance away from the point - as with the
teeter totter, beads farther away will contribute more torque than beads closer to pointx,
and heavier beads (i.e. greater mass) will contribute more torque than lighter beads. For
example, mass 1 contributes an amountm1(x − x1) to the total moment of mass of the
distribution about the pointx. Altogether the moment of mass of the distribution about the
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pointx is defined as

M1(x) =

n∑

i=1

mi (x − xi).

The center of mass is a special pointx̄ such that the moment of mass about that point is
zero. (Loosely speaking the tendency to rotate to the left orthe right are the same: thus the
distribution would be balanced if it “rested on that point”.)

3
x

m1 m2 m3

x1 x2 x

Figure 11.3. A discrete set of massesm1, m2, m3 is distributed at positions
x1, x2, x3. The center of mass of the distribution is the position at which the given mass
distribution would balance, here represented by the white triangle.

Thus, we identify the center of mass as the point at which

M1(x̄) = 0,

or
n∑

i=1

mi(x̄ − xi) = 0.

Now expanding the sum, we rewrite the above as
(

n∑

i=1

mix̄

)

−
(

n∑

i=1

mixi

)

= 0,

x̄
n∑

i=1

mi −
(

n∑

i=1

mixi

)

= 0.

But we already know that the first summation above is just the total mass, so that

x̄M −
(

n∑

i=1

mixi

)

= 0,

so, taking the second term to the other side and dividing byM leads to

x̄ =
1

M

n∑

i=1

mixi.

We have recovered precisely the definition of the center of mass or “averagex coordinate”.



11.4. The shell method for computing volumes 229

11.4 The shell method for computing volumes
In Chapter 5, we used dissection into small disks to compute the volume of solids of revo-
lution. Here we show use an alternative dissection into shells.

11.4.1 Example: Volume of a cone using the shell method

x

y

y=f(x)=1−x

y

x

x

y

y=1−x

dx

Figure 11.4. Top: The curve that generates the cone (left) and the shape ofthe
cone (right). Bottom: the cone showing one of the series of shells that are used in this
example to calculate its volume.

We use the shell method71 to find the volume of the cone formed by rotating the curve

y = 1 − x

about they axis.

Solution

We show the cone and its generating curve in Figure 11.4, together with a representative
shell used in the calculation of total volume. The volume of acylindrical shell of radiusr,
heighth and thicknessτ is

Vshell = 2πrhτ.

We will place these shells one inside the other so that their radii are parallel to thex axis
(sor = x). The heights of the shells are determined by theiry value (i.e.h = y = 1−x =

71Note to the instructor: This material may be skipped in the interest of time. It presents an alternative to the
disk method, but there may not be enough time to cover this in detail.
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1− r). For the tallest shellr = 0, and for the flattest shellr = 1. The thickness of the shell
is ∆r. Therefore, the volume of one shell is

Vshell = 2πr(1 − r) ∆r.

The volume of the object is obtained by summing up these shellvolumes. In the limit,
as∆r → dr gets infinitesimally small, we recognize this as a process ofintegration. We
integrate over0 ≤ r ≤ 1, to obtain:

V = 2π

∫ 1

0

r(1 − r) dr = 2π

∫ 1

0

(r − r2) dr.

We find that

V = 2π

(
r2

2
− r3

3

) ∣
∣
∣
∣

1

0

= 2π

(
1

2
− 1

3

)

=
π

3
.

11.5 More techniques of integration

11.5.1 Secants and other “hard integrals”

In a previous section, we encountered the integral

I =

∫

sec3(x) dx.

This integral can be simplified to some extent by integrationby parts as follows: Letu =
sec(x), dv = sec2(x) dx. Thendu = sec(x) tan(x)dx while v =

∫
sec2(x) dx = tan(x).

The integral can be transformed to

I = sec(x) tan(x) −
∫

sec(x) tan2(x) dx.

The latter can be rewritten:

I1 =

∫

sec(x) tan2(x) dx =

∫

sec(x)(sec2(x) − 1).

where we have use a trigonometric identity fortan2(x). Then

I = sec(x) tan(x) −
∫

sec3(x) dx +

∫

sec(x) dx = sec(x) tan(x) − I +

∫

sec(x) dx

so (taking bothI ’s to the left hand side, and dividing by 2)

I =
1

2

(

sec(x) tan(x) +

∫

sec(x) dx

)

.

We are now in need of an antiderivative forsec(x). No “obvious substitution” or further
integration by parts helps here, but it can be checked by differentiation that

∫

sec(x) dx = ln | sec(x) + tan(x)| + C

Then the final result is

I =
1

2
(sec(x) tan(x) + ln | sec(x) + tan(x)|) + C
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11.5.2 A special case of integration by partial fractions

Evaluate this integral72:
∫ 2

1

7x + 4

6x2 + 7x + 2
dx

This integral involves a rational function (that is, a ratioof two polynomials). The denom-
inator is a degree 2 polynomial function that has two roots and that can be factored easily;
the numerator is a degree 1 polynomial function. In this case, we can use the following
strategy. First, factor the denominator:

6x2 + 7x + 2 = (2x + 1)(3x + 2)

AssignA andB in the following way:

A

2x + 1
+

B

3x + 2
=

7x + 4

(2x + 1)(3x + 2)
=

7x + 4

6x2 + 7x + 2

(Remember, this is how we defineA andB.)
Next, find the common denominator and rewrite it as a single fraction in terms ofA

andB.
A

2x + 1
+

B

3x + 2
=

3Ax + 2A + 2Bx + B

(2x + 1)(3x + 2)

Group like terms in the numerator, and note that this has to match the original fraction, so:

3Ax + 2A + 2Bx + B

(2x + 1)(3x + 2)
=

(3A + 2B)x + (2A + B)

(2x + 1)(3x + 2)
=

7x + 4

(2x + 1)(3x + 2)

The above equation should hold true for allx values; therefore:

3A + 2B = 7, 2A + B = 4

Solving the system of equations leads toA = 1, B = 2. Using this result, we rewrite the
original expression in the form:

7x + 4

6x2 + 7x + 2
=

7x + 4

(2x + 1)(3x + 2)
=

A

2x + 1
+

B

3x + 2
=

1

2x + 1
+

2

3x + 2

Now we are ready to rewrite the integral:

I =

∫ 2

1

7x + 4

6x2 + 7x + 2
dx =

∫ 2

1

(
1

2x + 1
+

2

3x + 2

)

dx

Simplify:

I =

∫ 2

1

1

2x + 1
dx + 2

∫ 2

1

1

3x + 2
dx

Now the integral becomes a simple natural log integral that follows the pattern of Eqn. 6.1.
Simplify:

I =
1

2
ln |2x + 1|

∣
∣
∣
∣

2

1

+
2

3
ln |3x + 2|

∣
∣
∣
∣

2

1

.

72This section was contributed by Lu Fan
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Simplify further:

I =
1

2
(ln 5 − ln 3) +

2

3
(ln 8 − ln 5) = −1

6
ln 5 − 1

2
ln 3 +

2

3
ln 8.

This method can be used to solveany integral that contain a fraction with a degree 1
polynomial in the numerator and a degree 2 polynomial (that has two roots) in the denom-
inator.

11.6 Analysis of data: a student grade distribution
We study the distribution of student grades on a test writtenby 76 students and graded out
of a maximum of 50 points.

11.6.1 Defining an average grade

Let N be the size of the class,andyk the grade of studentk. Herek is the number of the
student from 1 toN , andyk takes any value between 0 and 50 points). Then the average
gradeȲ is computed by adding up the scores of all students and dividing by the number of
students as follows:

Ȳ =
1

N

N∑

k=1

yk.

For example, for a class of 76 students, we would have the sum

Ȳ =
1

76

76∑

k=1

yk.

11.6.2 Fraction of students that scored a given grade

Suppose that the number of students who got the gradexi is pi. If the class consists of a
total ofN students, then it follows that

N =

10∑

i=1

pi.

This is just saying that the sum of the number of students in every one of the categories has
to add up to the total class size. The fraction of the class that scored gradexi is

pi

N
.

(Dividing by N has normalized the distribution. The valuepi/N is the empirical probabil-
ity of getting gradexi.) The mean or average grade is:

X̄ =
1

N

50∑

i=0

xi pi.
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Grade Distribution

mean

31.9

0.0 50.0

0.0

25.0

Figure 11.5.Distributions of grades on a test with 50 point maximum. There were
a total of 76 students writing the test. The mean grade 31.9 isshown.

11.6.3 Frequency distribution

It is difficult to visualize all the data if we list all the grades obtained. We “lump together”
scores into various categories (or “bins”) and create a distribution. For example, test scores
might be divided into ranges of bins in increments of 5 points: (1-5, 6-10, 11-15, etc). We
could represent grades in each bin by some value up to a specified level of accuracy. For
example, grades in the the range 16-20 can be described by thescore18 up to an accuracy
of ±2. This is what we have done in Table 11.1.

We will now reinterpret our notation somewhat. We will referto x̃i as the score andpi

the number of students whose test score fell within the rangerepresented bỹxi±accuracy.
(The notationx̃i is meant to remind us that we are approximating the grade value.) For
example, consider 10 “bins” or grade categories. In that case, the indexi takes on values
i = 1, 2, . . . 10. The, e.g.,̃x4 represents all grades in the fourth “bin”, i.e. grades between
16-20. A plot ofpi against̃xi is called afrequency distribution. The bar graph shown in
Figure 11.5 represents this distribution. Table 11.1 showsthe data that produced that bar
graph.

11.6.4 Average/mean of the distribution

The frequency distribution can also be used to compute an average value: each (approxi-
mate) grade valuẽxi is achieved bypi students, which is a fraction (pi/N ) of the whole
class. When we form the multiple(pi/N)x̃i, we assign a “weight” to each of the cate-
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i gradex̃i numberpi

∑
pi

∑
x̃ipi (1/N)

∑
x̃ipi

0 0 0 0 0.0 0.0
1 3±2 1 1 3.0 0.0395
2 8±2 2 3 19 0.25
3 13±2 0 3 19 0.25
4 18±2 5 8 109 1.4342
5 23±2 10 18 339 4.4605
6 28±2 8 26 563 7.4079
7 33±2 21 47 1256 16.5263
8 38±2 19 66 1978 26.0263
9 43±2 6 72 2236 29.4211
10 48±2 4 76 2428 31.9474

Table 11.1.Distribution of grades (out of50) for a class of76 students. The mean
grade for this class is31.9474.

gories according to the proportion of the class that was in that category. (The terminology
weighted averageis sometimes used.)

We define themeanor averagegrade in the distribution by

x̄ =

M∑

i=1

x̃i
pi

N
. (11.1)

WhereM is the number of bins. An equivalent way of expressing the mean (average) is:

x̄ =
1

N

M∑

i=1

x̃ipi =

∑M
i=1 x̃ipi
∑M

i=1 pi

. (11.2)

The sum in the denominator of this last fraction is simply thetotal class size.
In Table 11.1, we show steps in the calculation of the mean grade for the class. This

calculation is easily handled on the same spreadsheet that recorded the frequency of grades
and that was used to plot the bar graph of that distribution. Equations 11.1 and 11.2 are
saying the same thing. We will see the second of these again inthe context of a more
general probability distribution in Chapter 8.

11.6.5 Cumulative function

We can calculate a “running total” as shown on Figure 11.6, where we plot for each grade
category, the total number of students whose grade was in thegiven range.
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We define thecumulative function, Fi to be:

Fi =
i∑

k=1

pk .

ThenFi is the number of students whose gradexk was betweenx1 andxi (x1 ≤
xk ≤ xi). Of course, when we add up all the way to the last category, wearrive at the total
number of students in the class (assuming each student wrotethe test and received a grade).
Thus

Fm =

M∑

k=1

pk = N,

Where as before,M stands for the number of “bins” used to represent the grade distribution.
(Note that each student has been counted in one of the categories corresponding to the grade
he or she achieved.) Another way of saying the same thing is that

m∑

k=1

pk

N
= 1.

In Figure 11.6 we show the cumulative function, i.e. we plotx̃i vsFi. Note that this graph
is astep function. That is,the function takes on a set of discrete values with jumps at every
5th integer73.

Grade Distribution

Cumulative function

0.0 50.0

0.0

80.0

Cumulative function

50%

50%
40.

30.

median0.0 50.0

0.0

80.0

Figure 11.6. Top: The same grade distribution as in Figure 11.5, but showing
the cumulative function. The grid has been removed for easier visualization of that step
function. Bottom:The cumulative function is used to determine an approximate median
grade.

73Note: ideally, this graph should be discontinuous, with horizontal segments only. The vertical“jumps” cannot
correspond to values of a function. However the spreadsheettool used to plot this function does not currently
allow this graphing option.
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11.6.6 The median

We can use the cumulative function and its features to come upwith new ways of summariz-
ing the distribution or comparing the performance of two sections. Suppose we subdivide
a given class into exactly two equal groups based on performance on the test. Then there
would be some grade that was achieved or surpassed by the top half of the class only; the
rest of the students (i.e. the other half of the class) got scores below that level. We call that
grade themedianof the distribution.

To find the median grade using a cumulative function, we must ask what grade level
corresponds to a cumulative 1/2 of the class, i.e. toN/2 students. To determine that level,
we draw a horizontal line corresponding toN/2. As shown in Figure 11.6, because the
functionf is discontinuous, we only have an approximate median of 30. We observe that
the median is not in general equal to the mean computed earlier.

11.7 Factorial notation
Letn be an integer,n ≥ 0. Thenn!, called “n factorial”, is defined as the following product
of integers:

n! = n(n − 1)(n − 2) . . . (2)(1)

Example

1! = 1

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6

4! = 4 · 3 · 2 · 1 = 24

5! = 5 · 4 · 3 · 2 · 1 = 120

We also define

0! = 1

11.8 Appendix: Permutations and combinations

11.8.1 Permutations

A permutationis a way of arranging objects, where the order of appearance of the objects
is important.
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(c)

n distinct objects n slots

n distinct objects k slots

n distinct objects k objects n           n−1         ...            n−k+1

n          n−1     n−2     ...        2          1        

n           n−1          ...           n−k+1

k slots

n!

(n−k)!

n!
P(n,k)=

k!C(n,k)

(a)

(b)

Figure 11.7. This diagram illustrates the meanings of permutations and combi-
nations. (a) The number of permutations (ways of arranging)n objects inton slots. There
aren choices for the first slot, and for each of these, there aren− 1 choices for the second
slot, etc. In total there aren! ways of arranging these objects. (Note that the order of
the objects is here important.) (b) The number of permutations ofn objects intok slots,
P (n, k), is the productn · (n − 1) · (n − 2) . . . (n − k + 1) which can also be written as
a ratio of factorials. (c) The number of combinations ofn objects in groups ofk is called
C(n, k) (shown as the first arrow in part c). Here order is not important. The step shown
in (b) is equivalent o the two steps shown in (c). This means that there is a relationship
betweenP (n, k) andC(n, k), namely,P (n, k) = k!C(n, k).

11.9 Appendix: Tests for convergence of series
In order for the sum of ‘infinitely many things’ to add up to a finite number, the terms have
to get smaller. But just getting smaller is not, in itself, enough to guarantee convergence.
(We will show this later on by considering the harmonic series.)

There are rigorous mathematical tests which help determinewhether a series con-
verges or not. We discuss some of these tests here74.

74Recall that⇒ means “implies that”. This is a one-way implication:A ⇒ B says that “A implies B”
and cannot be used to conclude that B implies A.⇔ means that each statement implies the other, a two-way
implication. Just as it is important to “obey traffic signs” and avoid “driving the wrong way” on a one-way street,
it is also important to be careful about use of these mathematical statements.
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11.9.1 The ratio test:

If
∞∑

k=0

ak is a series withan > 0 and lim
k→∞

ak+1

ak
= L, then

(a) L < 1 ⇒ the series converges,

(a) L > 1 ⇒ the series diverges,

(a) L = 1 ⇒ the test is inconclusive.

Example 1: Reciprocal factorial series

Recall that ifk > 0 is an integer then the notationk! (read “k factorial”) means

k! = k · (k − 1) · (k − 2) . . . 3 · 2 · 1.

Consider the series

S =

∞∑

k=1

1

k!
= 1 +

1

2 · 1 +
1

3 · 2 · 1 + . . . +
1

k(k − 1) . . . 1
,

then

ak+1 =
1

(k + 1)!
, ak =

1

k!
,

ak+1

ak
= lim

k→∞

1
(k+1)!

1
k!

= lim
k→∞

k!

(k + 1)!
= lim

k→∞

1

k + 1
= 0.

ThusL = 0, L < 1 so this series converges by the ratio test. Later, we will seea second
method (comparison) to arrive at the same conclusion.

Example 2: Harmonic series

Does the following converge?

S =
∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+ . . . +

1

k
+ . . . ,

This series is theHarmonic Series. To apply the ratio test, we note that

ak+1 =
1

k + 1
, ak =

1

k
,

L = lim
k→∞

ak+1

ak
= lim

k→∞

1
k+1
1
k

= lim
k→∞

k

k + 1
= 1.

SinceL = 1, in this case, the test is inconclusive. In fact, we show in Section 10.4 thatthe
harmonic series diverges.
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Example 3: Geometric series

Apply the ratio test to determine the condition for convergence of the geometric series,

S =

∞∑

k=0

rk.

Here
ak+1 = rk+1, ak = rk,

ak+1

ak
= r,

L = lim
k→∞

ak+1

ak
= r.

So, by the ratio test, ifL = r < 1 then the geometric series converges (confirming a fact
we have already established).

11.9.2 Series comparison tests

We can sometimes use the convergence (or divergence) of a known series to conclude
whether a second series converges (or diverges).

Suppose we have two series,

Sa =

∞∑

k=0

ak and Sb =

∞∑

k=0

bk,

such that terms of one series are always smaller than terms ofthe other, i.e. satisfy

0 < ak < bk for all k = 0, 1, . . . .

Then ∑

bk converges⇒
∑

ak converges,
∑

ak diverges⇒
∑

bk diverges.

The idea behind the first of these statements is that the “smaller” series
∑

ak is
“squeezed in” between 0 (the lower bound) and the sum of the larger series (which we
know must exist, since

∑
bk converges.) This means that the smaller series cannot become

unbounded. For the second statement, we have that the smaller of the two series is known
to diverge, forcing the larger also to be unbounded. One mustcarefully observe that “⇒”
applies only in one direction. (For example, if the smaller series converges, we cannot
conclude anything about the larger series.)

Example: Comparison with geometric series

Does the series below converge or diverge?

S =

∞∑

k=0

1

2k + 1
.
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Solution: We compare terms in this series to a terms in a geometric series with r = 1
2 . i.e.

consider

ak =
1

2k + 1
, bk =

1

2k
.

Then clearly
0 < ak < bk for everyk

(since the denominator inak is larger). But we know that
∑ 1

2k converges. Therefore, so
does

∑ 1
2k+1

.

11.9.3 Alternating series

An alternating series is a series in which the signs of successive terms alternate. An exam-
ple of this type is the series

1 − 1

2
+

1

3
− 1

4
+ . . . =

∑

(−1)n+1 1

n

We will show that this series converges (essentially because terms nearly cancel out), and
in fact, we show in Section 10.5.3 that it converges to the number ln(2) ≈ 0.693. More
generally, we have the following result.

If S is an alternating series,

S =

∞∑

k=1

(−1)kak = a1 − a2 + a3 − a4 + . . .

with ak > 0 and such that (1)|a1| ≥ |a2| ≥ |a3| ≥ . . . etc. and (2)limk→∞ ak = 0, then
the series converges. (This was established by Leibniz in 1705.)

11.10 Adding and multiplying series
We first comment that arithmetic operations on infinite series only make sense if the series
are convergent. In this discussion, we will deal only with series of the convergent type.
When this is true, then (and only then) is it true that we can exchange the order of operations
as discussed below.

If
∑

ak and
∑

bk both converge and
∑

ak = S
∑

bk = T , then

(a)
∑

(ak + bk) converges and
∑

(ak + bk) =
∑

ak +
∑

bk = S + T .

(b)
∑

cak = c
∑

ak = cS, wherec is any constant.

(c) The product(
∑

ak) · (∑ bk) =
∑

∞

k=0

∑k
i=0 aibk−i = S · T .
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Example:

∑
(

1

2

)k

·
∑

(
1

3

)j

=

(

1 +
1

2
+

1

4
+ . . .

)(

1 +
1

3
+

1

9
+ . . .

)

.

Both series converge, so we can write

∞∑

j=0

∞∑

k=0

(
1

2

)k (
1

3

)j

=
1

1 − 1
2

· 1

1 − 1
3

= 2 · 3

2
= 3.

11.11 Using series to solve a differential equation
Airy’s equation arises in the study of optics, and (with initial conditions) is as follows:

y′′ = xy, y(0) = 1, y′(0) = 0.

As before, we will write the solution as a series:

y = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + . . .

Using the information from the initial conditions, we gety(0) = a0 = 1 andy′(0) = a1 =
0. Now we can write down the derivatives:

y′ = a1 + 2a2x + 3a3x
2 + 4a4x

3 + 5a5x
4 + . . .

y′′ = 2a2 + 2 · 3x + 3 · 4x2 + 4 · 5x3 + . . .

The equation then gives

y′′ = xy

2a2 + 2 · 3a3x + 3 · 4a4x
2 + 4 · 5a5x

3 + . . . = x(a0 + a1x + a2x
2 + a3x

3 + . . .)

2a2 + 2 · 3a3x + 3 · 4a4x
2 + 4 · 5a5x

3 + . . . = a0x + a1x
2 + a2x

3 + a3x
4 + . . .

Again, we can equate the coefficients ofx, and usea0 = 1 anda1 = 0, to obtain

2a2 = 0 ⇒ a2 = 0,
2 · 3a3 = a0 ⇒ a3 = 1

2·3 ,
3 · 4a4 = a1 ⇒ a4 = 0,
4 · 5a5 = a2 ⇒ a5 = 0,
5 · 6a6 = a3 ⇒ a6 = 1

2·3·5·6 .

This gives us the first few terms of the solution:

y = 1 +
x3

2 · 3 +
x6

2 · 3 · 5 · 6 + . . .

If we continue in this way, we can write down many terms of the series.
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3D
objects, 81

Abel’s theorem, 211
acceleration, 62
actin

cortex, 84
addition

principle, 140
age

distribution, 167
of death, 167

airways
surface area, 23
volume, 22

Airy’s equation, 241
alcohol

in the blood, 185
algorithm, 29
allele, 146, 165
alligator, 101
alternating series, 240
alveoli, 17
analytic, 214

approach, 29
annuity, 74
anti-differentiation, 49
antiderivative, 47, 110

table of, 49
applications

of integration, 61
approximation

left endpoint, 224
linear, 36, 200
right endpoint, 224

Archimedes, 4
area

as a function, 39
circle, 6
of planar region, 27
of simple shapes, 1
parallelogram, 2
polygon, 3
rectangle, 2
triangle, 2
true, 35

average, 234
mass density, 86
of probability distribution, 137
weighted, 234

average value
of a function, 76, 161

bacterial
motion, 150

balance
energy, 188
mass, 186

bank
interest rate, 74

bell
curve, 145

Bernoulli trial, 140
bifurcate, 18
bin, 166, 233
binomial

coefficient, 142
distribution, 140, 143
theorem, 142

birth, 71, 178
blood alcohol, 185
branch

daughter, 18
parent, 18

243
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bronchial tubes, 17

calculus
motivation for, xvii

carrying capacity, 191
center

of mass, 81, 85, 133, 137, 157, 228
centroid, 122
chain rule, 107
change

net, 66, 71
total, 66

chemical kinetics, 185
chromosomes, 146
circadean

rhythm, 72
cohort, 196, 197
coin

fair, 134
toss, 136, 165

combination, 237
comparison

integral and series, 206
integrals, 205
tests, 239

completing the square, 117
conservation

of energy, 188
of mass, 186

converge, 14
convergence, 199

of series, 200
tests for, 201, 206, 237

convergent, 15
coordinate

system, 28
critical point, 53
cumulative

function, 84, 136, 154, 155, 235

data, 133
set, 133

decay
radioactive, 162
rate, 185

definite

integral, 37, 43
density, 61, 82

probability, 153
dice, 139
differential, 107–109

equation, 177
notation, 107, 108

differential equation
linear, 184
nonlinear, 192

displacement, 62
distribution

binomial, 140
frequency, 233
Gaussian, 145
grade, 133, 137
normal, 145
uniform, 169, 174

diverge, 14, 201
divergence, 199

of series, 200
divergent, 15
dummy

variable, 40

emptying
container, 186
time, 191

endpoints, 30, 113
energy

balance, 188
conservation, 188
kinetic, 188
potential, 188

error
approximation, 216

Euler’s method, 184
evaluate

a function, 208
even

function, 51
expected value, 137
experiment, 134

coin-toss, 137
repeated, 134

exponential, 35
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decaying, 202
function, 214
growth, 19, 180

eye
color, 146, 147

factorial, 238
notation, 236

factoring
denominator, 117

failure, 140
fair

dice, 139
falling object, 181
first-order

differential equation, 178
force

frictional, 181
of gravity, 181

formulae
areas, 25
volumes, 25

fractals, 18
frequency, 73, 136
friction, 181
frictional

coefficient, 181
fulcrum, 226
function

bounded, 37
continuous, 37
even, 51
inverse, 53

Fundamental Theorem of Calculus, 40,
41, 43, 47, 62, 155, 216

Gauss, 11
formula, 11, 12

Gaussian
distribution, 145

gene, 146
genetics, 146
genotype, 146
geometric

series, 10, 209, 240
series, finite, 13

series,finite, 200
series,infinite, 201

Gompertz, 196
grade

distribution, 137, 232
growth

density dependent, 191
exponential, 19, 75, 180
logistic, 191
population, 197
self-similar, 18
unlimited, 179, 191

growth rate
intrinsic, 191
per capita, 179

Hanoi
tower of, 8

Hardy-Weinberg, 146
harmonic

series, 201, 206, 211, 237
height

distribution, 166
higher order terms, 200
hormone

level of, 72
hypotenuse, 121

implication, 237
improper

integral, 58, 162–164, 203
income

stream, 74
induction, 221

mathematical, 12
infinite

series, 14, 200
initial

condition, 179
initial value, 178

problem, 178, 179
integral, 110

applications of, 61
converges, 202, 204
definite, 31, 33, 37, 40, 43, 110
definite,properties of, 44
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diverges, 202, 203
does not exist, 57, 121
exists, 163
improper, 58, 76, 162–164, 199, 202,

206
indefinite, 110, 192

integrand, 110
integration, 33

by partial fractions, 124
by parts, 107, 124, 126
by substitution, 111
constant, 111
numerical, 162

interest
compounded, 75
rate, 74

inverse function, 53
inverse trigonometric functions, 121

keratocyte, 84
kinetic

energy, 188
Kulesa

Paul, 101

leaf
area of, 33

leaking
container, 186

Leibniz, 240
length

of curve, 81, 96
of straight line, 96

limit, 29
linear approximation, 36
logistic

equation, 191
growth, 191

lung
branching, 16
human, 22

Maple, 107
mass

balance, 186
conservation, 186

density, 82, 165
discrete, 165

mass distribution
continuous, 82
discrete, 82

Mathematica, 107
mating

table, 148
maximum, 53, 55
mean, 76, 133, 137, 153, 158, 161, 234

continuous probability, 154
decay time, 162, 164
of a distribution, 157
of a probability distribution, 106
of binomial distribution, 144

measurement, 133
median, 87, 133, 158, 161, 236

continuous probability, 154
decay time, 162, 164

micron(µm), 84
minimum, 53, 55
model

derivation of, 186
modeling, 177
Mogilner

Alex, 84
moment, 171

j’th, 139
first, 172
of a distribution, 171
of distribution, 139
of mass, 227
second, 139, 172
zero’th, 172

mortality, 178
age distribution, 167
constant, 178
Gompertz law of, 196
nonconstant, 196

motion
uniform, 63
uniformly accelerated, 63

multiplication
principle, 140

Murray,James D., 101
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net change, 67
Newton’s law, 177
nonlinear

differential equation, 189
normalization, 145, 155

constant, 155, 163
numerical

approach, 29
method, 184

observation, 133
ODE, 177
oscillation, 73
outcome

of experiment, 134

partial fractions, 118, 192, 231
partial sums, 15, 200
PDE, 177
pendulum, 177
perfect square, 117
period, 73
permutation, 142, 237
phenotype, 146
pi(π)

approximation for, 212
definition of, 5

polygon, 3
polynomials, 208
population

growth, 178, 197
sustainable, 195

potential
energy, 188

power
series, 199

Preface, xvii
present value, 75, 76
probability

applications of, 161
continuous, 153, 165
cumulative, 136
density, 154
discrete, 165
discrete, rules of, 135
empirical, 134, 136

symmetric, 160
theoretical, 135

product rule
for derivatives, 126

production, 71
progression

geometric, 20
mathmatical, 19

Pythagorean
theorem, 96
triangle, 121

radioactive
decay, 162

radioactive decay
cumulative, 164

raindrops, 169
random

event, 134
variable, 135
walk, 150

random variable
continuous, 153
discrete, 153

rate
birth, 178
mortality, 178
of change, 67
production, 72
removal, 72

ratio
test, 238

rational
function, 124, 231

rectangle
height of, 30

rectangular strips, 28, 43
recursion relation, 19
removal, 71
replicate, 136
rescale, 145
Riemann

sum, 28–31, 33, 40
rule

chain, 116
rules
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iterated, 23

savings account, 74
scaled

equation, 192
scaling, 192
secant, 230
separation

of variables, 65, 177–179, 182, 189,
197

series
-p, 208
alternating, 240
comparison tests, 239
converges, 200
divergent, 238
diverges, 200, 208
finite geometric, 13
geometric, 10, 13, 200, 209, 239
harmonic, 201, 206, 211, 237, 238
infinite, 14, 199, 200
operations on, 240
Taylor, 199, 209
term by term integration, 210

Sigma
notation, 9

size distribution, 169
sketching

antiderivative, 53
solids

of revolution, 90, 91
solution

curves, 190
of initial value problem, 179
qualitative, 68
quantitative, 68
to ODE, 180

spreadsheet, 23, 29, 190
standard deviation, 138, 172, 173
steady state, 66, 184, 195
step

function, 138, 235
strips

area of, 28
rectangular, 28, 43

substitution, 107, 111

examples, 113
trigonometric, 118, 123

success, 140
sum

geometric, 35
of N cubes, 12
of N integers, 11
of N squares, 12
of square integers, 32
Riemann, 29, 30, 40

summation
index, 9
notation, 9

sums
partial, 15, 200

surface area
cylinder, 6

survival
probability, 168

tangent line, 200
Taylor polynomial, 209
Taylor series, 199, 209

for cos(x), 216
for sin(x), 214
for ex, 213

teeth, 99
temperature, 67
terminal velocity, 180
torque, 226, 227
tree

growth, 68
structure, 18

trial
Bernoulli, 140

triangle
Pythagorean, 121
trigonometric, 120

trifurcate, 18
trigonometric

identities, 118
substitution, 118

unbiased, 134, 136
unbounded

function, 57



Index 249

undefined
function, 58

units, 7

variance, 138, 153, 172
continuous probability, 154

velocity, 62
terminal, 66, 180, 184

volume
cube, 6
cylinder, 7, 90
cylindrical shell, 7
disk, 90
of solids, 81
rectangular box, 6
shell, 90
simple shapes, 6
sphere, 7
spherical shell, 7

zygote, 147


