The Limit Laws

To calculate limits of functions that are arithmetic combinations of functions having known limits, we can use several easy rules.

THEOREM 1—Limit Laws

If L, M, c, and k are real numbers and

\[
\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M,
\]

then

1. **Sum Rule:**
 \[
 \lim_{x \to c} (f(x) + g(x)) = L + M
 \]

2. **Difference Rule:**
 \[
 \lim_{x \to c} (f(x) - g(x)) = L - M
 \]

3. **Constant Multiple Rule:**
 \[
 \lim_{x \to c} (k \cdot f(x)) = k \cdot L
 \]

4. **Product Rule:**
 \[
 \lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M
 \]

5. **Quotient Rule:**
 \[
 \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0
 \]

6. **Power Rule:**
 \[
 \lim_{x \to c} [f(x)]^n = L^n, \quad n \text{ a positive integer}
 \]

7. **Root Rule:**
 \[
 \lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, \quad n \text{ a positive integer}
 \]

(If n is even, we assume that $\lim_{x \to c} f(x) = L > 0$.)

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the next rules say that the limit of a difference is the difference of the limits; the limit of a constant times a function is the constant times the limit of the function; the limit of a product is the product of the limits; the limit of a quotient is the quotient of the limits (provided that the limit of the denominator is not 0); the limit of a positive integer power (or root) of a function is the integer power (or root) of the limit (provided that the root of the limit is a real number).