INSTRUCTIONS: Show all steps in the solution. Use the indicated tests to determine where the given functions are increasing/decreasing, concave up/down, or where the critical points.

1. Determine what the critical points are for the following functions.
 (a) \(y = x^2 + 4x - 1 \)
 (b) \(y = -x^2 + 7 \)
 (c) \(y = 2x^3 - 3x^2 - 12x + 1 \)
 (d) \(f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - 1 \)
 (e) \(f(x) = x^4 - x^3 \)
 (f) \(g(x) = x^6 - x^4 \)
 (g) \(h(x) = \sin(x) \)
 (h) \(y = e^x \)
 (i) \(y = -\cos(x) - \sin(x) \)
 (j) \(y = \frac{(x + 1)^2}{1 + x^2} \)

2. Determine the intervals on which the following functions are increasing and decreasing.
 (a) \(y = x^2 + 3x - 1 \)
 (b) \(y = 4x - 5 \)
 (c) \(y = \frac{1}{3}x^3 - 5x^2 + 24x \)
 (d) \(y = x^4 + \frac{4}{3}x^3 - 12x^2 \)
 (e) \(f(x) = x^3 + x - 2 \)
 (f) \(g(x) = \sqrt{x - 3} \)
 (g) \(h(x) = \frac{1}{x^2 + 1} \)

3. Use the First Derivative Test to classify the critical points of the following functions.
 (a) \(y = -3x^2 \)
 (b) \(y = x^3 \)
 (c) \(y = x^3 - 3x^2 + 3x - 1 \)
 (d) \(y = x^3 - 3x^2 \)
 (e) \(y = 4x - 5x^{4/5} \)
 (f) \(y = \frac{x^2}{4 - x^2} \)
 (g) \(y = \sqrt{25 - x^2} \)

4. Use the Second Derivative Test to classify the critical points of the following functions.
 (a) \(y = x^2 + x + 1 \)
 (b) \(f(x) = x^3 - \frac{20x^3}{3} \)
 (c) \(y = x^4 - 4x^3 + 10 \)
 (d) \(y = e^{x^2} \)
 (e) \(y = e^{-x^2} \)