The forms of the graphs in Figure 4.2 are typical of the graphs of the exponential functions \(y = a^{-x} \) and \(y = a^x \), where \(a > 1 \). The basic characteristics of such graphs are summarized in Figure 4.3.

Graph of \(y = a^{-x} \)
- Domain: \((-\infty, \infty)\)
- Range: \((0, \infty)\)
- Intercept: \((0, 1)\)
- Always decreasing
- \(a^{-x} \to 0 \) as \(x \to \infty \)
- \(a^{-x} \to \infty \) as \(x \to -\infty \)
- Continuous
- One-to-one

Graph of \(y = a^x \)
- Domain: \((-\infty, \infty)\)
- Range: \((0, \infty)\)
- Intercept: \((0, 1)\)
- Always increasing
- \(a^x \to \infty \) as \(x \to \infty \)
- \(a^x \to 0 \) as \(x \to -\infty \)
- Continuous
- One-to-one

Figure 4.3 Characteristics of the Exponential Functions \(y = a^{-x} \) and \(y = a^x \) \((a > 1)\)

Example 4

Graphing an Exponential Function

Sketch the graph of

\[
f(x) = 3^{-x} - 1.
\]

Solution

Begin by creating a table of values, as shown below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(3^2 - 1 = 8)</td>
<td>(3^1 - 1 = 2)</td>
<td>(3^0 - 1 = 0)</td>
<td>(3^{-1} - 1 = -\frac{2}{3})</td>
<td>(3^{-2} - 1 = -\frac{8}{9})</td>
</tr>
</tbody>
</table>

From the limit

\[
\lim_{x \to \infty} (3^{-x} - 1) = \lim_{x \to \infty} 3^{-x} - \lim_{x \to \infty} 1
\]

\[
= \lim_{x \to \infty} \frac{1}{3^x} - \lim_{x \to \infty} 1
\]

\[
= 0 - 1
\]

\[
= -1
\]

We can see that \(y = -1 \) is a horizontal asymptote of the graph. The graph is shown in Figure 4.4.

Try It 4

Complete the table of values for \(f(x) = 2^{-x} + 1 \). Sketch the graph of the function.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
 x & 1 & 2 & 3 \\
 f(x) & \ & \ & \\
\end{array}
\]

Take Another Look

Finding a Pattern

Use a graphing utility to investigate the function \(f(x) = a^x \) for \(0 < a < 1 \), \(a = 1 \), and \(a > 1 \). Discuss the effect that \(a \) has on the shape of the graph.