1. Recall that if X has geometric distribution then
\[P(X = k) = q^k(1 - q), \ k = 0, 1, 2, \ldots \]

(a) Compute $E(X)$.
(b) Compute $\text{var}(X)$.
(c) Compute $E(X^3)$.
(d) In a Bernoulli process, let X denote the number of failures before the first success. Show that X has geometric distribution.
(e) In a Bernoulli process, let T_r denote the waiting time for r successes. Find $E(T_r)$ and $\text{var}(T_r)$. Hint: Let X_k denote the number of failures between the $(k - 1)^{st}$ and k^{th} successes. Show that X_k has geometric distribution and that $T_r = X_1 + X_2 + \cdots + X_r$.

2. Let S_n be a random variable having binomial distribution; that is,
\[P(S_n = k) = \binom{n}{k} p^k(1 - p)^{n-k}, \ k = 0, 1, \ldots, n. \]

In class we proved that
\[P \left(\frac{S_n}{n} \geq p + \varepsilon \right) \leq \exp\left(-\frac{1}{4} n \varepsilon^2 \right), \ \varepsilon > 0. \]

Prove
\[P \left(\frac{S_n}{n} \leq p - \varepsilon \right) \leq \exp\left(-\frac{1}{4} n \varepsilon^2 \right), \ \varepsilon > 0. \]

3. Simulating a perfect coin. Given a biased coin such that the probability of heads is α, we simulate a perfect coin as follows: Throw the biased coin twice. Interpret HT as success and TH as failure; if neither event occurs repeat the throws until a decision is reached. (a) Show that this model leads to Bernoulli trials with $p = 1/2$.
