Math 135A: Homework Assignment #6
The Method of Generating Functions

Let X be a random variable assuming nonnegative integer values. For $0 < s < 1$ define

$$G_X(s) = E(s^X) = \sum_{n=0}^{\infty} s^n P(X = n). \quad (1)$$

G_X is called the generating function of the random variable X. Here $E(\cdot)$ denotes expectation. Similarly, define

$$E_X(s) = \sum_{n=0}^{\infty} \frac{s^n}{n!} P(X = n), \quad (2)$$

the exponential generating function associated to the random variable X.

1. In each of the following cases, compute G_X.

 (a) If X is a Bernoulli random variable with $P(X = 1) = p$ and $P(X = 0) = q = 1 - p$

 (b) If X is geometrically distributed with parameter q, i.e. $P(X = n) = q^n (1 - q)$, $n = 0, 1, 2, \ldots$

 (c) If X is Poisson distributed with parameter λ, i.e.

 $$P(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}.$$

2. If X has generating function G_X, prove that

 $$E(X) = G'(1)$$

 where prime denotes differentiation with respect to s; and, of course, $E(\cdot)$ denotes expectation. Find a formula for $\text{var}(X)$ in terms of G_X and its derivatives.

3. (a) If X and Y are independent random variables, prove

 $$G_{X+Y}(s) = G_X(s) G_Y(s)$$

 (b) Using the above property, find the generating function of

 $$S_n := X_1 + \cdots + X_n$$

 where X_j are independent, identically distributed Bernoulli random variables.
4. (a) Prove: If X_1, X_2, \ldots is a sequence of independent and identically distributed random variables with common generating function G_X, and $N(\geq 0$ is a random variable which is independent of the X_i and has generating function G_N, then

$$S := X_1 + X_2 + \cdots + X_N$$

has generating given by

$$G_S(s) = G_N(G_X(s))$$

(b) A hen lays N eggs, where N is Poisson distributed with parameter λ. Each egg hatches with probability p, independently of all other eggs. Let K be the number of chicks. Then $K = X_1 + \cdots + X_N$. Prove

$$G_K(s) = e^{\lambda p(s-1)}$$

and hence; $E(K) = \lambda p$.

2