Multivariate Gaussian Distribution

The random vector
X =(X1,Xs,...,X,)

is said to have a multivariate Gaussian distribution if the joint distribution
of Xy, Xs,..., X, has density

fx(x, 20, 2p) = o ;et(E)l/Q exp (—% (z—p)'2 o — M)) (1)

where ¥ is a p X p symmetric, positive definite matrix. The notation is as
follows: x is the column vector
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¥~ is the inverse of the matrix ¥ and ¢ denotes matrix transposition. Thus
the quantity appearing in the exponential is a 1 X p matrix times a p X p

matrix times a p x 1 matrix; and hence, a 1 x 1 matrix, i.e. a real number.
Explicitly
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where X} is the (k,£)th matrix element of X~!. The constants in front of
the exponential are normalization constants; that is, if (1) is integrated over
RP then the result equals 1. The vector u is the mean vector since

E(X) =pn



as an exercise in integration shows. It is convenient for theoretical purposes
to center X; that is, if F(X) # 0, the replace X by X — p. From now on we
assume E(X) = 0 in which case the multivariate Gaussian (1) becomes
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fx(x1,29,...,2,) = )P det () 172 exp (_ﬁth :v) (2)

Now the matrix X X" is a p X p matrix with elements X;X;. (Note X'X is
1x1but XX"is pxp.). One can show (by evaluating integrals) that (recall
we are setting u = 0)

E(XX") =%,
that is, F(X,;X;) = ¥;;. The matrix ¥ is called the covariance matriz.

Important Remark: If the covariance matrix ¥ is diagonal, then the den-
sity fx factors and the random variables are independent.

The p = 2 case

We examine the case p = 2 in more detail. That is we have a random vector
X = (X1, Xs) whose distribution is given by (2) for p = 2. In this case it is
customary to parametrize Y (for reasons that will become clear) as follows:
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det ¥ = olo3(1 — p?)

Since

and det 3 > 0 (recall X is positive definite), we must have
—1<p<l.

The coeflicient p is called the correlation coefficient since when it equals 0 the
random variables X; and X5 are independent. A calculation of the inverse

of X gives
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Substituting this into (2) gives the bivariate normal density
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Using this it is easy to show that the marginal densities are gaussians

Recall the integral
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We now calculate £(X;|X3), the expected value of X; given X5. To do this
we first find the conditional density f(x;|zs). It is, by definition,
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o~ 73/(203) (5)

fx,(x2) = /_OO Ix (1, x2) dy =

 fx(@y, @)
f@rfwa) = fx,(22)

where fx is given by (3) and fy, by (5). Carrying out the algebra we see
the conditional density is of the form

f(xl |IL‘2) — de—am%—l—belxg—cx%

where
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Then
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This last integral can be computed using (4) with the result that
01
E(Xi|X) = (0_2> pXa. (6)
Remarks:

1. If p = 0 then X; and X, are independent and E(X;) = E(X;|X3) = 0.

2. If p > 0 then the expected value of X; given X5 is positively correlated
with X5. (Similarly, it is negatively correlated when p < 0.)

3. The conditional expectation is linear in Xs.



