Multivariate Gaussian Distribution

The random vector

$$
X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)
$$

is said to have a multivariate Gaussian distribution if the joint distribution of $X_{1}, X_{2}, \ldots, X_{p}$ has density

$$
\begin{equation*}
f_{X}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\frac{1}{(2 \pi)^{p / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{t} \Sigma^{-1}(x-\mu)\right) \tag{1}
\end{equation*}
$$

where Σ is a $p \times p$ symmetric, positive definite matrix. The notation is as follows: x is the column vector

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right)
$$

μ is the column vector

$$
\mu=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{p}
\end{array}\right)
$$

Σ^{-1} is the inverse of the matrix Σ and ${ }^{t}$ denotes matrix transposition. Thus the quantity appearing in the exponential is a $1 \times p$ matrix times a $p \times p$ matrix times a $p \times 1$ matrix; and hence, a 1×1 matrix, i.e. a real number. Explicitly

$$
(x-\mu)^{t} \Sigma^{-1}(x-\mu)=\sum_{k, \ell=1}^{p}\left(x_{k}-\mu_{k}\right) \Sigma_{k \ell}^{-1}\left(x_{\ell}-\mu_{\ell}\right)
$$

where $\Sigma_{k \ell}^{-1}$ is the (k, ℓ) th matrix element of Σ^{-1}. The constants in front of the exponential are normalization constants; that is, if (1) is integrated over \mathbb{R}^{p} then the result equals 1 . The vector μ is the mean vector since

$$
E(X)=\mu
$$

as an exercise in integration shows. It is convenient for theoretical purposes to center X; that is, if $E(X) \neq 0$, the replace X by $X-\mu$. From now on we assume $E(X)=0$ in which case the multivariate Gaussian (1) becomes

$$
\begin{equation*}
f_{X}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\frac{1}{(2 \pi)^{p / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2} x^{t} \Sigma^{-1} x\right) \tag{2}
\end{equation*}
$$

Now the matrix $X X^{t}$ is a $p \times p$ matrix with elements $X_{i} X_{j}$. (Note $X^{t} X$ is 1×1 but $X X^{t}$ is $p \times p$.). One can show (by evaluating integrals) that (recall we are setting $\mu=0$)

$$
E\left(X X^{t}\right)=\Sigma
$$

that is, $E\left(X_{i} X_{j}\right)=\Sigma_{i j}$. The matrix Σ is called the covariance matrix.
Important Remark: If the covariance matrix Σ is diagonal, then the density f_{X} factors and the random variables are independent.

The $\mathrm{p}=2$ case

We examine the case $p=2$ in more detail. That is we have a random vector $X=\left(X_{1}, X_{2}\right)$ whose distribution is given by (2) for $p=2$. In this case it is customary to parametrize Σ (for reasons that will become clear) as follows:

$$
\Sigma=\left(\begin{array}{ll}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

Since

$$
\operatorname{det} \Sigma=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

and $\operatorname{det} \Sigma>0$ (recall Σ is positive definite), we must have

$$
-1<\rho<1
$$

The coefficient ρ is called the correlation coefficient since when it equals 0 the random variables X_{1} and X_{2} are independent. A calculation of the inverse of Σ gives

$$
\Sigma^{-1}=\left(\begin{array}{cc}
\frac{1}{\sigma_{1}^{2}\left(1-\rho^{2}\right)} & -\frac{\rho}{\sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)} \\
-\frac{1}{\sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)} & \frac{1}{\sigma_{2}^{2}\left(1-\rho^{2}\right)}
\end{array}\right) .
$$

Substituting this into (2) gives the bivariate normal density

$$
\begin{equation*}
f_{X}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x_{1}}{\sigma_{1}^{2}}-2 \rho \frac{x_{1} x_{2}}{\sigma_{1} \sigma_{2}}+\frac{x_{2}^{2}}{\sigma_{2}^{2}}\right)\right) \tag{3}
\end{equation*}
$$

Recall the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{e}^{-a x^{2}+2 b x} d x=\sqrt{\frac{\pi}{a}} \mathrm{e}^{b^{2} / a}, a>0 . \tag{4}
\end{equation*}
$$

Using this it is easy to show that the marginal densities are gaussians

$$
\begin{align*}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{2}=\frac{1}{\sqrt{2 \pi} \sigma_{1}} \mathrm{e}^{-x_{1}^{2} /\left(2 \sigma_{1}^{2}\right)}, \\
& f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{1}=\frac{1}{\sqrt{2 \pi} \sigma_{2}} \mathrm{e}^{-x_{2}^{2} /\left(2 \sigma_{2}^{2}\right)} . \tag{5}
\end{align*}
$$

We now calculate $E\left(X_{1} \mid X_{2}\right)$, the expected value of X_{1} given X_{2}. To do this we first find the conditional density $f\left(x_{1} \mid x_{2}\right)$. It is, by definition,

$$
f\left(x_{1} \mid x_{2}\right)=\frac{f_{X}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

where f_{X} is given by (3) and $f_{X_{2}}$ by (5). Carrying out the algebra we see the conditional density is of the form

$$
f\left(x_{1} \mid x_{2}\right)=d \mathrm{e}^{-a x_{1}^{2}+2 b x_{1} x_{2}-c x_{2}^{2}}
$$

where

$$
\begin{aligned}
a & =\frac{1}{2\left(1-\rho^{2}\right) \sigma_{1}^{2}} \\
b & =\frac{\rho}{2\left(1-\rho^{2}\right) \sigma_{1} \sigma_{2}} \\
c & =\frac{\rho^{2}}{2\left(1-\rho^{2}\right) \sigma_{2}^{2}} \\
d & =\frac{1}{\sqrt{2 \pi\left(1-\rho^{2}\right)} \sigma_{1}}
\end{aligned}
$$

Then

$$
E\left(X_{1} \mid X_{2}\right)=\int_{-\infty}^{\infty} x_{1} f\left(x_{1} \mid x_{2}\right) d x_{1}
$$

This last integral can be computed using (4) with the result that

$$
\begin{equation*}
E\left(X_{1} \mid X_{2}\right)=\left(\frac{\sigma_{1}}{\sigma_{2}}\right) \rho X_{2} . \tag{6}
\end{equation*}
$$

Remarks:

1. If $\rho=0$ then X_{1} and X_{2} are independent and $E\left(X_{1}\right)=E\left(X_{1} \mid X_{2}\right)=0$.
2. If $\rho>0$ then the expected value of X_{1} given X_{2} is positively correlated with X_{2}. (Similarly, it is negatively correlated when $\rho<0$.)
3. The conditional expectation is linear in X_{2}.
