
Multivariate Gaussian Distribution

The random vector
X = (X1, X2, . . . , Xp)

is said to have a multivariate Gaussian distribution if the joint distribution
of X1, X2, . . . , Xp has density

fX(x1, x2, . . . , xp) =
1

(2π)p/2 det(Σ)1/2
exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
(1)

where Σ is a p × p symmetric, positive definite matrix. The notation is as
follows: x is the column vector

x =


x1

x2
...

xp

 ,

µ is the column vector

µ =


µ1

µ2
...

µp

 ,

Σ−1 is the inverse of the matrix Σ and t denotes matrix transposition. Thus
the quantity appearing in the exponential is a 1 × p matrix times a p × p
matrix times a p× 1 matrix; and hence, a 1× 1 matrix, i.e. a real number.
Explicitly

(x− µ)tΣ−1(x− µ) =

p∑
k,`=1

(xk − µk)Σ
−1
k` (x` − µ`)

where Σ−1
k` is the (k, `)th matrix element of Σ−1. The constants in front of

the exponential are normalization constants; that is, if (1) is integrated over
Rp then the result equals 1. The vector µ is the mean vector since

E(X) = µ
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as an exercise in integration shows. It is convenient for theoretical purposes
to center X; that is, if E(X) 6= 0, the replace X by X − µ. From now on we
assume E(X) = 0 in which case the multivariate Gaussian (1) becomes

fX(x1, x2, . . . , xp) =
1

(2π)p/2 det(Σ)1/2
exp

(
−1

2
xtΣ−1x

)
(2)

Now the matrix XX t is a p × p matrix with elements XiXj. (Note X tX is
1× 1 but XX t is p× p.). One can show (by evaluating integrals) that (recall
we are setting µ = 0)

E(XX t) = Σ,

that is, E(XiXj) = Σij. The matrix Σ is called the covariance matrix.

Important Remark: If the covariance matrix Σ is diagonal, then the den-
sity fX factors and the random variables are independent.

The p = 2 case

We examine the case p = 2 in more detail. That is we have a random vector
X = (X1, X2) whose distribution is given by (2) for p = 2. In this case it is
customary to parametrize Σ (for reasons that will become clear) as follows:

Σ =

(
σ2

1 ρ σ1σ2

ρ σ1σ2 σ2
2

)
.

Since
det Σ = σ2

1σ
2
2(1− ρ2)

and det Σ > 0 (recall Σ is positive definite), we must have

−1 < ρ < 1.

The coefficient ρ is called the correlation coefficient since when it equals 0 the
random variables X1 and X2 are independent. A calculation of the inverse
of Σ gives

Σ−1 =

(
1

σ2
1(1−ρ2)

− ρ
σ1σ2(1−ρ2)

− ρ
σ1σ2(1−ρ2)

1
σ2
2(1−ρ2)

)
.
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Substituting this into (2) gives the bivariate normal density

fX(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

(
x1

σ2
1

− 2ρ
x1x2

σ1σ2

+
x2

2

σ2
2

))
(3)

Recall the integral ∫ ∞

−∞
e−ax2+2bx dx =

√
π

a
eb2/a, a > 0. (4)

Using this it is easy to show that the marginal densities are gaussians

fX1(x1) =

∫ ∞

−∞
fX(x1, x2) dx2 =

1√
2π σ1

e−x2
1/(2σ2

1) ,

fX2(x2) =

∫ ∞

−∞
fX(x1, x2) dx1 =

1√
2π σ2

e−x2
2/(2σ2

2) . (5)

We now calculate E(X1|X2), the expected value of X1 given X2. To do this
we first find the conditional density f(x1|x2). It is, by definition,

f(x1|x2) =
fX(x1, x2)

fX2(x2)

where fX is given by (3) and fX2 by (5). Carrying out the algebra we see
the conditional density is of the form

f(x1|x2) = d e−ax2
1+2bx1x2−cx2

2

where

a =
1

2(1− ρ2)σ2
1

b =
ρ

2(1− ρ2)σ1σ2

c =
ρ2

2(1− ρ2)σ2
2

d =
1√

2π(1− ρ2) σ1
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Then

E(X1|X2) =

∫ ∞

−∞
x1f(x1|x2) dx1.

This last integral can be computed using (4) with the result that

E(X1|X2) = (
σ1

σ2

) ρX2. (6)

Remarks:

1. If ρ = 0 then X1 and X2 are independent and E(X1) = E(X1|X2) = 0.

2. If ρ > 0 then the expected value of X1 given X2 is positively correlated
with X2. (Similarly, it is negatively correlated when ρ < 0.)

3. The conditional expectation is linear in X2.
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