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Euler-Maclaurin Summation Formula
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Suppose that f and its derivative are continuous functions on the closed interval [a, b]. Let

ψ(x) = {x} −
1

2
,

where {x} = x− [x] is the fractional part of x.

Lemma 1: If a < b and a, b ∈ Z, then

∑

a<n≤b

f(n) =

∫ b

a

(f(x) + ψ(x)f ′(x)) dx+
1

2
(f(b) − f(a)) .

Proof: The proof proceeds along the lines of the Abel partial summation formula.
∑

a<n≤b

f(n) = (b − a− 1)f(b) + f(a) −
∑

a≤n≤b−1

(n− a− 1) (f(n+ 1) − f(n))

= (b − a− 1)f(b) + f(a) −
∑

a≤n≤b−1

(n− a− 1)

∫ n+1

n

f ′(t) dt

= (b − a− 1)f(b) + f(a) −
∑

a≤n≤b−1

∫ n+1

n

([t] − a− 1) f ′(t) dt

= (b − a− 1)f(b) + f(a) + (a+ 1)

∫ b

a

f ′(t) dt−

∫ b

a

[t]f ′(t) dt

= bf(b) − af(a) −

∫ b

a

(t− {t})f ′(t) dt

=

∫ b

a

f(t) dt+

∫ b

a

{t}f ′(t) dt

=

∫ b

a

f(t) dt+

∫ b

a

(

{t} −
1

2

)

f ′(t) dt+
1

2
(f(b) − f(a))

=

∫ b

a

(f(t) + ψ(t)f ′(t)) dt+
1

2
(f(b) − f(a)).

We define Bernoulli polynomials by the following three properties2

B0(x) = 1, (1)

B′
k(x) = kBk−1(x), k = 1, 2, . . . , (2)

∫ 1

0

Bk(x) dx = 0, k = 1, 2, . . . . (3)

To determine the polynomials we introduce a generating function

F (t, x) =

∞
∑

k=0

Bk(x)
tk

k!
.

1These notes follow Analytic Number Theory by H. Iwaniec & E. Kowalski.
2Property (2) defines Bk , k ≥ 1 recursively up to a constant. The constant is fixed by property (3).
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Observe

∂F (t, x)

∂x
=

∑

k≥0

B′
k(x)

tk

k!
=

∑

k≥1

kBk−1(x)
tk

k!
= t

∑

k≥1

Bk−1(x)
tk−1

(k − 1)!
= tF (t, x).

Thus
F (t, x) = C(t)etx (4)

where C is some function of t. Now by the third defining property of Bk(x),

∫ 1

0

F (t, x) dx = 1.

Integrating both sides of (4) with respect to x over the interval [0, 1] then implies

C(t) =
t

et − 1
,

and hence;
∑

k≥0

Bk(x)
tk

k!
=

tetx

et − 1
.

Using this generating function we can find the first few Bernoulli polynomials:

B0(x) = 1,

B1(x) = x−
1

2
,

B2(x) = x2 − x+
1

6
,

B3(x) = x3 −
3

2
x2 +

1

2
x,

B4(x) = x4 − 2x3 + x2 −
1

30
,

B5(x) = x5 −
5

2
x4 +

5

3
x3 −

1

6
x,

B6(x) = x6 − 3x5 +
5

2
x4 −

1

2
x2 +

1

42
.

The Bernoulli numbers are defined by
Bn = Bn(0),

that is, the value of the Bernoulli polynomial at x = 0. The generating function for Bernoulli numbers
is clearly

F (t) :=
∑

n≥0

Bk

tk

k!
=

t

et − 1
.

An easy calculation shows F (−t) = F (t) + t; and hence, F (−t) − F (t) = t. This last equality implies
that B2k+1 = 0 for k = 1, 2, . . ..

Define
ψk(x) = Bk({x}) (5)

where {x} is the fractional part of x. Observe that ψ(x) = ψ1(x) = {x}− 1
2 which appears in Lemma 1.

Since {x} is periodic with period 1, so too are the functions ψk(x) and they have generating function

∑

k≥0

ψk(x)
tk

k!
=
tet {x}

et − 1
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We now assume that f is twice continuously differentiable in [a, b]. We integrate by parts the term
involving ψ1 in Lemma 1. First look at

∫ a+1

a

f ′(x)ψ1(x) dx =

∫ 1

0

f ′(t+ a)ψ1(t+ a) dt =

∫ 1

0

f ′(t+ a)ψ1(t) dt (6)

since ψ1 is 1-periodic. In the interval [0, 1], ψ1(t) = B1(t). Thus

∫ x

0

ψ1(t) dt =
1

2
(ψ2(x) −B2)

where we used defining property (2) of the Bernoulli polynomials. Note that
∫ 1

0 ψ1(x) dx = 0 since ψ2 is
1-periodic.

Integrating the last integral in (6) by parts gives

∫ a+1

a

f ′(x)ψ1(x) dx = f ′(y + a)

∫ y

0

ψ1(t) dt

∣

∣

∣

∣

y=1

y=0

−

∫ 1

0

f ′′(y + a)

∫ y

0

ψ1(t) dt

= −

∫ 1

0

f ′′(y + a)
1

2
(ψ2(y) −B2)

= −
1

2

∫ 1

0

f ′′(y + a)ψ2(y) dy +
1

2
B2 (f ′(a+ 1) − f ′(a))

= −
1

2

∫ a+1

a

f ′′(x)ψ2(x) dx +
1

2
B2 (f ′(a+ 1) − f ′(a))

since ψ2 is 1-periodic. One notes that the above formula is valid over any interval [a + n − 1, a + n];
namely,

∫ a+n

a+n−1

f ′(x)ψ1(x) dx = −
1

2

∫ a+n

a+n−1

f ′′(x)ψ2(x) dx+
1

2
B2 (f ′(a+ n) − f ′(a+ n− 1)) , n = 0, 1, . . . , b−a.

Summing over n we obtain

∫ b

a

f ′(x)ψ1(x) dx = −
1

2

∫ b

a

f ′′(x)ψ2(x) dx +
1

2
B2 (f ′(b) − f ′(a)) .

We have proved

Lemma 2: Let f be twice continuously differentiable on [a, b] where a < b and a, b ∈ Z. Then

∑

a<n≤b

f(n) =

∫ b

a

{

f(x) −
1

2
ψ2(x)f

′′(x)

}

dx+

2
∑

ℓ=1

(−1)ℓ

ℓ!

(

f ℓ−1(b) − f ℓ−1(a)
)

Bℓ.

(Recall B1 = − 1
2 .)

If one continues to integrate by parts one obtains the

Theorem (Euler-Maclaurin formula): Suppose f is k-times continuously differentiable on the
interval [a, b] with a < b , a, b ∈ Z. Then

∑

a<n≤b

f(n) =

∫ b

a

{

f(x) −
(−1)k

k!
ψk(x)f (k)(x)

}

dx+

k
∑

ℓ=1

(−1)ℓ

ℓ!

(

f (ℓ−1)(b) − f (ℓ−1)(a)
)

Bℓ.
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Suppose f and all its derivatives go to zero as x → ∞. Then we obtain by letting b → ∞ (and adding
f(a) to both sides)

∞
∑

n=a

f(n) =

∫ ∞

a

f(x) dx+
1

2
f(a) −

k
∑

ℓ=2

(−1)ℓ

ℓ!
f (ℓ−1)(a)Bℓ −

(−1)k

k!

∫ ∞

a

f (k)(x)ψk(x) dx (7)

Application of summation formula to the Riemann zeta-function

Let s = σ + it where σ is the real part of s and t is the imaginary part of s. Let σ > 1 and define the
Riemann zeta-function

ζ(s) =

∞
∑

n=1

1

ns
, ℜ(s) > 1. (8)

The series converges absolutely and uniformly in the half-plane σ = ℜ(s) ≥ 1 + ε: First observe that

|n−s| = |n−σ−it| = n−σ ≤ n−1−ε

Now apply the Weiestrass M-test to the series

∞
∑

n=1

1

n1+ε

which is convergent for all ε > 0. The series (8) clearly diverges at s = 1.

We now apply (7) with k = 1 to (8). Choose f(x) = 1/xs. For ℜ(s) > 1,

∫ ∞

1

dx

xs
=

1

s− 1
.

The summation formula then becomes

ζ(s) =
1

s− 1
+

1

2
− s

∫ ∞

1

1

xs+1
ψ1(x) dx.

This is derived under the assumption that σ > 1. Observe that if we write

ζ(s) −
1

s− 1
=

1

2
− s

∫ ∞

1

1

xs+1
ψ1(x) dx

then the right-hand side of the above equation defines a holomorphic function for σ > 0 since the integral

|

∫ ∞

1

1

xs+1
ψ1(x) dx| ≤

∫ ∞

1

1

x1+σ
dx <∞ (9)

(We used |ψ1(x)| ≤ 1/2.) We now use the right-hand side (9) to define the left-hand side of (9) for
0 < σ ≤ 1. The two side agree for σ > 1. This is an example of analytic continuation. We have made
sense out of the Riemann zeta-function for 0 < ℜ(s). We see that it has a simple pole at s = 1 and is
holomorphic for all other points ℜ(s) > 0.

If we apply (7) to (8) for arbitrary positive integer k we obtain after some elementary computations

ζ(s) =
1

s− 1
+

1

2
+

k
∑

ℓ=2

Bℓ

ℓ!
s(s+ 1) · · · (s+ ℓ− 2) −

(−1)k

k!

∫ ∞

1

s(s+ 1) · · · (s+ k − 1)x−s−kψk(x) dx
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Since ψk is 1-periodic and equal to the polynomial Bk(x) on [0, 1), ψk(x) is a bounded function on all of
R. Thus the integral on the right-hand side is convergent for all σ+k > 1 and thus defines a holomorphic
function for σ > 1 − k. By repeating the above argument we see that we have analytically continued
the Riemann zeta-function to the right-half plane σ > 1 − k, for all k = 1, 2, 3, . . .. For example, it now
makes sense to ask for the value ζ′(−1).3 We summarize our findings in

Theorem: The Riemann zeta-function ζ(s) defined by (8) for ℜ(s) > 1 can be analytically continued
to C−{1} where it is holomorphic and at s = 1, ζ(s) has a simple pole.

3Before we analytically continued ζ(s) it clearly makes no sense in (8) to ask for the derivative at s = −1 since the
series only converges for ℜ(s) > 1. It is a fact that ζ′(−1) ≈ −0.1654211437 . . ..
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