Euler-Maclaurin Summation Formula ${ }^{1}$

Suppose that f and its derivative are continuous functions on the closed interval $[a, b]$. Let

$$
\psi(x)=\{x\}-\frac{1}{2}
$$

where $\{x\}=x-[x]$ is the fractional part of x.
Lemma 1: If $a<b$ and $a, b \in \mathbb{Z}$, then

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b}\left(f(x)+\psi(x) f^{\prime}(x)\right) d x+\frac{1}{2}(f(b)-f(a))
$$

Proof: The proof proceeds along the lines of the Abel partial summation formula.

$$
\begin{aligned}
\sum_{a<n \leq b} f(n) & =(b-a-1) f(b)+f(a)-\sum_{a \leq n \leq b-1}(n-a-1)(f(n+1)-f(n)) \\
& =(b-a-1) f(b)+f(a)-\sum_{a \leq n \leq b-1}(n-a-1) \int_{n}^{n+1} f^{\prime}(t) d t \\
& =(b-a-1) f(b)+f(a)-\sum_{a \leq n \leq b-1} \int_{n}^{n+1}([t]-a-1) f^{\prime}(t) d t \\
& =(b-a-1) f(b)+f(a)+(a+1) \int_{a}^{b} f^{\prime}(t) d t-\int_{a}^{b}[t] f^{\prime}(t) d t \\
& =b f(b)-a f(a)-\int_{a}^{b}(t-\{t\}) f^{\prime}(t) d t \\
& =\int_{a}^{b} f(t) d t+\int_{a}^{b}\{t\} f^{\prime}(t) d t \\
& =\int_{a}^{b} f(t) d t+\int_{a}^{b}\left(\{t\}-\frac{1}{2}\right) f^{\prime}(t) d t+\frac{1}{2}(f(b)-f(a)) \\
& =\int_{a}^{b}\left(f(t)+\psi(t) f^{\prime}(t)\right) d t+\frac{1}{2}(f(b)-f(a)) .
\end{aligned}
$$

We define Bernoulli polynomials by the following three properties ${ }^{2}$

$$
\begin{align*}
B_{0}(x) & =1 \tag{1}\\
B_{k}^{\prime}(x) & =k B_{k-1}(x), k=1,2, \ldots \tag{2}\\
\int_{0}^{1} B_{k}(x) d x & =0, k=1,2, \ldots \tag{3}
\end{align*}
$$

To determine the polynomials we introduce a generating function

$$
F(t, x)=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}
$$

[^0]Observe

$$
\frac{\partial F(t, x)}{\partial x}=\sum_{k \geq 0} B_{k}^{\prime}(x) \frac{t^{k}}{k!}=\sum_{k \geq 1} k B_{k-1}(x) \frac{t^{k}}{k!}=t \sum_{k \geq 1} B_{k-1}(x) \frac{t^{k-1}}{(k-1)!}=t F(t, x)
$$

Thus

$$
\begin{equation*}
F(t, x)=C(t) e^{t x} \tag{4}
\end{equation*}
$$

where C is some function of t. Now by the third defining property of $B_{k}(x)$,

$$
\int_{0}^{1} F(t, x) d x=1
$$

Integrating both sides of (4) with respect to x over the interval $[0,1]$ then implies

$$
C(t)=\frac{t}{e^{t}-1}
$$

and hence;

$$
\sum_{k \geq 0} B_{k}(x) \frac{t^{k}}{k!}=\frac{t e^{t x}}{e^{t}-1}
$$

Using this generating function we can find the first few Bernoulli polynomials:

$$
\begin{aligned}
B_{0}(x) & =1 \\
B_{1}(x) & =x-\frac{1}{2} \\
B_{2}(x) & =x^{2}-x+\frac{1}{6} \\
B_{3}(x) & =x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x \\
B_{4}(x) & =x^{4}-2 x^{3}+x^{2}-\frac{1}{30} \\
B_{5}(x) & =x^{5}-\frac{5}{2} x^{4}+\frac{5}{3} x^{3}-\frac{1}{6} x, \\
B_{6}(x) & =x^{6}-3 x^{5}+\frac{5}{2} x^{4}-\frac{1}{2} x^{2}+\frac{1}{42} .
\end{aligned}
$$

The Bernoulli numbers are defined by

$$
B_{n}=B_{n}(0)
$$

that is, the value of the Bernoulli polynomial at $x=0$. The generating function for Bernoulli numbers is clearly

$$
F(t):=\sum_{n \geq 0} B_{k} \frac{t^{k}}{k!}=\frac{t}{e^{t}-1}
$$

An easy calculation shows $F(-t)=F(t)+t$; and hence, $F(-t)-F(t)=t$. This last equality implies that $B_{2 k+1}=0$ for $k=1,2, \ldots$.

Define

$$
\begin{equation*}
\psi_{k}(x)=B_{k}(\{x\}) \tag{5}
\end{equation*}
$$

where $\{x\}$ is the fractional part of x. Observe that $\psi(x)=\psi_{1}(x)=\{x\}-\frac{1}{2}$ which appears in Lemma 1. Since $\{x\}$ is periodic with period 1 , so too are the functions $\psi_{k}(x)$ and they have generating function

$$
\sum_{k \geq 0} \psi_{k}(x) \frac{t^{k}}{k!}=\frac{t e^{t\{x\}}}{e^{t}-1}
$$

We now assume that f is twice continuously differentiable in $[a, b]$. We integrate by parts the term involving ψ_{1} in Lemma 1. First look at

$$
\begin{equation*}
\int_{a}^{a+1} f^{\prime}(x) \psi_{1}(x) d x=\int_{0}^{1} f^{\prime}(t+a) \psi_{1}(t+a) d t=\int_{0}^{1} f^{\prime}(t+a) \psi_{1}(t) d t \tag{6}
\end{equation*}
$$

since ψ_{1} is 1-periodic. In the interval $[0,1], \psi_{1}(t)=B_{1}(t)$. Thus

$$
\int_{0}^{x} \psi_{1}(t) d t=\frac{1}{2}\left(\psi_{2}(x)-B_{2}\right)
$$

where we used defining property (2) of the Bernoulli polynomials. Note that $\int_{0}^{1} \psi_{1}(x) d x=0$ since ψ_{2} is 1-periodic.

Integrating the last integral in (6) by parts gives

$$
\begin{aligned}
\int_{a}^{a+1} f^{\prime}(x) \psi_{1}(x) d x & =\left.f^{\prime}(y+a) \int_{0}^{y} \psi_{1}(t) d t\right|_{y=0} ^{y=1}-\int_{0}^{1} f^{\prime \prime}(y+a) \int_{0}^{y} \psi_{1}(t) d t \\
& =-\int_{0}^{1} f^{\prime \prime}(y+a) \frac{1}{2}\left(\psi_{2}(y)-B_{2}\right) \\
& =-\frac{1}{2} \int_{0}^{1} f^{\prime \prime}(y+a) \psi_{2}(y) d y+\frac{1}{2} B_{2}\left(f^{\prime}(a+1)-f^{\prime}(a)\right) \\
& =-\frac{1}{2} \int_{a}^{a+1} f^{\prime \prime}(x) \psi_{2}(x) d x+\frac{1}{2} B_{2}\left(f^{\prime}(a+1)-f^{\prime}(a)\right)
\end{aligned}
$$

since ψ_{2} is 1-periodic. One notes that the above formula is valid over any interval $[a+n-1, a+n]$; namely,

$$
\int_{a+n-1}^{a+n} f^{\prime}(x) \psi_{1}(x) d x=-\frac{1}{2} \int_{a+n-1}^{a+n} f^{\prime \prime}(x) \psi_{2}(x) d x+\frac{1}{2} B_{2}\left(f^{\prime}(a+n)-f^{\prime}(a+n-1)\right), n=0,1, \ldots, b-a
$$

Summing over n we obtain

$$
\int_{a}^{b} f^{\prime}(x) \psi_{1}(x) d x=-\frac{1}{2} \int_{a}^{b} f^{\prime \prime}(x) \psi_{2}(x) d x+\frac{1}{2} B_{2}\left(f^{\prime}(b)-f^{\prime}(a)\right) .
$$

We have proved
Lemma 2: Let f be twice continuously differentiable on $[a, b]$ where $a<b$ and $a, b \in \mathbb{Z}$. Then

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b}\left\{f(x)-\frac{1}{2} \psi_{2}(x) f^{\prime \prime}(x)\right\} d x+\sum_{\ell=1}^{2} \frac{(-1)^{\ell}}{\ell!}\left(f^{\ell-1}(b)-f^{\ell-1}(a)\right) B_{\ell}
$$

$\left(\right.$ Recall $\left.B_{1}=-\frac{1}{2}.\right)$
If one continues to integrate by parts one obtains the

Theorem (Euler-Maclaurin formula): Suppose f is k-times continuously differentiable on the interval $[a, b]$ with $a<b, a, b \in \mathbb{Z}$. Then

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b}\left\{f(x)-\frac{(-1)^{k}}{k!} \psi_{k}(x) f^{(k)}(x)\right\} d x+\sum_{\ell=1}^{k} \frac{(-1)^{\ell}}{\ell!}\left(f^{(\ell-1)}(b)-f^{(\ell-1)}(a)\right) B_{\ell}
$$

Suppose f and all its derivatives go to zero as $x \rightarrow \infty$. Then we obtain by letting $b \rightarrow \infty$ (and adding $f(a)$ to both sides)

$$
\begin{equation*}
\sum_{n=a}^{\infty} f(n)=\int_{a}^{\infty} f(x) d x+\frac{1}{2} f(a)-\sum_{\ell=2}^{k} \frac{(-1)^{\ell}}{\ell!} f^{(\ell-1)}(a) B_{\ell}-\frac{(-1)^{k}}{k!} \int_{a}^{\infty} f^{(k)}(x) \psi_{k}(x) d x \tag{7}
\end{equation*}
$$

Application of summation formula to the Riemann zeta-function

Let $s=\sigma+i t$ where σ is the real part of s and t is the imaginary part of s. Let $\sigma>1$ and define the Riemann zeta-function

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \Re(s)>1 \tag{8}
\end{equation*}
$$

The series converges absolutely and uniformly in the half-plane $\sigma=\Re(s) \geq 1+\varepsilon$: First observe that

$$
\left|n^{-s}\right|=\left|n^{-\sigma-i t}\right|=n^{-\sigma} \leq n^{-1-\varepsilon}
$$

Now apply the Weiestrass M-test to the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}}
$$

which is convergent for all $\varepsilon>0$. The series (8) clearly diverges at $s=1$.

We now apply (7) with $k=1$ to (8). Choose $f(x)=1 / x^{s}$. For $\Re(s)>1$,

$$
\int_{1}^{\infty} \frac{d x}{x^{s}}=\frac{1}{s-1}
$$

The summation formula then becomes

$$
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}-s \int_{1}^{\infty} \frac{1}{x^{s+1}} \psi_{1}(x) d x
$$

This is derived under the assumption that $\sigma>1$. Observe that if we write

$$
\zeta(s)-\frac{1}{s-1}=\frac{1}{2}-s \int_{1}^{\infty} \frac{1}{x^{s+1}} \psi_{1}(x) d x
$$

then the right-hand side of the above equation defines a holomorphic function for $\sigma>0$ since the integral

$$
\begin{equation*}
\left|\int_{1}^{\infty} \frac{1}{x^{s+1}} \psi_{1}(x) d x\right| \leq \int_{1}^{\infty} \frac{1}{x^{1+\sigma}} d x<\infty \tag{9}
\end{equation*}
$$

(We used $\left|\psi_{1}(x)\right| \leq 1 / 2$.) We now use the right-hand side (9) to define the left-hand side of (9) for $0<\sigma \leq 1$. The two side agree for $\sigma>1$. This is an example of analytic continuation. We have made sense out of the Riemann zeta-function for $0<\Re(s)$. We see that it has a simple pole at $s=1$ and is holomorphic for all other points $\Re(s)>0$.

If we apply (7) to (8) for arbitrary positive integer k we obtain after some elementary computations

$$
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}+\sum_{\ell=2}^{k} \frac{B_{\ell}}{\ell!} s(s+1) \cdots(s+\ell-2)-\frac{(-1)^{k}}{k!} \int_{1}^{\infty} s(s+1) \cdots(s+k-1) x^{-s-k} \psi_{k}(x) d x
$$

Since ψ_{k} is 1-periodic and equal to the polynomial $B_{k}(x)$ on $[0,1), \psi_{k}(x)$ is a bounded function on all of \mathbb{R}. Thus the integral on the right-hand side is convergent for all $\sigma+k>1$ and thus defines a holomorphic function for $\sigma>1-k$. By repeating the above argument we see that we have analytically continued the Riemann zeta-function to the right-half plane $\sigma>1-k$, for all $k=1,2,3, \ldots$. For example, it now makes sense to ask for the value $\zeta^{\prime}(-1) .{ }^{3}$ We summarize our findings in

Theorem: The Riemann zeta-function $\zeta(s)$ defined by (8) for $\Re(s)>1$ can be analytically continued to $\mathbb{C}-\{1\}$ where it is holomorphic and at $s=1, \zeta(s)$ has a simple pole.

[^1]
[^0]: ${ }^{1}$ These notes follow Analytic Number Theory by H. Iwaniec \& E. Kowalski.
 ${ }^{2}$ Property (2) defines $B_{k}, k \geq 1$ recursively up to a constant. The constant is fixed by property (3).

[^1]: ${ }^{3}$ Before we analytically continued $\zeta(s)$ it clearly makes no sense in (8) to ask for the derivative at $s=-1$ since the series only converges for $\Re(s)>1$. It is a fact that $\zeta^{\prime}(-1) \approx-0.1654211437 \ldots$.

