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Euler-Maclaurin Summation Formula!

Suppose that f and its derivative are continuous functions on the closed interval [a, b]. Let

Y@ = {2} - 3,

where {z} = x — [z] is the fractional part of x.

LEMMA 1: If a < b and a,b € Z, then

b
S = [ (f@) + o) @) do+ 5 (F0) - fla).

a<n<b

PRrOOF: The proof proceeds along the lines of the Abel partial summation formula.
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We define Bernoulli polynomials by the following three properties?

Bo(z) = 1, (1)

Bi(z) = kBp_1(x), k=1,2,..., (2)
/ Bi(z)de = 0, k=1,2,.... (3)
0

To determine the polynomials we introduce a generating function

F(t,z) = Z Bk(ac)y.
k=0 ’

IThese notes follow Analytic Number Theory by H. Iwaniec & E. Kowalski.
2Property (2) defines By, k > 1 recursively up to a constant. The constant is fixed by property (3).



Observe
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Thus
F(ta I) = C(t)etz (4)

where C' is some function of ¢. Now by the third defining property of By (z),

1
/ F(t,z)dz = 1.
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Integrating both sides of (4) with respect to z over the interval [0, 1] then implies

t
et —1’

C(t) =

and hence;
tF tet®
ZB]C((E)E = —et — 1
k>0

Using this generating function we can find the first few Bernoulli polynomials:
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The Bernoulli numbers are defined by
B, = B,(0),

that is, the value of the Bernoulli polynomial at £ = 0. The generating function for Bernoulli numbers
is clearly

. tk t
n>0

An easy calculation shows F'(—t) = F(t) + t; and hence, F(—t) — F(t) = ¢. This last equality implies
that B2k+1 =0for k= 1, 2, e

Define

V() = Bp({x}) (5)
where {z} is the fractional part of z. Observe that ¢(z) = 1 (z) = {2} —  which appears in Lemma 1.
Since {x} is periodic with period 1, so too are the functions ¢y (z) and they have generating function
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We now assume that f is twice continuously differentiable in [a,b]. We integrate by parts the term
involving 1 in Lemma 1. First look at

a+1 1 1
[ r@n@d= [ Feraneead= [ fesanod (
a 0 0
since 11 is 1-periodic. In the interval [0,1], ¢ (¢) = B1(t). Thus

/w S (a(e) ~ By)

where we used defining property (2) of the Bernoulli polynomials. Note that fol 1(z) dx = 0 since 9 is
1-periodic.

Integrating the last integral in (6) by parts gives
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since 19 is 1-periodic. One notes that the above formula is valid over any interval [a +n — 1,a + n];
namely,

a+n 1 a+n 1
/ F(x)1(x) de = ——/ ' (x)ha(z) dI+§B2 (f'la+n)—fla+n—-1),n=0,1,...,b—a.
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Summing over n we obtain
b I 1
[ r@m@ds =3 [ @@ ds+ 55 (70) - F@).
We have proved

LEMMA 2: Let f be twice continuously differentiable on [a, b] where a < b and a,b € Z. Then

S fn /{f()——w }dx OV (pm1) i)

a<n<b

(Recall By = —3.)
If one continues to integrate by parts one obtains the

THEOREM (EULER-MACLAURIN FORMULA): Suppose f is k-times continuously differentiable on the
interval [a,b] with a < b , a,b € Z. Then

S i) /{f()”m() }di

a<n<b =1
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Suppose f and all its derivatives go to zero as x — co. Then we obtain by letting b — oo (and adding
f(a) to both sides)
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APPLICATION OF SUMMATION FORMULA TO THE RIEMANN ZETA-FUNCTION

Let s = 0 + it where o is the real part of s and ¢ is the imaginary part of s. Let ¢ > 1 and define the
Riemann zeta-function
- 1
il . 8

The series converges absolutely and uniformly in the half-plane o = R(s) > 1 + &: First observe that
|n—s| _ |n—a—it| =n"° < n—l—a
Now apply the Weiestrass M-test to the series
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which is convergent for all € > 0. The series (8) clearly diverges at s = 1.

We now apply (7) with £ =1 to (8). Choose f(z) = 1/z°. For R(s) > 1
/°° de 1
;x5 s—1

1 1 <1
¢(s) = 1 +§—s/1 le(:v)d:v.
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The summation formula then becomes

This is derived under the assumption that ¢ > 1. Observe that if we write

1 1 <1
(-1 =3-5) mrh@d

then the right-hand side of the above equation defines a holomorphic function for ¢ > 0 since the integral

< 1
|/ s+l d(E|</1 Fdl’<00 (9)

(We used |¢1(z)| < 1/2.) We now use the right-hand side (9) to define the left-hand side of (9) for
0 < 0 < 1. The two side agree for ¢ > 1. This is an example of analytic continuation. We have made
sense out of the Riemann zeta-function for 0 < $(s). We see that it has a simple pole at s = 1 and is
holomorphic for all other points R(s) > 0

If we apply (7) to (8) for arbitrary positive integer k we obtain after some elementary computations
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Since 9y, is 1-periodic and equal to the polynomial By(x) on [0, 1), ¥ (z) is a bounded function on all of
R. Thus the integral on the right-hand side is convergent for all o+ k& > 1 and thus defines a holomorphic
function for o > 1 — k. By repeating the above argument we see that we have analytically continued
the Riemann zeta-function to the right-half plane ¢ > 1 — k, for all k = 1,2,3,.... For example, it now
makes sense to ask for the value ¢/(—1).> We summarize our findings in

THEOREM: The Riemann zeta-function ((s) defined by (8) for £(s) > 1 can be analytically continued
to C —{1} where it is holomorphic and at s = 1, ((s) has a simple pole.

3Before we analytically continued ¢(s) it clearly makes no sense in (8) to ask for the derivative at s = —1 since the
series only converges for R(s) > 1. It is a fact that ¢/(—1) &~ —0.1654211437 ... ..



