Homework \#1

\#1-\#5: Work the following exercises in Stein \& Shakarchi: $(1.4 .7),{ }^{1}(1.4 .9)$, (1.4.10), (1.4.19), (1.4.21) only first part. ${ }^{2}$
\#6 (partitions): Let $p(n)$ denote the number of partitions of the integer n. For example, $p(5)=7$ since 5 can be partitioned in 7 ways:
$5,4+1,3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1$
By definition, $p(0)=1$.

1. Prove Euler's identity

$$
\begin{equation*}
P(z):=\sum_{n=0}^{\infty} p(n) z^{n}=\prod_{n=1}^{\infty} \frac{1}{1-z^{n}} \tag{1}
\end{equation*}
$$

2. What is the radius of convergence of (1)?
${ }^{1}$ This refers to Chapter 1, $\S 4$, exercise \#7 of Stein \& Shakarchi.
${ }^{2}$ Hint: Write

$$
\begin{aligned}
\frac{z}{1-z} & =\sum_{n=1}^{\infty} z^{n} \\
& =\sum_{n=1}^{\infty} z^{2 n-1}+\sum_{n=1}^{\infty} z^{2 n} \\
& =\frac{z}{1-z^{2}}+\sum_{n=1}^{\infty} z^{2 n}
\end{aligned}
$$

and proceed recursively on the last term in the above equation.

