Homework \#3

1. Problem \#20, page 107 of Stein \& Shakarchi
2. Problem \#3, page 109 of Stein \& Shakarchi

3. Mellin transform:

Suppose f is a continuous function of the real variable x satisfying

$$
f(x)=\mathrm{O}\left(x^{-\alpha}\right), x \rightarrow 0 \text { and } f(x)=\mathrm{O}\left(x^{-\beta}\right), x \rightarrow \infty
$$

We define the Mellin transform of f to be

$$
\begin{equation*}
\widehat{f}(s)=\int_{0}^{\infty} x^{s-1} f(x) d x \tag{1}
\end{equation*}
$$

(a) Show that \widehat{f} is holomorphic in the strip $\alpha<\Re(s)<\beta$.
(b) Just as for Fourier integrals ${ }^{1}$ there is an inversion formula for the Mellin transform:

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} x^{-s} \widehat{f}(s) d s, \quad \alpha<\sigma<\beta . \tag{2}
\end{equation*}
$$

Show (2) follows from the Fourier inversion formula. Hint: Make the change of variable $x=e^{X}$ in (1).
(c) The rest of this problem is an expansion of Problem \#2, page 68, of Stein \& Shakarchi. We shall prove later, and you may assume as given, that the Hurwitz zeta-function, defined by

$$
\begin{equation*}
\zeta(s, a)=\sum_{n=0}^{\infty}(n+a)^{-s}, \sigma:=\Re(s)>1,0<a \leq 1 \tag{3}
\end{equation*}
$$

has an analytic continuation to a holomorphic function in the open region $\mathbb{C}-\{1\}$ with a simple pole at $s=1$ with Laurent expansion

$$
\zeta(s, a)=\frac{1}{s-1}+\gamma_{0}(a)+\mathrm{O}(s-1), s \rightarrow 1
$$

[^0]where $\gamma_{0}(a)$ is explicitly known. (It depends upon a but not s.) Note that for $a=1$ the Hurwitz zeta-function reduces to the Riemann zeta-function $\zeta(s)$. You may also wish to read some properties of the gamma function $\Gamma(s)$.
Define
\[

$$
\begin{equation*}
F(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}} \tag{4}
\end{equation*}
$$

\]

and set $z=\exp (2 \pi i p / q) e^{-t}, t>0$, and $f(t ; p, q)=F(z)$. Thus as $t \rightarrow 0$ we approach the unit circle $|z|=1$ along the rational angle $2 \pi p / q$.
(d) Show that the Mellin transform of $f(t ; p, q)$ is

$$
\widehat{f}(s ; p, q)=\frac{\Gamma(s)}{q^{2 s}} \zeta^{2}(s)+\frac{\Gamma(s)}{q^{2 s}} \sum_{r_{1}, r_{2}=1}^{q-1} \exp \left(\frac{2 \pi i p}{q} r_{1} r_{2}\right) \zeta\left(s, r_{1} / q\right) \zeta\left(s, r_{2} / q\right)
$$

(e) Using the Mellin inversion formula followed by a deformation of the contour, show that

$$
f(t ; 0,1)=\frac{\log (1 / t)}{t}+\frac{\gamma}{t}+\frac{1}{4}-\frac{t}{144}+\mathrm{O}\left(t^{2}\right), t \rightarrow 0^{+}
$$

where γ is Euler's constant. Remark: I found Mathematica useful in computing various residues.
(f) For the rational angle $\alpha=2 \pi p / q$ show that as $t \rightarrow 0^{+}$that

$$
f(t ; p, q)=c(p, q) \frac{\log (1 / t)}{t}+\mathrm{O}\left(\frac{1}{t}\right)
$$

where

$$
c(p, q)=\frac{1}{q^{2}}+\frac{1}{q^{2}} \sum_{r_{1}, r_{2}=1}^{q-1} \exp \left(2 \pi i \frac{p}{q} r_{1} r_{2}\right)
$$

(g) Use these results to conclude that $F(z)$ cannot be analytically continued past the unit circle.

[^0]: ${ }^{1}$ If you have not seen this, read Stein \& Shakarchi, pages 111-117. You may assume as given the Fourier inversion formula given as Theorem 2.2, page 115 of Stein \& Shakarchi.

