Homework #6—Due March 4, 2013

#1. Problem #9, page 202 of Stein & Shakarchi. Hint: The distributed notes might prove useful.

#2. Problem #1a, page 203 of Stein & Shakarchi.

Remarks: For \(F(s) = \zeta(s) \), the formula proved becomes

\[
\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\zeta(\sigma + it)|^2 \, dt = \zeta(2\sigma), \quad \sigma > 1.
\]

Since \(\zeta(s) \) has a pole at \(s = 1 \) it is not clear what happens at \(\sigma = 1 \). One can prove\(^1\) that

\[
\int_{1}^{T} \left| \zeta(1 + it) \right|^2 \, dt = \zeta(2)T + O\left(\log^2 T\right)
\]

It is a much deeper result that

\[
\int_{1}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^2 \, dt = T \log T + O\left(T \log^{1/2} T\right).
\]

In 1926 A. E. Ingham proved

\[
\int_{1}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^4 \, dt = (2\pi^2)^{-1} T \log^4 T + O\left(T \log^3 T\right).
\]

It is conjectured that

\[
\int_{1}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2k} \, dt \sim a_k T \left(\log T\right)^{k^2}
\]

where there are explicit conjectures for the coefficients \(a_k \).

#3. Let \(\omega_1, \omega_2 \in \mathbb{C}, \Im(\omega_2/\omega_1) > 0 \) and set

\[
\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}.
\]

Define
\[\sigma(z) = \sigma(z, \Omega) := z \prod_{0 \neq \omega \in \Omega} E_2\left(\frac{z}{\omega} \right) \] (1)
where \(E_2(z) \) is the Weierstrass canonical factor
\[E_2(z) = (1 - z)e^{z + z^2/2}. \]

For (1) to be well-defined we must show the product converges.

1. Let \(U = \{(u, v) \in \mathbb{C}^2 : \Im(u/v) > 0\} \). Let \(K \subset U \) be compact and let \(\alpha > 2 \). Prove there exists a bound \(M > 0 \) such that
\[\sum_{0 \neq \omega \in \Omega} |\omega|^{-\alpha} \leq M \] (2)
for all \((\omega_1, \omega_2) \in K \).

Useful linear algebra lemma: Let \(u, v \) be real variables and consider the quadratic form
\[Q(u, v) = a u^2 + 2 b u v + c v^2 \]
Suppose that \(Q(\cdot, \cdot) \) is positive definite; that is,
\[Q(u, v) > 0 \text{ for all } u, v, (u, v) \neq (0, 0). \]

Then there exist positive constants \(\lambda_1 \) and \(\lambda_2 \) (depending upon \(a, b \) and \(c \) but not \(u \) and \(v \)) such that
\[\lambda_1(u^2 + v^2) \leq Q(u, v) \leq \lambda_2(u^2 + v^2). \]
If you wish to use this lemma, first prove it. Using this lemma prove there exist positive constants \(c_1 \) and \(c_2 \) such that
\[c_1 \sqrt{m^2 + n^2} \leq |m \omega_1 + n \omega_2| \leq c_2 \sqrt{m^2 + n^2}. \] (3)
Use (3) to prove (2).

2. Show the convergence of (1) follows now from (2) and conclude \(\sigma(z) \) is an entire function of \(z \) whose zero set is \(\Omega \). The entire function \(\sigma(z, \Omega) \) is called the Weierstrass sigma-function.
3. Set
\[\wp (z) = \wp (z; \omega_1, \omega_2) := - \frac{d^2}{dz^2} \log \sigma (z) \] (4)
and show that
\[\wp (z) = \frac{1}{z^2} + \sum_{0 \neq \omega \in \Omega} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right). \] (5)

4. Show that \(\wp (z) \) is doubly periodic, i.e.
\[\wp (z + \omega) = \wp (z), \ \omega \in \Omega. \]

The elliptic function \(\wp \) is called the Weierstrass \(\wp \)-function.

5. Remarks: The infinite product for \(\sigma (z) \) is similar to that of \(\sin z \) given by
\[\sin z = z \prod_{0 \neq m \in \mathbb{Z}} E_1 \left(\frac{z}{m \pi} \right) \]
and \(\wp \) is similar to
\[\csc^2 z = - \frac{d^2}{dz^2} \log \sin z = \frac{1}{z^2} + \sum_{0 \neq m \in \mathbb{Z}} \frac{1}{(z - m \pi)^2}. \]