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1 Introduction

Let π(x) be the number of primes p ≤ x. It was discovered empirically by
Gauss about 1793 (letter to Enke in 1849, see Gauss [9], volume 2, page 444
and Goldstein [10]) and by Legendre (in 1798 according to [14]) that

π(x) ∼ x

log x
.

This statement is the prime number theorem. Actually Gauss used the equiva-
lent formulation (see page 10)

π(x) ∼
∫ x

2

dt

log t
.

1
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For some discussion of Gauss’ work see Goldstein [10] and Zagier [45].

In 1850 Čebyšev [3] proved a result far weaker than the prime number theorem
— that for certain constants 0 < A1 < 1 < A2

A1 <
π(x)
x/log x

< A2.

An elementary proof of Čebyšev’s theorem is given in Andrews [1]. Čebyšev
introduced the functions

θ(x) =
∑

p≤x, p prime

log p, (Čebyšev theta function)

ψ(x) =
∑

pn≤x, p prime

log p, (Čebyšev psi function).

Note

ψ(x) =
∞∑

n=1

θ(x1/n)

where the sum is finite for each x since θ(x1/n) = 0 if x < 2n. aČebyšev proved
that the prime number theorem is equivalent to either of the relations

θ(x) ∼ x, ψ(x) ∼ x.

In addition Čebyšev showed that if limx→∞
θ(x)

x exists, then it must be 1, which
then implies the prime number theorem. He was, however, unable to establish
the existence of the limit.

Like Gauss, Riemann formulated his estimate of π(x) in terms of the logarithmic
integral

Li(x) = (PV)
∫ x

0

dt

log t
, x > 1.

In his famous 1859 paper [33] he related the relative error in the asymptotic
approximation

π(x) ∼ Li(x)

to the distribution of the complex zeros of the Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1 − p−s

)−1
. (1)

The Riemann zeta function was actually introduced by Euler as early as 1737.
It was used of by Čebyšev (in the real domain) prior to Riemann’s use of it.
Euler also discovered the functional equation

ζ(s) = 2(2π)s−1 sin
(πs

2

)
Γ(1 − s) ζ(1 − s) (2)
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which he published in 1749. The functional equation was proved by Riemann
in [33].

Riemann does not prove the prime number theorem in his 1859 paper. His
object was to find an explicit analytic expression for π(x), and he does so. He
does comment that π(x) is about Li(x) and that π(x) = Li(x) +O(x1/2). This
would imply

π(x)
Li(x)

= 1 +O(x−1/2 log x) = 1 + o(1),

which gives the prime number theorem. Thus Hardy’s comment, [14], page 352,
that Riemann does not even state the prime number theorem, is not strictly
accurate. On the other hand, Riemann’s assertion about the order of the error
is so much stronger than what is required for the prime number theorem, that
one could maintain that he does not state the weaker theorem.

In 1896 the prime number theorem was finally proved by Jacques Hadamard [12]
and also by Charles–Jean de la Vallée Poussin [6]. The first part of the proof
is to show that ζ(s) 6= 0 if <e s = 1. As a general principle, finding zero–free
regions for the zeta function in the critical strip leads to better estimates of the
error in the π(x) ∼ Li(x) (see, for example, theorem 1.2).

Towards the end of his 1859 paper [33] Riemann asserts that π(x) < Li(x).
Gauss [9], volume 2, page 444, makes the same assertion. This is known to
be true for all x ≤ 108 but was proved false in general in 1914 by Littlewood,
[27]. Littlewood showed that π(x) − Li(x) changes sign infinitely often. Indeed
Littlewood showed there is a constant K > 0 such that

(π(x) − Li(x)) log x
x1/2 log log log x

is greater that K for arbitrarily large x and less than −K for arbitrarily large
x. Littlewood’s methods yield no information on where the first sign change
occurs. In 1933 Skewes [35] showed that there is at least one sign change at x
for some

x < 10101034

.

Skewes proof required the Riemann hypothesis. In 1955 [36] he obtained a
bound without using the Riemann hypothesis. This new bound was

101010964

.

Skewes large bound can be reduced substantially. In 1966 Sherman Lehman [25]
showed that between 1.53× 101165 and 1.65× 101165 there are more than 10500

successive integers x for which π(x) > Li(x). Lehman’s work suggests there is
no sign change before 1020. Perhaps we will see a sign change soon! In 1987
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te Riele [37] showed that between 6.62 × 10370 and 6.69× 10370 there are more
than 10180 successive integers x for which π(x) > Li(x).

In Ramanujan’s second letter to Hardy (in 1913, see [2], page 53) he estimates
π(x) by

π(x) ≈
∞∑

n=1

µ(n)
n

Li(x1/n) (3)

where µ(n) is the Möbius function. This expression was obtained by Riemann
in 1859, except Riemann has additional terms, arising from the complex zeros of
ζ(s). Littlewood points out in a letter to Hardy (discussing Ramanujan’s letter,
see [2], page 68) that

π(x) − Li(x) +
1
2

Li(x1/2) 6= O

(
x1/2

log x

)
.

It follows that

π(x) − Li(x) +
1
2

Li(x1/2) 6= O
(
Li(x1/2)

)
. (4)

Thus it is clear that equation (3) can not be interpreted as an asymptotic series
for π(x) (though it is an asymptotic series). Ramanujan says to truncate the
series at the first term less than one. This gives an excellent approximation to
π(x), but it is empirical.

The actual expression obtained by Riemann is

π(x) =
∞∑

n=1

µ(n)
n

J(x1/n)

J(x) = Li(x) −
∑

ρ

Li(xρ) − log 2 +
∫ ∞

x

dt

t(t2 − 1) log t

where ρ runs over the complex roots of the zeta function. The first sum here is
actually finite for each x since

J(x) =
∑ 1

n
π(x1/n)

is 0 for x < 2. The complete proof of Riemann’s formula (in a different form)
was given by von Mangoldt ([43]) in 1895. In connection with equation (3) we
now have

π(x) −
N∑

n=1

µ(n)
n

Li(x1/n) =
N∑

n=1

∑
ρ

Li(xρ/n) + “other terms”
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where the omitted terms are not particularly significant. The terms in the
double sum are Riemann’s “periodic” terms. Individually they are quite large,
but there must be a large amount of cancellation to account for the fact that
equation (3) gives a very close estimate of π(x).

In the following table the column labelled “Riemann” was computed using the
first 6 terms in the series (3). The column labelled “Li(x)” could just as well
be labelled “Gauss” as Li(x) differs by about 1.045 . . . from

∫ x

2 dt/ log t. The
table shows why Li(x) is preferred to the asymptotically equivalent expression
x/log x.

x π(x) x/log x Li(x) Riemann
500 95 80.4 101.7 94.3

1,000 168 144.7 177.6 168.3
2,000 303 263.1 314.8 303.3

500,000 41,638 38,102.8 41,606.2 41,529.4
1,000,000 78,498 72,382.4 78,627.5 78,527.3
1,500,000 114,155 105,477.9 114,263.0 114,145.7
2,000,000 148,933 137,848.7 149,054.8 148,923.4
2,500,000 183,072 169,700.9 183,244.9 183,101.4
3,000,000 216,816 201,151.6 216,970.5 216,816.2

The prime counts in the table above are taken from Edwards [8] and are due to
D. N. Lehmer [26]. The other numbers were computed using Maple V3. While
the “Riemann” column looks better it turns out that in the long run Li(x) is
just as good – see Littlewood [27] and the discussion in Edwards [8], page 87.

Here is some additional numerical evidence for the prime number theorem:

x π(x) x/log x Li(x)
104 1,229 1085.7 1246.1
108 5,761,455 5.42 × 106 5.762× 106

1012 37,607,912,018 3.61 × 1010 3.760795× 1010

1016 279,238,341,033,925 2.71 × 1014 2.79238344× 1014

1018 24,739,954,287,740,860 2.41 × 1016 2.4739954309× 1016

The prime counts in the table above are taken from Crandal [5] and are due to
Reisel [32] and Odlyzko. The other numbers were computed using Maple V3.

Here’s a strong version of the prime number theorem (see Ivić [22]) expressed
in terms of the Čebyšev psi function ψ.
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Theorem 1.1. There exists a constant C > 0 such that

ψ(x) = x+O
(
xe−C(log x)3/5(log log x)−1/5

)
.

With regard to the connection between the complex zeros of the zeta function
and the estimate of the error in the prime number theorem (see [22]) we have:

Theorem 1.2. Let 1
2 ≤ α < 1. Then

ψ(x) = x+O
(
xα(log x)2

)
if and only if

ζ(s) 6= 0 for <e s > α.

2 Asymptotics

Let f and g be functions defined in a neighborhood of a. The notation

f(x) = o(g(x)), x→ a

means
lim
x→a

f(x)/g(x) = 0.

The notation
f(x) = O(g(x)), x→ a

means there is a constant M such that

| f(x) | ≤M | g(x) | for all x near a.

The notation
f(x) ∼ g(x), x→ a

means

lim
x→a

f(x)/g(x) = 1, that is f(x) = g(x) + o(g(x)), x→ a.

We frequently omit the expression “x→ a”, especially if a = ∞ or if a may be
inferred from the context.

Sometimes we want more detailed information about the remainder o(g(x))
above. Let (g(x))n≥1 be a sequence of functions such that

gn+1(x) = o(gn(x))
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for each n ≥ 1. Then

f(x) ∼
∞∑

n=1

cn gn(x) (5)

means

f(x) −
n∑

k=1

ck gk(x) = o(gn(x)) (6)

for each n ≥ 1.

By “going out one more term” we see that (6) is equivalent to

f(x) −
n∑

k=1

ck gk(x) = O(gn+1(x)) (7)

for each n ≥ 1.

The series (5) need not converge. Taking longer partial sums need not improve
the approximation to f(x), unless we also take larger x. Even if the series (5)
converges, it need not converge to the function f(x).

The next result is a useful Tauberian result for estimating an integrand.

Lemma 2.1. Let f be a function on [2,∞) and suppose xf(x) is monotone
nondecreasing on [2,∞). Let m and n be real numbers, n 6= −1. If∫ x

2

f(t)dt ∼ xn+1

(log x)m
, x→ ∞,

then

f(x) ∼ (n+ 1)xn

(log x)m
, x→ ∞.

Proof. Let x ≥ 2, ε > 0 and x(1 − ε) ≥ 2. Then∫ x(1+ε)

x

f(t)dt =
∫ x(1+ε)

x

tf(t)
dt

t
≥ xf(x)

∫ 1+ε

1

dt

t
= xf(x) log(1 + ε)

and ∫ x

x(1−ε)

f(t)dt =
∫ x

x(1−ε)

tf(t)
dt

t
≤ xf(x)

∫ 1

1−ε

dt

t
= −xf(x) log(1 − ε).
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Let ε > 0. By hypothesis there exists Aε ≥ 2 such that x ≥ Aε implies

xn+1(1 − ε2)
(log x)m

≤
∫ x

2

f(t)dt ≤ xn+1(1 + ε2)
(log x)m

.

Thus if 0 < ε < 1 and x ≥ max
(

2
1−ε , Aε

)
then

xf(x) log(1 + ε) ≤
∫ x(1+ε)

x

f(t)dt

=
∫ x(1+ε)

2

f(t)dt−
∫ x

2

f(t)dt

≤ xn+1(1 + ε)n+1(1 + ε2)
(log x(1 + ε))m

− xn+1(1 − ε2)
(log x)m

−xf(x) log(1 − ε) ≥
∫ x

x(1−ε)

f(t)dt

=
∫ x

2

f(t)dt−
∫ x(1−ε)

2

f(t)dt

≥ xn+1(1 − ε2)
(log x)m

− xn+1(1 − ε)n+1(1 + ε2)
(log x(1 − ε))m

It follows if 0 < ε < 1 then

lim sup
x→∞

(log x)mf(x)
xn

≤ (1 + ε)n+1(1 + ε2) − (1 − ε2)
log(1 + ε)

lim inf
x→∞

(log x)mf(x)
xn

≥ (1 − ε2) − (1 − ε)n+1(1 + ε2)
− log(1 − ε)

.

Now the two expressions in ε above have limit n+ 1 as ε→ 0.

Compare lemma 2.1 with Rademacher [31], page 102, Edwards [8], page 82, and
Grosswald [11], page 175.

Note that asymptotic estimates are not preserved by exponentiation. For ex-
ample, we have

Lemma 2.2. If m > 0 then there exists a continuous increasing function g on
[1,∞) such that

1. 0 < g(x) < x

Seminar Lecture Notes 8 Version: May 2 1996
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2. g(x) = o

(
x

(log x)m

)
, x→ ∞

3. log g(x) ∼ log x, x→ ∞

Proof. x/(log x)m+1 has its minimum (m+ 1)−(m+1)em+1 at x = em+1. Hence
if we define

g(x) =

{
x(m+ 1)−(m+1) if 1 ≤ x ≤ em+1

x
(log x)m+1 if x ≥ em+1

then g is continuous and the first two conclusions hold. Now note if x ≥ em+1

then
log g(x) = log x− (m+ 1) log(log x).

Since

lim
x→∞

log(log x)
log x

= 0

the last conclusion holds.

Lemma 2.2 is adapted from [31], page 96.

3 The Logarithmic Integral

The logarithmic integral Li(x), x > 1, is defined as the Cauchy principal value
of the divergent integral

∫∞
0 dt/log t. Explicitly

Li(x) = lim
ε→0

{∫ 1−ε

0

dt

log t
+
∫ x

1+ε

dt

log t

}
.

= lim
ε→0

{∫ 1−ε

0

(
1

log t
− 1
t− 1

)
dt+ log ε

+
∫ x

1+ε

(
1

log t
− 1
t− 1

)
dt+ log(x− 1) − log ε

}
= log(x− 1) +

∫ x

0

(
1

log t
− 1
t− 1

)
dt.

We can avoid the singularity in the integrand by noting that for any µ > 1 we
have

Li(x) = Li(µ) +
∫ x

µ

dt

log t
.
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Thus
Li(x) = 1.045163780 · · ·+

∫ x

2

dt

log t

which shows that estimate of Gauss for π(x) does not differ by more than about
1 from the estimate given by Li(x). It is fairly easy to see that Li(x) has exactly
one root µ > 1 and therefore

Li(x) =
∫ x

µ

dt

log t

where µ = 1.45136923488338105 . . . . This expression is the one Ramanujan
used for Li(x).

Proposition 3.1.

Li(x) ∼
∞∑

n=1

(n− 1)!
x

(log x)n
, x→ ∞.

Proof. If we integrate by parts n times we have

Li(x) =
x

log x
+ · · · + (n− 1)!

x

(log x)n
+ cn + n!

∫ x

2

dt

(log t)n+1

where cn is a constant. It now suffices to show

lim
x→∞

(log x)n

x

(
cn + n!

∫ x

2

dt

(log t)n+1

)
= 0.

Dividing the interval of integration at x1/2 we have

lim
x→∞

(log x)n

x

∫ x

2

dt

(log t)n+1

≤ (log x)n

x

x1/2 − 2
(log 2)n+1

+
(log x)n

x

x− x1/2

(log x)n+1
2n+1

≤
(

log x
x1/2n

)n

+
2n+1

log x

which converges to 0 as x→ ∞.

The idea of dividing the interval of integration at x1/2 is a standard trick. See
Edwards [8], page 85.

In particular Li(x) ∼ x/log x so that π(x) ∼ Li(x) and π(x) ∼ x/log x are
equivalent formulations of the prime number theorem.
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4 The Čebyšev Functions θ(x) and ψ(x)

The Čebyšev theta function θ is defined by

θ(x) =
∑
p≤x

log p

where p runs over primes. There is a simple relationship between θ(x) and π(x):

Proposition 4.1.

π(x) =
θ(x)
log x

+
∫ x

2

θ(t)
t (log t)2

dt. (8)

Proof. Let p1 = 2, p2 = 3, p3 = 5, · · · be the sequence of primes and let

ck =
k∑

j=1

log pj so ck − ck−1 = log pk.

Note if x ∈ [pk, pk+1) then π(x) = k and θ(x) = ck. Thus∫ x

2

θ(t)
t (log t)2

dt =
k−1∑
j=1

∫ pj+1

pj

cj

t (log t)2
dt+

∫ x

pk

ck

t (log t)2
dt

=
k−1∑
j=1

cj

(
1

log pj
− 1

log pj+1

)
+ ck

(
1

log pk
− 1

log x

)

=
c1

log p1
+

k∑
j=2

cj − cj−1

log pj
− ck

log x

= 1 +
k∑

j=2

1 − θ(x)
log x

= π(x) − θ(x)
log x

.

If we work with Stieltjes integrals we see easily that

π(x) = 1 +
∫ x

2

dθ(t)
log t

=
∫ x

µ

dθ(t)
log t
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where 1 < µ < 2. Then an integration by parts (see Kestelman [23]) yields
the proposition. The striking resemblance to the logaritmic integral is very
suggestive.

The integral in equation (8) is actually o(x/log x). This follows immediately
from the proof of proposition 3.1 once we know θ(x) = O(x). The only obvious
estimate for θ(x) however is

θ(x) =
∑
p≤x

log p ≤ π(x) log x ≤ x log x (9)

Corollary 4.2. If θ(x) ∼ x then π(x) ∼ x

log x
.

Proof. As pointed out above, if θ(x) = O(x) then

π(x)
x/log x

=
θ(x)
x

+ o(1).

Let

Λ(n) =

{
log p if n = pk, p prime
0 otherwise.

Then the Čebyšev psi function ψ is defined by

ψ(x) =
∑
n≤x

Λ(n) =
∑

pn≤x

log p

where, as usual, p runs over primes. We note

ψ(x) =
∞∑

n=1

θ(x1/n) (10)

where the sum is actually finite for each x since θ(x) = 0 if x < 2.

If n is the largest integer such that pn ≤ x then n log p is the contribution of the
powers of p to ψ(x) and n ≤

[
log x
log p

]
, where [z] is the greatest integer in z. Thus

ψ(x) ≤
∑
p≤x

[
log x
log p

]
log p ≤ log x

∑
p≤x

1 = π(x) log x.
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Lemma 4.3.

ψ(x) = θ(x) +O
(
x1/2(log x)2

)
. (11)

Proof. In equation (10) there are at most log x
log 2 nonzero terms and they decrease

in magnitude. Thus

θ(x) ≤ ψ(x) ≤ θ(x) + θ(x1/2) log x/log 2.

Now apply (9).

Corollary 4.4. We have θ(x) ∼ x if and only if ψ(x) ∼ x.

Proof.
ψ(x)
x

=
θ(x)
x

+O
(
x−1/2(log x)2

)
=
θ(x)
x

+ o(1).

Lemma 4.5. If ψ(x) is the Čebyšev psi function then

π(x) ∼ x

log x
if and only if ψ(x) ∼ x.

Proof. We have already shown

ψ(x)
x

≤ π(x)
x/log x

. (12)

Now suppose π(x) ∼ x/log x. Then by (12) we have ψ(x) = O(x). It follows
that θ(x) = ψ(x) +O(x1/2(log x)2) = O(x) and therefore by (8) we have

π(x)
x/log x

=
θ(x)
x

+ o(1).

Then it follows that θ(x) ∼ x and so by corollary 4.4 we have ψ(x) ∼ x.
Conversely if ψ(x) ∼ x then by corollary 4.4 we have θ(x) ∼ x and so by
corollary 4.2 we are done.

Alternate proof: Choose an increasing continuous function g on [1,∞) such
that 0 < g(x) < x, g(x) = o(x/log x) and log g(x) ∼ log x. Since π(x) ≤ x we
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have

π(x) = π(g(x)) + (π(x) − π(g(x)))

≤ g(x) +
∑

g(x)<p≤x

1

≤ g(x) +
∑
p≤x

log p
log g(x)

≤ g(x) +
ψ(x)

log g(x)
.

Thus
π(x)
x/log x

≤ g(x)
x/log x

+
log x

log g(x)
ψ(x)
x

.

If ψ(x) ∼ x then it follows that lim supπ(x)/(x/log x) ≤ 1. If π(x) ∼ x/log x
then it follows that lim inf ψ(x)/x ≥ 1. In view of equation (12) the proof is
complete.

The alternate proof of Lemma 4.5 is adapted from [31], page 96. The lemma
shows we can express the prime number theorem as ψ(x) ∼ x. Note at this
point the existence of either of the limits limπ(x)/(x/log x) and limψ(x)/x is
not clear.

Exercise 4.6. Prove the estimates θ(x) = O(x) and ψ(x) = O(x) by elemen-
tary means (see Čebyšev’s work) and then use them to simplify all of arguments
above. Note we would also have ψ(x) = θ(x) +O(x1/2 log x) which is somewhat
better than equation 11.

5 Möbius Inversion

We define the Möbius function µ(n) by

µ(n) =


1 if n = 1
(−1)m if n is a product of m distinct primes
0 in all other cases.

Note that µ(n) = 0 if n is not square–free. An important property of µ(n) is

∑
d|n

µ(d) =

{
1 if n = 1
0 otherwise
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Let a = (a1, a2, · · · ) ∈ `1 and define

bn =
∑
m≥1

amn.

Then b = (b1, b2, · · · ) ∈ `∞. Suppose we have b ∈ `1. Then we can consider∑
n≥1

µ(n)bmn.

Substituting the definition of bmn and making a change of variable we obtain∑
n≥1

∑
k≥1

µ(n)amnk =
∑
h≥1

∑
d|h

µ(d)amh = am.

Note if an = 0 for n > N then bn = 0 for n > N and all the sums are finite. In
this case the formula

am =
∑
n≥1

µ(n)bmn

is called the Möbius inversion formula. For a discussion of the extension to `1

sequences see Hartman and Wintner [18].

Proposition 5.1. Let h : N → R be totally multiplicative in the sense that
h(mn) = h(m)h(n) and h(1) = 1. Let f be a function on [1,∞) such that
f(x) = 0 if x < 2. If

F (x) =
∞∑

n=1

h(n)f(x1/n), x ≥ 1 (13)

then

f(x) =
∞∑

n=1

µ(n)h(n)F (x1/n). (14)

Proof. Fix x and let
am = h(m)f(x1/m).

Note that am = 0 if m > log x
log 2 . Now let

bn =
∑
m≥1

amn

=
∑
m≥1

h(mn)f(x1/mn)

= h(n)
∑
m≥1

h(m)f(x1/mn)

= h(n)F (x1/n).
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Then by the Möbius inversion formula

f(x) = h(1)f(x) = a1 =
∑
n≥1

µ(n)bn =
∑
n≥1

µ(n)h(n)F (x1/n).

Note h(n) = nk satisfies the multiplicative hypothesis. The cases k = 0 and
k = −1 occur frequently. Recall if θ(x) is the Čebyšev theta function and ψ(x)
is the Čebyšev psi function then

ψ(x) =
∞∑

n=1

θ(x1/n).

Thus we now have

θ(x) =
∞∑

n=1

µ(n)ψ(x).

Likewise if we introduce

J(x) =
∞∑

n=1

1
n
π(x1/n)

then

π(x) =
∞∑

n=1

µ(n)
n

J(x1/n).

Note Riemann denoted π(x) by F (x) and J(x) by f(x).

6 The Tail of the Zeta Series

To estimate the zeta function we will need an expression for the tail of the zeta
series, that is,

∞∑
n=k

1
ns
.

Consider first a partial sum of the tail of the series

ζ(s, k,m) =
m∑

n=k+1

1
ns
.

Clearly

ζ(s, k,m) =
m∑

n=k+1

n− (n− 1)
ns

= −k1−s +m1−s +
m−1∑
n=k

n

(
1
ns

− 1
(n+ 1)s

)
.
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For the summands here we have

n

(
1
ns

− 1
(n+ 1)s

)
= sn

∫ n+1

n

x−s−1dx = s

∫ n+1

n

[x]x−s−1dx

where [x] is the greatest integer in x. It follows that

ζ(s, k,m) = −k1−s +m1−s + s

∫ m

k

[x]x−s−1dx.

Trivially, if s 6= 1, we have

s

∫ m

k

x−sdx =
s

1 − s

(
m1−s − k1−s

)
and therefore

ζ(s, k,m) = s

∫ m

k

[x] − x

xs+1
dx+

1
1 − s

(
m1−s − k1−s

)
.

Letting m→ ∞ we obtain the tail of the zeta series

ζ(s, k) =
∞∑

n=k

n−s = s

∫ ∞

k

[x] − x

xs+1
dx− k1−s

1 − s

for <e s > 1. It follows that

ζ(s) =
k∑

n=1

n−s − s

∫ ∞

k

x− [x]
xs+1

dx+
k1−s

s− 1
(15)

at least for <e s > 1. But the integral converges absolutely for <e s > 0 and so
by uniqueness of analytic continuation we see that (15) holds for all <e s > 0,
s 6= 1. In particular we see that ζ(s) has a simple pole at s = 1 and the residue
at the pole is 1.

By taking k = 1 in (15) and inserting the integral
∫ 1

0 x
−sdx = 1/(1 − s) (for

<e s < 1) we obtain

ζ(s) = −s
∫ ∞

0

x− [x]
xs+1

dx, for 0 < <e s < 1.

In particular we have ζ(σ) < 0 if 0 < σ < 1.

7 The Logarithm log ζ(s)

Recall ζ(s) is meromorphic in the plane with a simple pole at s = 1 (with residue
1) and

ζ(s) =
∏
p

(
1 − p−s

)−1
, <e s > 1, p prime.
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Since ζ(s) has no zeros in <e s > 1 there is an analytic branch of the logarithm
log ζ(s) defined in the half space <e s > 1. Since ζ(σ) > 0 for σ > 1 we may
choose the branch of the logarithm so that log ζ(σ) is real for σ > 1. Then for
σ > 1 we have

log ζ(σ) = −
∑

p

log
(
1 − p−σ

)
. (16)

For the principal branch of the logarithm we have

log(1 − z) = −
∞∑

n=1

1
n
zn, | z | < 1.

Therefore (16) yields

log ζ(σ) =
∑

p

∞∑
n=1

1
n
p−nσ.

The double sum consists of positive terms. Hence we can change the order of
summation to obtain

log ζ(σ) =
∞∑

n=2

cnn
−σ

where

cn =

{
1
m if n = pm, p prime
0 otherwise.

The sum here continues to an analytic function in <e s > 1. Thus we obtain

log ζ(s) =
∞∑

n=2

cnn
−s, <e s > 1, (17)

with absolute convergence in <e s > 1 and uniform convergence in <e s ≥ 1+ε for
any ε > 0. In particular we have normal convergence and so we can differentiate
term–by–term. Thus

ζ′(s)
ζ(s)

= −
∞∑

n=2

Λ(n)n−s, <e s > 1. (18)

Here we have used cn logn = log n
m = log p if n = pm. Since Λ(n) ≤ log(n) we

have uniform convergence in <e s ≥ 1 + ε for any ε > 0.

From (18) we have

−ζ′(s) =
∞∑

m=1

m−s
∞∑

n=2

n−sΛ(n) =
∞∑

n=2

n−s
∑
d|n

Λ(d).
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But ∑
d|n

Λ(d) =
∑
pm|n

log p = logn.

It follows that

ζ′(s) = −
∞∑

n=2

n−s logn, <e s > 1. (19)

Since logn = o(nt) for any t > 0 the series converges absolutely in <e s > 1 and
uniformly in <e s ≥ 1 + ε for any ε > 0. Of course (19) is completely obvious:
the Dirichlet series for the zeta function converges normally in <e s > 1 and so
may be differentiated term–by–term to yield (19).

Theorem 7.1.

log ζ(s) = s

∫ ∞

2

π(x)
x (xs − 1)

dx, <e s > 1. (20)

Proof. Since π(x) ≤ x the integral is absolutely convergent for <e s > 1 and
defines an analytic function in the half-plane <e s > 1. Hence it suffices to
verify the identity for s = σ > 1. The argument can be done by using Stieltjes
integrals and integration by parts, but we will proceed by using summation by
parts. We note first that

π(n) − π(n− 1) =

{
1 if n is prime
0 otherwise.

Hence from (16) we have for σ > 1

log ζ(σ) = −
∞∑

n=2

(
π(n) − π(n− 1)

)
log(1 − n−σ)

= lim
N→∞

(
−

N∑
n=2

π(n) log(1 − n−σ) +
N∑

n=2

π(n− 1) log(1 − n−σ)
)

= lim
N→∞

(
−

N∑
n=2

π(n)
[
log(1 − n−σ) − log(1 − (n+ 1)−σ)

]
+ π(1) log(1 − 2−σ) + π(N) log(1 − (N + 1)−σ)

)
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Now π(1) = 0 and

∣∣π(N) log(1 − (N + 1)−σ)
∣∣ ≤ N

∞∑
k=1

1
k
(N + 1)−kσ

≤ N

(N + 1)σ

∞∑
k=0

(N + 1)−k

=
1

(N + 1)σ−1
→ 0

as N → ∞ since σ > 1. It follows that

log ζ(σ) = −
∞∑

n=2

π(n)
(
log(1 − n−σ) − log(1 − (n+ 1)−σ)

)
=

∞∑
n=2

∫ n+1

n

π(x)
d

dx
log(1 − x−σ)dx

=
∫ ∞

2

σπ(x)
x(xσ − 1)

dx.

Theorem 7.2.

ζ′(s)
ζ(s)

= −s
∫ ∞

0

x−s−1ψ(x)dx, <e s > 1, (21)

where ψ(x) is the Čebyšev psi function.

Proof. Since ψ(x) =
∑

n≤x Λ(n) we have ψ(n)−ψ(n−1) = Λ(x). Then by (18)
we have

−ζ
′(s)
ζ(s)

= lim
N→∞

N∑
n=2

(ψ(n) − ψ(n− 1))n−s (22)

= lim
N→∞

( N∑
n=2

ψ(n)(n−s − (n+ 1)−s) (23)

(N + 1)−sψ(N) − ψ(1)
)

(24)

=
∞∑

n=2

ψ(n)(n−s − (n+ 1)−s) (25)

(26)
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since ψ(1) = 0 and ψ(N) ≤ π(N) logN ≤ N logN . Thus

−ζ
′(s)
ζ(s)

= −
∞∑

n=2

∫ n+1

n

ψ(x)
d

dx
x−sdx = s

∫ ∞

0

x−s−1ψ(x)dx

where everything is justified for <e s > 1 as in the previous theorem.

8 The Zeta Function on <e s = 1

Theorem 8.1. If t is real then ζ(1 + it) 6= 0 and ζ(it) 6= 0.

Proof. If s = σ + it, σ > 1 then

log | ζ(s) | = <e log ζ(s) =
∞∑

n=2

cnn
−σ cos(t logn).

It follows that

log
∣∣ ζ(σ)3ζ(σ + it)4ζ(σ + i2t)

∣∣
=

∞∑
n=2

cnn
−σ (3 + 4 cos(t logn) + cos(2t logn))

≥ 0

since

3 + 4 cos t+ cos 2t = 2 + 4 cos t+ 2(cos t)2 = 2(1 + cos t)2 ≥ 0.

Thus

((σ − 1)ζ(σ))3
∣∣∣∣ ζ(σ + it)

σ − 1

∣∣∣∣4 | ζ(σ + i2t) | ≥ 1
σ − 1

(27)

for σ > 1 and for all t. Since ζ(s) has a simple pole at s = 1 with residue 1 we
have

lim
σ→1

(σ − 1)ζ(σ) = 1.

Now suppose t 6= 0 and ζ(1 + it) = 0. Then

lim
σ→1

ζ(σ + it)
σ − 1

= ζ′(1 + it)

and therefore (27) implies

lim
σ→1

| ζ(σ + i2t) | = ∞
which contradicts t 6= 0. By the functional equation we now also have ζ(it) 6= 0
if t is real and t 6= 0. Finally the functional equation implies ζ(0) = −1/2.
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Theorem 8.1 is due to Hadamard and de la Vallée Poussin. The proof given
above is from Rademacher [31], page 94, who attributes this particular proof to
Ingham [21], page 29.

We now proceed to estimate ζ(σ+ it) and, for us more importantly, log ζ(σ+ it)
in σ ≥ 1 and | t | ≥ 2. The estimates we give are quite rough and unremittingly
technical. The arguments here are adapted from [11], but they appear in a
number of places. Much stronger (and more technical) results may be found in
[22].

Lemma 8.2. Let C > 0. Then there exists a constant C1 > 0 such that

| ζ(s) | ≤ C1 log t

if s = σ + it, 1 − C/log t ≤ σ ≤ 2 and t ≥ 2.

Proof. Note

| s | = (σ2 + t2)1/2 ≤ (4+ t2)1/2 ≤
√

2t ≤ 2t and | s− 1 | = ((σ−1)2 + t2)1/2 ≥ t.

Now ∣∣∣∣ ∫ ∞

k

x− [x]
xs+1

dx

∣∣∣∣ ≤ ∫ ∞

k

dx

xσ+1
=

1
σkσ

.

Consider a fixed t ≥ 2 and choose k such that k ≤ t < k + 1. Then for n ≤ k
we have ∣∣n−s

∣∣ ≤ n−σ ≤ e(−1+C/log k) log n ≤ n−1eC

and so ∣∣∣∣∣
k∑

n=1

n−s

∣∣∣∣∣ ≤ eC
k∑

n=1

1
n
≤ ec(1 + log k) ≤ eC(1 + log t).

It follows by equation (15) if t ≥ 2 and we choose k with k ≤ t < k + 1 then

| ζ(s) | ≤ 2t
σkσ

+
k1−σ

t
+ eC(1 + log t) (28)

for 1−C/log t ≤ σ ≤ 2. Since t ≥ 2 then k ≥ 1 and therefore t/k ≤ 1+1/k ≤ 2.
Since σ ≤ 2 it follows that we have (t/k)σ−1 ≤ 2. Thus

k1−σ

t
≤ 2t−σ.

We have k > t−1. In addition t ≥ 2 implies 1− t−1 ≥ 1/2 and so σ ≤ 2 implies
(1 − t−1)σ ≥ 1/4. Thus

2t
σkσ

≤ 2t
σ(t− 1)σ

=
2t1−σ

σ(1 − t−1)σ
≤ 8t1−σ

σ
.
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From (28) we now have

| ζ(s) | ≤ 8t1−σ

σ
+ 2t−σ + eC(1 + log t) (29)

for any t ≥ 2 and σ with 1 − C/log t ≤ σ ≤ 2. Now choose t0 > 2 such that

1 − C

log t0
>

1
2

and 2 + 17eC ≤ log t0.

For 2 ≤ t ≤ t0, 1 − C/log t ≤ σ ≤ 2 we have

| ζ(s) | ≤ C1 ≤ C1

log 2
log t

for some constant C1 just by continuity. On the other hand t ≥ t0 implies

1
2
< 1 − C

log t
≤ σ ≤ 2

and so
8t1−σ

σ
+ 2t−σ ≤ 16tC/log t + 2t−1/2 ≤ 16eC + 2.

Thus

| ζ(s) | ≤ 17eC + 2 + eC log t
≤ log t0 + eC log t ≤ (1 + eC) log t.

Since 1 − 1/log t ≤ 1 if t ≥ 2 we have:

Corollary 8.3.
ζ(1 + it) = O(log t)

Lemma 8.4. Let C > 0. Then there exists a constant C1 > 0 such that

| ζ′(s) | ≤ C1 (log t)2

if s = σ + it, 1 − C/log t ≤ σ ≤ 2 and t ≥ 2.

Proof. By equation (15) we have

ζ′(s) = −
k∑

n=1

n−s logn

−
∫ ∞

k

x− [x]
xs+1

dx+ s

∫ ∞

k

(x− [x]) log x
xs+1

dx

− − k1−s

(s− 1)2
− k1−s log k

s− 1
.
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Now we get much the same estimates as in the previous lemma but with an
extra factor of log t.

Corollary 8.5.
ζ′(1 + it) = O((log t)2)

Lemma 8.6.
ζ′(1 + it)
ζ(1 + it)

= O((log t)9)

Proof. From equation (27) we have

1
| ζ(σ + it) | ≤ | ζ(σ) |3/4 | ζ(σ + 2it) |1/4 . (30)

Since lims→1(s− 1)ζ(s) = 1 it follows that

1
| ζ(σ + it) | ≤ C1

(log t)1/4

|σ − 1 |3/4
.

Now for σ > 1 we have

| ζ(1 + it) | =
∣∣∣∣ ζ(σ + it) −

∫ σ

1

ζ′(u+ it) du
∣∣∣∣

≥ | ζ(σ + it) | −
∣∣∣∣ ∫ σ

1

ζ′(u+ it) du
∣∣∣∣

≥ 1
C1

(σ − 1)3/4

(log t)1/4
− C2(σ − 1)(log t)2.

If A > 0 and B > 0 then the function

g(u) =
4A
3
u3/4 −Bu, u ≥ 0,

has the maximum A4/(3B3) at the point u = A4/B4. Therefore taking A =
3/(4C1(log t)1/4), B = C2(log t)2 and σ − 1 = A4/B4 we see that

| ζ(1 + it) | ≥ 33

44C4
1C

3
2

(log t)−7.

Since | ζ′(1 + it) | = O((log t)2) the proof is complete.

Lemma 8.7. There exist constants C and C1 suct that∣∣∣∣ ζ′(σ + it)
ζ(σ + it)

∣∣∣∣ ≤ C1(log t)9

if t ≥ 2 and σ ≥ 1 − C/(log t)9.
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Proof. Given any C > 0 we have constants C2 and C3 such that

| ζ(σ + it) | ≤ | ζ(1 + it) | −
∣∣∣∣ ∫ σ

1

σ′(u+ it) du
∣∣∣∣

≥ C2(log t)−7 − C3 |σ − 1 | (log t)2

if t ≥ 2 and σ ≥ 1 − C/log t. Thus if σ ≥ C/(log t)9 ≥ 1 − C/log t then

| ζ(σ + it) | ≥ (C2 − CC3)(log t)−7.

Once we have found C2 and C3 for a given C > 0 then making C smaller
simply strengthens the hypothesis on σ. Hence we may choose C so that C4 =
C2 − CC3 > 0. For this choice of C we know there is a constant C5 > 0 such
that

| ζ′(σ + it) | ≤ C5(log t)2

for t ≥ 2 and σ ≥ 1 − C/log t.

We can now improve a bit on the theorem of Hadamard and de la Vallée Poussin.

Corollary 8.8. There exists a constant C > 0 such that ζ(σ + it) 6= 0 if t ≥ 2
and σ ≥ 1 − C(log t)−9.

A much stronger zero–free result, due to H.-E. Richert, is known (see Ivić’s
book, [22]).

Theorem 8.9. There exists a constant C > 0 such that ζ(s) 6= 0 for

σ ≥ 1 − C(log t)−2/3(log log t)−1/3, t ≥ 2.

Remarkably enough no one has ever proved that there is a zero–free region of
the form <e s ≥ σ0 for some 1

2 < σ0 < 1. Indeed it is even the case that no one
has ever proved there is a zero–free line <e s = σ for some 1

2 < σ < 1. Thus the
result of Jacques Hadamard and Charles–Jean de la Vallée Poussin that there
are no zeros on the line <e s = 1 is still the only know line result.

We now obtain a uniform estimate for the logarithm of the zeta function. We
will use this estimate in the proof of the prime number theorem.

Theorem 8.10. There exists a constant C > 0 such that

| log ζ(σ + it) | ≤ C(log t)9

for t ≥ 2 and σ ≥ 1.
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Proof. Let s = σ + it. If σ ≥ 2 then

<e ζ(s) =
∞∑

n=1

<en−s

=
∞∑

n=1

n−σ cos(t logn)

≥ 1 −
∞∑

n=2

n−σ

= 2 − ζ(σ)

≥ 1
3

since ζ(σ) ≤ ζ(2) = π2/6 < 5/3 for σ ≥ 2. It follows that | arg ζ(s) | ≤ π/2 for
σ ≥ 2. Then

| log ζ(s) | = | log | ζ(s) | + i arg ζ(s) | ≤ log ζ(2) + π/2 = K ≤ K(log 2)−9(log t)9

if σ ≥ 2 and t ≥ 2. If now 1 − C(log t)−9 ≤ σ ≤ 2 and t ≥ 2 then

| log ζ(σ + it) | ≤ | log ζ(2 + it) | +
∫ 2

σ

∣∣∣∣ ζ′(u+ it)
ζ(u+ it)

∣∣∣∣ du.
The first term we estimated in the first part of the proof. Since 2 − σ ≤ 1 the
integral is bounded by

max
σ≤u≤2

∣∣∣∣ ζ′(u + it)
ζ(u+ it)

∣∣∣∣ ≤ K(log t)9.

9 Mellin Transforms

If f is a function on (0,∞) its Mellin transform F is formally defined by the
integral

F (s) =
∫ ∞

0

xs−1f(x)dx. (31)

A measurable function f on (0,∞) is said to be of type (α, β) if xσ−1f(x) is
Lebesgue integrable on (0,∞) for each σ with α < σ < β. This terminology,
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from Patterson [30], though it overloads the word type, is convenient. If f has
type (α, β) then the Mellin transform F (s) is analytic in the strip α < <e s < β.

A classical example is the Gamma function

Γ(s) =
∫ ∞

0

xs−1e−xdx.

Another example is the very first formula that Riemann derives for the zeta
function in his 1859 paper,

Γ(s)ζ(s) =
∫ ∞

0

xs−1

ex − 1
dx.

In (31) if we make the change of variable x = et we obtain

F (s) =
∫ ∞

−∞
estf(et)dt.

Thus the Mellin transform F of f is the Fourier–Laplace transform of the com-
position f ◦ exp. In particular

F (σ − iu) =
∫ ∞

−∞
e−iut

(
eσtf(et)

)
dt

is the Fourier transform of eσtf(t). It follows that we have the inversion formula

eσtf(et) =
1
2π

∫ ∞

−∞
eiutF (σ − iu) du,

that is,

f(et) =
1
2π

∫ ∞

−∞
e−(σ+iu)F (σ + iu)du,

provided that ∫ ∞

−∞
|F (σ + iu) | du <∞.

Indeed in this case f is continuous (after correction on a null set, if needed) and
the inversion formula folds for each t.

In the absence of the integrability hypothesis the inversion formula may continue
to hold pointwise in a suitable principal–value sense, as well as in various non–
pointwise senses, see Mellin [29], Hardy [15], [16], Titchmarsh [40], Patterson
[30]. For example, by results of Dirichlet, Dini and Jordan, if f is locally of
bounded variation then

f(et + 0) + f(et − 0)
2

= lim
T→∞

1
2π

∫ T

−T

e−(σ+iu)F (σ + iu)du.
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Theorem 9.1. If f is of type (α, β) on (0,∞) then the Mellin transform

F (s) =
∫ ∞

0

f(x)xs−1 dx

is analytic in the strip α < <e s > β. Moreover

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)x−s ds

for each σ with α < σ < β for which∫ ∞

−∞
|F (σ + iu) | du <∞.

Let f be a nonnegative monotone nondecreasing function on [0,∞) such that
f(x) = 0 if x < 2 and such that f(x) = O(x). Let

g(x) =
∞∑

n=1

1
n
f(x1/n).

Then
f(x) ≤ g(x) ≤ f(x) + f(x1/2)

log x
log 2

and so
g(x) = f(x) +O(x1/2 log x) = O(x).

Since g(x) = 0 for x < 2 we see that the Mellin transform

G(−s) =
∫ ∞

0

g(x)x−s−1dx

defines a function analytic in <e s > 1. If we define

g1(x) =
∫ ∞

1

g(t)
t
dt

then we can integrate by parts to obtain

G(−s)
s

=
∫ ∞

0

g1(x)x−s−1dx.

The integration by parts is justified since g(x)x−s = o(1) for <e s > 1.

We also note

G(−σ) =
∫ ∞

0

∞∑
n=1

1
n
f(t1/n)t−σ−1dt

=
∞∑

n=1

∫ ∞

0

1
n
f(t1/n)t−σ−1dt

=
∞∑

n=1

f(x)x−ns−1dx,
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where the interchange of the summation and integration is justified since all
the terms are nonnegative. We now interchange the summation and integration
again and note that we have a geometric series in x−s. Since f(x) = 0 if x < 2
we can sum the series to obtain

G(−s) =
∫ ∞

0

f(x)
x(xs − 1)

dx, <e s > 1.

Indeed, we have this relation for s = σ > 1, and both expressions are analytic
in <e s > 1. If we now apply the inverse Mellin transform, which we can do if
we have a suitable estimate for G, we have

g(x) =
∞∑

n=1

1
n
f(x1/n)

G(−s) =
∫ ∞

0

g(x)x−s−1dx =
∫ ∞

0

f(x)
x(xs − 1)

dx, <e s > 1

g(x) =
1

2πi

∫ σ+i∞

σ−i∞
G(−s)xsds, σ > 1

g1(x) =
∫ x

1

g(t)
t
dt

g1(x) =
1

2πi

∫ σ+i∞

σ−i∞

G(−s)
s

xsds, σ > 1

f(x) = g(x) +O(x1/2 log x).

If we know G we may be able to estimate g and then f . The
integral for g1 in terms of G is better behaved at ∞, so perhaps
we estimate g1 instead. In this case, we use the Tauberian lemma,
lemma 2.1, to estimate g and then f as before.

Mellin calisthenics

10 Sketches of the Proof of the PNT

The proof goes by estimating an inverse Mellin transform in accord with the
Mellin calesthenics above. In the sketches below we do not concern ourselves
with integrability of the Mellin transform. In those cases were integrability
holds the inversion formula is valid by theorem 9.1 above. In the other cases,
where the integral in the inversion formula is taken in some principal value sense,
results of Dirichlet, Dini and Jordan apply.
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10.1 Čebyšev function method

Since

− ζ′(s)
sζ(s)

=
∫ ∞

0

ψ(x)x−s−1dx

we have

ψ(x) = − 1
2πi

∫ σ+i∞

σ−i∞

ζ′(s)
sζ(s)

xsds.

We now evaluate the contour integral to obtain a formula for ψ(x), the von
Mangoldt formula of 1895, [43] (see also Edwards [8]). We then use this formula
to deduce ∫ x

1

ψ(t)dt ∼ x2

2
.

This part uses the fact that there are no roots on <e s = 1. Then the Tauberian
lemma, lemma 2.1, yields ψ(x) ∼ x.

Naturally there are thematic variations: Hadamard estimated
∫ x

1

ψ(x)
t2

dt whereas

de la Vallée Poussin estimated
∫ x

1

ψ(x)
t

dt.

10.2 Modified Čebyšev function method

If
ψ1(x) =

∫ x

1

ψ(t)
t
dt

then we have

ψ1(x) = − 1
2πi

∫ σ+i∞

σ−i∞

ζ′(s)
s2ζ(s)

xsds.

If we estimate the contour integral to obtain ψ1(x) ∼ x then the Tauberian
lemma, lemma 2.1, implies ψ(x)/x ∼ 1.

10.3 Still another Čebyšev function method

Since ζ(s) is meromorphic with a simple pole at s = 1, with residue 1, and no
other poles, we have

ζ(s) =
h(s)
s− 1
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where h(s) is entire and h(1) = 1. Thus

ζ′(s)
ζ(s)

+
s

s− 1
=
h′(s)
h(s)

+ 1

is analytic in <e s ≥ 1. Now

−1
s

(
ζ′(s)
ζ(s)

+
s

s− 1

)
=
∫ ∞

0

(ψ(x) − x) x−s−1 dx

and so
ψ(x)
x

− 1 = − 1
2πi

∫ σ+i∞

σ−i∞

(
ζ′(s)
ζ(s)

+
s

s− 1

)
1
s
xs−1 ds

for σ > 1. Since the integrand is well-behaved on σ = 1 we can try moving the
contour of integration to σ = 1 to estimate 1 − ψ(x)/x. This is (roughly) the
approach taken in Heins [19].

10.4 Yet another Čebyšev function method

We estimate the integral

Ψ(x) = − 1
2πi

∫ σ+i∞

σ−i∞

xs

s(s+ 1)
ζ′(s)
ζ(s)

ds.

It turns out that∫ x

1

ψ(t)dt =
∑
n≤x

Λ(n)(x − n) = xΨ(x) =
x2

2
+ o(x2)

and we use the Tauberian lemma as before. For this proof see Rademacher [31].

10.5 Riemann’s method

Riemann did not actually prove the prime number theorem, but he did have the
ingredients described here.

Since
log ζ(s)

s
=
∫ ∞

0

π(x)
x(xs − 1)

dx

we have
log ζ(s)

s
=
∫ ∞

0

J(x)x−s−1dx
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where

J(x) =
∞∑

n=1

1
n
π(x1/n).

Then

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)
s

xsds.

This integral is only conditionally convergent. We estimate it very carefully and
deduce J(x) ∼ x/log x. Then π(x) = J(x)+O(x1/2 log x) = x/log x+o(x/log x).

10.6 Modified Riemann method

If

J1(x) =
∫ x

1

J(t)
t
dt

then

J1(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)
s2

xsds.

We estimate the integral to show J1(x) ∼ x/log x. Then the Tauberian lemma,
lemma 2.1, implies J(x)/x ∼ 1/logx. This is the method of proof used in
Grosswald [11] and is the method we will use here.

10.7 Littlewood’s Method

Littlewood [28] gives a proof by studying the inverse Mellin transform of

Γ(s)
ζ′(s)
ζ(s)

and relating it to the Čebyšev ψ function

ψ(x) =
∑
n≤x

Λ(n).

10.8 Ikehara Tauberian Theorem

A very famous result concerning the asymptotic behavior of the inverse Mellin
(or inverse Fourier) transform is the Tauberian theorem of Landau, Hardy, Lit-
tlewood and Ikehara. It shows that a large part of the proof of the prime number
theorem is valid in a more general context. See Landau [24], Hardy–Littlewood
[17], Ikehara [20], Wiener [44] or Donoghue [7].
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Theorem 10.1. Ikehara. Let µ be a monotone nondecreasing function on
(0,∞) and let

F (s) =
∫ ∞

1

x−sdµ(x).

If the integral converges absolutely for <e s > 1 and there is a constant A such
that

F (s) − A

s− 1
extends to a continuous function in <e s ≥ 1 then

µ(x) ∼ Ax.

If we apply the theorem to

−1
s

ζ′(s)
ζ(s)

=
∫ ∞

1

ψ(x)x−s−1dx

with

µ(x) =
∫ x

1

ψ(t)
t

dt

then we obtain the prime number theorem.

11 Proof of the Prime Number Theorem

Recall we have seen

log ζ(s)
s

=
∫ ∞

0

π(x)
x(xs − 1)

dx, <e s > 1

and therefore if

J(x) =
∞∑

n=1

1
n
π(x1/n)

then we have a Mellin transform

log ζ(s)
s

=
∫ ∞

0

J(x)x−s−1 dx, <e s > 1.

This transform decays only as t−1(log t)9 for large | t | and therefore a direct
estimate of J(x) from the inversion formula would require a delicate analysis of
a conditionally convergent integral If we let

J1(x) =
∫ x

1

J(t)
t

dt
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(note J(t) = 0 if t < 2) then an integration by parts yields the Mellin transform

log ζ(s)
s2

=
∫ ∞

0

J1(x)x−s−1 dx, <e s > 1.

This transform (for s = σ + it, σ > 1 fixed) decays like t−2(log t)9 for large | t |
and so is integrable along vertical lines. As we have seen it follows that the
inverse transform formula is valid. Thus

J1(x) =
1

2πi

∫ a+i∞

a−i∞

log ζ(s)
s2

xs ds

for any a > 1. We will estimate this contour integral (essentially by moving the
contour to a = 1).

Let h(s) = (s − 1)ζ(s) so h(s) is an entire analytic function and h(s) 6= 0 if
<e s ≥ 1. For σ > 1 we have

log h(s) = log(σ − 1) + log ζ(s)

where the principal branch of the logarithm is used. We know log ζ(s) is analytic
in <es ≥ 1, s 6= 1. Thus by uniqueness of analytic continuation we have

log h(s) = log(s− 1) + log ζ(s)

for <e s ≥ 1, s 6= 1. It follows that J1(x) = I1(x) −H2(x) where

I1(x) =
1

2πi

∫ a+i∞

a−i∞

log h(s)
s2

xs ds (32)

H2(x) =
1

2πi

∫ a+i∞

a−i∞

log(s− 1)
s2

xs ds. (33)

(34)

The estimate of I1(x) will depend on ζ(s) 6= 0 when s = 1 + it. The estimate of
H2(x), which is harder, has nothing to do with zeta functions.

Lemma 11.1. Let

Hm(x) =
1

2πi

∫ a+i∞

a−i∞

log(s− 1)
sm

xs ds,

a > 1 and m > 1. Then Hm(x) is independent of a and

Hm(x) =
x

log x
+ o

(
x

log x

)
.
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Proof. Consider the contour illustrated at the right. By Cauchy’s theorem we
have ∫ σ+iT

σ−iT

log(s− 1)
sm

xs ds = −IA− IB − IC − ID − IE

-
1 − iT

E

a− iT

� a+ iTA

B

�
� Cδ

D

where IX indicates the integral over the segment labeled
X in the illustration. Consider first the integral over the
segment A:

−IA =
∫ a+iT

1+iT

log(s− 1)
sm

xs ds.

Along the segment A the integrand is bounded in absolute

value by Ca
logT
Tm

if T > 2. The path of integration has
length a − 1. We have the same estimate for IE. Since
m > 0 we see IA → 0 and IE → 0 as T → ∞. The
integral over the semicircle of radius δ < 1 is given by

−IC =
∫ π/2

−π/2

log(δeiθ)
(1 + δeiθ)m

x1+δ exp(iθ)
iδeiθ dθ.

Thus

| IC | ≤
∫ π/2

−π/2

∣∣ log(δeiθ)
∣∣

(1 − δ)m
x1+δ δ dθ

≤ x1+δ δ

(1 − δ)m

∫ π/2

−π/2

(− log δ + π2/4) dθ

≤ πx1+δ

(1 − δ)m
(−δ log δ + δπ2/4)

→ 0 as δ → 0.

Combining the integrals IB and ID we now have

Hm(x) = − lim
δ→0

lim
T→∞

1
π

∫ T

δ

<e

(
log(it)

(1 + it)m
x1+it

)
dt

= −x
π
<e Ĝm(log x)

where

Ĝm(y) =
∫ ∞

0

log(it)
(1 + it)m

eity dt

is the Fourier transform of the integrable function

Gm(t) =
log(it)

(1 + it)m
Y (t)

Seminar Lecture Notes 35 Version: May 2 1996



B. E. Petersen Prime Number Theorem

where Y is Heaviside’s function. By the Riemann–Lebesgue lemma it follows
that Ĝm(y) → 0 as y → ∞, but we need more. In fact we need

<e

(
yĜm(y)

)
= −π + o(1), y → ∞. (35)

The traditional estimate of Fourier integral goes by integration by parts:

iyĜm(y) = lim
δ→0

lim
T→∞

∫ T

δ

log(it)
(1 + it)m

d

dt
eity dt

= lim
δ→0

lim
T→∞

(
log(iT )

(1 + iT )m
eiTy log(iδ)

(1 + iδ)m
eiδy−∫ T

δ

eity

t(1 + it)m
dt−

∫ T

δ

mπ/2 −mi log t
(1 + it)m+1

eity dt

)
.

The first term is O( log T
Tm ). In the last integral the integrand is O( log t

tm+1 ) for large
t and O(− log t) for small t. It follows the integrand is integrable, the limit of
the last integral exists and this limit is the Fourier transform of an integrable
function, and so has limit 0 at ∞ by the Riemann-Lebesgue lemma. We now
have

iyĜm(y) = − lim
δ→0

(
log(iδ)

(1 + iδ)m
eiδy +

∫ ∞

δ

eity

t(1 + it)m+1
dt

)
+ o(1), (36)

as y → ∞.

Now let

u(t) =
1

t(1 + it)m+1
− 1
t

+
i
m+1tm

(1 + it)m+1
.

A quick calculation shows

u(t) = −(m+ 1)i − (m+ 1)(m+ 2)
2

t+ O(t2), t→ 0

u(t) = (m+ 1)it−2 +
(m+ 1)(m+ 2)

2
t−3 +O(t−4), t→ ∞.

It follows that u is integrable and therefore by the Riemann–Lebesgue lemma
we now have

iyĜm(y) = o(1) − lim
δ→0

lim
T→∞

(
log(iδ)

(1 + iδ)m
eiδy +

∫ T

δ

eity

t
dt

− i
m+1

∫ T

δ

tmeity

(1 + it)m+1
dt

)
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We integrate by parts again

iy

∫ T

δ

tmeity

(1 + it)m+1
dt

=
∫ T

δ

tm

(1 + it)m+1

d

dt
eity dt

=
tm

(1 + it)m+1
eity

∣∣∣∣T
δ

−
∫ T

δ

mtm−1 − itm

(1 + it)m+2
eity dt.

It follows that

iy

∫ ∞

0

tmeity

(1 + it)m+1
dt = −

∫ ∞

0

mtm−1 − itm

(1 + it)m+2
eity dt.

Now (mtm−1 − itm)/(1 + it)m+2 is integrable and so by the Riemann–Lebesgue
lemma this last integral is o(1) as y → ∞. Thus

iyĜm(y) = o(1) − lim
δ→0

(
log(iδ)

(1 + iδ)m
eiδy +

∫ ∞

δ

eity

t
dt

)
= o(1) − lim

δ→0

(
log(iδ)eiδy +

∫ ∞

δ

eity

t
dt

)
.

Since log(iδ) = log δ + iπ/2 if we take imaginary parts we obtain

<e

(
yĜm(y)

)
= o(1) − lim

δ→0

(
(log δ)(sin δy) +

π

2
cos δy +

∫ ∞

δ

sin ty
t

dt

)
= o(1) +

π

2
+
∫ ∞

0

sin ty
t

dt.

Since the integral is π/2 we have

<e

(
Ĝm(y)

)
=
π

y
+ o

(
1
y

)
as required.

To prove the prime number theorem it remains to show if

I1(x) =
1

2πi

∫ a+i∞

a−i∞

log h(s)
s2

xs ds, a > 1,

then

I1(x) = o

(
x

log x

)
, x→ ∞.
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The critical issue here is that log h(s), where h(s) = (s − 1)ζ(s), is analytic in
<e s ≥ 1.

-
1 − iT

D

a− iT

A6

� a+ iTB

C

By Cauchy’s theorem

I1(x) = lim
T→∞

IA = lim
T→∞

−IB − IC − ID

where IX indicates the contour integral over the segment
labelled X in the illustration in the right. To estimate the
integrals we note

xs s−2 log h(s)

is analytic in <e s ≥ 1 and, by theorem 8.10, for | t | large
and s = σ + it we have

∣∣xs s−2 log h(s)
∣∣ =

∣∣∣∣ xσ+it

(σ + it)2
log ((s− 1)ζ(s))

∣∣∣∣
≤ xσ

t2
| log | t | + log | ζ(s) | |

≤ C
xσ

t2
(log | t |)9.

It follows the integral over the horizontal segments goes to 0 as T → ∞. Thus

I1(x) = lim
T→∞

1
2π

∫ T

−T

x1+it

(1 + it)2
log h(1 + it) dt

=
x

2π
H(log x)

where

H(y) = lim
T→∞

∫ T

−T

eiyt log h(1 + it)
(1 + it)2

dt.

Integrating by parts we have

iyH(y) = lim
T→∞

∫ T

−T

log h(1 + it)
(1 + it)2

d

dt
eiyt dt (37)

= −i lim
T→∞

∫ T

−T

(1 + it)h′(1+it)
h(1+it) − 2 log h(1 + it)

(1 + it)3
eiyt dt (38)

(39)

since logh(1 + it) = O((log | t |)9) implies the boundary terms have limit 0.

We have already seen that logh(s) is analytic in <e s ≥ 1. Hence the same is
true for h′(s)/h(s). We can also see it directly – since ζ(s) has a simple pole
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at s = 1 it follows that ζ′(s)/ζ(s) has a simple pole with residue −1 at s = 1.
Thus h(s) = (s− 1)ζ(s) implies

h′(s)
h(s)

=
1

s− 1
+
ζ′(s)
ζ(s)

is analytic in a neighborhood of s = 1 and also away from the zeros of ζ(s).
Thus its analytic in <e s ≥ 1. It follows that∣∣∣∣ h′(1 + it)

h(1 + it)

∣∣∣∣ ≤ C for | t | ≤ 1.

From lemma 8.6 we have∣∣∣∣ h′(1 + it)
h(1 + it)

∣∣∣∣ =
∣∣∣∣ ζ′(1 + it)
ζ(1 + it)

+
1
it

∣∣∣∣
≤ C1 + c2 (log | t |)9
≤ C3(log | t |)9

for | t | ≥ 1. It follows that the numerator in the last integrand in equation (37)
is bounded by

C3 | t | (log | t |)9 + C4 (log | t |)9.
Hence the integrand is

O
(∣∣ t−2

∣∣ (log | t |)9) , | t | → ∞
and bounded for small | t |. Thus the integrand is integrable and so by the
Riemann–Lebesgue lemma we have

yH(y) = o(1), as | t | → ∞.

Then

I1(x) =
x

2π
H(log x) = o

(
x

log x

)
which completes the proof of the prime number theorem.
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