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Abstract: The focus of this paper is on the probability, Eβ(Q; J), that a set J
consisting of a finite union of intervals contains no eigenvalues for the finite N
Gaussian Orthogonal (β = 1) and Gaussian Symplectic (β = 4) Ensembles and their
respective scaling limits both in the bulk and at the edge of the spectrum. We
show how these probabilities can be expressed in terms of quantities arising in the
corresponding unitary (β = 2) ensembles. Our most explicit new results concern
the distribution of the largest eigenvalue in each of these ensembles. In the edge
scaling limit we show that these largest eigenvalue distributions are given in terms
of a particular Painleve II function.

I. Introduction

In the standard random matrix models of N x N Hermitian or symmetric matrices
the probability density that the eigenvalues lie in infinitesimal intervals about the
points x\9...,xN is given by

Pβ(xl9...,xN) = CNβ

where the constant C^β is such that the integral of the right side equals 1. In the
Gaussian ensembles the potential V(x) equals x2/2 and the cases β = 1,2 and 4
correspond to the orthogonal, unitary, and Symplectic ensembles, respectively, since
the underlying probability distributions are invariant under these groups.

When β = 2 the polynomials orthogonal with respect to the weight function
e"2V(x) piav an impθrtant role. If φ/(x) (/ — 0, 1,...) is the family of functions
obtained by orthonormalizing the sequence xl e~v^x\ then

where

N ) . ( 1 )
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It follows from this that the so!called "«!level correlation function" is given by

Rri(xι9...,xn) = ds*(KN(xi,Xj)) (i,j= I , ! ! ! , * ) , (2)

and the 'Vlevel cluster function" by

Xσ\,Xσ2) ' ' ' Kj^(xσ(n"\^Xσn) , (3)

where the sum is taken over all cyclic permutations σ of the integers !,...,«, in
some order. (See [9], (5.1.2,3) and (5.2.14,15).) The probability E2(Q;J) that no
eigenvalues lie in the set J is equal to the Fredholm determinant of the integral
operator on J (more precisely, on functions on J) with kernel K^(x9y). There are
analogues of this for scaled limits of these ensembles. If one takes a scaled limit
in "the bulk" of the spectrum for the Gaussian unitary ensemble then (2) and (3)
become

9xj)) (ij = l , . . . , / ι ) , (4)

S(xσ(n"i),Xσn) , (5)

where

π x — y

Now £2(0, J) is the Fredholm determinant of the operator on J with kernel S(x9y).
If one scales the same ensemble at "the edge" of the spectrum this is replaced by
the "Airy kernel"

Ai(x)AΪ(y) ! AΪ(x)Ai(y)
x"y

where Ai( t) is the Airy function, and if one scales the Laguerre ensemble (which
corresponds to the choice of potential V(x) = ^jc — ^αlog t) at the edge one obtains
the "Bessel kernel"

F.J. Dyson [6] discovered that the introduction of so!called "quaternion deter!
minants" allows one to write down β — 1 and β = 4 analogues of (4) and (5). We
define ε(x) := | sgnz and

S(χ) := — , DS(x) := S'(x) ,
TCX

IS(x) := fS(y) dy, JS(x) := IS(x) " ε(x) , (6)
o

S(x"y) DS(x"y)\
) , ( 7 )

JS(x"y) S(x"y) )

(S(2(x"y)) DS(2(x"y))\
GA(X. y) := . (8)4 ( ' y } \IS(2(x"y)) S(2(X"y))) ^

If these 2 x 2 matrices are thought of as quaternions then the analogues of (4)
and (5) for β — 1 and β — 4 are obtained by replacing S(x,y) by σβ(x,y)9 and by
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interpreting the right side of (4) as a quaternion determinant. The right side of (5)
is a scalar quaternion, the scalar being equal to \ times the trace of the right side
when it is interpreted as a matrix. It follows from these facts, by an argument to
be found in A.7 of [9], that Eβ(Q;J) is equal to the square root of the Fredholm
determinant of the integral operator on / with matrix kernel σβ(x,y). There are
similar but more complicated matrix kernels for the finite N matrix ensembles ([9],
Chaps. 6!7).

The focus of this paper is £0(0; J) for β = 1 and 4 when J is a finite union
of intervals, for both finite N and scaled Gaussian ensembles. We shall show how
these can all be expressed in terms of quantities arising in the corresponding β — 2
ensembles. The Eβ(0;J) are Fredholm determinants of certain matrix!valued kernels,
and by manipulating these Fredholm determinants we are able to write them as
ordinary scalar determinants whose order depends only on the ensemble and the
number of intervals in J, and not on N if the ensemble is finite. The entries of this
determinant contain integrals involving the resolvent kernel for the β = 2 kernel
(these are the "quantities" alluded to above). For the scaled Gaussian ensembles
our results for general J are given below in (19) and (21) and for the finite N
Gaussian ensembles the results for general J are in (33) and (34).

The evaluation of the integrals appearing in our above quoted expressions is a
separate matter. In the cases of greatest interest to us!J a finite interval for the
scaled ensembles, / a semi!infinite interval for the finite N ensembles ! there are
systems of differential equations associated with those integrals. The equations are
easily solved in the cases of the scaled ensembles and we recover known formulas
for the probability in these models of the absence of eigenvalues in an interval.
(These are found in [9] as formulas (6.5.19) and (10.7.5).) It then follows from
[8] that all these probabilities are expressible in terms of a Painleve function of
fifth kind (see also [2,11]). For finite N9 and J the semi!infinite interval (ί, oo),
Eβ(0;J) is the probability distribution function FNβ(t) for the largest eigenvalue. In
[14] we showed that when β — 2 this is expressible in terms of a Painleve function
(this time P/κ) and we hoped to be able to find representations in the cases β = 1
and β = 4 also, but we were unable to solve the associated system of differential
equations. However we succeeded for their limits scaled at "the edge " because the
equations scale to a system which we can solve. To explain our results, we recall
that Fχβ(2σΛ/N + 1 ) tends to the Heaviside function as N —^ oo, where σ is the
standard deviation of the Gaussian distribution on the off!diagonal matrix elements
[1]. (Our choice of Pβ(x\9...9XN) corresponds to a standard deviation σ= l/Λ/2
which is the usual choice [9]. We also recall that this result holds for the larger
class of so!called Wigner matrices [1], but the results that follow are only known
for the Gaussian ensembles.) This says, roughly, that the largest eigenvalue is
within 0(1) of 2σV/JV, and so this is thought of as the right edge of the spectrum.
In fact, the largest eigenvalue is within O(N~1/6) of 2σ\/N and we consider here
the more refined limits

Fβ(s):= lim FNβ

(As the notation suggests, Fβ is independent of σ.) In earlier work [12] we showed
that when β = 2 this is given in terms of another Painleve function (P//!see (52)
below). Now we shall find representations for F\(s) and F^(s) in terms of this
same function (see (53) and (54) below). The probability densities fβ(s) = dFβ/ds
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Fig. 1. The probability densities f β ( s ) = dFβ/ds, β = 1,2, and 4 for the position of the largest
eigenvalue in the edge scaling limit. The probability density with the smaller value of β ("higher
temperature") has the larger variance.

are graphed in Fig. 1. Though these results strictly apply only in the limit as the
size of the matrices tends to infinity, simulations of finite N GOE, GUE and GSE
matrices show that the empirical probability density of the largest eigenvalue is well
approximated by fβ, β = 1,2,4, for N ^ 200.

Although this paper treats exclusively the Gaussian ensembles, the methods
appear quite general and should apply to other ensembles as well. In particular one
might expect to be able to express the limiting distribution function for the smallest
eigenvalue in the β — 1 and 4 Laguerre ensembles in terms of a PIΠ function, as
is the case for β = 2 [13].

In Sects. II and III we derive our expressions for Eβ(0;J) for the bulk!scaled
Gaussian ensembles when J is a finite union of intervals. In Sect. IV we specialize
to the case of one interval and see how to recover the formulas cited above for the
probability of absence of eigenvalues. Section V contains the analogous derivations,
for general J, for the finite N ensembles. These are more complicated than in the
scaled case, because the expressions for the analogous matrix functions σNβ(x,y)
have "extra" terms. In Sect. VI we derive the differential equations associated with
these ensembles when J is a semi!infinite interval, and in Sect. VII we derive the
results on the limiting probability distribution for the largest eigenvalues in the
orthogonal and symplectic ensembles.

To obtain our formulas for the Fredholm determinants we think of the operators
with matrix kernel instead as matrices with operator kernels, and then manipulate
their determinants ( 2 x 2 determinants with operator entries) in a way the reader
might find suspect. These manipulations are, however, quite correct and in the last
section we present in detail their justification for the bulk!scaled ensembles. For
the basic definitions and properties of operator determinants we refer the reader to
Chapter IV of [7], where everything we use will be found.

There is an alternative route to the results of Sect. VII, based on the fact that
the limiting probability distributions are Fredholm determinants involving the scaled
kernel, the Airy kernel. We did not choose this route because we would have had to
give yet another derivation of a set of differential equations for the entries of a scalar
determinant, and because we would have had to present yet another justification for
the manipulation of the Fredholm determinants, in this case involving the Airy
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kernel. This would be more delicate than the justification in Sect. VIII for the sine
kernel because the Airy kernel is not as nicely behaved at — oo. (We do use the
Airy kernel in our derivation, but only on intervals semi!infinite on the right, where
it is very well behaved.)

II. The Scaled Gaussian Orthogonal Ensemble

First, we introduce some terminology. If K(x, y) is the kernel of an integral
operator K then we shall speak interchangeably of the determinant for K(x,y) or
K, and the determinant of the operator I — K. We denote by S and ε the integral
operators on the entire real line R with kernels S(x — y) and ε(x — y), respectively
(see (6)), and write D for d/dx. Notice that DS has kernel DS(x ! y) (fortunately!)
and it follows from the evenness of S(x) that IS(x — y) and JS(x — y) are the ker!
nels of the operators εS and εS — ε, respectively. We denote by χ the operator of
multiplication by χj(x)9 the characteristic function of J.

£Ί(0;J)2 equals the determinant for the kernel σ\(x, y) on J, or, what is the
same thing, the determinant for the operator with kernel

S(x"y) DS(x"y)\^ / V ./ / I x v

,e, . e, Λ 1 χj(y)
JS(x"y) S(x"y) )

on R. This can be represented as the 2 x 2 operator matrix

(9)
χ(εS"ε)χ χSχ

Since Dε — /, the identity operator, this can be factored as

'χD 0\ / εSχ Sχ
(10)

0 χ j \(εS"ε)χ S χ , 1 '

It is a general fact that for operators A and B the determinants for AB and BA
are equal. So we can take the factor on the left above and bring it around to the
right, combine the two factors χ into one, and find that the above can be replaced
byy ' εSχD Sχ\

. (11)
SχJ

Subtracting row 1 from row 2 and then adding column 2 to column 1 we see that
the determinant for this is the same as that for

, (12)
"εχD '

and so equals the determinant of the operator

Ί"εSχD"Sχ "Sχ

Next we subtract column 2, right!multiplied by εχD, from column 1 and then add
row 2, left!multiplied by Sχ, to row 1. (Column operations are always associated



732 C.A. Tracy, H. Widom

with right!multiplication and row operations with left.) The result is

Ί"εSχD"Sχ + SχεχD 0"

0

and the determinant of this equals

(13)

So we have shown that E\(0;J)2 equals the determinant of the operator with
scalar kernel

/ ! εSχD "Sχ + SχεχD = I"Sχ"S(I" χ)εχD ,

where we used here the fact that ε and S commute. Now / — Sχ is precisely the
operator which arises in the bulk!scaled Gaussian unitary ensemble. (In particular its
determinant, which is the same as the determinant o f / — χSχ, is exactly ^(0; ./).)
Because J is a finite union of intervals the last summand will turn out to be a finite
rank operator, so if we factor out / — Sχ, whose determinant we know, then we
obtain an operator of the form 7— finite rank operator, whose determinant is just
a numerical determinant. Of course this factoring out requires introduction of the
inverse (I — Sχ}~1 which is why the resolvent kernel for Sχ appears in the final
result.

Now for the details. We denote by R the resolvent operator for Sχ, so that

and by R(x, y) its kernel. Observe that this is smooth in x but discontinuous in y.
Factoring out 7 — Sχ and using the fact that determinants multiply, we obtain

£ι(0;./)2 = £2(0; J) det(/ ! (S + RS)(l " χ)εχD} . (14)

To write the last operator more explicitly we denote the intervals comprising J by
(a2k"ι,a2k), (k= l , . . . ,m), and set

εk(x) := ε(x " ak\ δk(y) := δ(y " ak\ Rk(x) := R(x,ak) ,

where the last really means
limR(x9y).
y£J

We use the notation α 0 β for the operator with kernel a(x) β(y), the most general
finite rank operator being a sum of these. For any operator A we have

A(QL ® β) = (AOL 0 β), (α <g> β)A = (α ®A*β) , (15)

where At is the transpose of A.
It is easy to see that the commutator [χ,D] has the representation

2m

[χ,0] = Σ (!!)*<** ® < s * ,
k=l

and so
2m

e[*,β] = Σ(! l )*«f r®fc (16)
k=\
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Since sD = / we have

(I " χ)εχD = (I " χ)ε(χ,D] ,

and we deduce the representation

2m

(S 4! RS)(l " χ)εχD = Σ (!!)*(£ 4! /»)(! ! χ)εk <g> <5, .
£=1

The determinant for this is evaluated using the general formula

det (/ ! £ α* <8> βk] ! detφ,* ! (α;, &)),,*=!,,« , (17)
V k=ι /

where (α7, jβ^) denotes the inner product. (This is an exercise in linear algebra. Its
generalization to an arbitrary trace class operator is in [7].) Those that arise in our
case are

((S + RS)(l " χ)sj9δk) = ((1 ! χ^S + SR'ϊδk) = ((1 ! χ)εJ9Rk) , (18)

where we have used the fact that (S + SR*)χ = R. (This is perhaps most quickly
seen by writing R — Σ^ι(Sχ)k and using S = S*.) Thus we have established the
formula

=ι^2m . (19)

III. The Scaled Gaussian Symplectic Ensemble

Because of the factor 2 in the arguments of the functions in the matrix (8) we
make the variable changes x —> x/2, y —> y/2, and find that £4(0; J/2) is the square
root of the determinant for operator with kernel

1 , Λ (S(x"y) DS(x"y)
~χj(χ) [ „, . „, .2 \IS(x"y) S(x"y)

Thus the operator matrix (9) of the last section is replaced by

1 / χSχ χDSχ\

2 \χεSχ χSχ ) '

Proceeding exactly as before we find that (12) is replaced by

1/εSχD + Sχ Sχ"

2 ( 0 o
and (13) by

det (l " "SεχD ! !^

But notice that the operator here equals
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Using this we factor out / — Sχ as before and conclude that the analogue of (14) is

£4(0; J/2)2 = £2(0; J) det ( / ! !(/ + R)Sε[χ9D] } . (20)

Using (16) once again we see that

2m

' + RS)ε[χ,D] = Σ("l)k(S + RS)εk ® δk ,
k=l

and we obtain the analogue of (19),

; J/2)2 = E2(0;J) det (δjtk " l"("l)k(^Rk)} , (21)
\ 2 / ,k=\,...,2mj,k=\,...,2m

where we used the fact that in the inner product we may use the identity δk =
since all evaluations are done by taking the limit from within the interval.

IV. The Case / = ("*, *)

In this case we have m — 1, a\ = —t, a2 — t, and

εiOO ! ε(x + t\ ε2(x) = ε(x " t\ R{(x) = R(x, "t), R2(x) = R(x, t) .

If we define
oo

J?± := f R(x9t)ε(x^t)dx9
— 00

then
!(ει,Λι) ! (ε2,Λ2) ! S+9 !(fi2,«i) = (βι,Λ2) = </! . (22)

The first equalities above used the evenness of R (i.e., the fact R(— x, y) = R(x, —y))
and the oddness of ε.

To evaluate these integrals we find expressions for their derivatives with respect
to t. Observe that R(x,y) depends on the interval J as well as x and y. Formulas
(2.9) and (2.22) of [14] give, for y e J, (see also Lemma 2 in [11])

d
"R(x, y) = R(x9 "ί)R("t9 y) + R(x9 t)R(t9 y) ,

+ R(x9 y) = R(x9 "t)R("t9 y) " R(x9 t)R(t9 y) ,

from which it follows that

d d
!tf(*,0 = 2R(x9"t)R("t9t) " "faR(x,t) .

Hence, applying the product formula to the integrand and using dε(x =p t)/dt =
=F(5(jc =p 0, we find that

d °° Γ d Ί
!j!./±= / \2R(x9"t)R("t9t)"—R(x9t)\ε(x^t)dx^R(±t9t).dt ^ dx
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Integrating by parts the term involving dR(x,t)/dx and using parity give

Adding these two identities gives for </+ !f */_ the differential equation

whose general solution is

(The function R in the integral is the resolvent kernel for the interval (— τ,τ).)
Since «/±(0) — 0 we have c = — 1 and so

(23)./++./_ = 1 !

Similarly if we subtract the two identities for dJ*±/dt we obtain

whose solution is
(24)

Because of (22) these relations determine the inner products (εy,^) which arise
in (21). For the determinant in (19) we need the inner products ((1 — χ)εj9Rk). But
observe that

((1 ! = ((1 ! xdx

((1 ! χ)εl9Rl) = ((1 !
_ 1

So we have all the inner products we need.
It follows from the last displayed formulas that the determinant on the right side

of (19) equals

2 2

l_g!2Jθ*(!τ,τ)Λτ 1+g!2/ό*(!τ.τ)«/τ

2 2

Now in this case J = (—t,t) we have

and so
(26)
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Thus from (19) and this fact we deduce

Ei (0; J) = e"^[R(τ^R(~τ^} dτ . (27)

For the symplectic ensemble in this special case we use (22), (23) and (24) to
evaluate the inner products appearing in the determinant on the right side of (21)
and find that it equals

_ _

by (23) and (24). Hence, from (21) and (26),

E4(0;J/2) = " (e~^[R(τ^+R("τ^dτ + e!!/oL*cw!*i!wJ**J ^ (29)

To see that (27) and (29) are just the known formulas (6.5.19) and (10.7.5) of
[9] we recall the notations

00 00 00

ί=0 /=0 z'=0

where /10 > λ\ > •" are the eigenvalues of the kernel S(x — y) on (—t,t). Of
course D(t) is the determinant for S(x — y) while D±(t) are the determinants for
the kernels

The resolvent kernels for these are

and from these we obtain the integral representations

D±(t) = e!/OWτ,τ)±«(!t,τ)]Λ (3Q)

analogous to (26). Hence (27) and (29) are (6.5.19) and (10.7.5), respectively,
of [9].

We mention here that the left side of (24) equals

"fR(x,t)dx,
j

and so in view of (30) the formula can be rewritten

This is equivalent to identity (A. 16. 6) of [9] and, although this might not be obvious
on first comparing the two, our derivation of it has elements in common with the
derivation, attributed to M. Gaudin, given in [9].
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Finally, we mention that (26) and (30) may be expressed in terms of Painleve V
following [8]. (See [11] for a simplified treatment.)

V. The Finite N Gaussian Ensembles

The analogue of the matrix kernel (7) for the finite N GOE is given by (6.3.8)
of [9] and so we can write down the analogue of (9). We shall denote here by S
the operator with kernel KN(x,y) given by (1). Recall that the determinant for this
operator on J equals £2(();/) for the finite TV GUE. We also write

1/4

Then for N even (this case is slightly simpler) the analogue of (9) is

SD"ψ®φ
γ . (31)

(See [9], Sect. 6.3.) Now we have to be careful because S does not commute with
ε and D. But we have the simple relations

[S,D] = φ®ψ + ψ®φ, [ε,S] = "εφ 0 ε^ ! εψ ® εφ . (32)

The first follows from (2.20) of [14] (where finite N GUE is called the "Hermite
ensemble"), and the second follows from the first upon left! and right!multiplying
by ε. (We used (15) here and the antisymmetry of ε. We shall make similar use of
this below.) We write the first row of the matrix in (31) as

D (εS + ε\l/ 0 εφ, εSD " εψ 0 φ) = D (Sε " εφ 0 εψ, S !f εφ 0 ψ) ,

where we applied (32). Using this, and applying (32) now to the lower left corner,
we find that the analogue of the second matrix in (10) is

(Sε " εφ <g> ει//)χ (S + εφ 0 ψ)χ \

(Sε " ε " εφ 0 εψ)χ (S + εφ 0 ψ)χ J '

Now we move that matrix ( *;? ° ) around to the right and find the analogue of the
V ^ /

right side of ( 1 1 ),

(Sε "εφ® εψ)χD (S + εφ 0 ι/0χ

iSε ! ε ! εφ 0 ει/0^ (S + βφ 0

The same row and column operations as before reduce this to

(Sε "εφ® εψ)χD !f (S + εφ 0 ι/0x (S + εφ 0

"εχD 0
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the analogue of (12). We complete the computation just as before and find that the
determinant for this equals the determinant of the scalar operator

/ ! SεχD + (εφ 0 εψ)χD + (S + εφ 0 ψ)χ(εχD " /)

= I"Sχ"S(l" χ)εχD "εφ®χι//" (εφ ® ψ) (1 ! χ)εχ£> .

Factoring out / — Sχ shows that the determinant of the above equals £2(0, J) times
the determinant of

/ ! (S + RS)(l " χ)εχD "Qε®χψ"Qε ® ^(1 ! χ)εχD ,

where

Qe:=(I"SχΓl*φ,

and we have used the same notation R as before for the resolvent operator for Sχ.
Using (16) and the general fact (α 0 β)(γ 0 δ) = ( β , y ) α (8) δ we see that the above
operator equals

2m

I " Σ (!!)*($ + *£)(! ! χ)εk ®δk"Qε®χψ
k=\
2m

!Σ(! i)*GMi!;t)f i*)ββ®fc. (33)
£=1

Thus E\(Q\J)2/E2(Q\J) equals the determinant of this operator.
The analogue of the matrix kernel (8) for finite N GSE is given by (7.1.5)

of [9] where now N must be odd.1 Because of the factor \/2 in the arguments of the
functions in the matrix (7.1.5) of [9], we make the change of variables c — > jt/\/2,
y — » y/V2 and find that £4(0; J/Λ/2) is the square root of the determinant for

+ ψ®εφ SD"\l/®φ

Proceeding analogously to finite N GOE leads to the following formula for the
operator whose determinant is ^(0; J/v/2)2/£?2(0;/):

1 2m 1 2m

δk " Q£ 0 χψ " " Σ ("l)*(^,e*)βε ® (5, . (34)
Z k=\

VI. The Case / = (f, CXD)

Now J has the end!point a\ = t and a^ = oo, and we write δί? ^oo, εt9 ε^, Rt and
7?oo for the quantities δ^ ε^, ̂  (^ — 192) of the last sections. Note that

= !! (1 ! χ), tfoo = 0 .

1 In finite N = 2n + 1 GSE the matrices are In x 2w Hermitian matrices with each eigenvalue
doubly degenerate [9].
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With this notation the operators (33) and (34) become

"χ) + (ιl,9(l"χ))QB]®(δt"δ<»)9 (35)

"[(S+RS)&t + GM,)βe] ® <**

+ i[(5 + RS)\ + OA, 1 ) βe] ® <5oo , (36)

respectively. Both operators are of the form

/ ! ί > * ® A f c > (37)
k=l

so to evaluate their determinants using (17) we have many inner products to
evaluate. We shall introduce several new quantities now and express all the
inner products, and therefore the determinants, in terms of them. Then we shall
write down systems of linear differential equations (in the variable t) which in
principle determine these quantities.

First, there are

Q:=(I"SχΓlΨ, P •= (/ ! Sχ)~ V ,

Qε:=(I"SχΓlεφ, Pt:=(I "SχΓleφ ,

the third of which we have already met. We use small letters to denote the values
of these functions at x = t:

q = Q(t\ P = P(t\ q, = ββ(0> A = P*(t) (38)

(The functions q and p play important roles in the investigation of E2(fy J) [14]
and we think of them here as known. )

Next, there are the inner products

Us := (β, χεφ) = (Qc, χφ)9 vε := (Q, χεψ) = (Pε, χψ)

VB '= (Λ χεφ) = (QB, χψl wε := (P, χεψ) = (PB9

the last four being analogous to (2.4)!(2.5) of [14] with xj replaced by ε. Our
first system of differential equations (in which q and p appear as coefficients) will
connect these with qε and pc.

Finally there are two triples of integrals

t t t
gtλ := J R(x,t)dx, 0>ι := / P(x)dx, SL\ := / Q(x)dx,

— 00 —00 —00

oo oo oo

^4 := f εt(x)R(x,t)dx, ^ := / εt(x)P(x)dx9 £4 := / εt(x)Q(x)dx .
— 00 —00 —00

(The subscripts 1 and 4 indicate that these arise in GOE and GSE, respectively.)
We shall find systems of differential equations for each of these triples.

The determinants of (35) and (36). We consider the GOE operator (35) first. If
we set
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then the operator is of the form (37) with n = 2 and

«1 = βε, «2 = jK

We also set
J 00 I 00

cφ :— εφ(oo) = " f φ(x)dx, cψ := εψ(oo) = " f ψ(x)dx . (39)
^ —oo ^ —oo

For A^ even a computation gives

Cφ = (πTV)1/^!3/4!^2

Since βε = εφ 4! Sχ(7 — Sχ)~lεφ, we have βε(oo) = cφ. Therefore, with the nota!
tions introduced above,

To compute the inner products involving α2 we use the fact (S + SR*)χ = R, as in
the derivation of (18), to write

! χ),

χ),δ f) = (1 ! χ,Rt) = @ι ,

((S + ΛS)(1 ! χ),5oo) ! (1 ! χ,^oo) = 0 .

Using these, we find that

(α2,j8ι)= 2(^1 !βι +«ι^), («2,j82)= 2

The GSE operator (36) has the form (37) with w = 3. But notice that

((S + RS)st9δOQ) = (ε^Λoo) = 0, ((S !ftf^Uoo) ! (l^oo) ! 0 ,

and (βε,c>oo) = cφ = 0 because for GSE N is odd and so φ is an odd function.
Thus the contribution to the determinant of the last term in (36) is 0 and we may
discard it. The resulting operator is of the form (37) with n == 2 and

αi = βe, «2 = ! ^ [(S + ΛS)e, + «4 βε], βι = χψ, β2 = δt

where we have set
a4 := (ψ, εt) .

The inner products are computed as for GOE above and we find that now

(α2,A) = !! (^4 ! a4 + fl4 ΰε), (α2, J82) = !! («4

Thus the determinants of the operators (35) and (36) are expressible in terms of
the constants a\,a^ and cφ and the as yet to be determined quantities vε,qε,0*\,&\,
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^4, and J?4. The determinants are given by

"τ(qε"Cφ)&\, (40)

";Ue^4, (41)

respectively. (The constants «ι and #4 drop out, as we see.)

The first set of differential equations. The derivation will not be quite self!contained
because we shall refer to [14] for some results derived there. First we have the
analogues of (2.15)!(2.18) of [14],

U'ε = "qq£, Vε^"qPε, v'£ = " p q^ w'ε = "p pε , (42)

which are proved in exactly the same way. (The primes denote djdt.) To derive
formulas for qε and pf

ε we use the displayed formula between (2.27) and (2.28)
of [14], which in this case gives

(x> y) = ~QM * (χp)M ~ p(x) ' (χβ)ω ' (43)

where p(x,y) is the kernel of (I — Sχ)~l, in other words δ(x — y) + R(x, y). It
follows from the above that

q/ε = dt

The first term on the right side equals

fρ(t,y)φ(y)dy = q.

We treat pε similarly, and we find that we have derived the equations.

q'ε = q"qv£" puε, p'ε = p " qwε " pvε . (44)

For the boundary conditions at t — oo, observe that the four functions uε, vε, ΰε

and wε all vanish there, whereas

<7ε(θθ) = Cφ, Pε(θθ) = Cψ .

One of these always vanishes, the first if N is odd and the second if TV is even.
It is easy to derive a first integral for our system of equations. Using the equa!

tions we find that

(Pε qε)' = Pεq(l " ve) " pεpuε + qε(l " vε) " qεqwε

= v'ε(l " ΰε) " w'εuε + t;e(l ! ι?e) ! u'εwε

and so, since all quantities vanish at oo,

pBq& = \"(\" vε)(l " vε) " uεwε .
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The second set of equations. It follows from (43 ) that for y £ J,

,dt

and so
d_

~dt
and from this we obtain

1 Γ d Ί
« ί=Λ(f,0+ / \"j"R(x9t)"pQ(x)"qP(x)\dx.

— oo L J

This gives our first equation,

St\ = —pΆ\ —q&\. (46)

By (2.10) of [14] we have
dQ _

and so
t

Ά(=q"q f R(x,t)dx.
— oo

We treat 0>\ similarly, and so we have our other two equations,

At t = oo our functions have the values

The system (46), (47) has a first integral. If we multiply the first equation by
3t\ and use the second we obtain

Integrating gives
1 2 _

2

(Again the constant of integration is 0 because either cφ or cψ is 0.) Differentiating
(46) and using (47) again give

Solving Eqs. (46) and (50) for Ά\ and 3P\ and substituting the results into (49), we
obtain a second!order differential equation for 0t\\

(qlp _ pfq}2 = (pm,, _ p, Λ, + 2p

2q(®l " 1))

" qf @( +2q2p(<%l " 1)) .

To find a differential equation for ^\ we use the second relation of (47) to ex!
press 0t\ in terms of &\9 then use (46) to express 2,\ in terms of &\, and then
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substitute these results into (49). What results is the equation

The third set of equations. To obtain the equations for ^4, =24 and ^4 we proceed
almost exactly as in the last section, replacing the domain of integration (—oo, t) by
(—00,00), and inserting the factor s(x — t) in the integrands. The only difference
is that when we differentiate the integrals we apply the product formula to the
integrands. What results is the system

β#4 = "p&4"q0>4, &4 = "q(®4+\\ 0>'4 = "p(&4 + l ) . (51)

The solutions of this system are obtained from the solutions of the last by simply
changing their signs. But notice that the values at / = oo are now given by

! 0, J24(θθ) = "Cφ, ^4(θθ) ! "Cψ .

VII. Scaling GOE and GSE at the Edge

The goal of this section is the computation of the limiting probability distribution
functions for the largest eigenvalue in the finite N Gaussian orthogonal and sym!
plectic ensembles. The probability distribution functions for finite N GOE, GUE
and GSE are precisely the functions lfy(0,(f,oo)) of Sect. VI with β = 1,2 and 4,
respectively. We denote them by FNβ(t), and limits we are interested in are

FR(S) := lim FNβ ( V2N +
N—+OO Y

In [12] we showed that the limit exists when β = 2 and is given by

F2(s) = exp("J(x"s)q(xytdx) , (52)
V S /

where q is the P// function determined by the differential equation

q" =

together with the condition q(s) ~ Ai(5!) as s — > oo. (For more details on this solu!
tion see [3,4, 12].) We shall show here that the limits exist for β = 1 and 4 also,
and that

Fι(s)2=F2(s)e"^°°^dx , (53)

_ + !
F4(s/V2)2 = F2(s) ί ! ! . (54)

(Note the similarity to formulas (25) and (28).)
The reader must see our notational difficulty: q denotes both a Painleve function

and the function defined by (38) of the last section. We resolve this difficulty by
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denoting the latter function here by q^ (and denoting the function p of the last
section by pχ\ while retaining the notation q for the Painleve II function.

We denote our scaling transformation by τ, so that

We think of s as fixed, and the functions qN, pN,qε,uε,...,έP4 of the last section
as being associated with t = τ(s). We shall show that these functions of s (perhaps
after normalization) tend to limits as N — > oo and that these limits satisfy systems of
differential equations which are solvable in terms of the P// function q. Substituting
the values of these limits into (40) and (41) will give (53) and (54). Everything
will be a consequence of the following:

(i) lim^ooΛM/V ! limtf!Kx, AT1/6/** = q.
(ii) The limits lim^^oo uε and limA^oo vε exist and are equal.

(iii) The limits of qε and ̂ ι,...,^4 all exist. The limits of Ά\ and ̂  differ by
a constant as do the limits of £4 and ^4.

(iv) All of the above limits hold uniformly for bounded s.

These will be established below, but suppose for the moment that they are
true. Denote the common limit in (ii) by ΰ, the limit of qε by q and the limits of
#ι,...,^4 by Jι,...,^4.

Let us rewrite the first equations of (42) and (44) using our present notation
and letting the prime now denote ^ (= j"f/V2Nl/β):

Taking the limits as N —» oo, using (i) and (ii), gives the system

rJ % r =/ # / ι

(The interchange of the limit and the derivative is justified by the uniformity of
convergence of these derivatives.) We remind the reader that when we apply our
finite N results to GOE and GSE we restrict N to even or odd values, respectively,
and this affects the boundary condition at s = oo. In fact, we have

!Y Λ π !/ N / 1Λ/2 in GOE ,u(oo) = 0, 0(oo) = < '
I 0 in GSE .

The reason for the first is that uε vanishes at oo and the reason for the second is
that #ε(oo) = cφ, which vanishes when TV is odd and can be shown to have the
limit l/λ/2 as N — » oo through even values. Introduction of

as a new independent variable reduces our system of equations for ΰ and q to one
with constant coefficients which is easily solved. We find that

="e~
µ in GOE,

V2

inGSE
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Next, we consider the limiting quantities 9t\,£L\ and &\. Recalling that these
arise in GOE, when N is even, we find from (48) that

and so, since by (iii) the last two functions differ by a constant,

Ji = JΊ + λ/2 .

We find now that the limiting form of the system (46) and (47) is

— τ = ι , — = ι ! .
Λ/2 v2

The same substitution reduces this to a system with constant coefficients, and we
find the solution to be

J> — ι _ p"µ φ, — _ (p"µ _ ι Λ<Sl\ — 1 V , <S\ — ,— \V L J .
v2

Similarly, for β = 4 when N is odd we find that

Λ/2
! 0, J4(oc) = 0,

that J4 = ̂ 4 + \/2/2, that the system is

$* — — — I 2 ,̂ !µ — ! 1 ^ — — — (<%Λ #4# Π•̂ 4 ~~ /z I ^"^4 T" 0 I 9 ^4 — /^\^^ r L) >
λ/2 y 2 J V2

and that the solution is

<&Λ — "ρµ 4" "p~µ — 1 ΦΛ — — — I !^µ — !^~^ — !
^~ 4

e + 4

e !' ^4~ ^2 U 4^ 2

If we substitute the limiting values we have found into the formulas (40) and
(41) which give the values of the ratios Fm(t)2/FN2(t) and FN4(t/V2)2/FN2(t) we
obtain formulas (53) and (54).

It remains to establish our claims (i)!(iv) above. We indicate by a subscript τ
the result of scaling either a function or an operator. Thus,

Sτ := τ o So τ? φτ :— φ oτ, etc.

It follows from results on the asymptotics of Hermite polynomials that

lim N~l/6φτ(x) = lim N~l/6\l/τ(x) = A(x) (55)
N"+OO TV— KX)

uniformly for bounded £, where A(x) denotes the Airy function Ai( t), and that there
are estimates

N~l/6φτ(x) = 0(e~x\ N~l/6ψτ(x) = O(e~x) (56)

which hold uniformly in N and for x bounded below. (There is a better bound, in
which Λ3/2 appears in the exponent rather than x9 but this one is more than good
enough for our purposes. See [10], p. 403.)
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To obtain the scaling limits of S and other quantities we shall make use of the
identity

S(x9y)=f[φ(x + z)ιl/(y + z) + ψ(x + z)φ(y + z)]dz (57)
o

analogous to formula (4.5) of [12],

χ " y o
and proved in the same way: The formula on the top of p. 43 of [14] gives

!z—h T— 1 S(x, y) = —φ(χ) ψ(y) — Ψ(χ) φ(y) •>

and the same operator applied to the right side of (57) equals

oo / ^ % \

/ ( — !h — ) [φ(x + z) \l/(y +z) + ψ(x + z) φ(y + z)} dz
o \όχ oyJ

= "φ(x) ψ(y) " ψ(x) φ(y).

Hence the two sides of (57) differ by a function of x " y and this function must
vanish since both sides tend to 0 as x and y tend to oo independently.

If an operator L has kernel L(x,y) then Lτ has kernel

and so from (57) we see that the kernel of 5τ has the representation

1 00

z) + ψ(τ(x) + z) φ(τ(y) + z)}dz,

and the substitution z — >• z/\/2N1^ gives

oo

y + z)'\dz. (58)

The asymptotic formulas (55), and the estimates (56), show that

00

lim Sτ(x,y)= fA(x + z)A(y + z)dz
N">oo Q

pointwise, and in various function space norms as well. This will be very useful.
The right side, we know, is the Airy kernel. We have been using a bar as notation
for a limit, so we write the above as

oo

Z(x, y) !> S(x, y) = fA(x + z)A(y + z)dz. (59)
o
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The fact that this converges in the space 1,2(3,00) &LI(s, oo) implies that the
operator χτSτχτ converges in the norm of operators on L2(R) to the operator χSχ,
where χ — χ(S,oo) Since / — χSχ is invertible it follows that also

(I " XτSτχτΓ ^ (I " χSχΓ1 (60)

in operator norm. The same is true if the space Z2(R) is replaced by Lι(R), as is
seen if we use the fact that the norm of an operator χLχ on this space is at most

oo

/ s\φ\L(x,y)\dx9
s y^s

and that (59) holds with this function space norm as well.
Let us compute the scaling limit of q^. We have

Sχ(I "

= φτ(s) + Sτχτ(I " χτSτχτ)^Ψτ(s)

It follows from (55) and (56) that N~l/6φτ —> A pointwise and in Z2(s»oo). The
second of these facts, together with (60), implies that

in LI, and then using the fact that (59) holds in L2(s,oo) for fixed x, we deduce
that

Sτχτ(I " χτSτχτΓ
lN"l/6φτ !> Sχ(I ! χSχ)~lA

pointwise. Putting these together shows that

Jΰm^! "V = A(s) + Sχ(I " χSχΓlA (s) = (I " χSχΓlA (s) .

The right side was precisely the definition of q (it transpired that it was a Painleve
function), so we have shown that

lim N~l/6qN = q .
N— >oo

Note that since by (55) both φ and ψ have the same scaling limit, the above
argument applied to pN leads to the same result,

lim N~l/6pN = q .
TV— »oo

This gives assertion (i). The uniformity assertion in (iv), for these and the limits
established below, we leave to the reader.

Next we consider u£ and vε. Recalling the definition (39) we write

oo

εφ(x) = cφ" f φ(y)dy,
X

and so
OO 1 OO

(εφ)τ(x) = cφ" f φ(y)dy = cφ " fφτ(y)dy .
τ(x)
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As N — » oo the constant cφ converges (in fact to l/Λ/2) and the second term con!
verges in L2(s, oo) (in fact to — f^° A(y) dy/V2). Thus the function (εφ)τ converges
in the space R + L2(s,oo). Also,

N~l/6Qτ = N"l'\I " χτSτχτΓ
lφτ "+ (/ ! χSχ)~lA (61)

in L\(s9 oo)Γ\L2(s,oo). It follows from these limit relations that

Uε = (Q,χεφ) = r" l/6(Qτ,(%εφ)τ)

converges as TV — > oo. Notice also that since φ and ψ have the same scaling limit,
(61) holds with Q replaced by P on the left side, from which it follows that vε has
the same limiting value as uε. This establishes (ii).

Finally we come to the quantities ^i,...,^. These are trickier since, although
our functions scale nicely on (s,oo) for fixed s9 they do not scale uniformly on
(—00,00). In a sense we have to separate out the parts that get integrated over
(—00,00). Beginning with 3l\, we use

R(x9t) = (I" SχΓlS(x,t) = Sχ(I " χSχΓlS(x,t) + S(x,t) ,

and write our integrals over (— oo,ί) as integrals over (—00,00) minus integrals
over (ί, oo). Thus

" f S χ ( I "
t

OO

f S(x,t)dx"ft°°S(x,t)dx
— OO

OO

= / Sτχτ(I " χτSτχτΓ
lSτ(x,s)dx " fSτχτ(I " χτSτχτ

S

OO

Sτ(x,s)dx " fSτ(x,s)dx. (62)

— OO

OO

/
— 00

OO

(The factors l/V^TV1/6 arising from the variable change are incorporated in the
expression for Sτ(x,s).) We think of the first integral on the right side of (62) as
the inner product of the functions

Jsτ(x, )dx and (/!χSF

τχτΓ1S'τ( ,ί) (63)
— 00

on (s, oo). Now it follows from (58) that

OO 1 / OO OO \

/ Sτ(x9y)dx = !7=— cφ^τ(z)dz^c^φτ(z)dz , (64)
!oo V27V1/6 \ y y )

which converges in ^(s, oo) as N —> oo. Also Sτ( 9 s ) converges in L,2(s9oo)9

so the same is true of the second function in (63). Thus the inner product itself
converges, and this shows that the first term on the right side of (62) converges. The
second term (62) is treated in much the same way ! the only difference is that the
first integral in (63) is taken over (s9oo). The next term on the right side of (62) is
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simple ! to show that it converges requires only the representation (64) with y = s"
and the last term is analogous to this one.

Turning to Ά\, we write it similarly as

oo oo

φ(x)dx + f φ(x) dx " f φ(x) dx

' φ J

SV2NV*

We treat the integrals just as we did those for 9t\^ with φτ/V2N1/6 replacing
Sτ( ,5!), to show tht they have limits as TV !» oo and, of course, cφ also has a
limit. The quantity &\ is handled similarly, with ψ replacing φ everywhere. That
the limits of &\ and Q\ differ by a constant follows immediately from the fact that
ψ and φ have the same scaling limit on (s, oo). The discussion of the quantities
&4,<&4 and ^4 is entirely analogous, and (iii) is established.

VIII. Justification for the Determinant Manipulations

In this final section we give the rigorous justification for the deteminant manipula!
tions in Sects. II and III. We begin with GSE, which is slightly easier. The quantity
of interest is the determinant for the operator on L2(J) with kernel

l( S(x"y) DS(x"y)
2\IS(x"y) S(x"y)

where
sin x °°

S(x) = , DS(x) = S'(x), IS(x) = fS(y) dy.
πx o

This kernel is smooth and so the operator is trace class. Our determinant is the
same as that for the operator on L2(R)

I χSχ χDSχ\
(65)

where S,DS,IS are the operators with corresponding difference kernels and χ is
multiplication by χj. We shall show that we can remove all the operators χ which
appear on the left, if we interpret S, DS, and IS as acting between appropriate spaces.

Recall that the Sobolev space H\ is given by

{/ e LI : / i s absolutely continuous and f' e L2} ,
with

ll/lk = ^\\f\\l2 + \\f'\\l2

The mapping

/ > = £ ) (66)

is an isometry from H\ onto L2.
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Lemma 1. Sχ and DSχ are trace class operators from LI to H\.

Proof. If the kernel K(x, y) of an operator K satisfies

U\K(Xty)\2dydx«X>,
R J R J

2

dydx < oo,

then Kχj is trace class for any set / of finite measure. (See, for example,
pp. 118!119 of [5].) It is immediate that DnSχ: L2 —> L2 is trace class for each
n ^ 0. If we recall the isometry (66) we see that to show that DnSχ : L2 —> H\ is
trace class it is enough to show that (/ + D)DnSχ : L2 —> L2 is. But we know this.

Next we enlarge our spaces L2 and H\ by adjoining a single function to each:

L2:={f + cε: f e L2, c e C}, HI :={f + cIS: /€#,, c € C} ,

which are Hubert spaces when endowed with the norms

^ + M2,
respectively.
Lemma 2. ISχ is a trace class operator from L2 to H\.

Proof. Integration by parts on the constituent intervals of J shows that for
all / G L2,

= Σ ("l?IS(x " **)(//)(**) + fS(x " y)(If)(y)z/(y) dy, (67)

where (//)(#) := J* f(y)dy. The map / —> (//) χj is bounded from L2 to L2

and so by Lemma 1 the integral on the right represents a trace class operator from
L2 to H\. The maps / —>• (7/)(α/) are continuous linear functionals on LI and each
function /^(Λ: — α/) belongs to JYi since

IS(x " at) " IS(x) e HI .

So the sum on the right side represents a finite rank, and hence trace class, operator
from L2 to H \. This completes the proof.

Let us consider the operator represented by the matrix

I f S χ DSχ\ (68)

which is the same as (65) except that all factors χ that appeared on the left were
removed. Since χ : L2 —> L2 is bounded, it follows from Lemmas 1 and 2 that this
is a trace class operator from L2 0 L2 to itself. (Actually, of course, the operator is
trace class from L2(&L2 to H\ Θ//ι, but we don't use this.)

We use now, and several times below, the fact that the determinant for an
operator product AB is the same as for BA as long as one of the two factors is
trace class and the other is bounded. They do not have to act on the same Hubert
space; one operator can map a space H to a space H1 as long as the other maps
H1 to H. The two products then act on the different spaces H and H'.

Lemma 3. The determinants for the operator (65) on L2®L2 and the operator
(68) on LI 0Z2 are equal



Orthogonal and Symplectic Matrix Ensembles 751

Proof. Because χ is idempotent we can insert a factor ( J y ) on the right side of

(68) without changing it. We can bring this factor around to the other side and
deduce that the determinant for (68) as an operator on L2 ΦL2 is me same as that
for (65) as an operator on L2®L2. But the range of this operator is contained in
7,2 θ £2, so the determinant for it is the same when considered an operator on this
space.

It follows from the lemma that we can replace (65) by (68). Since D(IS) = S
we can write it as the product

<Λ (ISχ Sχ
I) (iSχ Sχ

It follows from Lemmas 1 and 2 that the factor on the right is trace class from
7,2 θ £2 to 7/Ί Θ77ι while the factor on the left is bounded from H\ΦH\ to
L2 Θ7,2 since D : H\ — » L2 is bounded. It follows that the determinant for (68) on
L2 φ L2 is the same as the determinant for

1 (ISχ Sχ\ (D 0\ = 1 ( ISχD Sχ\
2 \ISχ Sχ) \0 l) 2 \ISχD Sχ)

on H\ 07/Ί. The matrix entries are operators on the same space, 77 1, so that we
can perform what amounts to row and column operations on them. (This was not

an accident!) Multiplying on the left by the matrix ( _ ! / / ) and on the right by its

inverse, ( / / ) > we see that the last determinant is the same as that for

l(ISχD + Sχ Sχ

2\ 0 0

and so it is the determinant of

l " \ISχD " \Sχ 0

o / y v o / v o /

Both factors on the right are operators of the form 7+ trace class operator on
H\ 0 77 1, and the factor on the left is of the form 7+ nilpotent operator and so has
determinant 1. Hence the determinant of the product equals the determinant of the
second factor, which equals

/! l

We rewrite the operator as

I"Sχ"l"(ISχD"Sχ). (69)

A variant of (67) is

(/SjtX/')(*) = Σ (!1)*/S(* ! «t)/(βt) + fS(x " y)f(y)u(y)dy ,

which gives
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where (IS)k(x) '•= IS(x — ak) and δk(x) :— δ(x — a^). The tensor product denotes
the operator which takes a function in H\9 evaluates it at a^ and multiples this by
(IS)k" A similar interpretation holds for any tensor product u 0 v, where u belongs
to a Hubert space and v to its dual space.

We extend the domain of S to all of LI by defining

the integral being conditionally convergent. It is easy to see that S : L2 — > HI and
(IS)t = Sε/c, where ε^x) := ε(x — a^). Thus we can write (69) as

/!Sχ!^Σ(!l)*%®^ (70)

Recall that our operators act on H\ . Now / — Sχ is invertible as an operator on
this space as well as on L2, since the eigenfunctions of Sχ belonging to nonzero
eigenvalues are the same for the two spaces. For the same reason both interpretations
of the operator give the same value for the determinant. We denote the inverse of
the operator, as before, by / + R. Factoring out I — Sχ shows that the determinant
of (70) equals £2(0, J) times the determinant of

(71)

Recall the definition Rk(x) := R(x,ak).

Proposition. The determinant of (71) on H\ equals the determinant of

(72)

on

Proof. We use inner product notation (u9v) to denote the action of a dual vector
v on a vector u. The determinants of (71) and (72) are scalar determinants whose
entries contain the inner products

((S + RS)εj9δk)9 (εJ9Rk)9

respectively, in position ( j 9 k ) . We shall show that these are equal.
We begin with the observation that R*χ = χR when these are thought of as acting

on L2 This is so because R is the resolvent operator for Sχ and S is symmetric. It
follows from this that if / and g belong to L2, with g supported in J9 then

((S + RS)f, g) = (/, (Sχ + SχR)g) = (f,Rg) ,

the last by the resolvent identity. Suppose h has integral 1 and is compactly sup!
ported (in R+ if k is odd, in R~ if k is even), set g(x) = nh(n(x — ##)) and let

n — > oo. We obtain

Replace / by fn := ε7 χ[_nj«] and let n — » oo. Since

(S + RS)fn "+ (S



Orthogonal and Symplectic Matrix Ensembles 753

uniformly on compact sets we deduce the desired identity

Thus (21) is completely proved.
We now turn to GOE. The reason this is slightly awkward is that the operator K

on L2(J) with kernel x
S(x"y) DS(x"y)\

jS(x"y)"ε(x"y) S(x " y) ) l )

is not trace class. So its classical Fredholm determinant, which is what we want,
is not given by det(7 — K), which is not defined. It is instead given in terms of its
regularized determinant deti by the formula

where trK denotes the sum of the integrals of the diagonal entries of the kernel
of K. Rather than deal with regularized determinants we approximate the kernel by
a smooth kernel, evaluate the resulting Fredholm determinant, and pass to the limit
at the end. Thus we replace the term ε(x — y) in (73) by ηn(x) '= η(n(x — y))9

where η is a smooth function which equals ε outside a finite interval. Then the
resulting operator Kn is trace class, and det2(/ — K)e~trK is equal to the limit of
det(/ — Kn) as w — » oo.

Proceeding as before, we find that det(/ — Kn ) is equal to the determinant of

I"ISχD"Sχ "Sχ
nnlD I

on HI ®HI, where ηn denotes convolution by ηn(x). The operator can be factored
as

"Sχ\ (I"ISχD"Sχ + SχηnχD O

,0 / A 0 7 ηnχD 7,

all factors being of the form /+ trace class operator on H\ θ//ι, and so its deter!
minant equals the determinant of the operator

I"Sχ"ISχD + SχηnχD

on H\. But χηnχ — » χεχ in the norm for operators on L2 (where ε denotes convo!
lution by ε( c)) and it follows from this and the second part of Lemma 1 that the
above operator converges to

I"Sχ"ISχD + SχεχD (74)

in the trace norm for operators on H \. Consequently it is the determinant of this
which will be our final answer.

We have already seen (cf. (69) and (70)) that

But

(εχDf)(x) = fε(x " y)f'(y)dy = (χf)(x) + Σ (!1)*
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and so

Thus
ISχD " SχεχD = £ (~Vk S(l

And now, just as at the end of GSE, we conclude that the determinant of (74)
equals E2(Q,J) times the determinant of

which in turn equals the determinant of

This completes the justification of (19).
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