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We discuss the status of the Fisher-Hartwig conjecture concerning the asymptotic expansion of 
a class of Toeplitz determinants with singular generating functions. A counterexample is given for 
a nonrational generating function; and we formulate a generalized Fisher-Hartwig conjecture. 

There is a long history o f  interaction between statistical mechanics and the theory 

of  determinants o f  Toeplitz matrices. It is well documented how Onsager's work on 

the spontaneous magnetization o f  the 2D Ising model led to the strong Szegi5 limit 

theorem. What was known to Onsager [25],  and later made explicit by Montroll, 

Potts and Ward [24],  is that the spin-spin correlation function (¢rooCro,) can be ex- 
pressed as a Toeplitz determinant. To calculate the spontaneous magnetization through 

the formula 

M ( T ) 2 =  lim (aooao,, >~<7~, 
n . ~ o o  

one needs the limiting asymptotic behavior of  large Toeplitz determinants which is 

given by the strong Szegi5 limit theorem. For fixed T<  Tc or fixed T>  Tc corrections 

to the limiting behavior for the 2D Ising model we studied by Wu [ 37 ] and Kadanoff  

[ 17] (see also refs. [23,38] ). These results are the prototype for corrections to the 
Szeg~5 formula. 

As M.E. Fisher [ 13] was one o f  the first to understand, we expect different asymp- 

totic behavior o f  the spin-spin correlation function at T =  To. This suggests that criti- 

cal systems are prototypes for qualitatively different Szeg6 type theorems. Indeed, in 

ref. [ 37 ] we find a detailed analysis o f  the 2D Ising critical correlations (see also refs. 
[ 1,23,32 ] ). What is perhaps less known to physicists is that Fisher and Hartwig [ 14 ], 
using their insight gained from these special cases, formulated a conjecture for the 
asymptotic behavior of  a class o f  Toeplitz determinants that correspond to the "crit- 
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ical case". It is our goal here to discuss the status of  the Fisher-Hartwig conjecture 

and to give some indication of  its impact in mathematics. Finally, we would like [o 

indicate some future directions that might prove profitable to mathematicians given 

certain results coming from mathematical  physics. 

For a function ~0 defined on the unit circle with Fourier coefficients ~0k one can 

define the finite n×n Toeplitz matrices T,,[~0] = (q~j_~), j, k = 0  ..... n -  1. The Fisher-  

Hartwig conjecture [ 14] concerns the asymptotic behavior of  determinants of  these 

matrices. Fisher and Hartwig considered functions of  the form 

R 

~0(0) = b ( 0 )  I1  t~r(O--Or) U~r(O--O,), f l)  
r ~ l  

where b(O) is smooth, nonzero and has winding number  equal to zero, tl~(0)= 

e x p [ - i f l ( ~ - 0 )  ], 0 < 0 < 2 ~ ,  and u ~ ( 0 ) =  ( 2 - 2  cos0)  ~, R e ( a ) > - ½ .  They conjec- 

tured that the corresponding Toeplitz determinants Dn [q~] = det T,, [~0] would have 

the asymptotic expansion as n ~  

D,,[~0] ~ G[b]"n':r"~-/~)E, (2) 

where G[b] = e x p [  ( 1/2~).! 2~ log b(O) dO] and E is some constant depending on b, 
0,, a~ and fl,.. 

It is interesting here to note that the function ~0(0) can possess singularities, jump 
discontinuities or zeros. Previous results, for example the already mentioned strong 

Szeg6 limit theorem, had almost exclusively been concerned with functions that were 

much better behaved. It is no surprise then that the statement of  the conjecture caught 

the eye of  many mathematicians. This interest spurred the discovery of  new tech- 

niques required to handle the delicate questions of  convergence that arise from such 

generating functions. Eventually, new results were obtained about classical Toeplitz 

operators defined on ~2 (Z + ) and many of  these were extended to more general con- 

volution type operators. 
Connections were made between the various terms in the asymptotic expansion 

and commutators  of  trace-class operators. Much work was done in investigating the 

properties of  T,7 ~ [~0] and Toeplitz operators were investigated on more general 

weighted spaces. For a complete account of  such work the reader is referred to ref. 
[7].  The Fisher-Hartwig conjecture was extended (and proved in certain cases) to 
certain kinds of  integral operators including pseudo-differential operators with dis- 

continuous symbol. The most general results in this area are to be found in ref. [35].  
The simplest case of  the conjecture was verified by Fisher and Hartwig themselves. 

They noticed that if ~0 (0) = tp(0), then the corresponding Toeplitz matrix has entries 
a~j=sin(nf l ) /~( i - j+f l ) .  The matrix then is o f  Cauchy form and can be evaluated 
explicitly. Moreover, they showed that in this case E = e x p [  - f l 2 ( 7 +  1 ) ] []~=~ ( 1 - 
f12/n 2 ),, exp (f12 / n) where Y is Euler's constant. 

Interestingly, the conjecture for n even, b =  1, R = 2 ,  0~=0~ +~,/3~ =f12=0, and a~, 
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a2 real and positive had already been confirmed by Lenard in a prel iminary version 

of  ref. [ 19 ]. Lenard 's  interest in this problem dated back to 1963 when he was con- 
cerned with the physical problem of  the one-particle reduced density matrix of  a sys- 
tem of  impenetrable  bosons [ 18 ]. In a series of  letters between Szeg6 and Lenard, 

Szeg~ had computed  the determinant  in the above case for c~ = a 2 =  ½ and had also 
given bounds for oq = a 2 =  ~ and 01, 02 arbitrary. These results were reported in ref. 

[ 18 ], and gave rise to the work done in ref. [ 19 ]. There, Lenard gave a conjecture for 
the general form of  the constant for fir=0, extended the above ment ioned result for 

both n even and odd and expressed the answer for E in terms of  the Barnes G-func- 
tion ~'. Lenard pointed out that his computat ion leading to the verification of  the 

conjecture required "nine very rapidly growing factors" to cancel and that t h e "  'little 
left over '  yields the asymptot ic  formula".  

Lenard 's  work was then greatly extended by Widom, who was the first to prove a 
general case of  the conjecture. In ref. [36],  Widom proved that the conjecture was 

true in the case of  Re (or,) > - ½ and fir = 0 for all r. Since Re (o~r) > - ½ is a necessary 
requirement for ~0 to be an integrable function this was a complete result for functions 
without j u m p  discontinuities. In the same paper  Widom verified the conjecture in the 

case R = 1, I o el < ½, I fil < ½ but did not determine the constant. 
In 1978, Basor [ 3 ], using the same techniques, extended Widom's  result to the case 

Re(o~r) > -½  and Re(fir)=0; and in addition, the constant E was determined. Let 
b(O) = b +  (exp( i0 ) )  b ( e x p ( - i 0 )  ) where b+ (respectively b_ ) extends to be ana- 

lytic and nonzero inside (respectively outside) the unit circle. Normalize  b so that 
G[b]=b+(O)=b ( ~ ) = l , t h e n  

R 

E=E[b] 1-[ b_(exp(iOr) ) . . . .  a ' b + ( e x p ( - i 0 , ) )  - ' + # "  
r = l  

X 1-I {1-exp[ i (o~-or)]}  -t°''+p')t°'`-a`) 
1 ~ s ~ r ~ R  

R 

X l--I G ( l + c ~ r + f i r )  G(l+c~r- f i r ) /G( l+2o~, ) ,  (3)  
r = l  

where G is the Barnes G-function, E[b] =exp(E~=~ kSkS_k), and [log b(O) ]a=Sk. 
The general j u m p  discontinuity case ( a , = 0 )  with IRe( f i r ) l<  ½ was done in ref. 

[ 4 ]. There, techniques were also developed to reduce many  discontinuities to the case 
of  one and describe the answers in terms of  commuta tors  of  operators (see also refs. 
[5-7 ] ). Since that t ime various other cases of  the conjecture have been proved; and 

~' The Barnes G-function [2] is an entire function defined by 
7 k 

G(z+l)=(2n)Z/2exp[-z/2-½(Y+l)z2] ~__~1 (1-1-~)exp(-z+z2/2k) ,  

where y is Euler's constant. It satisfies the functional equation G(z+ 1 ) =F(z) G(z). Some special val- 
ues are G( I )=  1 and G(½)=n-~/4 2~/24 exp[3~'(- 1)/2] =0.603244281209446. 
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much of  the credit here goes to B~Sttcher and Silbermann. It is now known [9] to be 

true when IRe(a, .)  I < ~ and IRe(//,.) ] < ½. In the special case of  R =  1, B6ttcher and 

Silbermann [10] were also able to verify the conjecture for Re(c~)>/0, R e ( a ) +  

Re(fl) > - 1, Re(o~) - Re(//) > - 1. Recently, for c~=0 and I Re(j/) [ < I ,  Libby [20] 

also showed that the conjecture was true. In all these cases, the constant E is given by 

(3). 
By now, the reader will certainly notice that while the conjecture has been proved 

in many cases, the results are surely not complete. The reason for this is because it is 

simply not always true. In fact, Fisher and Hartwig excluded the case when c~, _+ j/r was 

equal to an integer in their original statement. Then, the generating function is ra- 

tional if b(0)  = 1 and the asymptotics, more complicated than the original conjecture 

describes, were computed by B6ttcher and Silbermann [8] (see also Day [11] ). It 

was probably suspected by many that this is the only case when the conjecture failed. 

Surprisingly there is a simple example that shows otherwise. Let 

1 , - x < 0 < 0 ,  

q~(0)= - 1 ,  0 < 0 < x .  

Then ~o( O)=it~/2( O) t_~/2( O+ x ) and 

0 ,  i f k i s e v e n ,  

r& = 2i 
- ~ ,  i f k i s  o d d .  

The Toeplitz matrix T,,[~0] is antisymmetric if n is odd and hence D~[~0] =0,  If n is 

even, by interchanging some rows and columns one can show that as n ~  

D,,[fp] ~ (i)"n 1/221/2G(½)~-G(~)2. (4) 

An interesting feature of  this function rp is that it has another representation in the 

standard product form which would yield the same order of  asymptotics (~0(0)= 

- i t  ~/2 (0) t~/2 (0 + x) ). It was pointed out by Widom that whenever this happens, 

Fisher-Hartwig does not even have a clear interpretation. So the question remains, 

can anything be said in this case? The authors '  guess is that probably the following 
modified conjecture is true. Suppose 

R 

~o(o)=b'(O) 1-[ t~,(O-Or) u,~,(o-or) (5) 
r--I 

for values j/q ..... j/~, c~ ..... o¢~ and a smooth nonzero function b'(O) with winding 
number  zero ( i = 1 , 2  .... ). Let 

R 

£2( i )= y (c~)~-(j / '~)  2, g 2 = m a x R e [ £ 2 ( i ) ]  and 
r - - I  i 

then as n ~ o o  

J = { i W R e [ ~ ( i )  l =f2},  

(6) 
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D,[q~] ~ ~ G[bq "na(°E[b ', a¢,fl~, 0,] .  (7) 
ie,'f 

There is good reason to believe this to be true. In the already mentioned cases where 

the original conjecture is known to be true there is only one product representation 

that yields a maximum and so the answers agree. In the piecewise constant case we 
have i= 1,2, ( 2 ( 1 ) = g 2 ( 2 ) = - ½ ,  E[b ~, a¢, fl~, Or]=2-'/ZG(~)ZG(½)2, G [ b l ] = - i ,  

and G[b 2 ] =i.  When n is odd these terms cancel and when n is even they yield the 

correct answer. Finally, this also agrees with the rational function case in ref. [ 8 ]. 
We now give some examples of correlation functions that suggest there are some 

important generalizations of Fisher-Hartwig awaiting discovery. Lenard [ 18 ] proved 
that the one-particle reduced density matrix, p (~), of a system of impenetrable bosons 
in one dimension at zero temperature is given by 

Observe that now the zeros 0, depend upon n. Proceeding heuristically we apply (2) 

and (3) to predict 

1 6"(~) 
P ( ¢ ) ~  x/~ w / ~ "  (9) 

Since this is derived by scaling the "critical correlations", we expect this formula to 
be valid for {--,m. Indeed, Jimbo, Miwa, M6ri and Sato [ 15 ] have proved that p({),  

also expressible as a Fredholm minor, is a v-function associated to a particular Pain- 
lev6 transcendent of  fifth kind. Furthermore, the leading large { expansion is given 

exactly by (9) (in the notation of ref. [15] x =  n{). Thus p({) "connects" onto a 
"Fisher-Hartwig" expression as ~ oo. 

The critical (diagonal) 2D Ising correlation is [ 23,32 ] 

<aOOann >T=T¢ =D,[t,/2(O)] ~ n - I / 4 G (  ½ ) G ( ~ )  . (10) 

If  we take the scaling limit of the spin-spin correlation function [22,38], then the 
scaling functions are v-functions [ 16,26,31 ] associated to a particular Painlev6 tran- 
scendent of  third kind. To show that the scaling functions "connect" to the critical 
correlation result (10), one must derive an asymptotic formula for this v-function as 
the scaling variable tends to zero [33]. It proved useful to consider a more general 

problem to solve this connection problem [33]. Namely, the underlying Painlev6 
equation has a one-parameter family of  bounded solutions; and it is only for a partic- 
ular choice of the integration constant, it= 1/n in the notation of refs. [22,33 ], that 
corresponds to the Ising model. The connection problem was solved for 0 <it ~< 1/~. 
Similarly, the z-function appearing in the impenetrable boson problem [ 15 ] is also 
evaluated at a particular value of an integration constant (it = 2/~) .  For a different 
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value for the integration constant (2= l /n ) ,  a closely related r-function (the Fred- 
holm determinant rather than the Fredholm minor above) corresponds to the level 

spacing probability distribution function in random matrices (see ref. [ 15 ] and ref- 

erences therein). The general connection problem at the level of r-functions is not 

solved for this problem, however there is a great deal known about the connection 
problem at the level of Painlev6 equations. 

A third example can be found in the work of McCoy, Perk and Shrock [21 ] on the 

correlation function (a~( t )  a,', (0) ) for the transverse Ising chain at the critical field. 
This correlation function is again a r-function associated with Painlev6 V: and the 

t=  0 result is of Fisher-Hartwig form. The close connection of their work with inverse 

scattering is made explicit by the introduction of Toda's equations. 
Finally, Sarnak [30], Voros [34], and Fay [ 12] in their study of determinants of 

Laplacians on compact Riemann surfaces, have shown the occurrence of the Barnes 
G-function in ways similar to the above examples. This final example is perhaps not 

so far away from the other examples as the reader might first think. This is because 
Palmer [27-29 ] has shown that r-functions associated to Painlev6 equations [ 16,26 ] 
are determinants of (singular) Cauchy-Riemann operators. Here the "determinant" 
is defined by a trivialization of a holomorphic line bundle, det*, over an infinite- 
dimensional Grassmannian. 

What these examples suggest is that the Fisher-Hartwig results are a limiting case 
for a wide class of results in the theory of r-functions. To demonstrate this will require 
even more extensive and perhaps more clever mathematical techniques than already 

developed and used in the proof in the original Fisher-Hartwig conjecture. 

The authors wish to thank A. Lenard and H. Widom for their help in reporting the 
history of the Fisher-Hartwig conjecture. The authors are especially grateful to Pro- 
fessor kenard for providing us with the Lenard-Szeg6 letters. Although not previously 
mentioned, Professor Lenard also sent copies of a series of letters written by Widom 
and himself concerning the form of the constant E. The Lenard-Szeg~3 letters dated 
from April 10, 1963, to September 7, 1963; and the Lenard-Widom letters dated 
from November 12, 1971, to January 27, 1972. All of these letters contain delightful 
glances of the outstanding intuition and graciousness of their authors. The authors 
also wish to thank Professor J. Perk and Professor H. Widom for reading a prelimi- 
nary version of this manuscript and for their helpful comments. 
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