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Abstract

We give an exact expression for the distribution of the position X(t) of a single
second-class particle in the asymmetric simple exclusion process (ASEP) where
initially the second-class particle is located at the origin and the first-class
particles occupy the sites Z

+ = {1, 2, . . .}.
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Mathematics Subject Classification: 60K35, 82C22

1. Introduction

The asymmetric simple exclusion process (ASEP) [2, 3] is one of the simplest models of
nonequilibrium statistical mechanics and has been called the ‘default stochastic model for
transport phenomena’ [8]. A useful concept in exclusion processes is that of a second-class
particle.3

Imagine that the particles in the system are each called either first class or second
class. The evolution is the same as before, except that if a second-class particle
attempts to go to a site occupied by a first-class particle, it is not allowed to do so,
while if a first-class particle attempts to move to a site occupied by a second-class
particle, the two particles exchange positions. In other words, a first-class particle
has priority over a second-class particle. This rule has no effect on whether or not
a given site is occupied at a given time. The advantage, though, is that viewed by
itself, the collection of first-class particles is Markovian, and has the same law as the
exclusion process. The collection of second-class particles is clearly not Markovian.
However, the collection of first- and second-class particles is Markovian, and again
evolves like an exclusion process.

3 The following quote is taken from Liggett [3].
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Here we consider ASEP on the integer lattice Z with jumps one step to the right with rate p
and jumps one step to the left with rate q = 1 − p. We assume a leftward drift, i.e. q > p.
We further assume that the system has one second-class particle initially located at the origin
and first-class particles initially located at sites in

Y = {0 < y1 < y2 < · · ·} ⊂ Z
+.

With the above initial condition, we denote by X(t) the position of the second-class particle
at time t. The purpose of this note is to give an exact expression for the probability that the
second-class particle is at position x at time t, i.e. PY (X(t) = x). (The subscript Y denotes the
sites of the initial configuration of the first-class particles.) Our main result is for Y = Z

+ and
is given below in (9) and in a slightly different form in (11).

2. A basic lemma

The single second-class particle located at X(t) can be viewed as the (single) discrepancy
under basic coupling between two asymmetric simple exclusion processes ηt and ζt , where
ζt (X(t)) = 1 and ηt (X(t)) = 0 and initially {x : ζ0(x) = 1} = Y ′ = {0} ∪ Y and
{x : η0(x) = 1} = Y [2, 3].

We first learned the following identity from H Spohn [5] but presumably it has a long
history:

PY (X(t) = x) = PY ′ (ζt (x) = 1) − PY (ηt (x) = 1) . (1)

For the convenience of the reader, we give a short proof of (1). Let ζt and ηt be as above
evolving together under the basic coupling [2, 3]. Recall that the coupled processes satisfy
ηt � ζt for all t > 0 since they satisfy this inequality at t = 0 [2, 3].4 Define

Jη(x, t) :=
∑
z�x

ηt (z) = number of particles in configuration ηt with positions � x,

Jζ (x, t) :=
∑
z�x

ζt (z) = number of particles in configuration ζt with positions � x,

I(x, t) =
{

1 if X(t) � x,

0 if X(t) > x.

By counting

Jζ (x, t) = Jη(x, t) + I(x, t). (2)

Since

EY ′(Jζ (x, t)) =
∑
z�x

EY ′ (ζt (z)) =
∑
z�x

PY ′(ζt (z) = 1),

EY (Jη(x, t)) =
∑
z�x

EY (ηt (z)) =
∑
z�x

PY (ηt (z) = 1),

EY (I(x, t)) = PY (X(t) � x) =
∑
z�x

PY (X(t) = z),

the expectation of (2) gives∑
z�x

P(X(t) = z) =
∑
z�x

P(ζt (z) = 1) −
∑
z�x

P(ηt (z) = 1)

from which (1) follows.

4 Given two configurations η, ζ ∈ {0, 1}Z we say η � ζ if η(x) � ζ(x) for all x ∈ Z.
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3. Probability for a site to be occupied in ASEP

For ASEP with particles initially at Y we denote by xm(t) the position of the mth left-most
particle at time t (so xm(0) = ym). In theorem 5.2 of [6] the authors gave an exact expression for
PY (xm(t) = x). To state this result we first recall the definition of the τ -binomial coefficients.
For 0 � τ := p/q < 1 we define for each n ∈ Z

+

[n] = 1 − τn

1 − τ
, [n]! = [n][n − 1] · · · [1], [0]! := 1,[

n

k

]
= [n]!

[k]![n − k]!
, 0 � k � n,

and if k > n we set
[

n

k

] = 0. Equation (5.12) of [6] can be written in the following way:5,6

PY (xm(t) = x) =
|Y |∑
k=1

∑
S⊂Y|S|=k

cm,kτ
σ(S,Y )

∫
CR

· · ·
∫
CR

I (x, k, ξ)

k∏
i=1

ξ
−si

i dkξ, (3)

where, if S := {s1, . . . , sk} then

cm,k = qk(k−1)/2(−1)m+1τm(m−1)/2τ−km

[
k − 1

k − m

]
,

σ (S, Y ) = # {(s, y) : s ∈ S, y ∈ Y, and y � s}
= sum of the positions of the elements of S in Y,

I (x, k, ξ) =
∏

1�i<j�k

ξj − ξi

p + qξiξj − ξi

(
1 −

k∏
i=1

ξi

)
k∏

i=1

ξx−1
i eε(ξi )t

1 − ξi

,

ε(ξ) = p

ξ
+ qξ − 1

and CR is a circle of radius R centered at the origin with R � 1 so that all (finite) singularities
of the integrand are enclosed by CR . Observe that cm,k = 0 when m > k.

Since

PY (ηt (x) = 1) =
|Y |∑

m=1

PY (xm(t) = x) , (4)

we sum the right-hand side of (3) over all m � k. To carry out this sum recall the τ -binomial
theorem

n∑
j=0

[
n

j

]
(−1)j zj τ j (j−1)/2 = (1 − z)(1 − zτ) · · · (1 − zτn−1).

Using this a simple calculation shows
k∑

m=1

(−1)m+1τm(m−1)/2τ−km

[
k − 1

k − m

]
= (−1)k+1τ−k(k+1)/2

k−1∏
j=1

(1 − τ j ).

5 We make some changes in the notation in (5.12) of [6]. The (p, q)-binomial coefficient
[

n
k

]
of [6] equals qk(n−k)-

times the τ -binomial coefficient
[

n
k

]
defined above. The second change is a little more subtle. The sum in (5.12)

is over all finite subsets S ⊂ {1, 2, . . . , |Y |} with |S| � m. If S = {s1, . . . , sk} the subset YS := {ys1 , . . . , ysk } and
the factor

∏
i∈S ξ

−yi
i appears in the integrand of (5.12). Thus, we can equivalently sum over all finite subsets S ⊂ Y

where now the factor
∏

1�i�k ξ
−si
i appears in the integrand. The factor σ(S) = ∑

i∈S i of (5.12) becomes σ(S, Y )

given above.
6 All contour integrals are to be given a factor of 1/2π i.
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Thus,

PY (ηt (x) = 1) =
|Y |∑
k=1

(−1)k+1qk(k−1)/2τ−k(k+1)/2
k−1∏
j=1

(1 − τ j )

×
∑
S⊂Y|S|=k

τ σ(S,Y )

∫
CR

· · ·
∫
CR

I (x, k, ξ)

k∏
i=1

ξ
−si

i dkξ. (5)

Remark 1. The above formula holds for either |Y | finite or infinite. For |Y | = N , the integral
of order N in (5) is obtained from the summand S = Y . Since σ(Y, Y ) = N(N + 1)/2, we get
for the coefficient of this integral

(−1)N+1qN(N−1)/2
N−1∏
j=1

(1 − τ j ) = (−1)N+1
N−1∏
j=1

(qj − pj ). (6)

4. Probability for a site to be occupied by a second-class particle

As above, suppose that our initial configuration consists of a second-class particle at site 0
and first-class particles at sites in Y. As above, set Y ′ = Y ∪ {0}. The process ζt has initially
its particles at sites in Y ′. We apply formula (5) to the initial configurations Y ′ and Y and by
(1) we subtract to obtain PY (X(t) = x). If |Y ′| = N there is one N-dimensional integral that
comes from the expansion of PY ′(ζt (x) = 1) when S = Y ′. The coefficient of the integral of
highest order equals (6).

We now consider the special case of step initial condition, that is, Y = Z
+, and use

corollary (5.13) of [6] to obtain a more compact expression for PZ+(xm(t) = x). To find
PZ+(ηt (x) = 1) we again apply (4) but use (5.13) of [6]. As above we interchange the sums
over k and m, use the τ -binomial theorem ([4], page 26), to conclude

PZ+ (ηt (x) = 1) = −
∑
k�1

qk2

k!

k−1∏
j=1

(1 − τ j )

∫
CR

· · ·
∫
CR

J̃ k(x, ξ) dξ1 · · · dξk, (7)

where

J̃ k(x, ξ) =
∏
i �=j

ξj − ξi

p + qξiξj − ξi

(
1 −

∏
i

ξi

) ∏
i

ξ x−1
i eε(ξi )t

(1 − ξi)(qξi − p)
.

We can get the corresponding formula for Y ′ = Z
+ ∪ {0} by observing that there is a one–one

correspondence between subsets S ′ ⊂ Y ′ and subsets S ⊂ Y given by S = S ′ + 1. Then
σ(S ′, Y ′) = σ(S, Y ) and, with obvious notation,

∏
ξ

−si
′

i = ∏
ξi · ∏

ξ
−si

i . It follows that for
the difference PY ′(ζt (x) = 1) − PY (ηt (x) = 1) we multiply the integrand J̃ k(x, ξ) in (7) by∏

ξi − 1.
Thus,

PZ+(X(t) = x) =
∑
k�1

qk2

k!

k−1∏
j=1

(1 − τ j )

∫
CR

· · ·
∫
CR

˜̃J k(x, ξ) dξ1 · · · dξk, (8)

where

˜̃J k(x, ξ) =
∏
i �=j

ξj − ξi

p + qξiξj − ξi

(
1 −

∏
i

ξi

)2 ∏
i

ξ x−1
i eε(ξi )t

(1 − ξi)(qξi − p)
.
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From this it follows that the distribution function is (on CR , |ξ−1| � 1)

PZ+ (X(t) � x) =
∑
k�1

qk2

k!

k−1∏
j=1

(1 − τ j )

∫
CR

· · ·
∫
CR

Jk(x, ξ) dξ1 · · · dξk, (9)

where

Jk(x, ξ) =
∏
i �=j

ξj − ξi

p + qξiξj − ξi

( ∏
i

ξi − 1

) ∏
i

ξ x
i eε(ξi )t

(1 − ξi)(qξi − p)
.

Since
1

p + qξξ ′ − ξ
= 1

ξ(ξ ′ − 1)
+ O(τ ), τ → 0,

the TASEP limit of Jk(x, ξ) is

J TASEP
k (x, ξ) := lim

τ→0
Jk(x, ξ) =

∏
i �=j

(ξj − ξi)
(∏

ξi − 1
) ∏

i

ξ x
i eε(ξi )t

(ξi(1 − ξi))
k
,

where now ε(ξ) = ξ − 1, and hence,

lim
τ→0

PZ+ (X(t) � x) =
∑
k�1

1

k!

∫
CR

· · ·
∫
CR

J TASEP
k (x, ξ) dξ1 · · · dξk. (10)

Expression (9) for the distribution function can be simplified somewhat. Define the kernel

Kx,t (ξ, ξ ′) = q
(ξ ′)xeε(ξ ′)t

p + qξξ ′ − ξ
,

and the associated operator Kx,t on L2(CR) by

f (ξ) −→
∫
CR

Kx,t (ξ, ξ ′)f (ξ ′) dξ ′, ξ ∈ CR.

Then using the identity [7]

det

(
1

p + qξiξj − ξi

)
1�i,j�k

= (−1)k(pq)k(k−1)/2
∏
i �=j

ξj − ξi

p + qξiξj − ξi

∏
i

1

(1 − ξi)(qξi − p)

we have

PZ+(X(t) � x) =
∑
k�1

τ−k(k−1)/2
k−1∏
j=1

(1 − τ j )

× (−1)k

k!

∫
CR

· · ·
∫
CR

[
det(Kx+1,t (ξi, ξj ))1�i,j�k − det(Kx,t (ξi, ξj ))1�i,j�k

]

=
∑
k�1

τ−k(k−1)/2
k−1∏
j=1

(1 − τ j )

∫
CR

1

λk+1
[det(I − λKx+1,t ) − det(I − λKx,t )] dλ,

(11)

where det(I −λKx,t ) is the Fredholm determinant and the last line follows from the Fredholm
expansion.

Remark 2.

(i) One cannot interchange the sum and the integration in (11) as was possible in an analogous
calculation in [7]. This is the case even though (9) converges absolutely for all 0 � τ � 1
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(recall one may take R � 1). Thus, we do not have a representation of PZ+(X(t) � x) as
a single integral whose integrand involves the above Fredholm determinants as was the
case in [7].

(ii) ASEP with first- and second-class particles is integrable in the sense that the Yang–Baxter
equations are satisfied [1]. Using this integrable structure, it is possible to compute
directly, i.e. without using the basic lemma (1), PZ+(X(t) = x) using methods similar to
that of [6]. We have carried this out to the extent that (6) was computed by this approach.
However, this route is much more involved than the one presented here.
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