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Abstract
The weak coupling asymptotics, to order rc 2( ) , of the ground state energy of
the delta-function Bose gas is derived. Here c2 0 is the delta-function
potential amplitude and ρ the density of the gas in the thermodynamic limit. The
analysis uses the electrostatic interpretation of the Lieb–Liniger integral equation.

Keywords: Lieb–Liniger integral equation, delta-function Bose gas, Love
integral equation

1. Introduction

The Lieb–Liniger model [13] is a quantum mechanical model of a one-dimensional Bose gas
with pairwise repulsive δ-function potential. In units where  =m2 12 , the Lieb–Liniger
Hamiltonian for N particles is
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where c2 0 is the amplitude of the δ-potential. Since its introduction in 1963, the model has
only gained in importance due to the fact that ‘recent experimental and theoretical work has
shown that there are conditions in which a trapped, low-density Bose gas behaves like the
one-dimensional delta-function Bose gas’ [14] model of Lieb and Liniger. See, for example,
[7] for a review of the physics of the Lieb–Liniger model.

1.1. The Lieb–Liniger integral equation

The ground state energy per particle, ε0, of the Lieb–Liniger model, in the thermodynamic
limit, is given by first solving the Lieb–Liniger integral equation [13] for the density r k( ) of
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Then the density ρ and the ground state energy ε0 are given by
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The elimination of the auxiliary parameter k0 between ε0 and ρ gives the equation of state for
the ground state energy. For further details see Lieb and Liniger [13] or chapter 4 in Gaudin [4].

Introducing the scaled variable x k k0≔ , setting r=f x k x0( ) ( ), and expressing
everything in terms of the dimensionless coupling constant g rc≔ , we have (for Lieb–
Liniger, p=V 1 20 )
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The Lieb–Liniger operator
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has norm k=
p

 K arctan 1 ;2 ( ) and hence, the Neumann expansion of - -I K 1( ) converges
rapidly for k  1, but becomes singular as k  0. Thus it is in the limit of weak coupling
(equivalently high density), g  +0 , that the asymptotics of e g( ) becomes problematic. Lieb
and Liniger, using Bogoliubov’s perturbation method for interacting bosons, predicted

e g g
p
g g g= - +  +4

3
o , 0 . 53 2 3 2( ) ( ) ( )

1.2. Electrostatic interpretation

Equation (3) is well-known in the potential theory literature and is called the Love integral
equation [15]3. It arises in the analysis of the capacitance of two coaxial conducting discs of
radii one separated by a distance κ and charged to opposite potentials ±V0. Specifically, if the
top disc at potential =V 10 is located in the z=0 plane with center at the origin and the
second disc at potential −1 is located in the k= -z plane, we denote by f r z,( ) the
electrostatic potential. The discontinuity of the normal derivative of the potential across a disc
is the charge density on the discs; precisely
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Then the connection between f, that solves (3) with =V 10 , and s r( ) is
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3 As far as the authors are aware, it was Gaudin [3] who first pointed out the connection of the Lieb–Liniger integral
equation with potential theory.

J. Phys. A: Math. Theor. 49 (2016) 294001 C A Tracy and H Widom

2



The capacitance is
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A derivation of these facts can be found in, e.g., [2, 3, 5].
Using (7), the evenness of f, and recalling that for Lieb–Liniger, p= -V 20

1( ) , we can
express κ/γ and e g( ) in terms of the charge density:
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In elementary physics textbooks, to compute the capacitance the effect of the edges is
neglected and the discs are replaced by infinite planes. In this case the potential varies linearly
from −1 to +1 between the plates and is zero outside. Thus the charge density is
s pk= -r 2 1( ) ( ) which implies g k= 4 2, equivalently k=C 1 4( ), and e g g=( ) . Hence the
edge effects are of utmost importance for determining the higher-order terms in the asymp-
totic expansion. The importance of the edge effects was recognized early on by Maxwell who,
by the use of conformal mapping, found the potential for the two-dimensional capacitor
consisting of a pair of semi-infinite parallel plates held at potentials±1. Kirchhoff [10], in
anticipating the method of matched asymptotic expansions, found for the circular disc
capacitor that
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Hutson [6], who was the first to give a rigorous proof of (10), comments ‘although
Kirchhoff’s method was not rigorous it was basically sound.’ Hutson, building on earlier
work of Kac and Pollard [8], constructs an approximate solution to (3) with an error
that approaches zero, uniformly in x, as k  +0 . The zeroth moment of Hutson’s
approximate solution gives Kirchhoff’s result (10). Using Hutson’s approximation, Gaudin
[4] shows that (4) leads to (5) ‘without giving more information on the nature of the
expansion.’

1.3. The higher-order terms

Leppington and Levine [11], in a rigorous analysis, extended the Kirchhoff–Hutson result one
additional order:

⎜ ⎟⎛
⎝

⎞
⎠k p k p

p
p

k k k
k

= + + - + +C
1

4

1

4
log

1 1

4
log 16 1

1

16
log O log

1
.

2
2( )

Using the method of matched asymptotic expansions, Shaw [17] and Chew and Kong [1]
computed the asymptotics through order κ:
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Note that Chew and Kong correct a missing factor of two in Shaw—the very
last 2 appearing in (11). Also, two integrals appearing in Shaw’s expression are evaluated
in [19].

J. Phys. A: Math. Theor. 49 (2016) 294001 C A Tracy and H Widom

3



With regards to higher order terms in the ground state energy, in 1975 Takahashi [18]
conjectured, based solely on a numerical solution of (1), that
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Popov [16], in an heuristic analysis of the Lieb–Liniger integral equation, concluded that the
Takahashi conjecture is correct. Interestingly, Popov showed that the ‘method of
hydrodynamic action based on a path integral’ agrees with (12) whereas the approximate
method of correlated basis functions and the Bogoliubov–Zubarev method do not agree to this
order with (12). Much later Kaminaka and Wadati [9], in a different analysis of (3), concluded
that the coefficient of γ2 in (12) should be replaced by

p
-

1

8

1
.

2

In this paper we use the Leppington–Levine [11] method of stream functions to show that
(12) is indeed correct. Our method is not rigorous as it uses the method of matched asymptotic
expansions; and in addition, some conjectures for the value of certain integrals (which have
been numerically verified to some thirty decimal places).

2. Leppington–Levine approach

2.1. Stream functions and associated Green functions

As above we denote by f f= r zr ,( ) ( ) the electrostatic potential, set k e= 2 , and note by
symmetry that f e- =r, 0( ) for r 0. Following [11], we introduce a stream function
y r z,( ) through the equations
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One easily checks that such a f in terms of ψ satisfies Laplace’s equation in cylindrical
coordinates. The function yr is discontinuous across the plane z=0:
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r
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where C 41 is the capacitance. We write y r z,( ) where the plus-sign is for >z 0 and the
minus-sign for e- < <z 0. It follows from (6) that
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and for >r 1, the left-hand side is zero. Upon integration we get a constant of integration C1;
hence (14). That =C C4 1 follows from òp s=C r r rd
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The equality of mixed partial derivatives of f implies that the stream function ψ
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which has the boundary conditions
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The first two boundary conditions follow from the definition of ψ and fact that f¶ ¶ =r 0 in
the regions indicated. We obtain the final condition from f = =r r, 0 1, 1( ) which implies
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In the region e- < <z 0 we introduce the Green function q q-g r z r z, , ; , ,1 1 1( )
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By an application of Green’s identity it follows [11] that in region e- < <z 0
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The computation of the Green function -G is standard. The result is (see (2.2) in [11])
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where I1 and K1 are the modified Bessel functions, =>r r rmax , 1( ) and =<r r rmin , 1( ). For
the region >z 0 (see (2.5) in [11] with further details in [12])
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In particular, evaluating the integral when = =z z 01 gives
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where K and E are the complete elliptic integrals of first and second kind, respectively.

2.2. Third moment identity

Our basic identity for the third moment of σ is
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Using (19) and (20) and performing the r1 integration gives (21).

It will be convenient to break  into two parts:
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3. Asymptotic analysis

3.1. The edge and far-field approximations

In the vicinity of the edge of the disc, we introduce the stretched variable

e
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and consider e + +r 1 , 0 such that x is fixed. If F x y,( ) denotes the two-dimensional
potential of two semi-infinite parallel plates held at potentials ±1 (see appendix A), then the
edge approximation to the potential f r, 0( ) is
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Using the method of matched asymptotic expansions, explicit expressions for the terms of
order e

e
log 1 and ε are known [1, 17]. These higher order terms are needed for the result (11),

but as we will see, not for the third moment.
As discussed in [11], by Green’s formula
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small separation e2 as if the discs were of infinite extent. In this case the potential varies
linearly from −1 to 1 between the two plates, i.e. f e= +z z1( ) and is zero outside the two
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As in the edge expansion, both Shaw [17] and Chew and Kong [1] compute higher order
corrections in the far-field expansion. To order ε the result for f r, 0( ) is (24).

3.2. Asymptotic analysis of integrals
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Denote by r3( ) the quantity in square brackets in the integrand in the last integral. We break
the integral into two regions
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1

3 1 2( ) ( ) ( ) ( ) ( ) ( )

Setting e= +r x1 , the J1 integral becomes

òe e~ F +
d e

J x x x1 d ,1
0

3( ) ( )

where

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ e

e
e e e e+ = + + + - +x

x
x x x1

1

2
log

8
2

5

4
log

1

4
11 15 log 2 O log .3

2( ) ( ) ( )

Since we need J1 to order ε we have

⎜ ⎟

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠

ò

ò ò ò

e
e

e e e e

~ F +

= F + F + - F

d e

d e d e d e

J x
x

x

x x x x x x x

1

2
log

8
2 d

1

2
log d

1

2
log d 2

3

2
log 2 d .

1
0

0 0 0

( )

( ) ( ) ( )
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In appendix B we show

⎜ ⎟⎛
⎝

⎞
⎠ò p

gF = + +  ¥t t x
x

x
xd

1
log O

log
, , 26

x

0
0( ) ( )

where

g
p

p
p

= + » ¼
1

log
1

0.682 6890

and

ò p
gF ~ + +  ¥t t t x xlog d

1

2
log o 1 , .

x

0

2
1( ) ( )

The conjectured value of γ1 is

g
p

p
p

p
p

p
= - - - » - ¼

6

1 log log

2
0.367 647 . 271

2
( )

Numerically this conjecture has been verified to thirty decimal places. This gives

⎜ ⎟⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

p
e e e e

p
g

p

e g
g e

p
d e d

p p

~- + + -

+ - + + + -

J
1

4
log log

3 log 2

2 2

2

2
3

2
log 2

2 4
log log

2 3 log 2

2
.

1
2 0

0
1 2

For the J2 integral

 ò òf e~
d d+

¥

+

¥
J r r r F r r rd d ,2

1
3

1
3≔ ( ) ( ) ( ) ( )

where F is the far-field approximation (25). From this it follows that

⎜ ⎟⎛
⎝

⎞
⎠

e
p

d e
p

d
g e ed

d
d= - - + + J

4
log

8

2
log

8
O log

1
, 1,2

2
2

2

where γ2 is an undetermined constant. The conjectured value of γ2 is

g
p

p
= - - » - ¼

2

4
1.422 0179 . 282 ( )

This conjecture for γ2 has been verified to over 100 decimal places (see appendix B).
Thus

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

p
e e e e

p
g

p

g
g

g
p p

e e

+ =- + + -

+ - + + + - +

J J
1

4
log log

3 log 2

2 2

2

2
3

2
log 2

2

2
log 8

1

4
log 8 o , 29

1 2
2 0

0
1

2
2 ( ) ( )

where we note the terms involving δ cancel—as they must if our approximation is uniform.

3.2.2. Integral involving 2. The asymptotic expansions of the Bessel functions occurring in
2 in the edge variables is

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

p
e

p
e

e
p

~ p-I
n

K
n r

n2
e .n x

2 1
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This implies

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ å åp

p
e

p
e

e
p

e
p

= - ~ - = -
p

p

=

¥

=

¥ -
-r r

n
I

n
K

n r

n

2 1 e
Li e .

n n

n x
x

2
1

2 1 2
1

2 2 2( ) ( )

As before we break the integral into two parts

  



ò ò ò

ò ò

f f f

e
p

e

¢ = ¢ + ¢

~ - F¢ + ¢

d

d
d e

p

d

¥ +

+

¥

-

+

¥

r r r r r r r r

x x F r r r

d d

Li e d d . 30x

1
2

1

1

2
1

2

0
2

1
2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

For e  1 and  d+r 1 we have


e
p

~ - p e- -r
r

Li e .r
2 2 2

1( ) ( )( )

Thus for e d<  0 1

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠òd

e e
pd

e
p p

e
d

¢ + + ~ - ~ -
d

pd e pd e
¥

- -F s s s
d

d
1 1 d

1
Li e

1
e .2 2 2 2 3

2

( ) ( ) ( )

Thus the second integral in (30) contributes eo( ). We write the first integral as

ò ò òF¢ = F¢ - F¢
d e

p p

d e

p-
¥

-
¥

-x x x x x xLi e d Li e d Li e d .x x x

0
2

0
2 2( ) ( ) ( ) ( ) ( ) ( )

The last integral above is bounded by d eF pd e-Li e2( ) ( ) which is exponentially small since
d e  ¥. In appendix B we prove that

ò F¢ = -p
¥

-x xLi e d
1

2
,x

0
2( ) ( )

and hence

ò f
e
p

e¢ = +
¥

r r rd
2

o . 31
1

2 2
( ) ( ) ( ) ( )

3.3. The final result

Combining the two results (29) and (31) gives

⎜ ⎟
⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥

ò f

e p p
e e

p
p

e e

p
g

g
g

p p p
e e

¢

= + - +
-

+ - + + + - + +

¥
r r rd

1

8

2

3

1

2
log

log 8 3
log

2
2

log 8

2 2

2
log 8

1

4
log 8

1

2
o .

1

2
2

2

0
1

2
2

2

( ) ( )

( )

Using the three values for g g,0 1 and γ2 leads to the quantity in square brackets multiplying the
term ε to equal

p p
p

p
p- - + -

1

3

1

2

3
log 8

1

2
log 8 .

2 2 2
2

This, together with the asymptotics of C1, gives the asymptotic expansion in ε of the third
moment of σ. Inverting g e= C8 1
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e g g g g g g g g g= + + + + + + a a a a a alog log log ,0
1 2

1 2 3
3 2 2

4
3 2

5
3 2( )

where

p
p
p p

p
p

p p
p

= = - =
-

= =
-

=
- +

a a a a a

a

1

4
,

1

32
,

log 32 1

16
,

1

256
,

1 log 32

64
1 4 log 32 2 log 32

128
.

0 1 2 3 2 4 2

5

2

2

( )

Together with the third moment asymptotic expansion gives, finally, (12).
The remarkable feature of (12) is that all the logarithms terms, initially in the ε variable,

cancel when expressed in terms of γ. It is reasonable to conjecture that the asymptotic
expansion of e g( ) is in powers of g1 2.
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Appendix A. Two-dimensional parallel plate capacitor

For the convenience of the reader we give a brief discussion of the two-dimensional capacitor
consisting of a pair of semi-infinite parallel plates held at potentials±1. Here we follow the
discussion in the appendix of [11] though we change the notation slightly. The upper plate L1,
at potential +1, is located at  =x y0, 0{ } and the lower plate L2, at potential −1, is located
at  = -x y0, 2{ }. We write the complex potential as

F = F + Yx y x y x y, , i ,c ( ) ( ) ( )

so that Φ is the physical potential and Ψ the conjugate harmonic function. Consider the
mapping z x h+ +z x yi i≔ ⟵ ≔ defined by4

p p pz= - + +pzz 1 i e i .i

It is easy to check that the lines L1 and L2 in the z-plane are mapped to the lines x = 1 in the
ζ-plane. Furthermore, if one writes z e h= - +1 i then as e  +0 (approaching the line
x = 1 from the inside) one approaches the line L1 from the inside (bottom of the plate).
Similarly if e  -0 then the upper part of the plate L1 is approached. The region x < 1∣ ∣ (the
region between the two plates in the ζ-plane) is mapped onto the z-plane cut along the
lines L1,2.

The potential between two infinite parallel plates (held at±1) is x h xF =,( ) which by
Cauchy–Riemann implies x h hY =,( ) (we take Y =0, 0 0( ) ). Thus x h x hF = +, ic ( ) .
Thus in terms of the original x y, variables the potential function F x y,( ) is determined
implicitly by

4 The contour lines of z z= + + zf 1 e( ) are called Maxwell curves.
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p p p p p p p+ = - + F + F + F - Yp- Yx yi 1 i e cos i sin i , 32( ) ( )
or more simply in complex notation

p p p= - + + FpFz 1 i e i . 33c
i c ( )

This is equation (A5) in [11].

A.1. Small and large x behavior of Φðx ; 0Þ

Solving the imaginary part of the above equation for p- Ye for the special case of y=0, and
then substituting the result into the real part, gives an equation for Φ. Solving this iteratively
gives

⎛
⎝⎜

⎞
⎠⎟p

p
p

F = + +  ¥x
x

x

x

x

x
x, 0

1 log
O

log
, . 34

2 2

2

3
( ) ( )

For small >x 0 we have

p
p p

F = - + - +x x x x x, 0 1
2 1

9 2 540 2
O .1 2 3 2

3 2
5 2 7 2( ) ( )

Comments: The solution to (33) can be solved in terms of the Lambert W-function.
Recall that W(z) is defined as the solution of =W z zeW z( ) ( ) (we take the principal branch
solution). In terms of this W(z) we have

p p
F = + - + - p -z z W1 i

1 1
e . 35c

z 1{ }( ) ( ) ( )

Using Mathematica the small-z (I =z 0) expansion can be done and its real part reproduces
the asymptotics above. Similarly the large-z (I =z 0) can be done using Mathematica
reproducing the large-x expansion above. One also obtains, by taking the imaginary part, the
small and large x expansions of Ψ, e.g.

⎛
⎝⎜

⎞
⎠⎟

p p

p
p

p
p

Y =- + - + 

Y =- + + +  ¥

+x x x x x x

x x
x

x
x

x
x

, 0
1

3

2

135

28

135
O , 0 .

, 0
1

log
1

log 1 O
log

, . 36

2
2

3 4

2

2

2

( ) ( )

( ) ( ) ( ) ( )

Appendix B. Some integrals

Let F x( ) denote the potential for the two-dimensional parallel plate capacitor.

(1) Equation (A.13) in [11] reads

ò òp p
Y = - F¢ - + - Fp

¥
- -x t t t t, 0

1
log 1 e d

1
d ,t x

x

0 0
( ) ( ) ( ) ( )∣ ∣

where Y x y,( ) is the conjugate harmonic function in the 2D problem. Using the large x
behavior of Y x, 0( ) in (36), together with the observation that the integral in the above
equation is exponentially small as  ¥x , gives

⎜ ⎟⎛
⎝

⎞
⎠ò p

gF = + +  ¥t t x
x

x
xd

1
log O

log
, , 37

x

0
0( ) ( )

with
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g
p

p p
= +

log 1
.0

(2)

ò p
gF = + +  ¥x x x x xlog d

1

2
log o 1 , . 38

x

0

2
1( ) ( ) ( )

The leading term in the above follows from the large x-expansion of Φ. The conjectured
value for γ1 is

g
p

p
p

p
p

p
= - - -

6

1 log log

2
.1

2

This conjecture has been confirmed numerically to 30 decimal places.
(3) Let F(r) denote the far-field approximation. Explicitly

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟p p

=
- +

-
+ +

F r
r

r

r r

r

r
E K

1

1

2

1

1

1

2

1
( )

( ) ( )

and

 = + -- -r r r r rE K2 1 2 ,3
2 1 2 1( ) ( ) ( ) ( )

where kK( ) and kE( ) are the elliptic integrals. Then for d  1

ò p
d

p
d

g

p
d

p
d g

=- - + +

=- - + +

d+

¥
F r r rd

1

4
log

8

2
log

8
o 1

1

4
log

2
log o 1 , 39

1
3

2
2

2
2

( ) ( ) ( )

˜ ( ) ( )

where the conjectured value of γ2 is

p
p

- -
2

4
or equivalently

g
p

p
p p

= - - - + » - ¼
2

4

log 8

4

2
log 8 0.442 303 459 247 .2

2

˜

Letting r r1

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦⎥

ò ò p
=

-

´ - - +
+

- -
+

+

d d+ --

F
r r

r

r r r

r r r r
r

r
r

r

r
E K E K

1 1 d 1

1

2 2 1
2

1
1

2

1
o 1 .

0

1

3 2 0

1

3 2

2

1

( )

( ( ) ( ) ( )) ( ) ( ) ( )

( )

Now using

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟+

=
+

- -
+

= +
r

r r
r r r

r

r
r rE E K K K

2

1

1

1
2 2 ,

2

1
12( ( ) ( ) ( )) ( ) ( )

the integral we need to estimate is

ò p -
- - - -

d-

r r
r r r r r r rE K E K

2

1
2 2 1 d .

0

1

3 2
2 2

( )
[( ( ) ( ) ( ))( ( ) ( ) ( ))]

Subtracting from the integrand the asymptotics that is responsible for the dlog2 and dlog
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terms we have

⎧⎨⎩òg
p

=
-

- - - -

-
-

-
-

-

r r
r r r r r r

c
r

r

c

r
r

E K E K
2

1
2 2 1

log 1

1 1
d ,

2
0

1

3 2
2 2

0
1 }

˜
( )

[( ( ) ( ) ( ))( ( ) ( ) ( ))]

( )

where p=c 1 20 ( ) and p p= -c 2 log 8 21 ( ). Now

=
- -

-r

r

r r
K

E Kd

d

1

1
.

2

2

( )
( )

Thus

⎜ ⎟⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

p

p

p

p p

-
- - - -

=
-

- - -

= - -

= - -

r r
r r r r r r

r r
r r

r
r r

r
r

r r
r

r
r

r
r

r r

E K E K

K K
K

K K
K

K
K

2

1
2 2 1

2

1
1

d

d
2 1

d

d
2 d

d
2 1

d

d

4 1 d

d

1 d

d
. 40

3 2
2 2

3 2
2 2 2

2

2
2

( )
( ( ) ( ) ( ))( ( ) ( ) ( ))

( )
( ) ( )

( )

( )

We have

⎧⎨⎩
⎫⎬⎭ò p

p p
p

+
-

-
+

-

= - - + - +  -

r
c

r

r

c

r
r

R R

K1 d

d

log 1

1 1
d

2
log 1

9 log 2

4 4
o 1 , 1 .

R

0

2

0
1

2

( )

( ) ( )

It is easy to see that

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠òp p

- = - - +  -

r
r

r
r R R

K4 1 d

d
d

2
log 1 O 1 , 1 ,

R

0

2

( ) ( )

but we need the constant term which is

⎜ ⎟⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭òp
- -

-r
r

r r
r

K2
2

1 d

d

1

1
d . 41

0

1 2

( )

We conjecture that the value of this integral is

p
p

p
- - +

2

2

2 log 8

which has been verified numerically to over 100 decimal places.
(4) Let F x( ) denote the two-dimensional potential of appendix A. In Sloane’s OEIS

sequence A176599 we find the following table: let = ¼S s s s, , ,1 2 3{ } be an infinite
sequence and define the new sequence T S[ ] whose kth element is

- = ¼+s s k k, 1, 2, 3,k k 1( ) . For  = ¼1, 2, 3,{ } consider

T ,n [ ]

where Tn is the composition of T with itself n times. Then the claim is
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ò F¢ =p
¥

-x x TLi e d , 42n
x n

0
1( ) ( ) ( [ ]) ( )

where Lin is the polylogarithm.
Here is the beginning of the table.

1 2 3 4 5 6 K

−1 - 1
2

- 1
3

- 1
4

- 1
5

- 1
6

K

- 1
2

- 1
12

- 1
36

- 1
80

- 1
150

- 1
252

K

- 5
12

- 1
36

- 11
2160

- 7
4800

- 17
31500

- 5
21168

K

- 7
18

- 49
4320

- 157
129600

- 463
2016000

- 803
13230000

- 71
3556224

K

- 1631
4320

- 1313
259200

- 17813
54432000

K

- 96547
259200

- 257917
108864000

K

- 40291823
108864000

K

In particular the claim is

ò F¢ = -p
¥

-x xLi e d
1

2
.x

0
2( ) ( )

Here is a sketch of a proof of the claim. According to OEIS the generating function of the
first column is

 
å

=
-

= +
-

+
- -

+
- - -

+

= - - - - - - +

=

¥





g x
x

x k

x

x

x

x x

x

x x x

x x x x x x

1
1 1 2 1 2 3

1
1

2

5

12

7

18

161

4320

96 547

259 200
. 43

n

n

k n
1

0 1

2 3

2 3 4 5 6

( )
( )

( )( ) ( )( )( )

( )

Form the generating function for the integrals:

⎡
⎣⎢

⎤
⎦⎥òå+ F¢ p

=

¥ ¥
-g z x x z1 Li e d . 44

n
n

x n
2

1 0
( ) ≔ ( ) ( ) ( )

The potential F x( ) is the real part of the complex potential

p p
F = + - + - p -x x W1 i

1 1
e ,c

x 1{ }( ) ( )

where W is the Lambert W-function5. We introduce a new generating function g z3 ( ) where
F¢ x( ) is replaced by F¢ xc ( ):

⎡
⎣⎢

⎤
⎦⎥òå+ F¢ p

=

¥ ¥
-g z y y z1 Li e d 45

n
c n

y n
3

1 0
( ) ≔ ( ) ( ) ( )

so that R=g x g x2 3( ) ( ( )). Using

F¢ =
-

+ - p -
x

W

i

1 ec x 1
( )

( )

5 The W-function has a branch cut from -¥ -, 1 e( ). By -W x( ) for Î -¥ -x , 1 e( ) we
mean e- = - +e +W x W xlim i0( ) ( ).
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and the change of variable p-u e x≔ we see that

ò åp
=

-
+ - =

¥

g z
u W u

u z u
1 1 i

1 1 e
Li d .

n
n

n
3

0

1

1

( )
( ( ))

( )

Using

å åå å= = -
-=

¥

=

¥

=

¥

=

¥

u z
u

k
z z

u
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We want to show that =g x g x1 2( ) ( ). From the representations of g1 and g3, it is clear that
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The goal is to show that these two residues are equal for all k. Since - = +W x W xi0 i0( ) ( )
we can replace the above integral with a loop integral about the branch cut. This then gives
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We now close the contour (key-hole contour) and evaluate the residue at z=0. The result
is (46).
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