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Abstract. In the theory of the two-dimensional Ising model, the diagonal sus-
ceptibility is equal to a sum involving Toeplitz determinants. In terms of a
parameter k the diagonal susceptibility is analytic for |k] < 1, and the au-
thors proved the conjecture that this function has the unit circle as a natural
boundary. The symbol of the Toepltiz determinants was a k-deformation of
one with a single singularity on the unit circle. Here we extend the result,
first, to deformations of a larger class of symbols with a single singularity on
the unit circle, and then to deformations of (almost) general Fisher-Hartwig
symbols.
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1. Introduction

In the theory of the two-dimensional Ising model there is a quantity, depending on
a parameter k, called the magnetic susceptibility, which is analytic for |k| < 1. It
is an infinite sum over M, N € Z involving correlations between the spins at sites
(0,0) and (M, N). It was shown in [12] to be representable as a sum over n > 1
of n-dimensional integrals. In [8] B. Nickel found a set of singularities of these
integrals which became dense on the unit circle as n — co. This led to the (as yet
unproved) natural boundary conjecture that the unit circle is a natural boundary
for the susceptibility.

Subsequently [4] a simpler model was introduced, called the diagonal suscep-
tibility, in which the sum of correlations was taken over the diagonal sites (N, N).
These correlations were equal to Toeplitz determinants, and the diagonal suscep-
tibility was expressible in terms of a sum involving Toeplitz determinants.
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704 C.A. Tracy and H. Widom

The Toeplitz determinant Dy () is det (¢;—;)1<sj<n, where ; is the jth
Fourier coefficient of the symbol ¢ defined on the unit circle. The sum in question is

> [Dn(p) - M), where () = | 2L
e’ 1-k¢

and M, the spontaneous magnetization, is equal to (1 — £2)*/8. This also (as we
explain below) is equal to a sum of n-dimensional integrals, the sum is analytic
for |k| < 1, and the singularities of these summands also become dense on the
unit circle as n — oco. This led to a natural boundary conjecture for the diagonal
susceptibility, which we proved in [11].

The question arises whether the occurrence of the natural boundary is a
statistical mechanics phenomenon and/or a Toeplitz determinant phenomenon.
This note shows that at least the latter is true. We consider here the more general
class of symbols

p(§) = (1= k&)™ (1 -k /)™ $(¢), (1)
where 1 is a nonzero function analytic in a neighborhood of the unit circle with
winding number zero and geometric mean one. We assume a4+ € Z, Reay < 1.1
The parameter £ satisfies |k| < 1. We define

[Dn(e) = E()]; (2)
where N=1

Each summand in (2) is analytic in the unit disc |k| < 1, the only singularities
on the boundary being at k = £1, and the series converges uniformly on compact
subsets. Therefore x (k) is analytic in the unit disc.

Theorem 1. The unit circle |k| =1 is a natural boundary for x(k).

The result in [11] was established, and here will be established, by showing
that the singularities of the nth summand of the series are not canceled by the
infinitely many remaining terms of the series.3 We shall see that a certain derivative
of the nth term is unbounded as k2 tends to an nth root of unity while the same
derivative of the sum of the later terms is bounded, and if it is a primitive nth
root the same derivative of each earlier term is also bounded.

1Observe that we never consider a limiting symbol with k on the unit circle, and so do not require
that Reas > —1. The condition stated is one that will be needed for the integrability on the
unit circle of a function that arises in the proof of the theorem.

*When 9(€) = 1 it equals (1~ k?)~%+%-_ In general it equals this times a function that extends
analytically beyond the unit disc.

3A nice example [9] where such a cancelation does occur is

n
z z 22 24 2

1—2.21-—z2+1-~z4 +1—28 “.-1_1—2/,2“'*1
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Natural Boundary 705

To put what we have done into some perspective, we start with a symbol

(1= (1-1/6.
Then we introduce its k-deformation, times a “nice” function (¢), and consider
their Toeplitz determinants as functions of the parameter k inside the unit circle. Is
it important that we begin with a symbol with only one singularity on the bound-
ary? It is not. We may begin instead with a general Fisher-Hartwig symbol 5]
P Q -
I[_ -wo® J]_ a-v/ee,

where |up|, |vq] = 1 and P, @ > 0. With some conditions imposed on the o and
the oy, we show that the conclusion of the theorem holds for the deformations of
these symbols.

Here is an outline of the paper. In the next section we derive the expansion for
x(k) as a series of multiple integrals. In the following section the theorem is proved,
and in the section after that we show how to extend the result to (almost) general
Fisher-Hartwig symbols. In two appendices we give the proof of a proposition used

in Section II and proved in [11], and discuss a minimum question that arises in
Section IV.

2. Preliminaries

We invoke the formula of Geronimo-Case [6] and Borodin-Okounkov [2] to write
the Toeplitz determinant in terms of the Fredholm determinant of a product of
Hankel operators. The Hankel operator Hy(y) is the operator on ¢2(Z*) with
kernel (0itj4N+1)i,520-

We have a factorization p(£) = ¢4 (€) v—(£), where . extends analytically
inside the unit circle and ¢_ outside, and ¢ (0) = ¢_(c0) = 1. More explicitly,

p+(z) = (L =kE* ¢4 (€) and o_(§) = (1 - k/€)*~ v (9).

If 4(€) is analytic and nonzero for s < |¢] < s™1 then 1, (€) resp. 1_(€) is analytic
and nonzero for [¢| < s™! resp. [¢] > s.
The formula of G-C/B-O is

Dn(p) = E(p) det (I - HN(&) Hy (&))7

P+ P

where for a function f we define f(g) = f(¢~V). Thus, if we write
Ag) = f:_g_)_ = (1- k&)™ (1-k/&)>- Y- (§)

#+(8) »+(€)’

KN=HN(A) HN(A_I), (3)
then x(k) equals E(p) times

S(k) = i [det(Z — Kn) — 1].
N=1
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706 C.A. Tracy and H. Widom

In [11] the following was proved. We give the proof in Appendix A.
Proposition. Let Hy(du) and Hy(dv) be two Hankel matrices acting on €2(Z+)

with i, ] entries
/xNH"'j du(z), /yN“'Hj dv(y), (4)

respectively, where u and v are measures supported in the open unit disc. Set
Ky = Hy(du) Hy(dv). Then

i[det I-Kn)-1]
S T o) T

where indices in the integrand run from 1 to n.

We apply this to the operator Ky = Hy(A) Hy(A™') given by (3). The
matrix for Hy(A) has i, j entry

— [ A eN-imi-2ge,

2mg
where the integration is over the unit circle. The integration may be taken over a
circle with radius in (1, |k|™!) as long as |k| > s. (Recall that 1 (£) are analytic
and nonzero for s < |¢| < s71.) We assume this henceforth.
Setting £ = 1/z we see that the entries of Hy(A) are given as in (4) with

du(z) = 27” A(z™ 1) d,

and integration is over a circle C with radius in (||, 1). Similarly, Hy(A™1) =
Hy(dv) where in (4)

_ 1 -1

with integration over the same circle C.
Hence the proposition gives

S(k) =Y Su(k), (5)
n=1
where
Sn(k) - (_l)n !

with all integrations over C.

1 dyza
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Natural Boundary 707

We deform each C to the circle with radius |k| (after which there are integrable
singularities on the contours). Then we make the substitutions z; — kz;, yi — ky;,
and obtain

Su(k) = oo T ©)

_ Tiwys < ( 1 ))2 Ak~ 'z
det | ——— ——t= | | dz; dy;,
/ / 1 — & []; ziys 1 - kziy; 1:[ A(kys) 1:[ e
where integrations are on the unit circle. We record that
AE~z7Y) (1 —kz)*- (1-— w'l)“’“r p(k~1z71)
A(ky) A —ry)=e+ (1—yH= plky)
where we have set

(")

Y- ()
k=k% pz)= .
P+ (z)
The complex planes are cut from £7! to oo for the first quotient in (7) and from 0
to 1 for the second quotient.

Using the fact that the determinant in the integrand is a Cauchy determinant
we obtain the alternative expression

n(n+1)

Su(k) = (;,1)" i (8)

H TiYi A(
dz; dy;,
/ /1‘“"3 * L zays H”(l_’“ﬂzyg )2 I;I k?/t 1::[ v

where A(z) and A(y) are Vandermonde determinants

X

3. Proof of Theorem 1

For any § < 1— s we can deform each contour of integration to one that goes back
and forth along the segment [1 — §,1] and then around the circle with center zero
and radius 1 — 6.4 This is the contour we use from now on.

There will be three lemmas. In these, ¢ # 1 will be an nth root of unity
and we consider the behavior of S(k) as Kk — ¢ radially. Because the argument
that follows involves only the local behavior of S(k), we may consider x as the
underlying variable and in (7) replace k by the appropriate 1/k. We define

p=rk""-1, B=as+a_, b=Rep,
sothat y>0and u >0 as kK — €.

4To expand on this, it goes from 1 —4 to 1 just below the interval [1 — §,1], then from 1 to 1 —§
just above the interval [1,1 — 4], then counterclockwise around the circle with radius 1 — 6 back
tol-34.
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708 C.A. Tracy and H. Widom

Lemma 1. We have®
d 2n?—[bn]
(a—’;) Sa(k) m plbri=fn=1,

Proof. We set
£ =2n? — [bn]

and first consider

[L =iy Az)? Ay
/ / 1—kn H $zyz)e+l H 1 - K",‘U’Ly] 2 I;[ kyz Hd% s

where all indices run from 1 to n. This will be the main contribution to %S, (k)/dk?

For the i,j factor in the denominator in the second factor, if z; or y; is on
the circular part of the contour then |z;y;] < 1—4§ and the factor is bounded away
from zero; otherwise x;y; is real and positive and this factor is bounded away from
zero as k£ — € since € # 1. So we consider the rest of the integrand.

If []; lziys] < 1 — 4 then the rest of the integrand is bounded except for the
last quotient, and the integral of that is O(1) since Reay < 1.

When [, |z:y:| > 1—8 then each |zs|, |y;| > 1 -6, so each z;, y; is integrated
below and above the interval [1—4, 1]. If all the integrals are taken over the interval
itself we must multiply the result by the nonzero constant (4 sin 7oy sin Ta_)".
The factors 1 — k z;y; in the second denominator equal 1 — (1 + O(4)) = (1 -
k) (14+0(6)) since & is bounded away from 1. From this we see that if we factor out
kD™ from the first denominator, (1 — n)”z from the second denominator, and
(1=r)P"(p(k=1)/p(k))™ from the last factor (all of these having nonzero limits as
Kk — €), the integrand becomes

= ) CL‘zyz e H (=) (14 00)). 1o

(-

We make the substitutions z; = 1 =&, ys =1—1n; and set r = 3. (& + ;).
Then since [],(1 — &)(1 —n;) =1 — 7 + O(r?) this becomes

A(¢ ot
ooy 6™ i 0+ 06,

The integration domain becomes r < § +O(42). Consider first the integral without
the O(0) term. By homogeneity of the Vandermondes and the product, the integral

5We use the usual notation [bn] for the greatest integer in bn. The symbol ~ here indicates that
the ratio tends to a nonzero constant as p — 0.
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equals a nonzero constant® times

8§+0(82%) p2n®—pn—1
ks ()

Making the substitution r — ur results in

2n2_ﬂn—e‘1/(a+0(62))/# p2n’—pn—1
: 57+ O

0(62%)) n—Bn—
b — 1 /(5+ (%)) /0 p2n®=pn—1
0 (1 +r 4+ O(M2T2))2n2—[bn]+l

where we have put in our value of £. The integral has the g — 0 limit the convergent

integral
50 2n2——[bn]+1
/ ( r ) r[bn]—ﬁn—2 d’f‘,
0 1 +r

and (11) is asymptotically this times plo™—8n-1,

For the integral with the O(J) we take the absolute values inside the integrals
and find that it is O(6) times what we had before, except that the 8 in the
exponents are replaced by b, and in footnote 6 the exponents oy are replace by
their real parts. Since ¢ is arbitrarily small, it follows that the integral of (10) is
asymptotically a nonzero constant times ylbnl=8n—1,

To compute the derivative of order 2n®— [bn] of the integral in (8) one integral
we get is what we just computed. The other integrals are similar but in each the
¢ in the first denominator is at most 2n? — [bn] — 1, while we get extra factors
obtained by differentiating the rest of the integrand for S, (k). These factors are
of the form (1 - ka;y:) ™", (1—kz)~L, (1—ky)™!, or derivatives of p(k~z;1) or
of p(ky;)~!. These are all bounded. Because £ < 2n? — [bn] — 1 the integral (11) is
O(u=117) for some v > 0. The lemma follows. O

7 dr

(12)

=p dr,

Lemma 2. If €™ # 1 then

()" 509 = 0w,

Proof. If €™ # 1 all terms, aside from those coming from the last factors, obtained
by differentiating the integrand in (8) with n replaced by m are bounded as x — .
Differentiating the last factor in the integrand any number of times results in an
integrable function. O

6This is the integral of A(£)? A(n)? [] §i—a+ ni_a" over r = 1. It can be evaluated using a Selberg
integral [7, (17.6.5)], with the result

1 n—1
_ PG +2)°2TG —ar + )G —a_ +1).
I'(2n? — Bn) J,Iz](; +
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710 C.A. Tracy and H. Widom

Lemma 3. We have Zm>n (d/dﬁ)2"2_[b"] Sm(k) = 0(1).

Proof. We shall show that for « sufficiently close to ¢ all integrals we get by differ-
entiating the integral for Sy, (k) are at most A™m™, where A is some constant.”
Because of the 1/(m!)? appearing in front of the integrals this will show that the
sum is bounded.

As before, we first use (8) with n replaced by m, and consider the integral
we get when the first factor in the integrand is differentiated 2n2 — [bn] times. All
indices in the integrands now run from 1 to m.

First,
|1 —k™ Hz riyi| 21— l_IZ |3yl
Next we use that either |z;| = 1 -6 or ; € [0,1], and & € [0,€], to see that
|1 — kz;| > min(f,d), where d = dist(1, [0,€]). We may assume § < d. Then
|1 — kx| > 4, and similarly, |1 — ky;| > 4. It follows that the integrand in (8) after
differentiating the first factor has absolute value at most A™ times
1 Alz)* Ay)? - -
1—a;| % [1— g%, (1
1-TI, |zsys]) 22— on]+1 H” 11~ kziy;)? Hz | ;| | Yil o (13)

where a+ = Reay.

If TT; |ziyi] < 1 — 6 then the first factor is at most §=2n +bnl=1 When
[1; lzsgsl > 1~ 6 we set, as before, z; = 1 — &, y; = 1 —n; with &, m; € [0,4].
Since we are to integrate back and forth over these intervals we must multiply the
estimate below by the irrelevant factor 22™.

We have [[;(1 - &)(1 —m) < (1—&)(1 —n;) for each i, and so averaging
gives

[LO-&-m) <53 0 -8 -n),

and therefore

-TL-8)0-m2 5= 3 0= -&)1-n)

— 2m

1 1
=5 Zi(&‘ + = &) 25— Zi(&' +7:)/2 (14)
if § < 1/2, since each &,n; < é. From this we see that in the region where
> i(& +mi) > 6 the first factor in (13) is at most (4m/§)2n —lbnl+1,

So in either of these two regions the first factor is at most A™. We then use
(13) with the second factor replaced by the absolute value of

2
(det (1/(1 - kzy;)) )"
Each denominator has absolute value at least 6, so by the Hadamard inequality
the square of the determinant has absolute value at most §2™ m™. Therefore the

"The value of A will change with each of its appearances. It may depend on n and §, which are
fixed, but not on m.
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integral over this region has absolute value at most

A" m™ //Hll I T 7/ Hdﬂvidyi-

The integral here is Am, and so we have shown that the integral in the described
region is at most A™m
It remains to bound the integral over the region where z; = 1—¢;, y; = 1 — i

with &,7; € [0,6], and r = 37,(& + ) < 8. Using (14) again, we see that the
integrand has absolute value at most Am times

d—mz (6)2 H£ a+
(Z (fz + 77 n2 [bn]+1

(Recall that d = dist(1, [0,€]), and &z;y; € [0,¢]. The factor (4m?2)2n’ —[ml+1

coming from using (14) were absorbed into A™.) Integrating this with respect to
r over r < 4, using homogeneity, gives

[ aeral 0 [[6" 0 den

(where d(€,7) denotes the (2n — 1)-d1mensmnal measure on r = 1) times

)
2 2_o,2 —bn—
d-m / p2me—2n +[bn]—bn Ldr.
0

The first integral is given in footnote 6 with n replaced by m and a4 replaced by
ax, and is exponentially small in m. The last integral is 0(627"2) since m > n and
n is fixed. Since 62 < d, the product is exponentially small in m.

So we have obtained a bound for one term we get when we differentiate
2n? — [yn] times the integrand for S,, (k). The number of factors in the integrand
involving x is O(m?) so if we differentiate 2n? — 1 times we get a sum of O(m*"")
terms. In each of the other terms the denominator in the first factor has a power
even less than 2n% — [yn] and at most 2n? extra factors appear which are of the
form (1 — kzsy:) ™1, (1— kas) ™Y or (1 —wy;) ™t Also, p(k™1a1) or p(ky;) ™! may
be replaced by some of its derivatives. Each has absolute value at most 67!, so
their product is O(6~4""). It follows that we have the bound A™ m™ for the sum
of these integrals. Lemma 3 is established. O

Proof of the theorem. Let € be a primitive nth root of unity. Then €™ % 1 when
m < n so Lemma 2 applies for these m. Combining this with Lemmas 1 and 3 we
obtain .
(d/dli)Qn —[bn] S(k) ~ Iu[bn]—ﬁn—l

as k — €. This is unbounded, so S(k) cannot be analytically continued beyond
any such ¢, and these are dense on the unit circle.

Thus the unit circle is a natural boundary for S(k), and this implies that the
same is true of x (k). This completes the proof of the theorem. ad
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4. Fisher-Hartwig symbols

In this section we show how to extend the proof of the theorem to deformations
of Fisher-Hartwig symbols. We start with a Fisher-Hartwig symbol®

P . @
[T -uwg® [ -v/e)%,
p=1 g=1
where |uy|, |vg] =1 and P, @ > 0, and then its k-deformation
P Q

+ -—
(€)= ][ 0 —kup )% [[ (1~ ko/8)
p=1 q=1
We assume that Reo,, Rea; <1 and o), o] € Z. (Plus a simplifying assump-
tion that comes later.) Now the singularities of Dy () on the unit circle are at
the (upvy)~1/2, and

E(p) = H(l - kQUPUq)ﬂa;aq .
P.q
Theorem 2. With the given assumptions, the unit circle |k| = 1 is a natural bound-
ary for x(k).

Proof. Using previous notation, we have now

AE) = [T - kup €)% (1= vy /&),
Ak™'z7Y) 1 (L= up/z)™% (1 — kg z)®
Alky) H (1 - kupy)=% (1 —vg/y)*s

Again we begin by considering the integral

wzyz A
dx; d 15
/ / 1"””1—[ mzyz)“—l H ]'_K’mlyj 2 ]':[ kyz ];‘[ T dyi-

For § € (0, 1), our integrations are for the z; around the cuts [1 -6, 1] u, and
for the y; around the cuts [1 — §, 1] v, and then both around the circle with radius
1 — 4. If we replace integrals around the cuts by integrals on the cuts, then for a
cut [1—4, 1] up we must multiply by 2 sinwa; and for a cut [1—4, 1] v, we multiply
by 2 sinma; . These are both nonzero. We assume that this has been done.

We now let & —> ¢ radially, where ¢ is an nth root of [](up, v4)™!, but not
equal to any (upv,)~!. We also choose it so that it is not an mth root of any
product of the form H(upz vg,)~! with m < n. These € become dense on the unit
circle as n — oo. The last condition assures that the integrals with m < n are
bounded, which will give the analogue of Lemma 2. We now consider the analogue
of Lemma 1.

8We could easily add a factor 1(£) to give the general Fisher-Hartwig symbol. Then the & chosen
below would depend on the region of analyticity of .
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The integral over ] |z;y:| < 1 — § is bounded, as before. In the region where
I1lz:y;) > 1—6 each z; and Y; is integrated on the union of its associated cuts. This
is the sum of integrals in each of which each z; is integrated over one of the cuts
and each y; is integrated over one of the cuts. Suppose that z; is integrated over
[1—6,1] up, and y; is integrated over [1—§,1] v,,. (We consider this one possibility
at first. Then we will have to sum over all possibilities.)

If we factor out [Jup,vg from the first numerator, [J(1 ~ Kp, Vg, )? from
the second denominator, and [T - K Up, Vg, )*iT%: from the last product the
integrand becomes 1 + O(d) times

Az 2A y)2 —af —a]
(1 - Hn)l-]i ;z‘yi)€+1 1:‘[(1 - upl/mz) " (1 - Ufh’/yi) . (16)

We make the substitutions z; = (1 — &) up,, yi = (1 — 1) v,,, and define
Ip={i:pi=p}, I;={i:q=q}

Then
- —at —a
[T = wp /)™ (1 = v, fy) %0 = IT &% I] w® xa+o@)
) p,i€l, q,1€1,

As for the Vandermondes, we have
Ma)=x[[A@eier) [] I @-=), (1)
p p#p JE€lp, j'€l,,5<j!

and similarly for A(y). If we define n, = ||, nq = |I,|, then the last double
product is to within a factor 1+ O(4) equal to

+ H (up — up )™,
p<p’
while the first product is to within a factor 1+ O(6) equal to

Hu;}”("”H)/Q H A& i€ Ip).
P P

Thus, if we factor out (" []up, vg,)**! from the denominator in (16), and
set 1 = K" [[(up, vg;)~* — 1, then (16) may get replaced by a constant times
14+ O(6) times

1
(bt 2&+m

If we use homogeneity the integral of (18) becomes a nonzero constant® times

e 1] Arie g™ - ] i )?n ™. 13)

p,i€l, q,i€l,

§
[ BB o) g 9)
o \(BWtT

9 Also computable using the Selberg integral, it is [see next page]
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This is largest when the power of r is smallest. So we minimize

an(np - af), (a; =Re o)
)

over all {np} with n, > 0, 3° 7, = n. The solution is not necessarily unique.!®
But in any case

2
M7= minZnP(np —af) = 7—}5 + O(n), (20)
P
and M,F +1 > M for large enough n.!! Similarly, with ag =Rea; and
2
M7 =miny ny(ng—ag) = % +0(n). (21)
q

Then we choose
=Y+ Yont - | Ty + Yo g @
p q p q
with the minimal n, and nq. The integral (19) is equal to
u-“—[EI, Np a;’+Zq Tq a;]—(Zp p aZ+Zq Nq a;)

times

5/u 1 ~14+3 np(np—af )+, ng(n —a;)

—r 4ap Mp\Tp—Cp g "a\ne™ % ) dp
/0 (1 + )ttt

The exponent of p has real part in (-2, —1] and the integral has a nonzero limit

(a Beta function) as u — 0.

Once we take care of the integrals with the O(6) as in the proof of Lemma 1
we deduce that this is the asymptotic result for the integral when we choose this
set of cuts.

We now assume the minimal solutions are unique.?

Then for the other choices of cuts the integral (19) is O(u~!*") for some
v > 0, and so the integral over the chosen set of cuts dominates. We still have
to allocate the z; and y; to the various cuts, once the numbers of each have been

1
P(C, np(np —of ) + 2 qna(ng —ap))
np—1 ng—1
x[TII rG+2TG —of +1) - [T [T TG +2)TG - a7 +1).
p j=0 q j=0

104 similar minimum problem was encountered in (3], where an asymptotic formula was a sum
over all solutions. We shall eventually assume a unique solution to avoid the possibility of can-
celation of terms of the same order.

Hgee Appendix B.

12We shall see in Appendix B that for large n uniqueness is a condition on the a; and ag that
depends only on the residue classes of n modulo P and Q. It suffices for our purposes that we
have uniqueness for some sequence n — oo.
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chosen. The number of ways of doing this is n!/ []n,! for the z; and n!/ [I 74! for
the y;. (The total number of ways is at most P™ Q".)

This takes care of the integral (15), the main contributions to (d/ dr)*Sn (k).
We complete the proof of the analogue of Lemma 1 as we did at the end of the
proof of that lemma. Thus, with ¢ given by (22),

¢

For the analogue of Lemma 3 we first consider the integral (15) with n re-
placed by m > n, and £ given by (22). As before it remains to bound the integrals
over the regions where each z; = (1 — &)u,, and each y; = (1 — 7:)Vq,, With
§i:m €[0,6], and 7 = 37,6 +m) < 6.

Replacing the first denominator in (15) by (3(& +7;))¢t! introduces a factor
(4m?/6)**1 as before, a factor that can be ignored. The reciprocal of the second
denominator is at most d~™" where d = miny, , dist([0, €], (upvy) ™). The product
of the terms involving & in the last product is d~°(™), and so may also be ignored.
The square of the product over p < p' in (17), times the square of the analogous
product over g < ¢, is at most 2(P*+9*)m* There remains an integrand whose
absolute value is bounded by

(> & _{1.,71.))“1 H Al :ie Ip)2€i—a: ) H Aln; i€ Iq)2 n;a;'

p7iEIp q,zelq

The integral of the products over r = 1 (given exactly in footnote 9) is
trivially at most its maximum (at most A™4™") times the (2m — 1)-dimensional

measure of r = 1, which is 1/T(2m). We use the crude bound 4™, This is to
multiply

é
/ 2T, mp(mp—af )+ my(me—ag) g
0

Now

Zmp(mp _ai:f) + qu(mq ~ag)

is at least M+ M, and it follows from (20) and (21), and the strict monotonicity
of the sequences {MZ}, that for large enough n and some R this greater than
£+ 1+ m?/R for all m > n. Then the integral is at most 6™ /R,

This integral is one of at most P™Q™ integrals, and this factor also can
be ignored. The factors we had before that could not be ignored combine to
(4 2P2+Q2/d)m2. It follows that if we choose § < (4 2P2+Q2/d)*R the integral
over r < § of (15) with m replacing n is exponentially small.

This takes care of the integral (15) with m replacing n, the main contributions
to (d/dk)!Sm (k). We complete the proof of the analogue of Lemma 3 as we did at
the end of the proof of that lemma. This completes the proof of the theorem. [
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Appendix A. Proof of the proposition

The Fredholm expansion is

() (_1 n
det(T - Kw) =14 3 " S etk (i),
n=1 PiyesPn 20

Therefore its suffices to show that
o0

Z Z det(Kn(ps,p;))

N=1 Pi1,--- p">0

We have N+ N4,
KN(piapj)://“ﬁy—'du(m)dv(y)-

It follows by a general identity [1] (eqn. (1.3) in [10]) that
det(KN Pz,pj

/ /det N+pJ det(y N+PJ) H 11—z 1_'[du(:zZ ) dv(y;)
B E// (Hz’yl) det(z;”) det(y;”) H ] —lmiyi HdU(-'L'i)d’U(yi).

Summing over N gives

Z det(Kn(ps, p5))

I1; ziy: pj Pj
- [ [ %%mm>w@>QPWMQMm@m

(Interchanging the sum with the integral is justified since the supports of u and v
are in the open unit disc.)

Now we sum over pi,...,pn > 0. Using the general identity again (but in the
other direction) gives

. , 1
Z det(z}?) det(yf’) = n! det(meyf) =n! det (1 - >

- T
P1ypn 20 p20 iYi

We almost obtained the desired result. It remains to show that

1 1
det , 23
(1“37'«:311')1:‘[1—901% (23)

which we obtain in the integrand, may be replaced by

3 (o (=) o
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This follows by symmetrization over the z;. (The rest of the integrand is symmet-
ric.) For a permutation 7, replacing the z; by Tr(;) multiplies the determinant in
(23) by sgn, so to symmetrize we replace the other factor by

1 1 1
— sgnm - = — det .
n! ; & 1;[ 1- Lr(i)Yi n! ( )

1 — 2y,

Thus, symmetrizing (23) gives (24). O

Appendix B. The minimum problem

Changing notation, we consider

n—mm{Zm ni—a;):n; € LT, Zm—-n},
i=1

and ask when this is uniquely attained. Set

k
—k“lzai, c‘ziz(a,;—s)/Q, ﬁizni—n/k,
i=1
and define

NF = {(:ci) e RF: ixz =0}.

Then @ = (@;) € N* and 2 = (;) € N¥. If n. = v (mod k) the other conditions on
the 7; become

ng > —n/k, 7, €Z-v/k.
(Think of v as fixed and n as large and variable.) A little algebra gives

k
an n; — a; —Z(ﬁi—az) + k(n/k —s/2)? Za2/4
i=1

Minlmlzmg the sum on the left is the same as minimizing the first sum on the
right, with the stated conditions on the 7;. Several things follow from this. First,
since the minimum of the first sum on the right is clearly O(1), the condition #; >
—n/k may be dropped when n is sufficiently large; second, M,, = n2 Jk—sn+0(1);
third (from this), My+1—M, = 2n/k+0(1) > 0 for sufficiently large n; and fourth,
for uniqueness we may replace our minimum problem by

k
min { Z(m —a):neNt ez - I//k‘}
i=1

This minimum is uniquely attained if and only if there is a unique point closest
to @ in the set of lattice points (Z — v/k)* in N*. This condition depends only on
the residue class of n modulo k.

When k = 2 the subspace N? is the line 1 + 25 = 0 in R2. When 7 is even the
lattice consists of the points on the line with coordinates in Z and a is equidistant
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718 C.A. Tracy and H. Widom

from two adjacent ones when a; ~ as € 4Z + 2; when n is odd the lattice consists
of the points of the line with coordinates in Z 4 1/2 and @ is equidistant from two
adjacent ones when a; — ag € 4Z. Non-uniqueness occurs in these cases.

Acknowledgment

This work was supported by the National Science Foundation through grants
DMS-1207995 (first author) and DMS-1400248 (second author).

References

(1] C. Andréief, Note sur une relation des intégrales définies des produits des fonctions,
Mém. de la Soc. Sci., Bordeaux 2 (1883), 1-14.

[2] A. Borodin and A. Okounkov, A Fredholm determinant formula for Toeplitz deter-
minants, Int. Egs. Oper. Th. 37 (2000), 386-396.

[3] A. Béttcher and B. Silbermann, The asymptotic behavior of Toeplitz determinants for
generating functions with zeros of integral order, Math. Nachr. 102 (1981), 78-105.

(4] S. Boukraa, S. Hassani, J.-M. Maillard, B.M. McCoy and N. Zenine, The diagonal
Ising susceptibility, J. Phys. A: Math. Theor. 40 (2007), 8219-8236.

[5] M.E. Fisher and R.E. Hartwig, Toeplitz determinants: some applications, theorems,
and conjectures, Adv. Chem. Phys. 15 (1968), 333-353.

[6] J.S. Geronimo and K.M. Case, Scattering theory and polynomials orthogonal on the
unit circle, J. Math. Phys. 20 (1979), 299-310.

[7] M.L. Mehta, Random Matrices, 2nd ed., Academic Press (1991).

[8] B. Nickel, On the singularity structure of the 2D Ising model, J. Phys. A: Math. Gen.
32 (1999), 3889-3906.

[9] E. Stein and R. Sharkarchi, Complex Analysis, Princeton Univ. Press (2003), p. 29.

[10] C.A. Tracy and H. Widom, Correlation functions, cluster functions, and spacing
distributions for random matrices, J. Stat. Phys. 92 (1998), 809-835.

[11] C.A. Tracy and H. Widom, On the diagonal susceptibility of the 2D Ising model,
J. Math. Phys., 54 (2013) 123302.

[12] T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, Spin-spin correlation functions

for the two-dimensional Ising model: Ezact theory in the scaling region, Phys. Rev.
B13 (1976), 315-374.

Craig A. Tracy

Department of Mathematics
University of California

Davis, CA 95616, USA

e-mail: tracy@math.ucdavis.edu

Harold Widom
Department of Mathematics

University of California
Santa Cruz, CA 95064, USA

e-mail: widom@ucsc.edu

tracy @math.ucdavis.edu



