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In earlier work, the authors obtained formulas for the probability in the asymmetric
simple exclusion process that the mth particle from the left is at site x at time t. They
were expressed in general as sums of multiple integrals and, for the case of step initial
condition, as an integral involving a Fredholm determinant. In the present work, these
results are generalized to the case where the mth particle is the left-most one in a con-
tiguous block of L particles. The earlier work depended in a crucial way on two combi-
natorial identities, and the present work begins with a generalization of these identities
to general L. Published by AIP Publishing. https://doi.org/10.1063/1.4996345

Dedicated to the memory of Ludwig Faddeev.

I. INTRODUCTION

The asymmetric simple exclusion process (ASEP) on the integer lattice Z is one of the most
important stochastic models in nonequilibrium statistical physics and interacting particle systems.
For example, in the case of step initial condition (particles initially occupying the positive integer
sites Z+), a formula for the distribution of the mth particle from the left6 was the starting point for
the derivation of a formula for the one-point probability distribution of the height function for the
Kardar-Parisi-Zhang (KPZ) equation with narrow wedge initial conditions.1,3

Recall that in the ASEP a particle waits an exponential time, then moves one step to the right
with probability p if the site is unoccupied (or else stays put), and one step to the left with probability
q = 1 � p if the site is unoccupied (or else stays put).

The first result in Ref. 4 was the derivation for the N-particle ASEP of a formula for the transition
probability PY (X, t) from configuration Y to configuration X in time t. Here Y = {y1, . . . , yN}
∈ ZN with y1 < y2· · · < yN and X = {x1, . . . , xN} ∈ ZN with x1 < x2 < · · · < xN . The formula
for PY (X, t) is quite complicated as it is a sum of N! terms with each term an N-dimensional
integral. [See (14) below]. From the transition probability PY (X, t), one can derive expressions for
P(xm(t) = x), the probability that at time t the mth particle from the left is at site x. (Theorems 5.1
and 5.2 of Ref. 4). The derivations depended crucially on identities (1.6) and (1.9) of Ref. 4. For the
step initial condition, with some additional analysis, one reduces the one-point function to an integral
whose integrand involves a Fredholm determinant. [This is formula (1) of Ref. 5.]

The stated results were all for the one-point function, and it is natural to try to extend them
to joint probabilities, P(xm1 (t)= x1, . . . , xmr (t)= xr). Some exact formulas for these were derived in
Ref. 7, but they were quite complicated and do not seem to lead to anything useful. Here we consider
a special case for which we are able to generalize the main results of Refs. 4 and 5.

By a block of length L (or L-block, for short) we mean a contiguous block of L particles. We are
interested in the probability that at time t the mth particle from the left is the beginning of an L-block
starting at x. Precisely, we want the probability PL,Y (x, m, t) of the event

xm(t)= x, xm+1(t)= x + 1, . . . , xm+L−1(t)= x + L − 1,

given the initial configuration Y. As mentioned, all the results of Refs. 4 and 5 and beyond depend on
a certain pair of identities, and a stumbling-block to generalizing the results has been finding general-
izations of those identities. We have been able to do this for L-blocks, and we call the generalizations
Identity 1L and Identity 2L. Once we have them, we are able to follow the paths followed in Refs. 4
and 5. Because of this, we shall omit some details.
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In Sec. II, we derive Identities 1L and 2L. In Sec. III, in Theorem 1, we derive a formula for
PL,Y (x, m, t) for the N-particle ASEP as a sum of multiple integrals over small contours. (The sin-
gularities of the integrand are outside the contours.) Theorem 2 gives an analogous expansion where
the integrals are over large contours. (The singularities of the integrand are inside the contours.) The
large contour expansion extends to infinite systems with initial conditions unbounded on the right.
Finally, in Sec. IV, in Theorem 3, there is an expression for the step initial condition probability
PL,Z+ (x, m, t) as an integral involving a Fredholm determinant.

In future work, we hope to obtain asymptotic results as N →∞ analogous to those in Ref. 6 for
the step initial condition. The aforementioned formula, even in the case L = 1, is difficult to analyze
asymptotically. In Ref. 6, a deformation theory was developed which made it possible to replace
the kernel in the formula by one with the same Fredholm determinant and which was amendable to
asymptotic analysis. (See Theorem 3 in Ref. 6). We expect the method to apply to this more general
case as well.

II. TWO IDENTITIES

The two identities are expressed in terms of a symmetric polynomial fL(ξ1, . . . , ξN ) [or fL(ξ), for
short] defined by (4) below. To state them, we introduce the notation

U(ξ, ξ ′)=
p + qξξ ′ − ξ

ξ ′ − ξ
.

The first identity is

Identity 1L: For N ≥ L,∑
σ∈SN

∏
1≤i<j≤N

U(ξσ(i), ξσ(j))
ξσ(2) ξ

2
σ(3) · · · ξ

N−1
σ(N)

(1 − ξσ(L+1) · · · ξσ(N)) · · · (1 − ξσ(N−1)ξσ(N)) (1 − ξσ(N))

= pN(N−1)/2 fL(ξ)∏
i(1 − ξi)

, (1)

where the sum is taken over all permutations σ in the symmetric group SN .
For the second identity, we use the notation ξ̂S to denote the variables ξk with k< S, and set τ =

p/q. We assume τ < 1 and use the usual notation for the τ-binomial coefficients,
[ n

k

]

τ
=

(1 − τn) · · · (1 − τn−k+1)

(1 − τ) · · · (1 − τk)
.

Identity 2L: For 0 ≤ m ≤ N � L,∑
|S |=m

∏
i∈S
j<S

U(ξi, ξj) · fL(ξ̂S)= qm(N−m)
[

N − L
m

]

τ

fL(ξ), (2)

where the sum is over all subsets S of [1, . . . , N] of cardinality m.
For the definition of fL(ξ), we first define

ϕL(z1, . . . , zL; ξ)=

∏
1≤j≤N U(z1, ξj) U(z2, ξj) · · ·U(zL, ξj)

zL
1 (qz1 − p) zL−1

2 (qz2 − p) · · · zL (qzL − p)

∏
1≤i<j≤L

1
U(zj, zi)

(3)

and then

fL(ξ)= pL(L+1)/2−LN
∏

i

ξL
i

∫
Γξ

· · ·

∫
Γξ

ϕL(z1, . . . , zL; ξ) dz1 · · · dzL, (4)

where Γξ consists of simple closed curves enclosing the points ξ j but no other singularities of the
integrand. (Here and below, all contour integrals are to get the factor 1/2πi.)

By expanding the contours, we can evaluate the integrals and compute the fL(ξ) explicitly. Using
just U(0, ξ) = p ξ�1 and U(τ, ξ) = p, we find

f1(ξ)= 1 −
∏

i

ξi. (5)
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The next one is more complicated,

f2(ξ)= 1 − eN−1(ξ) +
N − 1

p
eN (ξ) −

q
p

e1(ξ) eN (ξ) +
q
p

eN (ξ)2,

where en are the elementary symmetric polynomials in N variables. Further fL(ξ) are even more
complicated but only for L = 1 is it needed explicitly. From (5), we see that identities (1) and (2) for
L = 1 are identities (1.6) and (1.9) of Ref. 4, so they are true then. We shall use this fact later.

Proof of Identity 1L. We perform the z1-integration in (4). Using

res U(z, ξ)|z=ξ = (1 − ξ) (qξ − p),

we find after a little computation that the integral equals

N∑
k=1

1 − ξk

ξL
k

∏
j,k

U(ξk , ξj) · ϕL−1(z2, . . . , zL; ξ̂k),

where ξ̂k denotes the variables other than ξk . This gives the recursion formula

fL(ξ)= p1−N
N∑

k=1

(1 − ξk)
∏
j,k

ξj U(ξk , ξj) · fL−1(ξ̂k), (6)

where we used (4) as it stands and also with L replaced by L � 1 and N replaced by N � 1.
We prove (1) by induction. We know that it holds for L = 1, so we assume that L > 1 and that it

holds for L � 1. For fixed k, denote by SN ,k those permutations in SN for which σ(1) = k. Then∑
σ∈SN ,k

∏
1≤i<j≤N

U(ξσ(i), ξσ(j))
ξσ(2) ξ

2
σ(3) · · · ξ

N−1
σ(N)

(1 − ξσ(L+1) · · · ξσ(N)) · · · (1 − ξσ(N−1)ξσ(N)) (1 − ξσ(N))

=
∏
j,k

ξj U(ξk , ξj)
∑

σ∈SN ,k

∏
2≤i<j≤N

U(ξσ(i), ξσ(j))
ξσ(3) ξ

2
σ(4) · · · ξ

N−2
σ(N)

(1 − ξσ(L+1) · · · ξσ(N)) · · · (1 − ξσ(N−1)ξσ(N)) (1 − ξσ(N))
.

By the induction hypothesis, the sum over SN ,k is equal to

p(N−1)(N−2)/2 fL−1(ξ̂k)∏
i,k(1 − ξi)

.

(Observe that L changes to L � 1 when viewed in SN ,k .) We sum over k and find that the left side of
(1) equals

p(N−1)(N−2)/2∏
i(1 − ξi)

N∑
k=1

(1 − ξk)
∏
j,k

ξj U(ξk , ξj) · fL−1(ξ̂k).

By (6), this equals the right side of (1), which completes the proof.

Proof of Identity 2L. In the following, S will always denote a subset of [1, . . . , N] with |S| = m. We
shall use the following lemma, whose proof we give below.

Lemma. If for a set S and ` < S we define

U(`, S)= (1 − ξ`)
(∏

k∈S

U(ξk , ξ`) − τ
−m

∏
k∈S

ξk U(ξ` , ξk)
)
, (7)

then ∑
σ∈Sm+1

U(`, {k1, . . . , km})= 0,

where the sum runs over all permutations σ of (`, k1, . . . , km).
Assuming this, we establish (2) by induction on L. We know that it holds for L = 1, so assume

L > 1 and that it holds for L � 1.
As noted, we use the notation ξ̂S to denote the variables ξk with k < S. We use ξ̂S ξ̂` to denote

the variables ξk with k < S ∪ {`} (or S ∪ `, as we shall write it).
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We use recursion formula (6) to write the left side of (2) as∑
S

∏
i∈S
j<S

U(ξi, ξj) pm+1−N
∑
`<S

(1 − ξ`)
∏

j<S∪`

ξj U(ξ` , ξj) · fL−1(ξ̂S , ξ̂`).

We write this in turn as

pm+1−N
∑

S,`
`<S

(1 − ξ`)
∏
j,`

ξj U(ξ` , ξj)

[ ∏
k∈S U(ξk , ξ`)∏

k∈S ξk U(ξ` , ξk)

] ∏
k∈S

j<S∪`

U(ξk , ξj) · fL−1(ξ̂S , ξ̂`). (8)

Write the expression in brackets as

τ−m +

[ ∏
k∈S U(ξk , ξ`)∏

k∈S ξk U(ξ` , ξk)
− τ−m

]
(9)

and consider the contribution of the summand τ�m. By the induction hypothesis, we have for the sum
over those S not containing `,∑

S
`<S

∏
k∈S

j<S∪`

U(ξk , ξj) · fL−1(ξ̂S , ξ̂`)= qm(N−m−1)
[

N − L
m

]

τ

fL−1(ξ̂`).

If we use (6) once again, we see that the contribution of the τ�m term to (8) is exactly the right side
of (2).

It remains to show that if we replace the bracketed expression in (8) by the one in (9), the result
is zero. The result of that replacement (aside from the external power of p) is∑

S,`
`<S

(1 − ξ`)

[ ∏
k∈S

U(ξk , ξ`) − τ
−m

∏
k∈S

ξk U(ξ` , ξk)

] ∏
j<S∪`

ξj U(ξ` , ξj)
∏
k∈S

j<S∪`

U(ξk , ξj) · fL−1(ξ̂S , ξ̂`).

With the notation (7), this may be written∑
S,`
`<S

U(`, S)

( ∏
k∈S∪`
j<S∪`

ξj U(ξk , ξj) · fL−1(ξ̂S , ξ̂`)

)
.

The expression in parentheses is symmetric under the permutations of S ∪ `. It follows from the
lemma that the sum equals zero.

Proof of the Lemma. With a slightly different notation, we show that the symmetrization of

(1 − ξm+1)
(
τm

m∏
i=1

U(ξi, ξm+1) −
m∏

i=1

ξi U(ξm+1, ξi)
)

over Sm+1 equals zero. The symmetrization is equal to (m + 1)�1 times

m+1∑
j=1

(1 − ξj)
(
τm

∏
i,j

U(ξi, ξj) −
∏
i,j

ξi U(ξj, ξi)
)
. (10)

To show that this equals zero, we consider the integral∫
1

p − qz

[
τm

m+1∏
i=1

U(ξi, z) + z−1
m+1∏
i=1

ξi U(z, ξi)
]

dz

taken over a large contour. The integrand equals =−pm ∏
ξi z�1 + O(z�2) as z→∞, so the integral

equals
−pm

∏
ξi. (11)

This equals the sum of the residues of the integrand. Using

res U(ξ, z)|z=ξ = (1 − ξ)(p − qξ), res U(z, ξ)|z=ξ =−(1 − ξ)(p − qξ), (12)
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U(0, ξ)= p ξ−1, U(ξ, τ)= q, U(τ, ξ)= p,

we find that the sum of the residues at the ξ j equals (10), the residue at z = 0 equals pm, and the
residue at z = τ equals � pm

� pm∏
ξ i. That these residues add up to (11) is equivalent to (10) being

equal to zero.

Remark. We stated earlier that fL(ξ) is a symmetric polynomial. Symmetry is clear from the
definition but that it is a polynomial is not so clear. Here is an inductive argument, using (6).

It is a rational function of each ξ i whose poles are among ξ j with j , i. We show that the residue at
ξ i = ξ j is zero. The k-summand in (6) with k , i, j is analytic at ξ i = ξ j, since there is no denominator
ξ i � ξ j or ξ j � ξ i. The k = i summand has a pole coming from the factor U(ξ i, ξ j) and no other factor,
while the k = j summand has a pole coming from the factor U(ξ j, ξ i) and no other factor. Using (12)
and the symmetry of fL−1, we see that the two residues are negatives of each other, and so their sum
is zero.

III. BLOCK PROBABILITIES

For the N-particle ASEP, we denote by PY (X, t) the probability that a system initially in con-
figuration Y = {y1, . . . , yN} is in configuration X = {x1, . . . , xN} at time t. The other notation is

ε(ξ)= p ξ−1 + q ξ − 1, Aσ(ξ1, . . . , ξN )=
∏
i<j

U(ξσ(i), ξσ(j))

U(ξi, ξj)
. (13)

[The expression for Aσ here is easily seen to agree with formula (3.2) of Ref. 4.] Theorem 2.1 of
Ref. 4 is that for p > 0,

PY (X , t)=
∑
σ∈SN

∫
Cr

· · ·

∫
Cr

Aσ
∏

i

(
ξ

xi−yσ(i)−1
σ(i) eε(ξi)t

)
dξ1 · · · ξN , (14)

where Cr is a circle with center zero and radius r so small that all poles of the Aσ lie outside Cr .
For blocks of length L, we define PL, Y (x, m, t) to be the probability that at time t, the mth particle

from the left is the beginning of a block starting at x. Precisely, that

xm(t)= x, xm+1(t)= x + 1, . . . , xm+L−1(t)= x + L − 1.

To state our basic result, we define

IL(x, Y , ξ)=
∏
i<j

1
U(ξi, ξj)

∏
i

1
1 − ξi

fL(ξ)
∏

i

(
ξ

x−yi−1
i eε(ξi)t

)
,

where all indices lie in [1, . . . , N]. For a set S ⊂ [1, . . . , N], we define IL(x, YS , ξS) analogously,
where the indices lie in S. We denote by Sc the complement of S in [1, . . . ,N] and, finally, we confuse
things by defining σ(Sc) to be the sum of the elements of Sc. The result is

Theorem 1. For p > 0,

PL,Y (x, m, t)= p(N−m+1)(N−m)/2 q(m−1)(N−m/2)
∑
|Sc |<m

(−1)m−1−|Sc |

[
|S | − L

m − 1 − |Sc |

]

τ

×
qσ(Sc)−N |Sc |

pσ(Sc)−|Sc |( |Sc |+1)/2

∫
Cr

· · ·

∫
Cr

IL(x, YS , ξS) d |S |ξ.

We shall only give the details for the cases m = 1 and m = 2, from which one can see how
identities 1L and 2L replace those for L = 1 in Ref. 4. Because the fL(ξ) are polynomials, there are
no extra complications following the derivation in Ref. 4 since no new poles are introduced. There
are, though, other properties of fL(ξ) needed for the applications of Lemmas 3.1 and 5.1 of Ref. 4.
We derive these in Appendix A.

For m = 1, the formula is

PL, Y (x, 1, t)= pN(N−1)/2
∫
Cr

· · ·

∫
Cr

IL(x, Y , ξ) dN ξ. (15)
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To see this, we write the configuration that starts at x as

x, x + 1, . . . , x + L − 1, x + L − 1 + v1, . . . , x + L − 1 + v1 + · · · + vN−L

and then sum the right side of (14) over all vi > 0. After summing, the integrand in (14) becomes

Aσ
ξσ(2) ξ

2
σ(3) · · · ξ

N−1
σ(N)

(1 − ξσ(L+1) · · · ξσ(N)) · · · (1 − ξσ(N−1)ξσ(N)) (1 − ξσ(N))

∏
i

(
ξ

x−yi−1
i eε(ξi)t

)
,

and using the definition of Aσ in (13), we see that (15) follows from Identity 1L.
For m = 2, we denote by Ŷk the set Y \{k} and similarly for ξ̂k as before. The formula is

PL, Y (x, 2, t)=−qN−1
[

N − L
1

]

τ

p(N−1)(N−2)/2
∫
Cr

· · ·

∫
Cr

IL(x, Y , ξ) dN ξ

+ p(N−1)(N−2)/2
N∑

k=1

(q
p

)k−1
∫
Cr

· · ·

∫
Cr

IL(x, Ŷk , ξ̂k) dN−1ξ. (16)

For this, we write the configuration as

x − v1, x, x + 1, . . . , x + L − 1, x + L − 1 + v2, . . . , x + L − 1 + v1 + · · · + vN−L,

with vi > 0. Summing the integrand over v2, . . . , vN−L for the factors involving σ gives

Aσ ξ
−v1
σ(1)

ξσ(3) ξ
2
σ(4) · · · ξ

N−2
σ(N)

(1 − ξσ(L+2)ξσ(L+3) · · · ξσ(N)) · · · (1 − ξσ(N−1)ξσ(N)) (1 − ξσ(N))
. (17)

To do the sum over v1, we expand the ξσ (1)-contour to CR with large R. As in Ref. 4, no poles
are passed in the contour deformation. The factor ξ−v1

σ(1) becomes 1/(ξσ (1) � 1) after the summation,
whereupon we deform the ξσ (1)-contour back to Cr . In this deformation, we pass the pole at ξσ (1) = 1,
the value of Aσ there being

(q
p

)k−1

∏
1<i<j

U(ξσ(i), ξσ(j))∏
i<j

i,j,k

U(ξi, ξj)

when σ(1) = k. Now we think of σ as a function from [2, . . . , N] to [1, . . . , N]\{k}. We multiply by
the quotient in (17), sum over those σ with σ(1) = k, and use identity 1L (with obvious modification)
to obtain (q

p

)k−1
p(N−1)(N−2)

∏
i<j

i,j,k

1
U(ξi, ξj)

∏
j,k

1
1 − ξj

fL−1(ξ̂k).

The exterior factor is now
∏

i,k

(
ξ

x−yi−1
i eε(ξi)t

)
, and from these, summing on k, we obtain the sum

in (16).
This is the contribution from the residues when we deform the ξσ (1)-contour. Now we consider

the integral we have after the contour deformations and summation over v1. Again we consider at
first only the summands in which σ(1) = k. The factor Aσ/(ξσ (1) � 1) becomes

1
ξk − 1

∏
j,k U(ξk , ξj)∏
i<j U(ξi, ξj)

∏
1<i<j

U(ξσ(i), ξσ(j)).

Then as before, we multiply by the quotient in (17), sum over those σ with σ(1) = k, and use identity
1L to obtain

−p(N−1)(N−2)
N∏

j=1

1
1 − ξj

∏
j,k U(ξk , ξj)∏
i<j U(ξi, ξj)

fL−1(ξ̂k).

Finally, to sum over k, we apply identity 2L and obtain

−qN−1
[

N − k
1

]

τ

p(N−1)(N−2)
N∏

j=1

1
1 − ξj

∏
i<j

1
U(ξi, ξj)

fL(ξ).
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Multiplying by the factor
∏

i

(
ξ

x−yi−1
i eε(ξi)t

)
gives the first term in (16).

The next result is a formula for the same probability but with integrations over large contours.

Theorem 2. For q > 0,

PL, Y (x, m, t) = (−1)m+1 pm(m−1)/2
∑

|S | ≥m+L−1

q(m−1)( |S |−m/2)
[
|S | − L
m − 1

]

τ

×
pσ(S)−m |S |

qσ(S)−|S |( |S |+1)/2

∫
CR

· · ·

∫
CR

IL(x, YS , ξS) d |S |ξ, (18)

where R is so large that the poles of the integrand lie inside CR.
In Ref. 4, we used a duality between our ASEP and one with p and q interchanged to derive

Theorem 2 quickly from Theorem 1 in the case L = 1. For the argument to extend to general L, we
would need the following:

If we make the replacements τ→ 1/τ, ξi→ ξ−1
i in fL(ξ), the result is equal to

(−1)L τ
L(L−1)/2∏

ξL
i

fL(ξ).

Although this has been verified in many case, we have not (yet) found a proof. Instead we use Lemma
3.1 of Ref. 4, which expresses an integral of the type we have over small contours in terms of integrals
over large contours. This more elaborate argument is presented in Appendix B.

As in Ref. 4, Theorem 2 extends to infinite systems unbounded on the right. The sum is then
taken over finite subsets of Z+.

IV. STEP INITIAL CONDITION

As in Ref. 5, with the step initial condition (Y = Z+), there is an expression for the probability
PL,Z+ (x, m, t) as an integral involving a Fredholm determinant. Before stating the result, we derive
an alternative expression for the integral in (4), namely,∫

Γξ

· · ·

∫
Γξ

ϕL(z1, . . . , zL; ξ) dz1 · · · dzL = (−1)L
∫
Γ0,τ

· · ·

∫
Γ0,τ

ϕL(z1, . . . , zL; ξ) dzL · · · dz1. (19)

Informally, Γ0,τ is a contour consisting of tiny circles around the points z = 0 and z = τ, with the
circles for each zi lying well outside the circles for zi+1. Precisely, the iterated integral on the right
is interpreted as follows: First take the sum of the residues at zL = 0 and zL = τ. In the resulting
integrand, take the sum of the residues at zL�1 = 0 and zL�1 = τ, and so on.

Here is the argument for (19). First evaluate the zL-integral on the left by expanding the contour.
There are contributions from minus the residues at 0 and τ, none from infinity, and one from minus
the residue at each pole at zL = p/(1 � qzi). The factors involving zi when we compute the latter
residue combine as constant times,

(1 − zi)

zL−i+1
i (1 − pzi)

∏
j

zi − ξj

ξj − qziξj − p
.

This no longer has the singularities at zi = ξ j. Therefore the zi-integral over Γξ equals zero, which
means that the residue at zL = p/(1 � qzi) integrates to zero. Thus the integral with respect to zL over
Γξ equals minus the sum of the residues at zL = 0 and zL = τ. Then we find similarly that the resulting
integral with respect to zL�1 over Γξ equals minus the sum of the residues at 0 and τ. Continuing this
way, we replace all integrals with respect to the zi over Γξ by minus the sum of the residues at 0 and
τ. (And we have to do it in the order zL, zL�1, . . . , z1.)

With (19) established, we introduce the notation KL ,x(z) for the integral operator acting on
functions on CR with kernel

KL, x(ξ, ξ ′; z)=Kx(ξ, ξ ′)
L∏

j=1

U(zj, ξ),
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where

Kx(ξ, ξ ′)=
ξx eε(ξ)t

p + qξξ ′ − ξ
.

In the statement below, the integral over zi is interpreted as in the right side of (19) and (λ; τ)m is the
Pochhammer symbol

∏m−1
j=0 (1 − λ τj).

Theorem 3. For p, q > 0,

PL,Z+ (x, m, t)= (−1)L−1 pL(L+1)/2 τ−(m−1)(L−1)

×

∫
Γ0,τ

· · ·

∫
Γ0,τ

1

zL
1 (qz1 − p) zL−1

2 (qz2 − p) · · · zL (qzL − p)

∏
i<j

1
U(zj, zi)

×

[∫
det(I − p−Lq λ KL, x+L−1(z))

(λ; τ)m

dλ

λL

]
dzL · · · dz1 .

The λ-integration is over a contour enclosing the singularities of the integrand at τ�j for j = 0, . . . , m
� 1.

Remark. For the case L = 1, evaluating the z1 integral by computing residues at 0 and τ, one
obtains

P1,Z+ (x, m, t)=
∫

det(1 − qλKx) − det(1 − qλKx−1)
(λ; τ)m

dλ
λ

.

This implies

PZ+ (xm(t) ≤ x)=
∫

det(1 − qλKx)
(λ; τ)m

dλ
λ

,

which is equation (1) of Ref. 5.

For the Proof of Theorem 3, we first simplify (18) when Y = Z+ as in Ref. 4 by first summing
over all S with |S| equal to a fixed k. We define

JL,k(x, t, ξ)=
∏
i,j

1
U(ξi, ξj)

fL(ξ)∏
i(1 − ξi)(qξi − p)

∏
i

ξx−1
i eε(ξi) t ,

where the indices run over [1, . . . , k]. The result is

PL,Z+ (x, m, t)= (−1)m+1
∑

k≥m+L−1

1
k!

[
k − L
m − 1

]

τ

× p(k−m)(k−m+1)/2 qkm+(k−m)(k+m−1)/2
∫
CR

· · ·

∫
CR

JL,k(x, t, ξ) dξ1 · · · ξk . (20)

The derivation follows the same steps as in Ref. 4.
Using (3) and (4), which give the definition of fL(ξ), and (19), we obtain

JL,k(x, t, ξ) = (−1)L p−kL+L(L+1)/2
∫
Γξ

· · ·

∫
Γξ

1

zL
1 (qz1 − p) zL−1

2 (qz2 − p) · · · zL (qzL − p)

∏
i<j

1
U(zj, zi)

×



∏
i,j

1
U(ξi, ξj)

∏
i

U(z1, ξi) · · ·U(zL, ξi)
(1 − ξi)(qξi − p)

∏
i

ξx+L−1
i eε(ξi)t


dzL · · · dz1. (21)

We saw in Ref. 5 that

det(Kx(ξi, ξj))i,j≤k = (−1)k (pq)k(k−1)/2
∏
i,j

1
U(ξi, ξj)

∏
i

1
(1 − ξi)(qξi − p)

∏
i

ξx
i eε(ξi)t .

It follows that the expression in brackets in (21) equals

(−1)k (pq)−k(k−1)/2 det(KL, x+L−1(ξi, ξj; z))i,j≤k .
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Therefore (21) becomes

JL,k(x, t, ξ)= (−1)k+L p−kL+L(L+1)/2(pq)−k(k−1)/2
∫
Γ0,τ

· · ·

∫
Γ0,τ

1

zL
1 (qz1 − p) zL−1

2 (qz2 − p) · · · zL (qzL − p)

×
∏
i<j

1
U(zj, zi)

det(KL, x+L−1(ξi, ξj; z))i,j≤k dzL · · · dz1. (22)

Next, we observe that

(−1)k

k!

∫
CR

· · ·

∫
CR

det(KL, x+L−1(ξi, ξj; z))i,j≤k dξ1 · · · dξk =

∫
det(I − λ KL, x+L−1(z))

λk+1
dλ

= pkL
∫

det(I − p−Lλ KL, x+L−1(z))

λk+1
dλ,

the kth coefficient in the Fredholm expansion of det(I � λ KL ,x + L�1(z)).
The final step is to sum over k, interchanging the sum with the integrals. The sum of the terms

involving k equals
∞∑

k≥L+m−1

p(k−m)(k−m+1)/2 qkm+(k−m)(k+m−1)/2 (pq)−k(k−1)/2 λ−k
[

k − L
k − L − m + 1

]

τ

= pL+m−1 τ−Lm−m(m−1)/2 λ−L−m+1
∑
k≥0

pk τ−mk λ−k
[

k + m − 1
k

]

τ

. (23)

By the τ-binomial theorem, we have for |z| < 1,∑
k≥0

zk
[

k + m − 1
k

]

τ

=

m−1∏
j=0

(1 − z τj)−1,

from which it follows that for large enough λ, (23) is equal to

(−1)m pL−1τ−(L−1)m λ−L+1 1

(λ q−1; τ)m
.

After making the substitution λ → qλ in the λ-integral and referring back to (20) and (22), we see
that Theorem 3 follows.
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APPENDIX A: PROPERTIES OF THE POLYNOMIALS fL
For our applications of Lemmas 3.1 and 5.1 of Ref. 4, one has to know two things. The first is

that
fL(ξ)|ξk=1 = fL−1(ξ̂k).

This follow from (4) and the fact U(z, 1) = p.
The second property, for the application of Lemma 5.1, is that for i , k, we have fL(ξ)=O(1) as

ξk →∞ when ξ i = p/(1 � qξk) and the other ξ j are bounded. (For the application of Lemma 3.1, one
interchanges ξ i and ξk .) This is clearly true for L = 1, and we use induction to prove it for L > 1. So
as not to confuse indices, we write (6) as

fL(ξ)= p1−N
L∑
`=1

(1 − ξ`)
∏
j,`

ξj U(ξ` , ξj) · fL−1(ξ̂`).

Because fL(ξ) is a polynomial, we may assume that ξ` with `, i, k lie on circles centered at zero
with different radii. The reason is that the maximum modulus theorem, applied one variable at a time,
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would extend the bound to inside these circles, which are arbitrarily large. With this assumption, all
U(ξ` , ξ j) = O(1), no matter what the indices.

The ` = i summand equals zero because the product over j contains the factor

U(ξi, ξk)=U(p/(1 − qξk), ξk)= 0.

For `, i, the factors fL−1(ξ̂`) are O(1) by induction hypothesis since ξ i is one of the remaining
variables. Then for ` = k, there is the factor 1 � ξk , but the product over j contains the factor ξ i but
not ξk and so is O(ξ−1

k ). Finally, when ` , i, k, the product over j contains both factors ξk and ξ i, and
their product is O(1). So all summands are O(1).

APPENDIX B: DERIVATION OF THEOREM 2

Here we derive Theorem 2 from Theorem 1 using Lemma 3.1 of Ref. 4. The right side of Theorem
1 is a sum over S ⊂ [1, . . . , N] of integrals with variables ξS with coefficients

(−1)m+N+1 τN(N+1)/2+m(m−1)/2−mN (B1)

(which are independent of S) times

(−1) |S |
[

|S | − L
N − m − L + 1

]

τ

(B2)

times
τ−N |S | τσ(S) p |S |( |S |−1)/2. (B3)

We apply Lemma 3.1 of Ref. 4, with [1, . . . , N] replaced by S, to the integrals of Theorem 1. (In
Appendix A, we showed that the hypothesis of Lemma 3.1 holds here.) The statement of that lemma
uses the notation, for sets U and V,

σ(U, V )= #{(i, j) : i ≥ j, i ∈U, j ∈ V }.

If V = [1, . . . , N], this equals σ(S). We shall use the fact that σ(U, V ) is linear in both U and V.
Applying the lemma, we get integrals over sets T ⊂ S of integrals with integrands IK (x, YT , ξT )

and with coefficients
p |S\T |−σ(S\T , S)

qσ(T , S)−|T |( |T+1)/2 )
.

The product of this with (B3) is equal to

p−|T |q |T |( |T |+1)/2 τσ(T ) τ |S |( |S |+1)/2−N |S | τσ(S\T )−σ(S\T , S). (B4)

Eventually we are going to get a sum over T (which will replace S in the statement of Theorem 2),
so we fix T and then sum over all S satisfying

[1, . . . , N] ⊃ S ⊃ T .

The first three factors in (B4) depend on T only, the next factor depends only on |S|, and the last
depends on S. First we fix k and sum over all S with |S| = k. So at first, we need only sum the last
factor (leaving the sum over k for later). The sum is∑

[1,. . .,N]⊃S⊃T
|S |=k

τσ(S\T )−σ(S\T , S).

With T c = [1, . . . , N]\T, we have

σ(S\T ) − σ(S\T , S)=σ(S\T , T ) + σ(S\T , T c) − σ(S\T , S\T ) − σ(S\T , T )

=σ(S\T , T c) − σ(S\T , S\T ).

Replacing S\T by S, we may rewrite our sum as∑
S⊂Tc
|S |=k−|T |

τσ(S, T c)−σ(S, S).
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Using the order-preserving mapping T c → [1, . . . , N �|T |], we see that the sum equals∑
S⊂[1,. . .,N−|T |]
|S |=k−|T |

τσ(S)−σ(S, S).

This equals2
[

N − |T |
k − |T |

]

τ

.

If we multiply this by (B2) and the factor τ|S |(|S | + 1)/2�N |S | from (B4) and sum over k, we get

N∑
k= |T |

(−1)k τk(k+1)/2−Nk
[

k − L
N − m − L + 1

]

τ

[
N − |T |
k − |T |

]

τ

. (B5)

Taking into account (B1) and the powers of p and q in (B4), we find that this would agree with
Theorem 2 if the sum were equal to

(−1)N τ−N(N+1)/2+mN−(m−1) |T |
[
|T | − L
m − 1

]

τ

. (B6)

To show that this is so, denote the sum by F(m). First, we have

F(1)= (−1)N τ−N(N−1)/2. (B7)

[Observe that when m = 1, the only nonzero summand in (B5) occurs when k = N.] Second, the
algorithm qZeil8 produces the recursion formula

F(m)=
τN−L−m+2 (1 − τL+m−|T |−2)

1 − τm−1
F(m − 1).

Taking the product and using (B7) give

F(m)= (−1)N+m−1 τ−N(N+1)/2
m∏

j=2

τN−L−j+2 (1 − τL+j−|T |−2)

1 − τj−1

= (−1)N τ−N(N+1)/2+mN−(m−1) |T |
m∏

j=2

1 − τ |T |−L−j+2

1 − τj−1
,

which is (B6).
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